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Abstract

The substantial ‘value-added’ literature that seeks to measure the overall impact of teachers on

student achievement does not distinguish between teacher effects that are invariant to prevailing

incentives and those that are responsive to them. In contrast, we develop an empirical approach

that, for the first time, allows us to separate out incentive-varying teacher effort from incentive-

invariant teacher ability, and further, to explore whether the effects of effort and ability persist

differentially. Our strategy exploits exogenous variation in the incentive strength of a well-known

federal accountability scheme, along with rich administrative data covering all public school

students in North Carolina. We separately identify teacher effort and teacher ability to determine

their relative magnitudes contemporaneously, finding that a one standard deviation increase in

teacher ability is equivalent to 21 percent of a standard deviation increase in student test scores,

while an analogous change in teacher effort accounts for 8 percent of such an increase. We then

use prior incentive strength to reject the hypothesis that the persistence of teacher ability and

effort is similar. To supplement our regression-based evidence, we set out a complementary

structural estimation procedure, showing that effort affects future scores less than ability. From

a policy perspective, our results indicate that incentives matter when measuring teacher value-

added. Our analysis also has implications for the cost effectiveness of sharpening incentives

relative to altering the distribution of teacher ability across classrooms and schools.
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I. Introduction

Assessing the importance of teachers in the production of student achievement has been a

central and long-standing preoccupation in academic research. Given that observable teacher

characteristics tend to do a poor job of predicting student outcomes, several influential

studies (for instance, Rivkin, Hanushek and Kain 2005) have used fixed effects methods to

show convincingly that ‘teacher quality’ matters. This finding has led to the development of

a substantial related literature, estimating sophisticated value-added measures that seek to

capture the overall performance impact of a given teacher (see influential papers by Chetty,

Friedman and Rockoff 2014a,b). These types of measure have become the focus of policy

interventions that include, controversially, firing low value-added teachers, in turn leading

to considerable scrutiny of the way value-added measures are constructed.

Alongside the research estimating teacher value-added, a second active literature has

studied the impact of accountability incentives on student and school performance. Ac-

countability schemes have become increasingly prevalent in the United States over the past

two decades, sharing the common goal of increasing measured teacher and school outcomes

by strengthening performance incentives. They range from the federal No Child Left Behind

Act of 2001 (‘NCLB’), a proficiency system that sets achievement targets and penalties for

target non-attainment, to various state-level schemes setting rewards or imposing penalties

based on the level or growth of student test scores. Persuasive evidence that accountability

schemes succeed in improving student achievement in a variety of settings now exists.1

This paper brings these two literatures together for the first time. We extend the value-

added literature by drawing a distinction between teacher effects that are invariant to the

incentive environment and those that are responsive to it; for convenience, we label the former

‘teacher ability’ and the latter, ‘teacher effort.’ Our approach draws upon incentive variation

associated with reforms analyzed in the accountability literature, setting out a new method

for distinguishing ability from unobserved effort. In doing so, we show how value-added

measurement can be refined to account for the prevailing incentive environment, offering an

expanded set of policy levers to improve teacher and school performance.

The starting point for our analysis is a simple model of education production that cap-

tures the cumulative nature of student learning. It is natural (though quite rare in the

literature) to allow for an effort margin on the part of educators in the student learning

1See, for instance, Carnoy and Loeb (2002), Lavy (2002, 2009), Hanushek and Raymond (2005), Dee and Jacob
(2011), Muralidharan and Sundararaman (2011), and Imberman and Lovenheim (2015).
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process. Accordingly, we treat teacher effort and teacher ability as separate inputs to that

process. Given that inputs may have a less-than-fully persistent effect on future learning

outcomes, we also allow teacher ability and effort to persist at potentially different rates.

While inputs may interact non-linearly, we focus on an additive specification – one that is

likely to provide a reasonable first-order approximation to the true education production

function. Under accountability incentives, teacher effort serves as a choice variable, and

we draw attention to cases in which incentives are likely to be particularly strong – where

educators are teaching marginal students, relevant for identification in the empirics.

This model forms the basis of a two-part empirical approach. In the first part, we exploit

plausibly exogenous incentive variation to distinguish teacher ability from teacher effort in

each period. Such variation is obtained from the introduction of NCLB in North Carolina.

As is well-appreciated (see Reback 2008, for instance), proficiency schemes like NCLB make

students matter differentially at the margin according to their likely test performance relative

to a fixed performance target. Accordingly, our strategy entails comparing the teachers of

students who are more versus less marginal, both before and after the incentive reform was

implemented.

To decompose teacher effects into incentive-invariant ability and incentive-varying effort,

we draw upon an important result from the recent literature: Overall teacher-effect estimates

are shown to be unbiased predictors of teachers’ average impact on student test scores when

controlling for the prior scores of students, since non-random sorting of students to teachers

occurs primarily with respect to that achievement measure. This finding is based on both

experimental and quasi-experimental evidence, which indicates that only a few years of

performance data are required in order to reasonably predict a teacher’s value-added over

her career (see Kane et al. 2013, Chetty et al. 2014a, and Kane and Staiger 2014).

We show that teacher-year effects of the type traditionally estimated do in fact vary with

incentives. Further, our approach allows us to separate out the relative short-run importance

of teacher ability and effort: we find that a one standard deviation increase in teacher ability

is equivalent to 21 percent of a standard deviation increase in student test scores, while an

analogous change in teacher effort accounts for 8 percent of such an increase. Given the level

of incentives under the NCLB system, the associated increase in effort is substantial.

In the second part of our empirical approach, we use the contemporaneous measures of

teacher ability and effort to investigate the extent to which each input persists (potentially

differentially) in explaining future test scores. This component of the analysis is novel in that
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persuasive evidence of the long-run effects of conventional teacher quality measures found in

the literature (see Chetty et al. 2014b) does not allow a role for incentives.

We begin by estimating an interacted specification to test whether the coefficient on the

prior score in a regression with the current score as the dependent variable differs signifi-

cantly on a triple-differences basis: we difference across more and less marginal students,

those previously taught in high- and low-effort classes, and those taught before and after the

accountability reform’s introduction. The findings from this interacted specification demon-

strate that teacher ability and effort do not persist at similar rates: the triple-differences

estimate for both grade three and four are positive and significant, while a placebo exercise

using only pre-reform observations yields results that are statistically indistinguishable from

zero.

The positive estimates we find using variation surrounding the introduction of the reform

are indicative of effort persisting either at a lower or higher rate than ability and prior

baseline effort. To determine which, we appeal to a complementary structural procedure,

which utilizes information from both reduced-form portions of our empirical approach. It

reveals that incentive effects fade at a faster rate than the combined effect of teacher ability

and prior baseline effort after one year. This is in line with teachers ‘teaching-to-the-test,’ a

phenomenon that is often discussed but rarely identified empirically.

These findings are relevant for policy. The prior literature (notably Hanushek 2011 and

Chetty et al. 2014b) has focused on altering the teacher ability distribution as a policy lever

to raise student scores. Specifically, policy proposals have featured the controversial notion

of replacing teachers whose value-added falls in the bottom five percent of the measured

distribution. Building on our finding that incentives matter when measuring the effects

of teachers, changing formal incentives constitutes an alternative way of raising student

and school performance. A straightforward procedure allows us to compare the benefit-cost

ratios of these two rival types of policy intervention. Here, our analysis implies that targeting

incentives to teachers in underperforming schools is likely to be more effective than firing

teachers at the bottom of the value-added distribution if the cost of such an intervention is

less than 17 percent of the latter policy in the long run.

The remainder of the paper is organized as follows: The next section sets out a simple

framework for analyzing the production of student achievement that provides the basis for

our empirical approach. Section III describes institutional background to the setting we

consider, along with the rich set of data used in our analysis. Section IV outlines the
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empirical strategies we employ to decompose ability and effort in both the short and long

run, Section V presents our findings, and we interpret them in Section VI. Section VII draws

out policy implications from the analysis and VIII concludes.

II. Theory

Central to our analysis is the technology governing education production. Education is a cu-

mulative process that, in its essence, involves innate student ability interacting with parental

and school inputs over time to determine student outcomes.2 A completely flexible produc-

tion technology would allow inputs to have differential effects on student outcomes depending

on the grade (or age) of the student, the amount of time that elapsed since the inputs were

applied, and the entire history of past inputs. As the exact specification of the technology

is unknown and many inputs are unobserved, researchers typically limit analyses to linear

production technologies and to inputs that are observed in school administrative data sets.

Furthermore, most studies examine the effects of contemporaneous inputs, accounting for

the history of past inputs by controlling for prior test scores.

