
IV QUANTILE REGRESSION FOR GROUP-LEVEL TREATMENTS, WITH
AN APPLICATION TO THE DISTRIBUTIONAL EFFECTS OF TRADE

DENIS CHETVERIKOV, BRADLEY LARSEN, AND CHRISTOPHER PALMER

Abstract. We present a methodology for estimating the distributional e↵ects of an endogenous

treatment that varies at the group level when there are group-level unobservables, a quantile exten-

sion of Hausman and Taylor (1981). Because of the presence of group-level unobservables, standard

quantile regression techniques are inconsistent in our setting even if the treatment is independent

of unobservables. In contrast, our estimation technique is consistent as well as computationally

simple, consisting of group-by-group quantile regression followed by two-stage least squares. Using

the Bahadur representation of quantile estimators, we derive weak conditions on the growth of

the number of observations per group that are su�cient for consistency and asymptotic zero-mean

normality of our estimator. As in Hausman and Taylor (1981), micro-level covariates can be used as

internal instruments for the endogenous group-level treatment if they satisfy relevance and exogene-

ity conditions. Our approach applies to a broad range of settings including labor, public finance,

industrial organization, urban economics, and development; we illustrate its usefulness with several

such examples. Finally, an empirical application of our estimator finds that low-wage earners in

the US from 1990–2007 were significantly more a↵ected by increased Chinese import competition

than high-wage earners.
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1. Introduction

In classical panel-data models for mean regression, fixed e↵ects are commonly used to obtain

identification when time-invariant unobservables are correlated with included variables. While

this approach yields consistent estimates of the coe�cients on time-varying variables, it precludes

identification of the coe�cients of any time-invariant variables, as these variables are eliminated by

the within-group transformation. In an influential paper, Hausman and Taylor (1981) demonstrated

that exogenous between variation of time-varying variables can help to identify the coe�cients of

time-invariant variables after their within variation has been used to identify the coe�cients on

time-varying variables, thus yielding identification of the whole model without external instruments.

Our paper provides a quantile extension of the Hausman and Taylor (1981) classical linear panel

estimator.

We present our model in Section 2. To clarify the range of potential applications of our esti-

mator, we depart in the model from the usual panel-data terminology and refer to panel units as

groups (instead of as individuals; groups might be states, cities, schools, etc.) and to within-group

observations as individuals or micro-level observations (instead of as time observations; individuals

might be students, families, firms, etc.).1 The model is of practical significance when the researcher

has data on a group-level endogenous treatment and has microdata on the outcome of interest

within each group. For example, a researcher may be interested in the e↵ect of a policy which

varies across states and years (a “group”) on the within-group distribution of micro-level outcomes.

In Section 2, we also explain how the problem we solve di↵ers from others in the quantile regression

literature, and we demonstrate that, as in Hausman and Taylor (1981), micro-level covariates can

be used as internal instruments for the endogenous group-level treatment if they satisfy relevance

and exogeneity conditions. This last feature of the model is especially appealing because in practice

it may be di�cult to find external instruments.

In Section 3 we introduce our estimation approach, which we refer to as grouped IV quantile

regression. The estimator is computationally simple to implement and consists of two steps: (i)

perform quantile regression within each group to estimate e↵ects of micro-level covariates, or,

if no micro-level covariates are included, calculate the desired quantile for the outcome within

each group; and (ii) regress the estimated group-specific e↵ects on group-level covariates using

either 2SLS, if the group-level covariates are endogenous, or OLS, if the group-level covariates

are exogenous, either of which cases would render standard quantile regression (e.g. Koenker and

Bassett 1978) inconsistent.2 Section 3 also discusses Monte Carlo simulations (found in Section

1Similar terminology is used, for example, by Altonji and Matzkin (2005).
2Even in the absence of endogeneity, the Koenker and Bassett (1978) estimator will be inconsistent in our setting

because of group-level unobservables, akin to left-hand side measurement error; see Section 2 for details on our

setting. While posing no problems for linear models, left-hand side errors-in-variables can bias quantile estimation

(see Hausman (2001) and Hausman, Luo, and Palmer (2014)).
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A of the Supplemental Appendix) that demonstrate that our estimator has much lower bias than

that of the standard quantile regression estimator when the group-level treatment is endogenous,

even in small samples, and at larger sample sizes our estimator outperforms quantile regression

even when the treatment is exogenous. Section 3 also highlights additional computational benefits

of our estimator.

