Bogus Joint-Liability Groups in Microfinance – Theory and Evidence from China

A. Karaivanov
SFU

X. Xing
Tsinghua University

Y. Xue
UIBE

January 2016
Motivation

- survey data on clients of CFPAM, the leading microlender in China, indicates that a substantial fraction (69%) of microfinance joint-liability groups are what we call **bogus** (*Lei Da Hu*)

- **bogus group** = one person uses all loans given to the group members (cosigners) for one’s own *single* purpose

- **standard group** = each member uses their own separate loan for a *different* purpose (as modeled in the literature)

- the practice of *Lei Da Hu* is against CFPAM rules but hard (or unwilling?) to enforce compliance
What we do

- write a model in which bogus and standard joint liability groups arise endogenously and can coexist in equilibrium
 - selection — who and when forms bogus groups
 - repayment/default rate
 - efficiency — are bogus groups ‘bad’ or ‘good’?

- analyze the optimal loan contract (menu) when bogus groups cannot be detected or ruled out ex-ante

- empirical analysis; welfare and policy counterfactuals – in progress and future work
Model
Borrowers

- risk neutral; each has a single investment project with productivity (type), \(k_i \in \{k_L, k_H\} \) where \(k_H > k_L > 0 \)

- projects are fully loan-financed

- given loan (=investment) amount \(L \), the project return is:

\[
Y_i = \begin{cases}
 k_i L & \text{with probability } p \in (0, 1) \quad \text{[success]} \\
 0 & \text{with probability } 1 - p \quad \text{[failure]}
\end{cases}
\]

- project returns are i.i.d. across borrowers
Lender(s)

- risk neutral

- zero profits; no cross-subsidization (free entry)

- opportunity cost of funds = 1

- only group loans are provided, with a joint liability clause
 - two-person borrower groups

- loan terms: each borrower receives
 - loan size L
 - gross repayment R
Credit market features

- **limited enforcement**
 - for example, unverifiable project return

- **limited liability**
 - the borrowers have no other assets or income to be seized in case of failure (or this is unenforceable)

- **joint liability**
 - each borrower can be held responsible for the full group obligation $2R$
Default or repayment I

- **involuntary default** – a borrower cannot repay the loan when her project fails

- **strategic default** – a borrower whose project succeeds may default strategically and keep Y_i

- in either case, the other group member could choose to repay $2R$ if her project succeeds
Default or repayment II

• if the lender does not receive $2R \implies \text{both borrowers are cut off from future access to credit}$

• if the lender receives $2R \implies \text{both borrowers obtain value of future access to credit } V > 0 \text{ each}$
Timing and information

1. two borrowers i, j form a group

2. the project productivities k_i, k_j are realized (observed by the borrowers but possibly not by the lender)

3. the lender offers contract(s) consisting of loan size and repayment $\{L, R\}$

4. the borrowers choose to operate as bogus or standard group – unobserved by the lender

5. the project outcomes are realized (non-verifiable)

6. each borrower decides to repay or default

7. payoffs are realized
Standard groups – repayment decision

• two-stage repayment game a la Besley-Coate

• **Stage 1**: each borrower asked to repay R; decide simultaneously, non-cooperatively*

 – if one’s project fails – default involuntarily
 – if both repay or both default – game ends, payoffs realized (see below);
 – if not, \(\Rightarrow\)

• **Stage 2**: if a borrower has repaid R in stage 1 but her partner has not, the former is asked to pay extra R
Repayment decision – backward induction

• Stage 2: repay is optimal if $R \leq V$

• Stage 1: suppose $R \leq V$ (so either will repay in Stage 2), then the Stage 1 (row) payoffs, conditional on own project success, are as follows:

<table>
<thead>
<tr>
<th></th>
<th>repay</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>repay</td>
<td>$k_i L - R - (1 - p)R + V$</td>
<td>$k_i L - 2R + V$</td>
</tr>
<tr>
<td>default</td>
<td>$k_i L + pV$</td>
<td>$k_i L$</td>
</tr>
</tbody>
</table>