Following the motivation above, we focus on both the contemporaneous and dynamic

effects of two unobserved inputs, namely teacher ability and effort. As a starting point, we

abstract from other inputs and consider the following production technology, which makes

explicit how each of the two inputs affects student learning, both contemporaneously and

over time:

yi,s(t),g(t),t = βt,0hi,0 +
∑

0≤t′≤t

[
γat,t′as(t′),g(t′),t′ + γet,t′es(t′),g(t′),t′

]
+ εi,s(t),g(t),t , (1)

where hi,0 is the human capital of student i at time 0, as(t),g(t),t is the average ability of

teachers at school s in grade g at time t, es(t),g(t),t is the average effort of those teachers,

and εi,s(t),g(t),t is an error term. To simplify further, let γat,t = γet,t = 1. Then, focusing on a

student in cohort 0 (defined as g = 0 when t = 0), the equation for kindergarten (g = 0)

simplifies to

yi,s(0),g(0),0 = hi,0 + as(0),g(0),0 + es(0),g(0),0 + εi,s(0),g(0),0 ,

using β0,0 = 1. Analogously, the technologies for grades one, two, and three for a student

who neither skips nor is retained a grade can be written as

2Individual student effort and the characteristics and behavior of other students matter also.
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yi,s(1),g(1),1 = β1,0hi,0 + as(1),g(1),1 + es(1),g(1),1 + γa1,0as(0),g(0),0 + γe1,0es(0),g(0),0 + εi,s(1),g(1),1 ,

yi,s(2),g(2),2 = β2,0hi,0+as(2),g(2),2+es(2),g(2),2+
∑

0≤t′<2

[
γa2,t′as(t′),g(t′),t′+γ

e
2,t′es(t′),g(t′),t′

]
+εi,s(2),g(2),2 ,

yi,s(3),g(3),3 = β3,0hi,0+as(3),g(3),3+es(3),g(3),3+
∑

0≤t′<3

[
γa3,t′as(t′),g(t′),t′+γ

e
3,t′es(t′),g(t′),t′

]
+εi,s(3),g(3),3 .

Given that we do not observe scores prior to grade three, we rewrite the grade three

equation in the following way:

yi,s(3),g(3),3 = β3,0hi,0 + Ii,3 + as(3),g(3),3 + es(3),g(3),3 + εi,s(3),g(3),3 .

where the prior investment term Ii,3 ≡
∑

0≤t′<3

[
γa3,t′as(t′),g(t′),t′ +γe3,t′es(t′),g(t′),t′

]
subsumes all

scholastic inputs to that point. We can similarly write the expression for grade four:

yi,s(4),g(4),4 = β4,0hi,0 + Ĩi,4−3 + as(4),g(4),4 + es(4),g(4),4 + γa4,3as(3),g(3),3 + γe4,3es(3),g(3),3 + εi,s(4),g(4),4

and beyond, where Ĩi,4−3 ≡
∑

0≤t′<3

[
γa4,t′as(t′),g(t′),t′ + γe4,t′es(t′),g(t′),t′

]
. By inspection, we see

that Ĩi,4−3 = Ii,3 +
∑

0≤t′<3

[
(γa4,t′ − γa3,t′)as(t′),g(t′),t′ + (γe4,t′ − γe3,t′)es(t′),g(t′),t′

]
.

Our goals are to separately identify both teacher ability and effort, {as(t),g(t),t, es(t),g(t),t}Tt=3,

and their effects on test scores, {γat,t′ , γet,t′}t′<t. Separate identification of teacher ability and

effort requires moving beyond teacher fixed effects, which subsume both, and relying on

plausibly exogenous variation to exert effort across teachers. It also requires observing a

teacher in at least two different time periods in which she faces different effort incentives.

We argue below that the North Carolina setting and data satisfy both requirements.

Central to our approach is the way the effort choice of educators is treated as being

endogenous to the prevailing incentive scheme, with agents balancing greater rewards against

the convex cost of effort. This implies an effort function that depends on the parameters of

the incentive scheme and, under threshold targets, an incentive strength measure describing

how marginal the educator is given exogenous circumstances, as is quite standard. To predict

where effort might be highest, we propose a continuous incentive strength measure based on

the incentives implied by a proficiency scheme such as NCLB. This is described more fully

in Section IV.

Given that we are able to separately identify the components of the amorphous ‘teacher

5



quality’ concept found in the literature, our next goal is to investigate how the effects of each

persist over time. If γat,t′ 6= γet,t′ for some t′ < t, then ability and effort persist at different

rates. Such a differential would have implications for the way in which student outcomes

could be improved through rival policy reforms that alternatively alter the teacher ability

distribution or incentive environment.

III. Institutional Background and Data

We conduct our analysis in North Carolina, a state that provides significant variation in

performance incentives across teachers and schools as well as rich longitudinal data covering

all public schools, and their teachers and students.

On the institutional side, the state offers useful incentive variation arising under two sepa-

rate accountability regimes. The first of these, North Carolina’s ABCs of Public Education,

was implemented in the 1996-97 school year for all schools serving kindergarten through

grade eight. Under the ABCs, each grade from three to eight in every school is assigned a

grade-specific growth target, which depends on both average previous student performance

and a constant level of expected growth. Based on average school-level gains across all grades

in student standardized mathematics and reading scores, the ABCs pay a monetary bonus

to all teachers and the principal if a school achieves its overall growth target.

Provisions under NCLB, the second of the accountability regimes operating, were imple-

mented in North Carolina in the 2002-03 school year, following the passage of the federal No

Child Left Behind Act in 2001. In contrast to the ABCs’ rewards-based approach, NCLB

sets penalties for under-performing schools. The program categorizes students into nine sub-

groups and requires schools to ensure that the percentage of students in each subgroup who

achieve proficiency status on state tests meets the state-mandated target. If a school fails

to meet any of its subgroup-specific targets, it faces an array of penalties that become more

severe over time in the event of repeated failure.

Alongside these accountability regimes, North Carolina has incredibly rich longitudinal

education data from the entire state, provided by the North Carolina Education Research

Data Center (NCERDC). These contain yearly standardized test scores for each student

in grades three through eight, and encrypted identifiers for students and the teachers who

proctor their tests, as well as unencrypted school identifiers. Thus, students can be tracked

longitudinally, and linked to a teacher and school in any given year.
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Our sample runs from 1997-2005 and is substantial, covering over 5 million individual-year

observations. In terms of performance measures, it includes end-of-grade (EOG) test score

performance data for mathematics and reading for all third to eighth grade public school

students in the state. We also observe a ‘pre-test’ in grade three, which is written at the

beginning of the year and treated as the grade two baseline test for third graders.

Table 1 provides summary statistics for the unrestricted sample of students. In the anal-

ysis below, we construct our ability and effort measures for each teacher by using individual

student test scores. These are measured on a developmental scale, designed so that each

additional point represents the same amount of knowledge gained irrespective of the base-

line score and school grade. Both the mathematics and reading scores in the table show

a monotonic increase across grades, consistent with knowledge being accumulated in those

subjects over time. The test score levels are relevant under NCLB, which requires that a

given proportion of each of the nine student subgroups (referred to above) exceeds a target

score on standardized tests.

The longitudinal nature of the data set allows us to construct growth score measures for

both mathematics and reading, based on within-student gains. These gains are positive, on

average, in both subjects across grades, though the largest gains occur for both subjects in

the earlier grades. Student gain scores are, as noted, the focus of the ABCs program, which

sets test score growth targets for schools, requiring that students demonstrate sufficient

improvement as they progress through their educational careers.

The data set includes information about individual students’ gender, race, disability sta-

tus, limited English-proficiency classification, free lunch eligibility, and grade progression.

In the aggregate, about 39 percent of students are minorities (non-white), 14 percent are

learning-disabled, only 3 percent are limited English-proficient, and 42 percent are eligible

for free or reduced-price lunch. Around 27 percent of students have college-educated parents,

and very small fractions of students skip a grade. These demographic characteristics serve

as control variables in our analysis below.

Given our interest in exploring the separate effects of teacher ability and effort, we need to

match students in the EOG files to their teachers in an accurate way in any given year. We

construct the sample used in our analysis by following previous studies that use the NCERDC

data, restricting attention to students in third through fifth grade, where the teacher recorded

as the test proctor tends to be the teacher who taught the students throughout the year.

We also follow Clotfelter et al. (2006) and Rothstein (2010) by only counting a student-
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Table 1: Student-Level Summary Statistics

Mean Std. Dev. N. Obs.