Section 4 provides a variety of examples illustrating the use of the grouped IV quantile regression

estimator. In particular, we use examples from Angrist and Lang (2004), Larsen (2014), Palmer

(2011), and Backus (2014) to illustrate applicability of our estimator. In addition to these examples,

the grouped quantile approach can apply to a wide range of settings in labor, industrial organization,

trade, public finance, development, and other applied fields.

We derive theoretical properties of the estimator in Section 5. The results are based on asymp-

totics where both the number of groups and the number of observations per group grow to infinity.

While linear panel models, including Hausman and Taylor (1981), admit a simple unbiased fixed

e↵ects estimator and hence do not require asymptotics in the number of observations per group,

quantile estimators are biased in finite samples leading to inconsistency of our estimator if the

number of observations per group remains small as the number of groups increases, and making the

estimator inappropriate in the settings with a small number of observations per group and a large

number of groups. However, since quantile estimators are asymptotically unbiased, we are able to

employ Bahadur’s representation of quantile estimators to derive weak conditions on the growth of

the number of observations per group that are su�cient for the consistency and asymptotic zero-

mean normality of our estimator. Importantly, the attractive theoretical properties of the estimator

remain valid even if the number of observations per group is relatively small in comparison with

the number of groups. We demonstrate that standard errors for the proposed estimator can be

obtained using traditional heteroskedasticity-robust variance estimators for 2SLS, making inference

particularly simple. In the Supplemental Appendix, we also discuss clustered standard errors, and

we show how to construct confidence bands for the coe�cient of interest which hold uniformly over

a set of quantiles via multiplier bootstrap procedure.

Section 6 presents an empirical application which studies the e↵ect of trade on the distribution

of wages within local labor markets. We build on the work of Autor, Dorn, and Hanson (2013),

who studied the e↵ect of Chinese import competition on average wages in local labor markets.

Using the grouped IV quantile regression approach developed here, we find that Chinese import

competition reduced the wages of low-wage earners (individuals at the bottom quartile of the

conditional wage distribution) more than high-wage earners, particularly for females, heterogeneity

which is missed by focusing on traditional 2SLS estimates.

To the best of our knowledge, our paper is the first to present a framework for estimating

distributional e↵ects as a function of group-level covariates. There is, however, a large literature

studying quantile models for panel data when the researcher wishes to estimate distributional e↵ects
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of micro-level covariates. See, for example, Koenker (2004), Abrevaya and Dahl (2008), Lamarche

(2010), Canay (2011), Galvao (2011), Kato and Galvao (2011), Ponomareva (2011), Kato, Galvao,

and Montes-Rojas (2012), Rosen (2012), Arellano and Bonhomme (2013), and Galvao and Wang

(2013). Our paper also contributes to the growing literature on IV treatment e↵ects in quantile

models, such as Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005, 2006, 2008),

Lee (2007), Chesher (2003), and Imbens and Newey (2009). Our paper di↵ers, however, in that this

literature focuses on the case where individual-level unobserved heterogeneity is correlated with an

individual-level treatment, whereas we focus on the case where a group-level, additively separable

unobservable is correlated with a group-level treatment.

Throughout the paper, we use the following notation. The symbol k · k denotes the Euclidean

norm. The symbol ) signifies weak convergence, and l1(U) represents the set of bounded functions

on U . With some abuse of notation, `1(U) also denotes the set of component-wise bounded vector-

valued functions on U . All equalities and inequalities concerning random variables are implicitly

assumed to hold almost surely. All proofs and some extensions of our results are contained in the

Supplemental Appendix.

