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Matchings: a new class of discrete choice models

Matchings: a new class of discrete choice models

Review of standard discrete choice models

Two items: A and B with characteristics XA and XB respectively.

If A is chosen, then utility maximization implies that
U(XA) + ǫA > U(XB) + ǫB .

MLE or other inference methods based on this restriction.
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Matchings: a new class of discrete choice models

Problem: Endogenously-Determined Utility and

Choice Set

Why the standard discrete choice model fails?

Example: Tom marries Tina instead of Jennifer
◮ Tom prefers Tina.
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◮ Jennifer does not like Tom.
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Matchings: a new class of discrete choice models

Problem: Endogenously-Determined Utility and

Choice Set

Why the standard discrete choice model fails?

Example: Tom marries Tina instead of Jennifer
◮ Tom prefers Tina.

◮ Jennifer does not like Tom.

◮ Other 10 men all want to marry Jennifer
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Matchings: a new class of discrete choice models

Problem: Endogenously-Determined Utility and

Choice Set

Why the standard discrete choice model fails?

Example: Tom marries Tina instead of Jennifer
◮ Tom prefers Tina.

◮ Jennifer does not like Tom.

◮ Other 10 men all want to marry Jennifer

Externality
◮ The utility is determined by the actions of other players.

(similar to normal form game; e.g. Ciliberto and Tamer, 2009)
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Matchings: a new class of discrete choice models

Problem: Endogenously-Determined Utility and

Choice Set

Availability-Constrained Choice Set
◮ Every man can only choose his spouse from the set of women

who are willing to marry him, and vice versa.

◮ Exclusiveness: if someone is married, he/she is not available and
hence cannot be included in the choice set of other agents.
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Matchings: a new class of discrete choice models

Structural Models based on Individual-level

Matchings

The classical matching theory predicts stable matchings at the
individual level (Roth and Sotomayor, 90).

Simulation-based approaches: Agarwal (2014), Boyd et al.
(2013), and Logan, Hoff and Newton (2008).

◮ Identification?
◮ Computational issues similar to estimating exponential random

graph models.
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Matchings: a new class of discrete choice models

Aggregate Matchings

From policy makers’ point of view, it is much easier to analyze
the policy implications by investigating the aggregate statistics
derived from the individual matchings; e.g., sorting patterns of
education attainment in marriage market, family background
and school characteristics...etc.

Pioneered by Dagsvik (2000), Choo and Siow (2006), and
Echenique, Lee, Shum and Yenmez (2013).

Possible to derive equilibrium aggregate statistics, without
solving individual-level matchings

Easy to analyze identification and simple estimators.
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Large Matching Markets as a Two-Sided Demand System

Large Matching Markets as a Two-Sided Demand

System

Assume agents have preference over partners’ observed
(discrete) characteristics.

If man i marries woman j : αij = αxiyj + ǫiyj

If woman j marries man i : γij = γxiyj + ηxi j

Discrete choice demand system (a la BLP...)
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Large Matching Markets as a Two-Sided Demand System

Large Matching Markets as a Two-Sided Demand

System

Suppose there are nx type-x men and my type-y women

Define Pm
y |x = Prob{y = argmaxy∈Y0

(αxy + ǫiy )}

Define Pw
x |y = Prob{x = argmaxx∈X0

(γxy + ηxj)}

nx · P
m
y |x 6= my · P

w
x |y (70 6= 50), given arbitrary utility parameters

(αxy , γxy).

Need a transfer technology (price mechanism) to clear the
market
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Large Matching Markets as a Two-Sided Demand System

Choo and Siow’s (JPE 2006) Solution

Transferable Utility Matchings: type-x men has to pay τxy in
order to marry type-y women.

Pm
y |x = Prob{y = argmaxy∈Y0

(αxy − τxy + ǫiy )};

Pw
x |y = Prob{x = argmaxx∈X0

(γxy + τxy + ηxj)}

If there are more type-x men who demand type-y women, one
can increase τxy , the price of type-xy marriage, until
nx · P

m
y |x = my · P

w
x |y (60 = 60).

Decompose aggregate matchings into two discrete choice
problems, subject to market clearing condition.
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Large Matching Markets as a Two-Sided Demand System

This Paper: the case of NTU Matchings
No actual price mechanism exists, but one can define a shadow
price system to support the equilibrium matching.