Performance Measures

Math Score
Grade 3 144.67 10.67 905,913
Grade 4 153.66 9.78 891,973
Grade 5 159.84 9.38 888,469
Grade 6 166.43 11.12 892,090
Grade 7 171.61 10.87 884,290
Grade 8 174.76 11.63 860,629

Math Growth
Grade 3 15.77 15.30 842,656
Grade 4 9.38 5.97 741,220
Grade 5 6.82 5.30 741,009
Grade 6 7.51 5.70 739,810
Grade 7 5.96 5.64 736,029
Grade 8 3.74 5.89 715,966

Reading Score
Grade 3 147.03 9.33 901,236
Grade 4 150.65 9.18 887,154
Grade 5 155.79 8.11 883,689
Grade 6 156.79 8.85 889,455
Grade 7 160.30 8.19 882,294
Grade 8 162.79 7.89 859,108

Reading Growth
Grade 3 8.19 6.72 838,272
Grade 4 3.79 5.58 736,026
Grade 5 5.61 5.22 735,711
Grade 6 1.62 5.01 735,523
Grade 7 3.78 4.96 733,458
Grade 8 2.77 4.66 714,092

Demographics

College-Educated Parents 0.27 0.44 5,456,063
Male 0.51 0.50 5,505,797
Minority 0.39 0.49 5,502,538
Disabled 0.14 0.35 5,497,987
Limited English-Proficient 0.03 0.16 5,505,597
Repeating Grade 0.02 0.13 5,505,797
Free or Reduced-Price Lunch 0.42 0.49 3,947,188

Notes: Summary statistics are calculated for all third through eighth grade student-year
observations from 1997 to 2005. The free or reduced price lunch eligibility variable is not
available prior to 1999. Math scores are measured on different scales before and after
2001. We are able to convert second edition scale scores to their first edition counterparts
for all tests except the grade three pre-test (the grade two test). Thus, all level and gain
math score summary statistics are expressed on the first edition scale except grade three
gains, which are calculated using first edition scores prior to 2001 and second edition
scores for 2001 onwards.
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teacher match as valid if the test proctor in the EOG files teaches a self-contained class

for the relevant grade in the relevant year and if at least half of the tests administered by

that teacher are for students in the correct grade. Special education and honors classes are

excluded from the analysis, but we retain students who repeat or skip grades.

IV. Empirical Approach

In this section, we describe our two-part reduced-form approach in some detail. To set the

stage for that, we begin by placing it in the context of the existing teacher value-added

literature.

IV.A. Teacher Value-Added

The recent teacher value-added (VA) literature has focused on credibly identifying the aver-

age causal effect of assigning a group of students to a given teacher. It is important to note,

however, that teacher VA is not an input in the education production function, but rather

a label given to systematic variation in the test scores of students who are assigned to a

given teacher (see Jackson et al. 2014). The prior literature has therefore not been explicitly

concerned with the way control function strategies interact with the underlying production

technology that governs student learning; indeed, its primary concern has been the credible

identification of the treatment effect of assigning students to a given teacher, which hinges

on being able to account for non-random sorting of students to teachers adequately.

Our goal is different: we are interested in estimating inputs in the production technology

and their effects. Since students and teachers are not randomly matched in our setting, we

also adopt a control function strategy to account for systematic variation in student test

score determinants across teachers. Given our goal of estimating the production technology

in equation (1), however, it is important to clarify how estimates from a control function

approach are interpreted, given our model.

Consider the production technology in equation (1), with all subscript notation augmented

to the student level:

yi,s(i,t),g(i,t),t = βt,0hi,0 +
∑

0≤t′≤t

[
γat,t′as(i,t′),g(i,t′),t′ + γet,t′es(i.t′),g(i,t′),t′

]
+ εi,s(i,t),g(i,t),t . (2)

To see the result of controlling for the prior score, subtract α multiplied by the prior score
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from both sides:3

yi,j,t − αyi,j,t−1 = aj(i,t) + ej(i,t)︸ ︷︷ ︸
qj(i,t)

+ (βt,0 − αβt−1,0)hi,0︸ ︷︷ ︸
µit

+ · · ·

∑
0≤t′≤t−1

[
(γat,t′ − αγat−1,t′)aj(i,t′) + (γet,t′ − αγet−1,t′)ej(i,t′)

]
︸ ︷︷ ︸

q̃it

+ (εi,j,t − αεi,j,t−1)︸ ︷︷ ︸
ηit

.

(3)

The resulting reduced-form estimating equation, with the relevant relabeling, is

yi,j,t = αyi,j,t−1 + qj(i,t) + µit + q̃it + ηit. (4)

If the effect of initial student ability and previous teacher ability and effort do not all decay

at the same rate α, µit + q̃it will form part of the residual in this estimating equation along

with ηit.

In our empirical approach below, we assume a teacher’s ability and effort have a common

effect on all of her students (qj(i,t) = qjt for any student i assigned to teacher j in year t),

as is standard in the literature. We estimate a more general version of equation (4), using

teacher-year fixed effects to capture the combined impact of teacher ability and effort, qjt.

We then decompose the teacher-year fixed effect estimates into an incentive-invariant ability

component and an incentive-varying effort component by exploiting plausibly exogenous

variation in incentives to exert effort across teachers. Having separately identified ability

and effort, we also investigate whether the effects of these inputs persist at different rates.

This general background in place, the following two subsections describe the details of our

two related empirical strategies.

IV.B. Identifying Ability and Effort

In this subsection, we set out our empirical strategy for decomposing a teacher’s contribution

to her students’ test scores into ability and effort components.

In related work (Macartney et al. 2015), we show that the introduction of NCLB in North

Carolina in 2003 had remarkable effects on students’ high-stakes test scores, arguing that

the observed test score improvements represent a teacher effort response. In this paper, we

3For convenience, we suppress the ‘school-grade’ subscript notation. In what follows, j denotes the teacher of
student i at time t. The notation j(i, t) makes that linkage explicit.
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build on that earlier work, using the results to explicitly decompose teacher effects in 2003

into teacher ability and effort. We elaborate only on the details of Macartney et al. (2015)

relevant for understanding our identification strategy here.

As noted in the introduction, it has already been well-established that proficiency-count

systems like NCLB provide educators with strong incentives to direct resources to students

who are on the margin of passing, potentially at the expense of those in the tails of the

predicted test-score distribution.4 Figure 1 shows that this was exactly the response that

occurred in North Carolina when NCLB was introduced in 2003. The figure shows that

gains over predicted test scores in 2003 were highest for students who were predicted to

score close to the test-score proficiency threshold. Gains over predicted scores are decreasing

as one moves farther away from the threshold, consistent with the predicted theoretical effort

responses to proficiency-count programs. Importantly, students experience virtually no gain

over their predicted scores at any point of the predicted score distribution in the pre-NCLB

year, lending credence to the notion that the 2003 pattern reflects teachers’ effort responses.
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Notes: This is Figure 3 from Macartney et al. (2015). The figure is constructed
as follows: In each year, we calculate a predicted score for each grade four student
and then subtract off the known proficiency score target from this prediction. The
horizontal axis measures this difference. We then group students into 2-point
width bins on the horizontal axis. Within each bin, we calculate the average
(across all students) of the difference between students’ realized and predicted
scores. The circles represent these bin-specific averages. The solid circles represent
year-2003 averages; the hollow circles are year-2000 averages. The figure also shows
the associated 95 percent confidence intervals for each year. Standard errors are
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Figure 1: Inverted-U Response to NCLB

We use these results to separate teacher-year fixed effects in 2003 into more meaningful

4See, for example, Reback (2008), Ladd and Lauen (2010), and Neal and Schanzenbach (2010).
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components. Our approach involves a four-step procedure. By way of broad overview, we

first compute teacher-year fixed effects for each teacher from 1997 to 2005. This step is

largely in keeping with existing approaches taken in the literature. Second, we use pre-

reform data to identify the sum of incentive-invariant ability and pre-existing baseline effort,

given the teacher’s fixed effect from step one and her experience profile. Third, we estimate

NCLB-induced teacher effort, using estimated teacher fixed effects from 2003, estimates of

the sum of teacher ability and baseline effort, and the fraction of students in a teacher’s

classroom who are ‘marginal’ with respect to the NCLB target.5 Fourth, to include teachers

who begin teaching in 2003 or later in our sample, we use effort estimates from step three for

a given value of the proportion of marginal students in such a teacher’s classroom to infer

her combined level of ability and baseline effort. We now describe each step in greater detail.