• (repay, repay) is the unique* SPNE if

$$R \leq \frac{1-p}{2-p}V$$
Standard groups only

- the optimal loan terms for standard group ij maximize the group expected payoff

$$W_{ij}(L, R|S) \equiv p(k_i + k_j)L - 2p(2 - p)R + 2p(2 - p)V$$

subject to:

$$2R \leq k_mL \text{ for } m = i, j \text{ (feasibility)}$$

$$R \leq \frac{1-p}{2-p}V \text{ (no strategic default)}$$

$$p(2-p)R = L \text{ (lender zero profits)}$$
Standard groups only

- assume
 \[k_L \geq \frac{2}{p(2-p)} \] [Assumption A1]
 (ensures feasibility for any \(i, j \); also implies \(pk_i > 1 \) – all projects are socially efficient)

- **Proposition 1:** The optimal standard group contract \(S = \{L_S, R_S\} \) is
 \[L_S = p(1-p)V \text{ and } R_S = \frac{1-p}{2-p}V \]

- note: the contract is the same whether or not the lender observes \(k_i, k_j \)
Allowing for bogus groups

- suppose now
 - **bogus groups may form** and
 - **group form choice is unobserved** by the lender

- the group form choice is *endogenous*, based on maximizing the *group’s joint payoff*

- in a bogus group, all funds are invested into the more productive project (w.l.o.g., $k_i \geq k_j$)
 - it resembles an individual loan of size $2L$
 - the joint liability clause has no bite since the ‘ghost’ member has no income (limited liability)
Bogus groups

- same repayment game but, since the cosigner has no project, the lender comes back to the Stage 1 repaying member with certainty

- upon project success, the cosigner is compensated with some transfer T independent of the repay/default decision

- given (L, R), optimal to repay if

$$2k_iL - 2R + V - T \geq 2k_iL - T \iff R \leq V/2$$

- weaker than the standard group no-default condition, $R \leq \frac{(1-p)V}{2-p}$

- using the lender’s zero profit condition, $2pR = 2L$, the best contract for a bogus group is:

$$L_B = pV/2, \quad R_B = V/2$$
Bogus vs. standard groups – comparison

1. **risk-sharing** – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$
Bogus vs. standard groups – comparison

1. **risk-sharing** – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$

2. **expected output** – weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$
Bogus vs. standard groups – comparison

1. **risk-sharing** – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$

2. **expected output** – weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$

3. **strategic default incentive** – stronger in a standard group due to being able to free ride on partner’s repayment
Bogus vs. standard groups – comparison

1. **risk-sharing** – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if \(R \leq V \)

2. **expected output** – weakly larger in a bogus group, \(2k_iL \) vs. \((k_i + k_j)L \)

3. **strategic default incentive** – stronger in a standard group due to being able to free ride on partner’s repayment

4. **interest rate** – higher in a bogus group \(\left(\frac{1}{p} \text{ vs. } \frac{1}{p(2-p)} \right) \) – lack of diversification; implied by 1.
Bogus vs. standard groups – comparison

1. **risk-sharing** – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$

2. **expected output** – weakly larger in a bogus group, $2k_i L$ vs. $(k_i + k_j)L$

3. **strategic default incentive** – stronger in a standard group due to being able to free ride on partner’s repayment

4. **interest rate** – higher in a bogus group ($\frac{1}{p}$ vs. $\frac{1}{p(2-p)}$) – lack of diversification; implied by 1.

5. **loan size** – larger loans can be supported in a bogus group ($L \leq pV/2$ vs. $L \leq p(1-p)V$); implied by 3.
Who forms bogus groups?

bullet for given \((L, R)\), optimal to form a bogus group instead of a standard group if,

\[
(k_i - k_j)L > 2(1 - p)(V - R) \quad \text{[form bogus]}
\]

* the RHS is the net risk-sharing benefit in a standard group (item 1)
* the LHS is the expected output gain in a bogus group (item 2)

bullet for given \((L, R)\) a bogus group is more likely

- the larger are \(k_i - k_j\) and \(p\)
- the lower is \(V\)
Bogus groups – a problem?

• Proposition 2: At the standard group contract $S = (L_S, R_S)$, if

$$k_H - k_L > \frac{2}{p(2-p)} \quad (**).$$

then:

(a) all (k_H, k_L) borrower pairs optimally form bogus groups
(b) all (k_H, k_L) groups cause losses to the lender

• Intuition:

(a) output gains
(b) loss of diversification – all funds put into a single project instead of split between two i.i.d. projects.
Bogus groups – a problem?