◮ Easy to define “aggregate” stable matchings
◮ Efficient algorithm for large type space

There is no way to shift agents’ preference, but at least
µxy = min{nx · P

m
y |x ,my · P

w
x |y}(50 = min{70, 50}) matchings

can be created at this moment. This 50 couples get their best
allocations, and hence are stable.

It is as if men are charged τxy > 0 and women receive zero
transfer such that nx · Prob{y = argmaxy∈Y0

(αxy − τxy + ǫiy )} =
my · Prob{x = argmaxx∈X0

(γxy + ηxj)}.

Either men or women should pay the shadow price (but not
both), depending on who are on the long side.
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Large Matching Markets as a Two-Sided Demand System

Contributions

Characterize the set of aggregate stable matchings as a nonlinear
complementarity problem. It has a shadow price interpretation.

Provide two aggregate versions of the Deferred-Acceptance
algorithm.

Derive a Leontief marriage matching function.

Partial and point identification results.

Implementing likelihood-based inference. Can accommodate

continuous characteristics.
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Large Matching Markets as a Two-Sided Demand System

Definition of Aggregate Matchings

Men and women can be grouped according to their observed
discrete characteristics, denoted by X and Y .

nx men of type x ∈ X and my women of type y ∈ Y

An aggregate matching, is a contingency table (µxy)x∈X ,y∈Y

counting the number of matches between x-type men and
y -type women.

The number of x-type men who remain single is denoted by
µx0 = nx −

∑

y∈Y µxy and the number of y -type women who
remain single is denoted by µ0y = my −

∑

x∈X µxy .
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Large Matching Markets as a Two-Sided Demand System

Assumptions on the Unobserved Heterogeneity

If man i marries woman j : αij = αxiyj + ǫiyj

If woman j marries man i : γij = γxiyj + ηxi j

a) For any man i such that xi = x , ǫiy is a |Y0|-dimensional
random vector drawn from a zero-mean distribution Px ;

b) For any woman j such that yj = y , ηxj is a |X0|-dimensional
random vector drawn from a zero-mean distribution Qy ;

c) Px and Qy have full support and are absolutely continuous
with respect to the Lebesgue measure.
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Large Matching Markets as a Two-Sided Demand System

Deriving Aggregate Stability Condition form

Individual-level Stability Condition

Let ui and vj be the equilibrium payoffs of agents under the
matching µ̃.

No-Blocking-Pair implies that a pair of agents should not be
able to both increase their welfare by deviating from their
current marriage, which is expressed as

max (ui − αij , vj − γij) ≥ 0

µ̃ij > 0 implies max (ui − αij , vj − γij) = 0.
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Large Matching Markets as a Two-Sided Demand System

Deriving Aggregate Stability Condition form

Individual-level Stability Condition

One can derive the aggregate version of no-blocking pair
condition

max (Uxy − αxy ,Vxy − γxy) ≥ 0

µxy > 0 implies max (Uxy − αxy ,Vxy − γxy) = 0

By the full support assumption on Px and Qy , µxy > 0 for all
(x , y )

(Uxy ,Vxy ) are the endogenously determined systemic utility.
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Large Matching Markets as a Two-Sided Demand System

Tools from Galichon and Salanie 2014 (General TU

Matchings)

Consider the discrete choice problem based on the endogenous
(equilibrium) systemic utility: Uxy + ǫiy and Vxy + ηxj .
(McFadden 76, Harsanyi 73, Machina 85 and Fudenberg et al
2014.)

The corresponding total indirect surplus of men is

G (U) =
∑

x∈X

nxEPx

[

max
y

(Uxy + εiy , εi0)

]

,

(Similar to the inclusive value in the logit regression)
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Large Matching Markets as a Two-Sided Demand System

Tools from Galichon and Salanie 2014 (General TU

Matchings)

Its Legendre-Fenchel transformation is given by

G ∗ (µ) = sup
U

{

∑

xy

µxyUxy − G (U)

}

By the Fenchel conjugation relations:

G (U) = sup
µ

{

∑

xy

µxyUxy − G ∗ (µ)

}

.
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Large Matching Markets as a Two-Sided Demand System

Tools from Galichon and Salanie 2014 (General TU

Matchings)