1. Teacher-Year Fixed Effects: Recent VA studies typically control for high-order

polynomials in previous math and reading scores along with students’ demographic char-

acteristics. We follow convention, regressing contemporaneous math scores on cubics in

prior math and reading scores and several other student characteristics. While standardized

(usually at the grade-year level) test scores are the predominant outcome measures in the lit-

erature, we opt to measure test scores on the developmental scale instead. Each approach has

advantages and disadvantages. Standardizing test scores guards against changes in testing

regimes over time but, importantly, de-meaning test scores within-year effectively removes

much of the aggregate performance variation that is attributable to aggregate changes in

performance incentives. As we are primarily interested in assessing how teacher effort affects

student learning, we want to preserve much of the variation in test scores that is driven

by aggregate changes in performance incentives over time. We thus keep test scores on

the developmental scale throughout our analysis, relying on the careful psychometric design

of these scales, which ensures that one can track improvements or declines in learning as

students progress through school.

We define the control vector xi,j,t to include student race, gender, disability status, limited

English-proficiency classification, parental education, and an indicator for grade repetition.

These variables do not appear as test score determinants in the technology above. Their

inclusion helps mitigate the bias stemming from non-random student-teaching matching, as

they are likely correlated with innate student ability and previous teacher assignments. A

teacher-year fixed effect is calculated for a teacher only if she has greater than seven but fewer

5We define a student as ‘marginal’ if she is predicted to score between four points below the proficiency threshold
and four points above it.
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than forty students in her class (in the relevant year) with valid test scores and demographic

variables.6

To estimate teacher-year fixed effects, we use the full sample from 1997 to 2005 and run

the following three grade-specific regressions (third, fourth and fifth grades):

yi,j,t = f(yi,j,t−1) + qjt + x′i,j,tβ + νi,j,t , (5)

obtaining the teacher-year fixed-effects estimates as

q̂jt =

n(j,t)∑
i=1

ŷi,j,t − f̂(yi,j,t−1)− x′i,j,tβ
n(j, t)

= aj + ej + ejt(aj + ej,mjt) + v̄jt , (6)

where the second equality follows from equations (4) and (5) above. Note that ej represents

the teacher’s baseline level of effort prior to the introduction of NCLB incentives, so that

ejt represents the additional effort induced by the NCLB reform. Thus, each fixed-effects

estimate consists of incentive-invariant teacher ability, pre-existing effort, NCLB-based effort,

and the component of q̃it + ηit that is orthogonal to controls.7

2. Incentive-Invariant Ability and Baseline Effort: Consistent with much of the

existing literature, we assume incentive-invariant ability and baseline effort is fixed over

time, conditional on teacher experience.8 For each teacher j, we estimate her fixed ability

by regressing the teacher-year fixed effects from the first step, q̂jt, on teacher and grade fixed

effects, along with controls for teacher experience:9

q̂jt = aj + ej + λg + h(expjt) + ζjt . (7)

6We mark a student as invalid for value-added analysis if he or she satisfies any of the following criteria: (1)
multiple scores for current or lagged EOG math or readings tests; (2) EOG scores corresponding to two or more
teachers in a given year; (3) EOG scores corresponding to two or more grades in a given year; (4) or EOG scores
corresponding to two or more schools in a given year.

7We estimate the teacher-year fixed effects using Stata’s ‘areg’ command. ‘areg’ solves the co-linearity problem
arising from including a fixed effect for each teacher-year pair by estimating each teacher-year effect relative to an
arbitrarily selected constant (equal to the average teacher-year fixed effect in the case of constant class size). Since
the regressions are grade-specific, teacher-year effects produce a ranking a teachers over time (1998 to 2005) within
a given grade. For more details, see McCaffrey et al. (2012).

8For estimators that allow teacher ability to ‘drift’ over time, see Goldhaber and Hansen (2013), Chetty et al.
(2014a), Rothstein (2014), and Bacher-Hicks et al. (2014). Assuming that baseline effort is fixed over time in our
setting is reasonable, given that Macartney et al. (2015) finds that the pre-existing value-added incentive scheme is
approximately uniform in its effects on teacher effort.

9We paramaterize the experience function by including indicators for each level of experience from zero to five
years, with the omitted category being teachers with six or more years of experience. We choose this experience
specification to be consistent with Chetty et al. (2014a). Wiswall (2013) shows that such a restrictive choice may
bias estimates of the dispersion in teacher quality – an issue we intend address in later work.
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Prior to the introduction of NCLB, ejt = 0. Therefore, the residual consists only of classroom

shocks φjt which are not explained by teacher ability, base level effort, experience, or grade-

specific determinants of performance (ζjt = φjt). Given such an error term and defining

q̃jgt ≡ q̂jt − λ̂g − ĥ(expjt), the estimate of a teacher’s combined incentive-invariant ability

and baseline effort is given by:

âj + ej =
1

T

T∑
t

q̃jgt . (8)

3. NCLB-Induced Effort Response: As previously mentioned, we define a student

as ‘marginal’ if she is predicted to score within +/ − 4 developmental scale points of the

proficiency cutoff. For each classroom, mjt is defined as the fraction of students in that

classroom who are marginal. Exploiting the descriptive relationship between teacher effort

and a student’s marginal status shown above, we parametrize the effort function in equation

(6) to have the following functional form:

e(âj + ej,mjt) = [π1(âj + ej) + π2]mjt . (9)

Once accountability pressure arrives in the form of mjt, the teacher exerts additional effort,

according to the amount of pressure she faces and her ability. Note that we cannot separate

the base level of pre-reform effort from teacher ability, as our identification strategy depends

on a shift in incentives. Thus, the effort we identify is that which occurs in response to the

new incentive scheme only.

Under the NCLB reform, the residual from equation (7) becomes more complicated. It

now reflects both the annual effort decision of teachers under NCLB ejt and classroom shocks

φjt, which are not explained by teacher ability, baseline effort, experience, or grade-specific

determinants of performance. In particular, for mjt 6= 0, we have that

ζjt = q̂jt − âj + ej − λ̂g − ĥ(expjt) = ejt + φjt = [π1(âj + ej) + π2]mjt + φjt , (10)

using the parametrization given by equation (9) and the estimated quantities from the first

two steps.

The first year in which mjt 6= 0 is 2003. Therefore, we estimate grade-specific regressions

where we relate the residual given in equation (10) in that year to the fraction of students

who are marginal in each classroom and the portion of ability that is not captured in equation
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(7) when mjt = 0 in the second step (recall ζjt = φjt in that case):

ζj2003 = ej2003 + φj2003 = π0 + π1(âj + ej)mj2003 + π2mj2003 + ψj2003 (11)

In equation (11), systematic classroom shocks are contained in π0, while unsystematic shocks

are represented by ψj2003. Thus, we are able to identify the NCLB-induced effort response

through variation in the fraction of a teacher’s class that was marginal in 2003 and their

ability. Our final estimates of each teacher’s additional effort response is the predicted value

from (11):

êj2003 = π̂1(âj + ej)mj2003 + π̂2mj2003 . (12)

4. Post-Reform-Only Teachers: Given that the second step identifies the combination

of teacher ability and baseline effort using pre-reform variation, a different technique is

required to estimate that quantity for teachers who begin teaching in 2003 or later.10 To

obtain âj + ej for those teachers, we estimate a variant of equation (11) where aj + ej is

unknown:

ζj2003 − π̂0 = ej2003 + φj2003 − π̂0 = ρ1mj2003 + ψj2003 , (13)

where π̂0 is estimated from equation (11). Assuming that the systematic component of

classroom shocks for post-reform-only teachers is the same as for teachers with pre-reform

experience, we have that ρ̂1 = π̂1(âj + ej) + π̂2, which implies that âj + ej is given by

âj + ej =
ρ̂1 − π̂2

π̂1

. (14)

IV.C. Exploring Differential Persistence of Ability and Effort

Having separated teacher effort from teacher ability in the first part of our approach, we now

exploit the differential responses across students to NCLB to test whether teacher ability

and effort exhibit differential persistence in their effects on student future test scores.

A proficiency-count incentive system, such as NCLB, results in a much wider distribution

of teacher effort across students than a value-added accountability system, such as North

Carolina’s ABCs. This follows from value-added programs using students’ prior test scores

10Such teachers need to be included in the analysis to alleviate concerns about differential teacher turnover altering
the post-NCLB teacher distribution and biasing the results.
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to determine current performance targets. These schemes effectively set student-specific

targets, which make all students marginal, providing educators with approximately uniform

incentives across the student distribution.11

We use this feature of value-added schemes to argue that the effort students received prior

to NCLB was essentially uniform – that is, students roughly received the same amount of

effort from 1997 to 2002. In 2003, NCLB distorted teachers’ decisions by providing incentives

to direct more effort toward students who were predicted to score close to the proficiency

target and to direct relatively less effort to students who were predicted to score farther away

from it. The year 2003 thus provides a natural experiment in which the regime in North

Carolina switches from one where all students receive the same amount of effort to one

where marginal students receive a high amount of effort and non-marginal students receive

a comparatively low amount of effort. To account for differential levels of effort within the

+/- 4 band, we explicitly assume the following functional form for student-specific effort:

e?ijt =


4−|ŷijt−yTijt|

4
if −4 ≤ ŷijt − yTijt ≤ 4

0 otherwise ,
(15)

where yTijt is the proficiency threshold.