• if condition (**) is not satisfied, it does not mean that offering \((L_S, R_S)\) is necessarily optimal

• the lender would not lose money but a superior contract may exist, utilizing the additional advantages of bogus groups (items 3 and 5)
The optimal loan contract allowing for bogus groups

- assume k_i, k_j observed* by the lender. For given k_i, k_j, p, the optimal loan contract solves:

$$\max_{L, R, \tau \in \{0,1\}} \tau W(L, R|S) + (1 - \tau)W(L, R|B) \quad \text{subject to}$$

$$\tau W(L, R|S) + (1 - \tau)W(L, R|B) \geq \tau W(L, R|B) + (1 - \tau)W(L, R|S) \quad \text{(IC)}$$

$$R \leq \tau \frac{(1-p)V}{2-p} + (1 - \tau)\frac{V}{2} \quad \text{(no default)}$$

$$R = \tau \frac{L}{p(2-p)} + (1 - \tau)\frac{L}{p} \quad \text{(zero profits)}$$
The optimal contract – observable productivity

Proposition 3: The optimal loan contract \((L^*, R^*)\) for a \(k_i, k_j\) group is:

(a) for homogeneous, \(ii\) (HH or LL) groups

- if \(p(2p - 1)k_i > 1\) (large \(k_i\) or \(p\)), then \(L^* = pV/2 \equiv L_B\), \(R^* = V/2 \equiv R_B\) and the group is bogus \((\tau^* = 0)\)
- if \(p(2p - 1)k_i \leq 1\) (small \(k_i\) or \(p\)), then \(L^* = p(1 - p)V = L_S\), \(R^* = \frac{(1-p)V}{2-p} = R_S\) and the group is standard

(b) for heterogeneous (HL) groups, depending on parameter values*

- either \(L^* = L_B, R^* = R_B\) and the group is bogus (for large \(k_i\), or \(p\), or \(k_H - k_L\))
- or \(L^* = \min\{L_S, L_E\}, R^* = \frac{L^*}{p(2-p)}\) and the group is standard
 (where \(L_E \equiv \frac{p(1-p)V}{2-p + \frac{p}{2}(k_H - k_L)} < L_S\))
Optimal lending with endogenous bogus groups –
summary

• **bogus homogeneous groups** if

 – large p
 – medium p + large k_i

• **bogus heterogeneous groups** if

 – large p
 – medium p + large k_L
 – small/medium p + large k_H relative to k_L

• **standard heterogeneous groups** with contract $\mathcal{E} \equiv (L_E, R_E)$ for
 small/medium p + medium k_H relative to k_L
\[k_H = k_L + \frac{2}{p(2-p)} \]

\[k_H = k_L \]

\[k_H = f(k_L) \]

\[HL \text{ group } (0 < p \leq \frac{1}{2}) \]

- Bogus with contract \(B \)
- Standard with contract \(E \)
- Standard with contract \(S \)
Figure 1: The equilibrium contracts and group forms under different parameter values when productivity is observable.
Discussion

• **interest rate**: \(\frac{R_B}{L_B} > \frac{R_S}{L_S} = \frac{R_E}{L_E} \) – bogus groups face higher interest rate

• **repayment amount**: \(R_B > R_S \) – bogus groups owe more

• **loan size**: \(L_B > L_S > L_E \) – bogus groups receive larger loans (if \(p > 1/2 \))

• **project type**: larger productivities \(k_H, k_L \) and/or larger differential, \(k_H - k_L \) make bogus groups optimal

• **composition**: heterogeneous groups have stronger incentive to be bogus
Discussion

• bogus groups always receive their optimal loan \(B = \left(\frac{pV}{2}, \frac{V}{2} \right) \) independent of \(k_i, k_j \)

• the contract for a standard group may differ from \(S \) and depend on the productivities (case \(\mathcal{E} \))
 - IC only binds in case \(\mathcal{E} \)

• taking into account bogus groups maximizes total surplus (constrained-efficient)

• bogus groups are not a loss-causing nuisance but arise endogenously to exploit higher-productivity investments

• bogus groups could mitigate the strategic default problem making larger loans possible (if \(p > 1/2 \))
Extension – joint repayment decision