2. Model

We study a panel data quantile regression model for a response variable yig of individual i in

group g. We first present a simple version of the model, which we consider as most appealing in

empirical work, and then present the general version of our model, which allows for more flexible

distributional e↵ects. Our estimator and theoretical results apply to both the general and simple

versions of the model.

In the simple version of the model, we assume that the uth quantile of the conditional distribution

of yig is given by

Qy
ig

|ez
ig

,x
g

,"
g

(u) = ez0ig�(u) + x0g�(u) + "g(u), u 2 U , (1)

where Qy
ig

|ez
ig

,x
g

,"
g

(u) is the uth conditional quantile of yig given (ezig, xg, "g), ezig is a (dz�1)-vector

of observable individual-level covariates (which we sometimes refer to as micro-level covariates),

xg is a dx-vector of observable group-level covariates (xg contains a constant), �(u) and �(u) are

(dz � 1)- and dx-vectors of coe�cients, "g = {"g(u), u 2 U} is a set of unobservable group-level

random scalar shifters,3 and U is a set of quantile indices of interest. Here, �(u) and �(u) represent

the e↵ects of individual- and group-level covariates, respectively. In this paper, we are primarily

interested in estimating �(u), although we also provide some new results on estimating �(u).

3One interpretation of the term "

g

(u) in (1) is that it accounts for all unobservable group-level covariates ⌘
g

that

a↵ect the distribution of y
ig

but are not included in x

g

. In this case, "
g

(u) = "(u, ⌘
g

). Note that we do not impose

any parametric restrictions on "(u, ⌘
g

), and so we allow for arbitrary nonlinear e↵ects of the group-level unobservable

covariates that can a↵ect di↵erent quantiles in di↵erent ways.
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In the more general version of the model, of which (1) is a special case, we assume that the uth

quantile of the conditional distribution of yig is given by

Qy
ig

|z
ig

,x
g

,↵
g

(u) = z0ig↵g(u), u 2 U (2)

↵g,1(u) = x0g�(u) + "g(u), u 2 U , (3)

where Qy
ig

|z
ig

,x
g

,↵
g

(u) is the uth conditional quantile of yig given (zig, xg,↵g), zig is a dz-vector

of observable individual-level covariates, ↵g = {↵g(u), u 2 U} is a set of (random) group-specific

e↵ects with ↵g,1(u) being the first component of the vector ↵g(u) = (↵g,1(u), . . . ,↵g,d
z

(u))0, and all

other notation is the same as above. In this model, we assume that the response variable yig satisfies

the quantile regression model in (2) with group-specific e↵ects ↵g(u). We are primarily interested in

studying how these e↵ects depend on the group-level covariates xg, and, without loss of generality,

we focus on ↵g,1(u), the first component of the vector ↵g(u). To make the problem operational, we

assume that ↵g,1(u) satisfies the linear regression model (3), in which we are interested in estimating

the vector of coe�cients �(u).

Observe that the model (1) is a special case of the model (2)-(3). Indeed, setting zig = (1, ez0ij)0

and assuming that (↵g,2(u), . . . ,↵g,d
z

(u))0 = �(u) for some non-stochastic (dz � 1)-vector �(u) and

all g = 1, . . . , G in the model (2)-(3) gives the model (1) after substituting (3) into (2). The model

(2)-(3) is more general, however, because it allows all coe�cients of individual-level covariates to

vary across groups via group-specific e↵ects ↵g(u), and it also allows to study not only location

shift e↵ects of the group-level covariates xg but also their interaction e↵ects. Therefore, throughout

this paper, we study the model (2)-(3).