To identify γe, we exploit timing variation in the level of effort that teachers exert, using

the 2003 NCLB effort shock for identification. Consider the model of student achievement

from Section II. Assuming that γa and γe are each identical across time and grades, student

achievement ∀ t ≤ 2003 is given by:

yi,j,t = αyi,j,t−1 + µit +
∑

0≤t′≤t−1

[
[γa(1− α)]t−1−t′aj(i,t′) + [γe(1− α)]t−1−t′e

]
+ aj(i,t) + ej(i,t) + 1t=2003ej(i,t) + ηi,t . (16)

For t = 2004, however, the equation differs slightly as effort deviates from base-level effort:

yi,j,t = αyi,j,t−1 + µit +
∑

0≤t′≤t−1

[
[γa(1− α)]t−1−t′aj(i,t′) + [γe(1− α)]t−1−t′e

]
+ aj(i,t) + ej(i,t) + ej(i,t) + γe(1− α)ej(i,t−1) + ηi,t . (17)

11We explore these issues at some length in Macartney et al. (2015).
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For t = 2005, we similarly have:

yi,j,t = αyi,j,t−1 + µit +
∑

0≤t′≤t−1

[
[γa(1− α)]t−1−t′aj(i,t′) + [γe(1− α)]t−1−t′e

]
+ aj(i,t) + ej(i,t) + ej(i,t) + γe(1− α)ej(i,t−1) + [γe(1− α)]2ej(i,t−2) + ηi,t . (18)

Notice that the only difference between equations (16), (17) and (18) is the presence or

absence of γe(1 − α) terms multiplied by lagged effort levels ej(i,t−t′). To create a valid

counterfactual before and after NCLB (as ei,j,t−1 = e before NCLB), we generate estimates

of NCLB-level effort for all years using the effort formula in equation (12):

ẽjt = π̂1(âj + ej)mjt + π̂2mjt . (19)

We now have two additional layers of differences to exploit in addition to the pre- and

post-NCLB comparison. First, differencing equation (17) from (16) reveals that the per-

sistence of effort in the post-reform environment depends on the level of classroom effort

ẽi,j,t−1. Second, equation (15) also implies that effort may be directed disproportionately to

particular students within the classroom (e?i,j,t−1).12 Thus, we estimate the following triple-

differences specification to determine whether NCLB-induced effort decays differentially from

the combination of teacher ability and baseline effort:

yi,j,t = α0 + α1yi,j,t−1 + α2ẽi,j,t−1 + α3e
?
i,j,t−1 + α4Postt + α5yi,j,t−1ẽi,j,t−1 + α6yi,j,t−1Postt

+ α7ẽi,j,t−1Postt + α8e
?
i,j,t−1Postt + α9yi,j,t−1e

?
i,j,t−1 + α10yi,j,t−1ẽi,j,t−1Postt

+ α11yi,j,t−1ẽi,j,t−1e
?
i,j,t−1 + α12yi,j,t−1e

?
i,j,t−1Postt + α13ẽi,j,t−1e

?
i,j,t−1Postt

+ β1yi,j,t−1ẽi,j,t−1e
?
i,j,t−1Postt + φXi,j,t + λct + ηi,j,t , (20)

where Postt is a post-NCLB indicator, Xi,j,t are student-level controls and λct are classroom

fixed effects. The triple-differences coefficient of interest is β1. If β1 6= 0 then effort persists

at a different rate than the combination of ability and baseline effort, since students who

receive a high level of prior year classroom effort overall or a high amount of effort relative

to their classmates would fare differently at time t than other students, conditional on their

prior achievement level yi,j,t−1.

Our specification controls for several student covariates and allows for the test scores of

12In practice, teacher effort is likely to be a superposition of common classroom effort and student-specific tutoring.
We obtain identifying power from variation in both dimensions.
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marginal students to persist differentially even in the absence of differential effort across

students. For example, these students may have parents who encourage them to study more

or less during the summer months, which would result in more or less knowledge transferring

into future years. We also allow for the rate of persistence in prior scores to change for

all students in the post-NCLB period. Conditional on prior test scores, our identifying

assumption is that differences in the trajectory of achievement between marginal and non-

marginal students across high- and low-effort classrooms and between pre- and post-reform

observations only arise as a result of differential persistence.

V. Results

V.A. Identifying Ability and Effort

In this subsection, we present results relevant to the separate identification of teacher ability

and effort. Figure 2 presents the incentive-invariant teacher ability distribution.13 To be

clear, incentive-invariant ability is defined as the teacher fixed effect from the regression in

equation (7). The distributions are similar among third, fourth, and fifth grade teachers,

with means of 0.14, -0.02 and -0.14 developmental scale points, and standard deviations

of 2.21, 2.12 and 1.92 developmental scale points, respectively. Averaged across grades,

mean teacher ability is 0.00 scale points and its standard deviation is 2.10 scale points, or

equivalently 0.21 student-level standard deviations. The latter is within the upper end of

the range found by most previous work for teacher quality overall.

Figure 3 shows the 2003 effort levels obtained from the regression in equation (11). The

top panels, (a) through (c), show the grade-year-specific estimated relationships between

ζjt and mjt. For each grade, we plot the relationships that prevail in 2003 and two control

years. In 2003, there is a clear increasing relationship between the part of the teacher-year

effect unexplained by incentive-invariant ability and the proportion of marginal students in

the classroom. As expected, there is virtually no relationship in the pre-NCLB years, as the

estimated functions are much flatter, or even downward-sloping in some cases.14

The solid dark lines in each of these panels represent the predicted effort values given by

equation (11). To interpret the magnitude of the relationships in 2003, the slope coefficients

in third, fourth and fifth grades are 1.83, 5.48, and 2.85, respectively. We take the fitted

13This includes the baseline effort level discussed in the prior section, which is also invariant to NCLB incentives.
14The exception is in the year 2002 for fourth and fifth grades.
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Notes: This figure shows the distributions of teachers’ incentive-invariant abilities (which includes base level effort). To
construct the figures, we estimate equation (7), having obtained the teacher fixed-effects from the regression in equation
(5). Panel (a) shows the distribution of these fixed effects across all teachers. Panels (b), (c), and (d) show the distributions
for teachers in third, fourth and fifth grades, respectively. We include a teacher in a grade-specific distribution if she is
ever observed teaching in that grade. A given teacher can be in more than one grade-specific distribution.

Figure 2: Incentive-Invariant Ability Distributions

values from this regression as the level of effort (conditional on ability) exerted by each

teacher in 2003. Students in a classroom with a one standard deviation higher fraction of

marginal students in 2003 (in their grade level) realized an average increase in their test

scores of approximately 0.34 developmental scale points in third grade, 0.60 points in fourth

grade, and 0.35 points in fifth grade. These improvements correspond to 0.04, 0.06, and 0.04

student-level standard deviations, respectively.

However, the reader may recall that we explicitly define effort as a function of both the

proportion of marginal students in a teacher’s classroom and the combined time-invariant

ability and baseline effort component. Panels (d) through (f) reveal the grade-year-specific

estimated relationships between ζjt and aj + ej. For each grade, we plot the relationships

that prevail in 2003 and two control years. In 2003, there is a clear decreasing relationship

between the part of the teacher-year effect unexplained by incentive-invariant ability and

base-level effort. In the control years, the estimated functions are upward sloping.15 This

15Once again, year 2001 for grade 5 is an exception.
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(f) Fifth Grade
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Notes:This figure illustrates teachers’ 2003 effort responses. In panels (a) to (c), we show the year-specific relationships
between teacher-year residual test scores that are unexplained by incentive-invariant ability, teacher experience, and grade
and time effects, and the fraction of students in a teacher’s class who were marginal in each year. To construct these
figures, we first obtain teacher-year residuals from equation (10). For each teacher-year, we then calculate the fraction of
students in the class who were marginal (predicted to score with +/-4 points of the proficiency cutoff). The horizontal
axis measures this fraction. We group teacher-year observations into 0.1-point width bins on the horizontal axis. Within
each bin, we calculated the average teacher-year residual form equation (10). The circles in each panel represent these
averages. The lines represent the associated linear effects, estimated on the underlying teacher-year data. Large dark
circles and bold dark lines depict the relationship in 2003. The other circles and lines show pre-NCLB years. In panels
(g) to (i), we present grade-specific densities of 2003 effort levels. To construct these figures, we first obtain 2003 effort
for each teacher by taking the linear prediction (fitted value) from equation (12). We then plot the distributions of these
effort levels separately by grade.