• borrowers decide jointly to default or repay $2R$ (verifiable Y_i within the group or social capital)

• standard groups only:
 – optimal contract is S' with $L_{S'} = p(2 - p)V$ and $R_{S'} = V$
 – larger loan size, same interest rate as S

• allowing bogus groups:
 – the no-default condition is now $R \leq V$ for both bogus and standard groups (no strategic interaction)
 – at S' any HL group is bogus and causes loss to the lender
 – intuition: only effect 2 (expected output) operates; effect 1 (risk sharing) is zero at $R_{S'} = V$
Extension – joint repayment decision

Proposition D3: Suppose the borrowers make the repayment decision jointly and k_i and k_j are observed by the lender.

<table>
<thead>
<tr>
<th></th>
<th>optimal contract and group form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LL groups</td>
</tr>
<tr>
<td>1. k_H close to k_L</td>
<td>S', standard</td>
</tr>
<tr>
<td>2. k_H large relative to k_L</td>
<td>S', standard</td>
</tr>
</tbody>
</table>

• intuition:
 – homogeneous pairs (HH or LL) – no benefit from forming bogus group (no extra output, no risk-sharing, same R)
 – heterogeneous pairs (HL) – bogus groups optimal for k_H sufficiently large relative to k_L
Conclusions

- bogus groups are efficient – larger loan size can be supported and larger output created

- bogus groups are more likely to be used by “better” borrowers (with higher k_i and p)

- bogus groups have a lower repayment rate (p vs. $1 - (1 - p)^2$) and hence require higher interest rate

- MFIs using group lending must take into account that bogus groups can form and address this by offering appropriate loan terms or menus
Thank you
Endogenous bogus groups – payoffs

- the expected total payoffs of a standard and bogus group are respectively

\[
W(L, R|S) = \begin{cases}
p(k_i + k_j)L - 2p(2 - p)R + 2p(2 - p)V & \text{if } R \leq \frac{1-p}{2-p}V \text{ (repay,repay)}
p(k_i + k_j)L - 2pR + 2pV & \text{if } R \in \left(\frac{1-p}{2-p}V, \frac{V}{2}\right] \text{ (repay,default)}
p(k_i + k_j)L & \text{if } R > \frac{V}{2} \text{ (default,default)}
\end{cases}
\]

\[
W(L, R|B) = \begin{cases}
2pk_iL - 2pR + 2pV & \text{if } R \leq \frac{V}{2} \text{ (repay)}
2pk_iL & \text{if } R > \frac{V}{2} \text{ (default)}
\end{cases}
\]

- *remark: the standard group (repay, default) equilibrium is payoff-dominated by the (repay) bogus group outcome
Unobserved productivities

• due to free entry the lender cannot screen the group composition (HH, LL or HL) using different interest rates

⇒ at most a two-contract menu can be offered, \((L_N, R_N)\) and \((L_M, R_M)\) designed for standard and bogus groups respectively

• IC has to ensure that each group

 – chooses its intended form (bogus vs. standard)
 – self-selects into intended contract \((\mathcal{N} \text{ or } \mathcal{M})\)
Optimal contract menu – unobserved productivities

\[
\max_{L_N, R_N, L_M, R_M} \sum_{i,j} q_{ij} W_{ij}(L_N, R_N, L_M, R_M) \quad \text{subject to:}
\]

\[
R_M \leq \frac{V}{2} \quad \text{(no default, bogus)}
\]

\[
R_M = \frac{L_M}{p} \quad \text{(zero profits, bogus)}
\]

\[
R_N \leq \frac{1-p}{2-p} V \quad \text{(no default, standard)}
\]

\[
R_N = \frac{L_N}{p(2-p)} \quad \text{(zero profits, standard)}
\]

\[
W_{ij}(L_N, R_N, L_M, R_M) \geq \max\{W_{ij}(L_N, R_N|B), W_{ij}(L_M, R_M|S)\} \quad \text{(IC2)}
\]

\[\forall ij \in \{HH, HL, LL\}, \text{ where}\]

\[
W_{ij}(L_N, R_N, L_M, R_M) \equiv \max\{W_{ij}(L_N, R_N|S), W_{ij}(L_M, R_M|B)\}
\]
Optimal contract menu – unobserved productivities

- **Proposition 4**: Suppose k_i and k_j are unobservable to the lender. The optimal loan menu consists of two contracts, \mathcal{N} and \mathcal{M} such that:

(i) contract \mathcal{M} has terms $L^*_M = L_B$ and $R^*_M = R_B$ for any k_H, k_L, p.