We define similarly

H (V ) =
∑

y∈Y

myEQy

[

max
x

(Vxy + ηxj , η0j)
]

, and

H∗ (µ) = sup
V

{

∑

xy

µxyVxy − H (V )

}

.
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Large Matching Markets as a Two-Sided Demand System

Notion of Semi-Matchings

Results from convex analysis:

µ = ∇G (U)(Williams-Daly-Zachary theorem) if and only if
U = ∇G ∗ (µ) (similar to CCP inversion)

Given arbitrary (nx ,my ,Px ,Qy ,U,V ), one can compute the
semi-matching of men via µm = ∇G (U), and the semi-matching
of women via µw = ∇H (V ). The (aggregate) market clearing
condition requires demand equal to supply: µw = µm = µ.

Note: the notion of semi-matching has nothing to do with
TU/NTU matchings per se.
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Large NTU Matching Markets: Equilibrium Characterization

Large NTU Matching Markets: Equilibrium

Characterization

Given (nx ,my ,Px ,Qy , α, γ), (µxy ,Uxy ,Vxy ) constitutes an
aggregate stable matching if

∑

y µxy ≤ nx ,
∑

x µxy ≤ my (Feasibility),

µ = ∇G (U) = ∇H(V ) (Market Clearing).

max(Uxy − αxy ,Vxy − γxy) = 0 (No-Blocking Pair),

The difference between endogenous and exogenous systemic
utility Uxy − αxy (Vxy − γxy)is interpreted as shadow price
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Large NTU Matching Markets: Equilibrium Characterization

Large NTU Matching Markets: Equilibrium

Characterization

Equivalent to find µ that solves the following nonlinear
complimentarity problem

max (∇G ∗ (µ)− α,∇H∗ (µ)− γ) = 0. (1)

We propose two variants of Deferred-Acceptance algorithms to
solve this problem, and prove existence.
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Marriage Matching Function and Identification

Large NTU Matching Markets: Implied Marriage

Matching Function

In the logit case (ǫiy , ηxj are i.i.d Gumbel distributed), the master
equation becomes
max (log(µxy/µx0)− αxy , log(µxy/µ0y )− γxy) = 0

That is,

µxy = min (µx0 exp(αxy), µ0y exp(γxy)) ,
µx0 +

∑

y∈Y µxy = nx ,

µ0y +
∑

x∈X µxy = my .

Aggregate marriage matching function implied by NTU
matchings is Leontief.
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Marriage Matching Function and Identification

Large NTU Matching Markets: Implied Marriage

Matching Function

Most of the MMF in literature are Cobb-Douglas (see Mourifie
and Siow 2014 for a survey). Logit assumption is the key

Choo-Siow: µxy = µ
1/2
x0 µ

1/2
0y exp(αxy + γxy)

Dagsvik-Menzel: µxy = µx0µ0y exp(αxy + γxy)

Galichon and Hsieh () Aggregate NTU Matching 2015.9.26 23 / 41



Marriage Matching Function and Identification

Implied Marriage Matching Function and

Identification

Even without the logit assumption...

Theorem: Given (µxy , nx ,my) satisfying the feasibility condition ,
and (Px ,Qy) satisfying the assumption 1, we have

(i) The contour level Iµ of µ (set of (α, γ) that leads to µ) takes
the Leontief form.
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Marriage Matching Function and Identification

Implied Marriage Matching Function and

Identification

Even without the logit assumption...

Theorem: Given (µxy , nx ,my) satisfying the feasibility condition ,
and (Px ,Qy) satisfying the assumption 1, we have

(i) The contour level Iµ of µ (set of (α, γ) that leads to µ) takes
the Leontief form.

(ii) The kink point of the Leontief contour level is given by
(α̂, γ̂) = (∇G ∗ (µ) ,∇H∗ (µ)). Namely,

Iµ =
{

(αxy , γxy)xy : min (αxy − α̂xy , γxy − γ̂xy) = 0
}

.
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Marriage Matching Function and Identification

Implied Marriage Matching Function and

Identification

Even without the logit assumption...

Theorem: Given (µxy , nx ,my) satisfying the feasibility condition ,
and (Px ,Qy) satisfying the assumption 1, we have

(i) The contour level Iµ of µ (set of (α, γ) that leads to µ) takes
the Leontief form.