Figure 3: Effort Predictions and Distributions in 2003

suggests that it is the lower-ability teachers that respond to NCLB the most.

To interpret the magnitude of the relationships in 2003, the slope coefficients for third,

fourth and fifth grades are -0.39, -0.33, and -0.43, respectively. We take the fitted values from

this regression as the level of effort exerted by each teacher in 2003. Students in a classroom

with a one standard deviation lower teacher ability in 2003 (in their grade level) realized

an average increase in their test scores of approximately 0.80 developmental scale points in
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third grade, 0.65 points in fourth grade, and 0.81 points in fifth grade. These improvements

correspond to 0.08, 0.07, and 0.08 student-level standard deviations, respectively.

Panels (g) through (i) present the full distributions of effort in each grade in 2003. Mean

effort for third, fourth and fifth grades is 0.61, 0.60, and 0.40 points, respectively (the average

across grades is 0.54 points). Dispersion in effort is similar across grades (0.80, 0.80 and 0.74

points, respectively) is 0.79 scale points (or 0.08 student-level standard deviations). Taken

together, the evidence suggests that there is meaningful variation in teachers’ effort in 2003,

driven by the fraction of students in their classes who are marginal.

V.A.1 Robustness Checks

To infer teacher effort, we compare the relationship that prevailed between a teacher’s perfor-

mance and the fraction of students in her class who are marginal in 2003 to the relationship

that prevailed in previous years. Since we see a positive relationship in 2003 and no relation-

ship in prior years, we use the theoretical predictions concerning responses to proficiency-

count systems to argue that the 2003 relationships reflect teachers’ effort responses.

A competing explanation is that students were differentially sorted to teachers in 2003,

such that high (incentive-invariant) ability teachers received larger fractions of marginal

students. Principals would be likely to sort students in this manner in response to NCLB if

they believed the high-ability teachers had the best chance of achieving successful outcomes

with these students. While we control for teacher fixed effects in the process of estimating

effort responses in 2003, if high-ability teachers were better able to respond to the demands of

NCLB, we might worry that this non-linear relationship between teacher ability and student

ability is driving the results rather than additional effort being exerted by a given teacher.

A natural way to evaluate this rival hypothesis is to test whether the relationship between

the fraction of marginal students in a classroom and teacher ability changes in 2003. We

conduct this test by regressing the fraction of marginal students in each class on grade and

year fixed effects, combined teacher incentive-invariant ability and baseline effort, and an

interaction of that term with a year-2003 indicator:

mjt = α0 + λg + λt + β1(âj + ej) + β2(âj + ej)× 1(t = 2003) + εjt, ∀ t ≤ 2003 (21)

If principals began differentially sorting students to teachers on the basis of ability in 2003,

we would expect to find that β2 6= 0.
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Table 2: Tests for Differential Sorting of Students to Teachers in 2003

(1) (2) (3) (4)
Full Sample Third Grade Fourth Grade Fifth Grade

A: Incentive-Invariant Ability Estimated Using Full Sample

Ability -0.0057∗∗∗ -0.0050∗∗∗ -0.0057∗∗∗ -0.0044∗∗∗

(0.0006) (0.0013) (0.0007) (0.0012)

1(t = 2003)×Ability 0.0007 -0.0024∗ 0.0029∗∗∗ 0.0014
(0.0007) (0.0013) (0.0009) (0.0010)

N 74,035 26,888 24,339 22,808

B: Teachers Before 2003

Ability -0.0057∗∗∗ -0.0050∗∗∗ -0.0057∗∗∗ -0.0044∗∗∗

(0.0006) (0.0009) (0.0007) (0.0012)

1(t = 2003)×Ability -0.0012 -0.0050∗∗∗ 0.0013 -0.0004
(0.0008) (0.0014) (0.0010) (0.0011)

N 68,646 24,759 22,607 21,280

Notes: This table presents the results of regressions based on equation (21). The
dependent variable in each column is the fraction of students in a teacher’s class who
are marginal. In Panel A, teacher ability is estimated using the full sample from
1997 to 2005. In Panel B, we estimate teacher ability only for those who taught
before 2003. Standard errors clustered at the school-level appear in parentheses. ***

denotes significance at the 1% level;** denotes significance at the 5% level; * denotes
significance at the 10% level.

Table 2 shows the results from estimating variants of equation (21). In Panel A, we

use the full sample of teacher-year observations, by estimating incentive-invariant ability

and effort by estimating for teachers that started in 2003 and beyond. Since there exists a

positive relationship between teacher-year performance and the fraction of marginal students

in a classroom in 2003, we might worry that the estimated incentive-invariant ability will

capture some of this relationship, and that there will be a mechanical positive association

between ability and the fraction of marginal students in 2003.

Columns (3) and (4) show that this appears to be the case for fourth and fifth grade

teachers in 2003. The estimate on ability shows that high-ability teachers generally had

lower fractions of marginal students in their classrooms: a 1 developmental scale point

increase in teacher ability is associated with a 0.4 percentage point decline in the fraction of

marginal students in the class.

In Panel B, we show that this is likely an artifact of the mechanical relationship described

above. For each teacher that we observe in both the pre- and post-NCLB period, we then

assign her the estimated teacher fixed effect from this regression as her ability measure. By

construction, this measure does not pickup the association between the fraction of marginal

students and teacher performance in 2003. When we use the pre-NCLB measure of ability,
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there is no evidence of a positive change in the relationship between the fraction of marginal

students and teacher ability in 2003 for fourth or fifth grade teachers. It does appear,

however, that third grade students were differentially sorted in 2003 such that higher ability

teachers received a lower fraction of marginal students than in previous years. This is sorting

is in the opposite direction of that which is necessary for our results to be driven by teacher

ability instead of effort.

To lend further credence to the strategy of using the proportion of marginal students in a

classroom to identify effort responses, we relate the improvement in teacher-year effects from

2002 to 2003 to the fraction of marginal students teachers had in 2003. By making within-

teacher comparisons in performance changes before and after 2003, we explore whether

teachers with more marginal students in 2003 showed greater improvement.

We first construct the following difference for each teacher observed in 2002 and 2003:

q̂j2003− q̂j2002 = aj+ej2003 + v̄j2003−(aj+ej2002 + v̄j2002) = ej2003−ej2002 + v̄j2003− v̄j2002, (22)

and then estimate the relationship between this difference and the fraction of marginal

students teachers had in 2003, mj2003. If mj2003 is uncorrelated with changes in classroom-

year specific shocks and (v̄j2003 − v̄j2002) but is positively correlated with 2003 effort, we

should see greater improvements in teacher quality for teachers with higher levels of mj2003.

Figure 4 shows that the change in teacher quality is increasing in the fraction of marginal

students teachers had in 2003. The control years in each grade reveal a flat relationship,

which strengthens the claim that the 2003 patterns reflect teachers improving their per-

formance as a result of NCLB incentives and the corresponding effort responses to these

incentives.

V.B. Exploring Differential Persistence of Ability and Effort

In this subsection, we present the results of the test for differential persistence between ability

and effort described in subsection IV.C. Table 3 below presents the results from estimating

versions of equation (20). Panel A shows the results for fifth graders (who were in fourth

grade when they were deemed either marginal or non-marginal) and Panel B presents the

results for fourth graders (who were in third grade when they were deemed either marginal

or non-marginal). Columns (2) and (4) show that students who were marginal in fourth

grade generally have lower rates of persistence in fifth grade than students who were not
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(c) Grade 5
Notes: This figure depicts the relationship between the change in teachers’ annual performance from 2002 to 2003 and
the fraction of students in their classes who were marginal in 2003. To construct the figures, we first construct the change
from t − 1 to t between each teacher’s teacher-year fixed effects from those years, as shown in equation (22). For each
teacher-year, we then calculate the fraction of students in the class who were marginal (predicted to score with +/- 4
points of the proficiency cutoff). The horizontal axis measures this fraction. We group teacher-year observations into
0.1-point width bins on the horizontal axis. Within each bin, we calculated the average change in teacher-year fixed
effects. The circles in each panel represent these averages. The lines represent the associated linear fits, estimated on the
underlying teacher-year data. Large dark circles and bold dark lines depict the relationship in 2003. The other circles
and lines show pre-NCLB years.