(ii) contract \mathcal{N} has terms $L^*_N = L_S$, or $L^*_N = L_E < L_S$, or $L^*_N = L_F < L_S$, and $R^*_M = \frac{L^*_N}{p(2-p)}$, depending on parameters, where $L_F = \frac{pk_H - \frac{1}{2}}{pk_H - \frac{1}{2-p}} \frac{pV}{2}$ and $R_F = \frac{L_F}{p(2-p)}$.

(iii) borrowers who select contract \mathcal{N} optimally form standard group; borrowers who select \mathcal{M} form a bogus group.
Joint repay/default decision – unobservable k’s

<table>
<thead>
<tr>
<th>menu</th>
<th>selected contract and group form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LL groups</td>
</tr>
<tr>
<td>1. (k_H) close to (k_L)</td>
<td>(\mathcal{E}, \mathcal{B})</td>
</tr>
<tr>
<td>2. (k_H) large relative to (k_L)</td>
<td>(\mathcal{F}, \mathcal{B})</td>
</tr>
</tbody>
</table>

- standard groups receive smaller loans than in contract \(S\) – agency costs
Excluding bogus groups?

- choose \((L, R)\) to maximize the group payoff subject to: no default, zero profits, and

\[(k_i - k_j)L \leq 2(1 - p)(V - R) \quad \text{[no bogus]}\]

- **Proposition 5:** Suppose the lender wants to exclude bogus groups and \(k_i, k_j\) are observed.

(i) the payoff-maximizing excluding contract for \(HH\) and \(LL\) groups is \(S = (L_S, R_S)\)

(ii) the payoff-maximizing excluding contract for \(HL\) groups is:

- \(S = (L_S, R_S)\) if \(k_H - k_L \leq \frac{2}{p(2-p)}\)
- \(E = (L_E, R_E)\) with \(L_E < L_S\) if \(k_H - k_L > \frac{2}{p(2-p)}\) (***)
Data

- 2011 phone survey with 366 borrowers belonging to 80 joint liability groups
 - clients of CFPAM – China’s largest microlender (175,000 clients, 1.87RMB in loans in 2013)

- data on
 - group form (*Lei Da Hu* or not)
 - knowledge of joint liability and other members
 - loan use, size, repayment, interest
 - others – see Table 2
<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable Definition</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>bogus group type dummy</td>
<td>366</td>
<td>0.69</td>
<td>0.21</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>monthly payment (in RMB)</td>
<td>366</td>
<td>828.6</td>
<td>192.3</td>
<td>50.7</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>loan amount (in RMB)</td>
<td>366</td>
<td>7194</td>
<td>1774</td>
<td>500</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>number of payments in total</td>
<td>366</td>
<td>9.93</td>
<td>0.62</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>interest rate</td>
<td>366</td>
<td>13.5%</td>
<td>0.32%</td>
<td>12%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>366</td>
<td>43.8</td>
<td>9.68</td>
<td>21</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>marital status dummy</td>
<td>366</td>
<td>0.94</td>
<td>0.24</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AFAF industry dummy</td>
<td>366</td>
<td>0.80</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>manufacture industry dummy</td>
<td>366</td>
<td>0.06</td>
<td>0.23</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>service industry dummy</td>
<td>366</td>
<td>0.02</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>wholesale industry dummy</td>
<td>366</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>transport industry dummy</td>
<td>366</td>
<td>0.02</td>
<td>0.14</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>housing industry dummy</td>
<td>366</td>
<td>0.02</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>below education dummy</td>
<td>366</td>
<td>0.01</td>
<td>0.10</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>primary education dummy</td>
<td>366</td>
<td>0.27</td>
<td>0.44</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>junior education dummy</td>
<td>366</td>
<td>0.69</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>highschool education dummy</td>
<td>366</td>
<td>0.03</td>
<td>0.17</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>college education dummy</td>
<td>366</td>
<td>0.01</td>
<td>0.09</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>beizhen county dummy</td>
<td>366</td>
<td>0.54</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>xiuayan county dummy</td>
<td>366</td>
<td>0.22</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>xingcheng county dummy</td>
<td>366</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Han the majority of Chinese</td>
<td>366</td>
<td>0.29</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manchu one of the minorities of Chinese</td>
<td>366</td>
<td>0.70</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mongols one of the minorities of Chinese</td>
<td>366</td>
<td>0.01</td>
<td>0.07</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
What is going on?