(ii) The kink point of the Leontief contour level is given by
(α̂, γ̂) = (∇G ∗ (µ) ,∇H∗ (µ)). Namely,

Iµ =
{

(αxy , γxy)xy : min (αxy − α̂xy , γxy − γ̂xy) = 0
}

.

(iii) If (α, γ) = (α̂, γ̂), everyone is assigned to his/her most
preferred type under µ.
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Marriage Matching Function and Identification

Identification

Identified set is fully characterized by (∇G ∗ (µ) ,∇H∗ (µ))
thanks to the Leontief form.

Can be directly computed via any “CCP inversion” routine; e.g.,
Chiong, Galichon and Shum (2014). No need to run our
deferred-acceptance algorithms to find it.

(αxy , γxy) can be separately point identified if there exists two
markets.
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Marriage Matching Function and Identification

Implied Social Surplus

In TU matchings, Galichon and Salanie (2014) show that

(α− τTU , γ + τTU) = (∇G ∗ (µ) ,∇H∗ (µ)),

As a result, the social surplus ΦTU = α + γ (a la Choo and
Siow (2006)) is identified by ∇G ∗ (µ) +∇H∗ (µ)

= (log(µxy/µx0) + log(µxy/µ0y)) in the logit case (Choo-Siow).
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Marriage Matching Function and Identification

Implied Social Surplus

In NTU matchings, we show that the kink point (α̂, γ̂) is
identified by

(α̂, γ̂) = (∇G ∗ (µ) ,∇H∗ (µ)),

As a result, ∇G ∗ (µ) +∇H∗ (µ) identifies the minimum possible
social surplus.

ΦNTU ≥ ΦTU . (Intuitively, this is because part of the social
surplus cannot be fully revealed in the observed matching µ due
to market friction.)

ΦNTU
GH > ΦNTU

DM in the logit case.
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Algorithms

DASMC: Deferred-Acceptance with Squential

Market Clearing

Step 1. Each man proposes to his most preferred type of
women, if that type of women are still available. If unavailable,
he continues to propose to the second preferred type, and so on.

Step 2. Based on men’s proposals, calculate the type-x men’s
aggregate demand for the type-y women Dm

xy .

Step 3. Each woman proposes to her most preferred type of
men, if that type of men are still available. If unavailable, she
continues to propose to the second preferred type, and so on.

Step 4. Based on women’s proposals, calculate the type-y
women’s aggregate demand for the type-x men Dw

xy .
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Algorithms

DASMC: Deferred-Acceptance with Squential

Market Clearing

Step 5. The number type-xy matches created in this round is
given by µt

xy = min(Dm
xy ,D

w
xy ). D

m
xy − µt

xy (Dw
xy − µt

xy ) is the
number of unmatched type-x men (type-y women) who shall
repeat step 1-4.

Step 6. The algorithm stops at iteration T when there is no
more residual demand: Dm

xy − µT
xy = 0 and Dw

xy − µT
xy = 0 for all

(x , y ) ∈ X0 ×Y0. µxy =
∑T

t=1
µT
xy .
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Algorithms

DASMC: An Numerical Example

(αxy , γxy) = 0; x , y ∈ {1, 2}. αx0 and γ0y are normalized to −∞
so no one will remain single.

Implies random preference list
Rm
12|1 = Rm

12|2 = Rw
12|1 = Rw

12|2 = 0.5.

marginal distribution of types (n1, n2) = (m1,m2) = (70, 30)

want to determine the joint distribution of types µ

type of men/women 1 2 row sum
1 µ11 µ12 70
2 µ21 µ22 30
column sum 70 30
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Algorithms

Step 1. Create the Initial Matching Market

Men propose first

bimatrix representation (men’s demand in the left and women’s
demand in the right).

men/ women type 1 type 2 men’s type dist.
type 1 (35,35) (35,15) 70
type 2 (15,35) (15,15) 30
women’s type dist. 70 30
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Algorithms

Step 2. Create Matchings and Compute Residual

Demands

matrix of the number of couples created, C1

men/ women type 1 type 2 men’s type dist.
type 1 35 15 70
type 2 15 15 30
women’s type dist. 70 30

bimatrix of residual demands.

men/ women type 1 type 2 men’s type dist.
type 1 (0,0) (20,0)
type 2 (0,20) (0,0)
women’s type dist.
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Algorithms