As an example of where the above modeling framework is useful, consider a case in which a

researcher wishes to model the e↵ects of a policy, contained in xg, which varies at the state-by-year

level (a “group” in this setting) on the distribution of micro-level outcomes (such as individuals’

wages within each state-by-year combination), denoted yig, conditional on micro-level covariates,

such as education level, denoted zig. The framework in (1) would model the location-shift e↵ect of

the policy on conditional quantiles of wages within a group, given by �(u). The additional flexibility

of (2)-(3) would also allow for interaction e↵ects. For example, a policy xg may have di↵erential

e↵ects on lower wage quantiles for the less-educated than for the higher-educated; model (2) would

capture this idea by allowing the researcher to specify a linear regression model of the form of (3)

for the component of ↵g that is the coe�cient on education level, allowing the researcher to study

how the e↵ect of education level on the wage distribution varies as a function of xg, the policy.4

In many applications, it is likely that the group-level covariates xg may be endogenous in the

sense that E[xg"g(u)] 6= 0, at least for some values of the quantile index u 2 U . Therefore, to

4If the researcher is interested in modeling several e↵ects, for example location-shift and some interaction e↵ects,

she can specify a linear regression model of the form (3) for each e↵ect.



IV QUANTILE REGRESSION FOR GROUP-LEVEL TREATMENTS 5

increase applicability of our results, we assume that there exists a dw-vector of observable instru-

ments wg such that E[wg"g(u)] = 0 for all u 2 U , E[wgx
0
g] is nonsingular, and yig is independent

of wg conditional on (zig, xg,↵g).
5 The first two conditions are familiar from the classical lin-

ear instrumental variable regression analysis, and the third condition requires the distribution of

yig to be independent of wg once we control for zig, xg, and ↵g. It implies, in particular, that

Qy
ig

|z
ig

,x
g

,↵
g

,w
g

(u) = z0ig↵g(u) for all u 2 U .6
We assume that a researcher has data on G groups and Ng individuals within group g = 1, ..., G.

Thus, the data consist of observations on {(zig, yig), i = 1, . . . , Ng}, xg, and wg for g = 1, . . . , G.

Throughout the paper, we denote NG = min1gGNg. For our asymptotic theory in Section 5, we

will assume that NG gets large as G ! 1. Specifically, for the asymptotic zero-mean normality of

our estimator �̂(u) of �(u), we will assume that G2/3(logNG)/NG ! 0 as G ! 1; see Assumption 3

below. Thus, our results are useful when both G and NG are large, which occurs in many empirical

applications, but we also note that our results apply even if the number of observations per group

is relatively small in comparison with the number of groups.

We also emphasize that, like in the original panel data mean regression model of Hausman and

Taylor (1981), an important feature of our panel data quantile regression model is that it allows for

internal instruments. Specifically, if some component of the vector zig, say zig,k, is exogenous in the

sense that E[zig,k"g(u)] = 0 for all u 2 U , we can use, for example, N�1/2
g

PN
g

i=1 zig,k as an additional

instrument provided it is correlated with xg, including it into the vector wg. Since in practice it is

often di�cult to find an appropriate external instrument, allowing for internal instruments greatly

increases the applicability of our results.

Our problem in this paper is di↵erent from that studied in Koenker (2004), Kato, Galvao, and

Montes-Rojas (2012), and Kato and Galvao (2011).7 Specifically, they considered the panel data

5The assumption that E[w
g

"

g

(u)] = 0 holds jointly for all u 2 U should not be confused with requiring quantile

crossing. To understand it, assume, for example, that "

g

(u) = "(u, ⌘
g

) where ⌘

g

is a vector of group-level omitted

variables in regression (3). Then a su�cient condition for the assumption E[w
g

"

g

(u)] = E[w
g

"(u, ⌘
g

)] = 0 is that

E["(u, ⌘
g

)|w
g

] = 0. In turn, the restriction of the condition E["(u, ⌘
g

)|w
g

] = 0 is that E["(u, ⌘
g

)|w
g

] does not

depend on w

g

, which occurs (for example) if ⌘
g

is independent of w
g

. Once we assume that E["(u, ⌘
g

)|w
g

] does not

depend on w

g

, the further restriction that E["(u, ⌘
g

)|w
g

] = 0 is a normalization of the component of the vector �(u)

corresponding to the constant in the vector x
g

.
6The setting we model di↵ers from other IV quantile settings, such as Chernozhukov and Hansen (2005, 2006,