Figure 4: Changes in Teacher Quality by Fraction of Marginal Students within a
Classroom

marginal, as the estimates in row (4) of Panel A are negative and significant for both the

post (2004 and 2005) and pre (2001 and 2002) sample periods (as shown in Panel B, the

finding also holds for fourth grade students in the pre-period). In column (5) of Panel A, the

last row shows the estimate of β1. It is highly significant and positive, suggesting that there

is a difference between the persistence of NCLB-induced teacher effort and the combination

of teacher ability and baseline effort for students transitioning to fifth grade. A similar result

holds in Panel B for those transitioning to fourth grade.

Columns (6) and (7) conduct placebo tests. In column (6), we restrict the sample to 1999

and 2000, when there was no student accountability and define 2000 as the NCLB year of

introduction; in column (7), we restrict the sample to 2001 and 2002, when there was student

accountability, and define 2002 as the NCLB year of introduction. With the exception of the

grade 3 to 4 transition in 2000, both columns reveal that there were no differential changes

for marginal students across the two years, suggesting the estimates in column (5) reflect

differential teacher, rather than student, effort.

VI. Structural Analysis

VI.A. Approach

In this section, we interpret the reduced-form estimates just presented, motivating the struc-

tural approach. That allows us to recover the persistence of both ability (including base
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Table 3: Tests for Differential Persistence of 2003 Effort in 2004

(1) (2) (3) (4) (5) (6) (7)
2004 2004 2001 2001 Triple 1999-2000 2001, 2002

& 2005 & 2005 & 2002 & 2002 Differences (Post=2000) (Post=2002)

A: Grade 4 to 5 Transition

yt−1 0.782∗∗∗ 0.820∗∗∗ 0.707∗∗∗ 0.718∗∗∗ 0.720∗∗∗ 0.736∗∗∗ 0.689∗∗∗

(0.003) (0.004) (0.002) (0.003) (0.003) (0.006) (0.004)

e?t−1 28.987∗∗∗ 18.871∗∗∗ 17.207∗∗∗ 23.985∗∗∗ 20.408∗∗∗

(1.813) (1.433) (0.914) (2.338) (1.769)

ẽt−1 6.496∗∗∗ 0.595∗ -0.391∗ -0.922∗∗ 0.040
(0.809) (0.357) (0.232) (0.426) (0.430)

e?t−1 × ẽt−1 × yt−1 0.020∗∗ -0.018∗∗∗ -0.023∗∗∗ -0.022∗∗∗ -0.018∗∗∗

(0.009) (0.004) (0.003) (0.006) (0.006)

Post× e?t−1 × ẽt−1 × yt−1 0.044∗∗∗ -0.015 -0.001
(0.009) (0.009) (0.009)

N 102,009 87,420 112,025 89,869 312,144 85,231 89,869
R2 0.765 0.771 0.784 0.796 0.791 0.796 0.797

(1) (2) (3) (4) (5) (6) (7)
2004 2004 2001 2001 Triple 1999-2000 2001,2002

& 2005 & 2005 & 2002 & 2002 Differences (Post=2000) (Post=2002)

B: Grade 3 to 4 Transition

yt−1 0.713∗∗∗ 0.698∗∗∗ 0.647∗∗∗ 0.663∗∗∗ 0.678∗∗∗ 0.726∗∗∗ 0.664∗∗∗

(0.003) (0.005) (0.002) (0.003) (0.002) (0.004) (0.004)

e?t−1 10.794∗∗∗ 12.273∗∗∗ 14.911∗∗∗ 15.621∗∗∗ 14.919∗∗∗

(1.242) (1.056) (0.647) (1.550) (1.386)

ẽt−1 3.871∗∗∗ -0.363 0.986∗∗∗ 0.453 0.460
(0.882) (0.459) (0.360) (0.654) (0.636)

e?t−1 × ẽt−1 × yt−1 0.023∗∗∗ -0.019∗∗∗ -0.008∗∗ -0.036∗∗∗ -0.021∗∗

(0.008) (0.006) (0.003) (0.008) (0.008)

Post× e?t−1 × ẽt−1 × yt−1 0.031∗∗∗ 0.031∗∗∗ -0.003
(0.008) (0.011) (0.010)

N 101,565 76,201 118,312 87,897 292,749 82,590 87,897
R2 0.742 0.756 0.767 0.783 0.776 0.771 0.783

Notes: The full triple-differences specification (column (5)) uses observations from the years 1998-2005 (2004 and
2005 are post-reform years), while the other columns specify which years are included. The dependent variable in
each column is the EOG math score. Each regression additionally controls for student ethnicity, limited English
proficiency, parental education, disability status, free or reduced-price lunch eligibility, gender, and class fixed effects.
Standard errors clustered at the school level appear in parentheses. *** denotes significance at the 1% level;** denotes
significance at the 5% level; * denotes significance at the 10% level.
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level effort) and incentive-based effort while allowing incentives to be correlated over time –

an important feature of the incentive environment we consider.

Recall that Table 3 shows that the underlying decay rates of effort and ability differ. We

now propose a structural method to recover estimates of both γa and γe. The basic steps

for the structural estimation are: (1) find the teacher effect on student achievement in t and

t + 1; (2) using pre-2004 data when we know that there is no NCLB-incentive-based effort

decay, use the difference in the teacher effect from t to t + 1 to determine the persistence

of ability; and (3) use the difference in the teacher effect from t to t + 1 in 2004 and the

persistence of ability from step (2) to identify the persistence of effort.

Following Chetty et al. (2014a), we run the following regression to recover the overall

persistence of an increase in q̂j(i,g):

yi,j,t+s = βg,t+sq̂j(i,g) + f(yi,j,t−1) + h(expjt) + φXijt + εi,j,t (23)

where s ∈ {−2, 0, 1}. When s = −2, we identify the effect of teacher j on outcomes

before she teaches student i.16 Since the teacher has yet to actually teach the child, these

estimates should always be zero. When s = 0, we recover the effect of the teacher on student

achievement in that period. In contrast, s = 1 is the effect on student outcomes the following

year; thus the difference between outcomes in s = 0 and s = 1 is the fade out of the teacher

fixed effect.
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0
.2

.4
.6

.8
1

M
at

h 
S

co
re

s 
at

 s
=

1 
(in

 D
ev

el
op

m
en

ta
l S

ca
le

 P
oi

nt
s)

1999 2000 2001 2002 2003 2004
Year

Teacher Effect at s=1

(c) When s = 1

Notes: This figure shows the effect of teacher value-added on student outcomes by year, for outcomes two years
prior (panel (a)), the current year (panel (b)) and the following year (panel (c)). To construct the figures, we
estimate equation (23) and obtain the estimates for each year of the regression.

Figure 5: The Effect of Teachers in Years s ∈ {−2, 0, 1}

Figure 5 reports the results of equation (23) by year. From panel (a), notice that the

16When s = −1, the effect of teacher j is zero by construction as we are controlling for test scores in that year.
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teacher-year effect does have some predictive power with respect to the outcomes of students

two years before they are taught by that teacher. This is likely due to the mechanical

correlation discussed in Chetty et al. (2014a).17 For the effect of the teacher-year-effect on

test scores in the current year, we see that the effect is stable around 1 developmental scale

point until 2003, when it drops to 0.91 developmental scale points. Since this drop is not

observed in other years, this leads to a higher level of persistence in 2003 relative to prior

years. This may seem strange at first glance, as teacher effort increased in 2003 due to

the introduction of NCLB. Consequently, one might expect persistence to be lower in 2003.

However, due to the change in effort in 2003, a one-unit increase in q̂j(i,g) may no longer

correspond to the same increase in ability in 2002. Similarly, a one-unit increase in q̂j(i,g)

now corresponds to a change in effort post-2002. We estimate the following regressions to

understand this relationship:

q̂j(i,g),t = α0 + βaq (̂a+ e)j(i,g),t + βeqêj(i,g),t + εi,j,t . (24)

Estimates of βaq and βeq reveal how a one-unit increase in incentive-invariant ability (along

with baseline effort) (̂a+ e)j(i,g),t or NCLB-induced effort êj(i,g),t maps into the teacher-year

fixed effect q̂j(i,g). In particular, q̂j(i,g) increases by one unit if either (̂a+ e)j(i,g),t increases

by 1

β̂aq
or êj(i,g),t increases by 1

β̂eq
. The estimates are shown in panels (a) and (b) of Figure

6. Upon the introduction of NCLB in 2003, a one-unit increase in q̂j(i,g) is associated with

an increase of 1
0.606

= 1.65 units in incentive-invariant ability and 1
0.708

= 1.41 units in

NCLB-induced effort.