Matching Market in the 2nd Round

bimatrix of demand/supply

men/ women type 1 type 2 men’s type dist.
type 1 (20,20) (0,0)
type 2 (0,0) (0,0)
women’s type dist.

matrix of the number of couples created, C2

men/ women type 1 type 2 men’s type dist.
type 1 20 0 70
type 2 0 0 30
women’s type dist. 70 30

Galichon and Hsieh () Aggregate NTU Matching 2015.9.26 33 / 41



Algorithms

Final Output

bimatrix of the residual demands

men/ women type 1 type 2 men’s type dist.
type 1 (0,0) (0,0) 70
type 2 (0,0) (0,0) 30
women’s type dist. 70 30

sum over the number of matches created in each round:
C1 + C2 =

men/ women type 1 type 2 men’s type dist.
type 1 55 15 70
type 2 15 15 30
women’s type dist. 70 30
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Algorithms

DASMC: Comments

Only 2 iterations! Regardless of the number of players

At each iteration, everyone is assigned to his/her best available
partner, and hence the resulting matching is stable.

The contingency table implied by the independent copula

men/ women type 1 type 2 men’s type dist.
type 1 49 21 70
type 2 21 9 30
women’s type dist. 70 30

Since 55 > 49, married couples’ types are positively correlated.
But the underlying utility functions have nothing to do with their
types. Observed sorting pattern is completely driven by marginal
distributions(Becker and Murphy (2000); Graham (2011).)
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Algorithms

DASMC: Pros and Cons

In general, only need small number of iterations.

Intuitive.

Need to evaluate the probability of all possible preference lists
◮ High memory cost and hence only works for small problems.

◮ Besides logit case, need high dimensional numerical integration.

Hard to analyze its property.
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Algorithms

DARUM: Deferred-Acceptance with Random

Uitlity Models
The intuition of DASMC: assign agents to their most preferred
type of marriage, subject to availability at each iteration.
Implementation is based on CCP and hence are
memory-intensive.

Equivalently, one can maximize men/women’s social surplus
subject to availability: theory of availability constrained discrete
choice

DARUM: Implementation is based on iterative utility
maximization, and it works for large problems. Algorithm is
based on fixed point iteration, and hence need more iterations in
general.

◮ Fortunately, DARUM is parallelizable! (DASMC can’t)
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Algorithms

DARUM

We need to keep track of µA
xy , the number of offers of men x to

women y which have not been rejected. Initially, one sets
µA,0
xy = nxmy

At step k, men propose women among those who have not yet
rejected them:

µP,k = argmax
µ

{
∑

xy

µxyαxy − G ∗ (µ) : µxy ≤ µA,k−1

xy }
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Algorithms

DARUM

In turn, women retain the offer they prefer among the ones they
have received if any:

µD,k = argmax
µ

{
∑

xy

µxyγxy − H∗ (µ) : µxy ≤ µP,k
xy }

the count of offers that have not been rejected gets updated: a
number µP,k

xy − µD,k
xy of offers from men x to women y have been

rejected, so

µA,k
xy = µA,k−1

xy −
(

µP,k
xy − µD,k

xy

)

.

The algorithms iterates until no offer gets rejected, that is
µP,k
xy = µD,k

xy .
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Algorithms

DARUM

We need to keep track of µA
xy , the number of offers of men x to

women y which have not been rejected. Initially, one sets
µA,0
xy = nxmy

At step k, men propose women among those who have not yet
rejected them:

µP,k = argmax
µ

{
∑

xy

µxyαxy − G ∗ (µ) : µxy ≤ µA,k−1

xy }
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Algorithms

Likelihood Inference

Parametric model for utility: αxy = x ′
iAyj or β|xi − yj |

Likelihood (multinomial choice)is given by

log L (λ) = 2
∑

i

∑

j

µ̃ij logµij +
∑

i

µ̃i0 logµi0+
∑

j

µ̃0j logµ0j

Equilibrium constraints under logit:

µi0 +
∑

j

min (µi0e
αxi yj , µ0je

γxi yj ) = 1 ∀i

µ0j +
∑

i

min (µi0e
αxi yj , µ0je

γxi yj ) = 1 ∀j

min (µi0e
αxi yj , µ0je

γxi yj ) = µij ∀i , j
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