2008). Consider, for simplicity, our model (1) and assume that U = [0, 1]. Then the Skorohod representation implies

that y

ig

= ez0
ig

�(u
ig

) + x

0
g

�(u
ig

) + "

g

(u
ig

) where u

ig

is a random variable that is distributed uniformly on [0, 1] and

is independent of (ez
ig

, x

g

, "

g

). Here, one can think of u
ig

as unobserved individual-level heterogeneity. In this model,

the unobserved group-level component "

g

(·) is modeled as an additively separable term. In contrast, the model in

Chernozhukov and Hansen (2005, 2006, 2008) assumes that "
g

(u) = 0 for all u 2 [0, 1] and instead assumes that u

ig

is not independent of (ez
ig

, x

g

). Thus, these two models are di↵erent and require di↵erent analysis.
7Our paper is also related to but di↵erent from Graham and Powell (2012) who studied the model that in our

notation would take the form y

ig

= z

0
ig

↵

g

(u
ig

) where u

ig

represents (potentially multi-dimensional) random unob-

served heterogeneity, and developed an interesting identification and estimation strategy for the parameter E[↵
g

(u
ig

)],
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quantile regression model

Qy
ig

|z
ig

,↵
g

(u) = z0ig�(u) + ↵g(u), u 2 U , (4)

and developed estimators of �(u). Building on Koenker (2004), Kato, Galvao, and Montes-Rojas

(2012) suggested estimating �(u) in this model by running a quantile regression estimator of

Koenker and Bassett (1978) on the pooled data, treating {↵g(u), g = 1, . . . , G} as a set of pa-

rameters to be estimated jointly with the vector of parameters �(u) (the same technique can be

used to estimate �(u) in our model (1) by setting ↵g(u) = x0g�(u)+ "g(u)). They showed that their

estimator is asymptotically zero-mean normal if G2(logG)3/NG ! 0 as G ! 1. Making further

progress, Kato and Galvao (2011) suggested an interesting smoothed quantile regression estimator

of �(u) that is asymptotically zero-mean normal if G/NG ! 0.8 These papers do not provide a

model for our estimator of �(u), our primary object of interest, but instead focus solely on �(u).

Our model is also di↵erent from that studied in Hahn and Meinecke (2005), who considered an

extension of Hausman and Taylor (1981) to cover non-linear panel data models. Formally, they

considered a non-linear panel data model defined by the following equation:

E
⇥
'(yig, z

0
ig� + x0g� + "g)

⇤
= 0

where '(·, ·) is a vector of moment functions and x0g� + "g is the group-specific e↵ect. As in this

paper, the authors were interested in estimating the e↵ect of group-level covariates (coe�cient �)

without assuming that "g is independent (or mean-independent) of xg but assuming instead that

there exists an instrument wg satisfying E[wg"g] = 0. Importantly, however, they assumed that

'(·, ·) is a vector of smooth functions, so that their results do not apply immediately to our model.

In addition, Hahn and Meinecke (2005) required that NG/G > c for some c > 0 uniformly over all

G to prove that their estimator is asymptotically zero-mean normal. In contrast, as emphasized

above, we only require that G2/3(logNG)/NG ! 0 as G ! 1, with the improvement coming from

a better control of the residuals in the Bahadur representation.

achieving identification when the number of observations per group remains small as the number of groups gets large

and, under certain conditions, allowing ↵

g

(·) = ↵

ig

(·) to depend on i.
8To clarify the di↵erence between the growth condition in our paper, which is G

2/3(logN
G

)/N
G

! 0, and the

growth condition, for example, in Kato, Galvao, and Montes-Rojas (2012), which is G