We now model student achievement explicitly as a function of ability and effort. Specif-

ically, we assume that ability and effort in year s = 0 generate achievement proportionally

to the levels of âj(i,g) and êj(i,g) observed in that year. Therefore:

β̂g,t =
κa

β̂aq
+
κe

β̂eq
(25)

where κa and κe relate how a one-unit increase in ability and effort increase achievement,

respectively. Prior to 2003, we set β̂eq = 0 to reflect the fact that no NCLB-related effort

should be exerted. To account for the systematic matching of low-ability teachers to classes

with high levels of marginal students, we set β̂eq from 2003 onward to the difference between

17A likely reason for such a mechanical correlation is that we are not leaving student i out of the estimation of
q̂j(i,g) at this time.
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Notes: This figure reveals how a one-unit increase in the teacher-year fixed effect is associated with an increase in
both ability and effort.

Figure 6: Relationship Between Teacher-Year Fixed Effect and Its Components

β̂eq in the pre- and post-NCLB periods (thus assuming that the matching function does not

change in response to NCLB, which is justified by the evidence presented in Table 2).

The effects in s = 0 now persist at the rate of γ, where we allow for differential persistence

for effort and ability, in the following year (s = 1). Therefore, achievement at that point in

time can be written as:

β̂g,t+1 =
κaγa

β̂aq
+
κeγe

β̂eq
(26)

Assuming constant γa and γe parameters, we can solve for each of them according to the

following procedure: use pre-NCLB data (when e = 0) to find κa from equation (25) and γa

from equation (26); then, given γa and κa, solve for γe using post-NCLB data.

VI.B. Persistence Estimates

Using pre-NCLB data, we estimate γa for each year prior to the introduction of NCLB.

Figure 7(a) reports these estimates. As the figure reveals, γ̂a is relatively constant over time,

though it does rise somewhat in 2001. Given that estimating γe first requires an estimate of

γa from the pre-NCLB data, we experiment with different pre-NCLB years to compute γ̂e

(reported in Figure 7(b)).

Figure 7(c) then shows the difference between γ̂a and γ̂e. Table 4 reports the numbers

underlying Figure 7. As expected from the reduced form estimates, we see that γa > γe, both

for the year preceding the NCLB reform (2002) and when averaging across the four prior

years (1999-2002). We take this as evidence of teachers ‘teaching-to-the-test,’ a phenomenon
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Notes: Panel A shows the estimates of γa by year, while panel B shows the estimates of γe using different base
years. Similarly, panel C shows the difference in γa and γe using the different base years. Standard errors are
clustered at the school level and are found using the delta method.

Figure 7: Estimates of Differential persistence by Base Year (1999-2002)

Table 4: Persistence Parameters by Year

Year: 2002 1999-2002

γa 0.396∗∗∗ 0.431∗∗∗

(0.015) (0.013)

γe 0.174∗∗∗ 0.312∗∗∗

(0.030) (0.024)

γe − γa -0.222∗∗∗ -0.119∗∗∗

(0.024) (0.019)

Notes: This table presents estimates of γa and γe using different
pre-NCLB years as the baseline for estimation. Standard errors are
clustered at the school level and are found using the delta method.
*** denotes significance at the 1% level.

that has been very difficult to credibly identify in prior work. Interestingly, given that

γe > 0, we are able to show that the teacher effort response to NCLB is not fully transitory.

Instead, it persists at between 44 and 72 percent of the rate of persistence for ability. This is

important as it shows that effort, just like ability, matters not only contemporaneously but

into the future as well.

VII. Policy Analysis

Our analysis is relevant to recent education policy discussions. The prior literature, notably

Chetty et al. (2014b) and Rothstein (2015), focuses on altering the teacher ability distribution

as a policy lever to raise student scores. Specifically, policy proposals have centered on the

radical notion of firing teachers whose value-added falls in the bottom of the measured
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distribution (for example, the bottom five percent).18

In contrast to such policies, an alternative method for improving student performance is

to alter the teacher effort distribution. While existing estimates in the literature are unlikely

to be informative for policymakers who are considering incentive reforms, our empirical

framework and findings are particularly well suited to evaluating the cost effectiveness of rival

ability- and effort-oriented policies. Based on our reduced-form and structural estimates, we

calculate that incentive reform is more cost-effective in the short run if it costs less than 38

percent of the ability-targeted reform and, assuming that the persistence rates of ability and

effort converge after one year,19 incentive reform is preferred in the long run if it costs less

than 17 percent of its ability-based counterpart.

To understand whether incentive policies are likely to pass this test, it is important to

discuss the costs associated with the rival policies as well as to place them on equal footing

in terms of benefits. Although our sample differs somewhat, Chetty et al. (2014b) estimates

that replacing the lowest rated teachers with draws of new teachers would result in an average

two standard deviation increase in ability for that subset. However, based on estimates from

Rothstein (2015), doing so would require a mean salary increase across all teachers of 1.4

percent, as compensation for increased employment risk.

Our prior work (Macartney et al. 2015) suggests two avenues for increasing effort. First,

policymakers can increase the proportion of marginal students by altering the target of non-

marginal students. Non-marginal students with predicted performance above the NCLB

accountability target account for about 60 percent of our sample, which implies that raising

the proportion of marginal students in each class by 60 percent (from an average of 19

percent) would be a costless reform. Such a change in targets would increase effort by 0.2

standard deviations of the test score, which is equivalent to a one standard deviation increase

in ability. The second avenue for increasing effort is to intensify the severity of the sanction

under NCLB (or, equivalently, raise the amount of the reward under a comparable pecuniary

scheme). Given that the proportion of marginal students in the average class would be 79

percent after implementing tougher targets (and the effect of a 60 percent increase in the

proportion of marginal results is a one standard deviation increase in ability), raising the

level of sanction (or reward) by 75 percent would result in a further one standard deviation

increase in ability.

18The literature has also focused on reducing the attrition of the highest rated teachers. However, estimates suggest
that such a focus on the top is a less cost-effective ability-oriented reform than replacing the lowest rated.

19We plan to test this hypothesis by structurally estimating persistence rates further into the future.
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In combination, the two avenues for increasing teacher effort result in a benefit that

is comparable to replacing the bottom five percent of teachers (in terms of value-added

performance) with average draws. However, the effort-based benefit occurs for all teachers,

while the ability-oriented reform only has an effect on five percent of the teacher distribution,

at the cost of increased wages for all teachers. Consequently, sharpening incentives appears

to compare favorably with replacing the lowest rated teachers in both the short and long

run.

VIII. Conclusion

In this paper, we have presented a two-part strategy that permits us, for the first time in the

literature, to separate out teacher effort, which is responsive to education incentives, from

teacher ability, which is not. Further, we measure the extent to which these two potentially

important education inputs persist differentially.

Central to our analysis was a novel identification strategy taking advantage of a natural

experiment associated with the introduction of a federal accountability program in a setting

– the state of North Carolina – where accountability incentives already operated. Specifi-

cally, we drew on the proficiency-count design of NCLB to construct a measure of incentive

strength for each teacher, showing a positive relationship between teacher performance and

this measure in the year NCLB was introduced but not in prior years. We exploited these

differential relationships over time to separate teacher quality into ability and the effort

response associated with NCLB.

We found greater dispersion in teacher ability than in NCLB-induced teacher effort, but

both have significant effects on student achievement: a one standard deviation increase in

teacher ability causes a 20 percent of a standard deviation increase in student achievement,

while a one standard deviation change in effort leads to between a 3 and 5 percent of standard

deviation change in achievement.

To evaluate the persistence of teacher ability and effort, we took advantage of the difference

between the effort arising from the state-level ABCs and federal NCLB incentive schemes,

comparing the knowledge persistence of students in danger of failing to achieve proficiency

status before and after the introduction of NCLB. This evidence helps shed light on the

extent to which ‘teaching to the test’ occurs in practice – a term often mentioned in the

literature, but with little statistical evidence to indicate that it is important. Here, we
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found that the effort received by fourth graders under NCLB is more transitory than the

effort received by fourth graders under the ABCs, while the opposite result holds for third

grade. These findings point toward the need to better understand the optimal timing of

effort investments and the type of effort teachers exert across grades in response to NCLB.

We argued that, if effort investments in subsequent years are correlated with investments

in prior years, as is likely, so our persistence estimates will reflect this correlation in ad-

dition to the true persistence of effort. The dynamic link between effort investments thus

requires us to explicitly model effort decisions as a function of incentives in order to isolate

contemporaneous teacher effort from prior investments. Doing so allowed us to isolate yearly

measures of teacher effort consistently and to evaluate its persistence at each point in time.

Based on our estimates, we were able to explore the policy implications of rival education

reforms. Our analysis suggests that using formal incentives constitutes a viable alternative

means of accomplishing the goal of raising student and school performance, and is preferable

to ability-based reforms in many instances. Overall, our findings indicate that the effort

margin is first-order: teacher effort is both a productive input and one that is responsive to

incentive variation in a systematic way.
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