- the data indicate that the interest rate and number of repayments are basically identical across all borrower groups

- are parameters such that the S or B contract is optimal for all?
 - cannot be since we observe 70:30 split in group form

- the lender ignoring or unaware of bogus groups? \implies losses or sub-optimality
 - consistent with the 2005 *Planet Rating* report
Bogus groups – determinants

- Table 4 – bogus groups are statistically significantly associated with:
 - smaller monthly repayment
 - larger loan size
Table 4: Determinants of bogus vs. standard group form

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impayment</td>
<td>-4.78**</td>
<td>-4.75**</td>
<td>-4.85**</td>
<td>-4.44**</td>
<td>-4.60**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.14)</td>
<td>(2.10)</td>
<td>(2.12)</td>
<td>(2.00)</td>
<td>(2.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lloansize</td>
<td>5.41**</td>
<td>5.38**</td>
<td>5.53**</td>
<td>5.12**</td>
<td>5.28**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.18)</td>
<td>(2.13)</td>
<td>(2.16)</td>
<td>(2.04)</td>
<td>(2.10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lage</td>
<td>-0.47</td>
<td>-0.53</td>
<td>-0.60</td>
<td>-0.60</td>
<td>-0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.50)</td>
<td>(0.52)</td>
<td>(0.54)</td>
<td>(0.54)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>married</td>
<td>-0.22</td>
<td>-0.077</td>
<td>0.04</td>
<td>0.08</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.50)</td>
<td>(0.51)</td>
<td>(0.51)</td>
<td>(0.51)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFAF</td>
<td>-1.16</td>
<td>-0.98</td>
<td>-0.97</td>
<td>-0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.08)</td>
<td>(1.08)</td>
<td>(1.09)</td>
<td>(1.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacture</td>
<td>-1.54</td>
<td>-1.56</td>
<td>-1.41</td>
<td>-1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.16)</td>
<td>(1.17)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>service</td>
<td>0.00</td>
<td>-0.10</td>
<td>-0.09</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.51)</td>
<td>(1.52)</td>
<td>(1.52)</td>
<td>(1.52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wholesale</td>
<td>-0.76</td>
<td>-0.82</td>
<td>-0.65</td>
<td>-0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.15)</td>
<td>(1.16)</td>
<td>(1.17)</td>
<td>(1.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transportation</td>
<td>-3.74**</td>
<td>-3.82**</td>
<td>-3.82**</td>
<td>-3.78**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.52)</td>
<td>(1.52)</td>
<td>(1.52)</td>
<td>(1.52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>below</td>
<td>13.80</td>
<td>15.16</td>
<td>15.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(574.1)</td>
<td>(716.9)</td>
<td>(894.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>14.47</td>
<td>15.00</td>
<td>15.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(574.1)</td>
<td>(716.9)</td>
<td>(894.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>junior</td>
<td>14.68</td>
<td>14.97</td>
<td>15.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(574.1)</td>
<td>(716.9)</td>
<td>(894.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highschool</td>
<td>14.78</td>
<td>14.98</td>
<td>15.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(574.1)</td>
<td>(716.9)</td>
<td>(894.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manchu</td>
<td>-0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mongols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-15.10***</td>
<td>1.95*</td>
<td>-13.80</td>
<td>2.76</td>
<td>-12.97**</td>
<td>-12.42**</td>
<td>-26.64</td>
<td>-27.25</td>
</tr>
<tr>
<td></td>
<td>(5.41)</td>
<td>(1.07)</td>
<td>(574.1)</td>
<td>(1.87)</td>
<td>(5.68)</td>
<td>(5.82)</td>
<td>(716.9)</td>
<td>(894.3)</td>
</tr>
<tr>
<td>Observations</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>366</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1