2(logG)3/N
G

! 0, assume,

for simplicity, that d

x

= 1, d

z

= 2, and x

g

and the second component of z

ig

are constants, that is, x
g

= 1 and

z

ig

= (ez0
ig

, 1)0. Then our model (2)-(3) reduces to Q

yig |ezig ,"g ,↵g (u) = ez
ig

(�(u)+"

g

(u))+↵

g

(u), which is similar to the

model (4) studied in Kato, Galvao, and Montes-Rojas (2012) with the exception that we allow for additional group-

specific random shifter "
g

(u). When "

g

(u) is present, our estimator �̂(u) of �(u) satisfies G1/2(�̂(u)��(u)) ) N(0, V1)

for some non-vanishing variance V1; see Section 5. When "

g

(u) is set to zero, however, V1 vanishes, making the limiting

distribution degenerate and leading to faster convergence rate of the estimator �̂(u). In fact, when V1 vanishes, one

obtains (GN

G

)1/2(�̂(u) � �(u)) ) N(0, V2) for some non-vanishing variance V2. An additional N1/2
G

factor in turn

appears in the residual terms of the Bahadur representation of the estimator �̂(u), which eventually lead to stronger

requirements on the growth of the number of observations per group N

G

relative to the number of groups, explaining

the di↵erence between the growth condition in Kato, Galvao, and Montes-Rojas (2012) and our growth condition.
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3. Estimator

In this section we develop our estimator, which we refer as grouped IV quantile regression. Our

main emphasis is to derive a computationally simple, yet consistent, estimator. The estimator

consists of the following two stages.

Stage 1: For each group g and each quantile index u from the set U of indices of interest, estimate

uth quantile regression of yig on zig using the data {(yig, zig) : i = 1, ..., Ng} by the classical quantile

regression estimator of Koenker and Bassett (1978):

↵̂g(u) = arg min
a2Rd

z

N
gX

i=1

⇢u(yig � z0iga),

where ⇢u(x) = (u� 1{x < 0})x for x 2 R. Denote ↵̂g(u) = (↵̂g,1(u), . . . , ↵̂g,d
z

)0.

Stage 2: Estimate a 2SLS regression of ↵̂g,1(u) on xg using wg as an instrument to get an estimator

�̂(u) of �(u), that is,

�̂(u) =
�
X 0PWX

��1
⇣
X 0PW Â(u)

⌘

whereX = (x1, ..., xG)0,W = (w1, ..., wG)0, Â(u) = (↵̂1,1(u), . . . , ↵̂G,1(u))0, and PW = W (W 0W )�1W 0.9

Intuitively, as the number of observations per group increases, ↵̂g,1�↵g,1 shrinks to zero uniformly

over g = 1, . . . , G, and we obtain a classical instrumental variables problem. The theory presented

below provides a mild condition on the growth of the number of observations per group that is

su�cient to achieve consistency and asymptotic zero-mean normality of �̂(u).

Several special cases of our estimator are worth noting. First, when the model is given by

equation (1), the steps of our estimator consist of (i) group-by-group quantile regression of yig

on z̃ig and on a constant, saving the estimated coe�cient ↵̂g,1(u) corresponding to the constant,

↵g,1(u) = x0g�(u)+"g(u), in each group; and (ii) regressing those saved coe�cients ↵̂g,1(u) on xg via

2SLS using wg as instruments. Second, if zig contains only a constant, the first stage simplifies to

selecting the uth quantile of the outcome variable yig within each group. Third, if xg is exogenous,

that is, E[xg"g(u)] = 0, OLS of ↵̂g,1(u) on xg may be used rather than 2SLS in the second stage.

In this latter case, the grouped quantile estimation approach provides the advantage of handling

group-level unobservables (or, alternatively, left-hand-side measurement error), which would bias

the traditional Koenker and Bassett (1978) estimator. When zig only includes a constant and xg is

9The use of a 2SLS regression on the second stage of our estimator is dictated by our assumption that "

g

(u)

is (mean)-uncorrelated with w

g

: E[w
g

"

g

(u)] = 0. If, instead, we assumed that "

g

(u) is median-uncorrelated with

w

g

, a concept developed in Komarova, Severini, and Tamer (2012), the second stage of our estimator would be

an IV quantile regression developed in Chernozhukov and Hansen (2006). In this case, our method would be a

quantile-after-quantile estimator.
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exogenous, the grouped IV quantile regression estimator �̂(u) simplifies to the minimum distance

estimator described in Chamberlain (1994) (see also Angrist, Chernozhukov, and Fernandez-Val

2006).

This estimator has several computational benefits relative to alternative methods. First, note

that when the model is given by equation (1), another approach to perform the first stage of

our estimator would be to denote ↵g,1(u) = x0g�(u) + "g(u) and estimate parameters �(u) and

{↵g,1(u), g = 1, . . . , G} jointly from the pooled dataset as in Kato, Galvao, and Montes-Rojas

(2012). This would provide an e�ciency gain given that in this case, individual-level e↵ects �(u)

are group-independent. Although the method we use is less e�cient, it is computationally much

less demanding since only few parameters are estimated in each regression, which can greatly

reduce computation times in large datasets with many fixed e↵ects.10 Second, even if no group-

level unobservables exist (consider model (1) with "g(u) = 0 for all g = 1, . . . , G), the grouped

estimation approach can be considerably faster than the traditional Koenker and Bassett (1978)

estimator (though both estimators will be consistent). This computational advantage occurs when

the dimension of xg is large: standard quantile regression estimates �(u) in a single, nonlinear step,

whereas the grouped quantile approach estimates �(u) in a linear second stage.11

Monte Carlo simulations in Section A of the Supplemental Appendix highlight the performance

of our estimator for �(u) in (1) relative to the traditional Koenker and Bassett (1978) estimator

(which ignores endogeneity of xg as well as the existence of "g(u)). Even when NG and G are both

small, the grouped IV quantile approach has lower bias than traditional quantile regression when xg

is endogenous. When xg is exogenous but group-level unobservables "g(u) are still present, the bias

of the grouped quantile approach shrinks quickly to zero as NG grows but the bias of traditional

quantile estimator does not. When no group-level unobservables are present, and hence both the

grouped estimation approach and traditional quantile regression should be consistent, our estimator

still has small bias, although traditional quantile regression outperforms our method in this case.

As we demonstrate below, standard errors for our estimator �̂(u) may be obtained using stan-

dard heteroskedasticity-robust (Section 5) or clustering (Section E of the Supplemental Appendix)

approaches for 2SLS or OLS as if there were no first stage. Note that clustering in the second stage

refers to dependence across groups, not within groups. For example, if a group is a state-by-year

combination, the researcher may wish to use standard errors which are clustered at the state level.

10In Monte Carlo experiments in Section A of the Supplemental Appendix, we find that jointly estimating group-

level e↵ects can take over 150 times as long as the grouped quantile approach when G = 200. With G > 200, the

computation time ratio drastically increases further, with standard optimization packages often failing to converge

appropriately.
11One such example would be a case where a group is a state-by-year combination, and x

g

contains many state

and year fixed e↵ects, in addition to the treatment of interest, as in Example 2 of Section 4.
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4. Examples of Grouped IV Quantile Regression

To help the reader envision applications of our estimator, in this section, we provide several

motivating examples of settings for which our estimator may be useful. Each of the following

examples involves estimation of a treatment e↵ect that varies at the group level with all endogeneity

concerns also existing only at the group level.12

Example 1: Peer E↵ects of School Integration. Angrist and Lang (2004) studied how sub-

urban student test scores were a↵ected by the reassignment of participating urban students to

suburban schools through Boston’s Metco program. Before estimating their main instrumental

variables model, the authors tested for a relationship between the presence of urban students in

the classroom and the second decile of student test scores by estimating

Qy
igjt

|x
gjt

(0.2) = ↵g(0.2) + �j(0.2) + �t(0.2) + �(0.2)mgjt + �(0.2)sgjt + ⇠gjt(0.2) (5)

where the left-hand side represents the second decile of student test scores within a group, xgjt =

(mgjt, sgjt, ⇠gjt,↵g,�j , �t), and a group is a grade g ⇥ school j ⇥ year t cell. The variables sgjt and

mgjt denote the class size and the fraction of Metco students within each g ⇥ j ⇥ t cell, and ↵g,

�j , and �t represent grade, school, and year e↵ects, respectively. The unobserved component ⇠gjt

is analogous to "g(0.2) in our model (1).

Angrist and Lang (2004) estimated equation (5) by OLS, which is equivalent to the non-IV

application of our estimator with no micro-level covariates. Similar to their OLS results on average

test scores, they found that classrooms with higher proportions of urban students have lower second

decile test scores. Once they instrumented for a classroom’s level of Metco exposure, the authors

found no e↵ect on average test scores. However, by not estimating model (5) by 2SLS, they were

unable to address the causal distributional e↵ects of Metco exposure.

In estimating (5), Angrist and Lang (2004) used heteroskedasticity-robust standard errors, which

we demonstrate in Section 5 is valid. The extension in Section E of the Supplemental Appendix

implies that the authors could have instead allowed for clustering across groups in computing

standard errors (for example, clustering at the school level given a su�cient number of schools).

Example 2: Occupational Licensing and Quality. Larsen (2014) applied the estimator devel-

oped in this paper to study the e↵ects of occupational licensing laws on the distribution of quality

within the teaching profession. Similar to Example 1, the explanatory variable of interest is treated

as exogenous and the researcher is concerned that there may be unobserved group-level distur-

bances. In this application, a group is a state-year combination (s, t), and micro-level data consists

12This is in contrast to settings where the endogeneity exists at the individual level, i.e. when the individual

unobserved heterogeneity is correlated with treatment. Such situations require a di↵erent approach than the one

presented here, e.g. Chernozhukov and Hansen (2005), Abadie, Angrist, and Imbens (2002), or the other approaches

referenced in Section 1.
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of teachers within a particular state in a given year. The conditional uth quantile of teacher quality

among teachers who began teaching in state s in year t is modeled as

Qq
ist

|Law
st

,"
st

(u) = �s(u) + �t(u) + Law0
st�(u) + "st(u) (6)

where Lawst is a vector of dummies capturing the type of certification tests required for licensure

in state s and year t, �s(u) and �t(u) are state and year e↵ects, and "st(u) represents group-level

unobservables.

Because no micro-level covariates are included, the first stage of the grouped quantile estimator is

obtained by simply selecting the uth quantile of quality in a given state-year cell. The second stage

is obtained via OLS. Larsen (2014) found that, for first-year teachers, occupational licensing laws

requiring teachers to pass a subject test lead to a small but significant decrease in the upper tail of

quality, suggestive that these laws may drive some highly qualified candidates from the occupation.

In this setting, if micro-level covariates, zist, were included in the first stage of estimation, the

researcher could also estimate interaction e↵ects of the group-level treatment and a micro-level

covariate, such as the percent of minority students at the teacher’s school. This would be done

by (i) estimating quantile regression of qist on a vector zist (which would include a measure of the

percent minority students) separately for each (s, t) group and saving each group-level estimate for

the coe�cient corresponding to the percent minority variable; and (ii) estimating a linear regression

of these coe�cients on Lawst and on the state and year fixed e↵ects.

This example highlights another useful feature of grouped IV quantile regression. Including

many variables in a standard quantile regression can drastically increase the computational time

(see Koenker (2004), Lamarche (2010), Galvao and Wang (2013), and Galvao (2011) for further

discussion) and, in our experience, can often lead standard optimization packages to fail to converge.

The grouped quantile approach, on the other hand, can handle large numbers of variables easily

when these variables happen to be constant within group, as in the case of state and year fixed

e↵ects in this example, because the coe�cients corresponding to these variables can be estimated

in the second-stage linear model, greatly reducing the number of parameters to be estimated in the

nonlinear first stage and hence reducing the computational burden significantly.13

Example 3: Distributional E↵ects of Suburbanization. Palmer (2011) applied the grouped

quantile estimator to study the e↵ects of suburbanization on resident outcomes. This application

illustrates the use of our estimator in an IV setting. In this application, a group is a metropolitan

statistical area (MSA), and individuals are MSA residents. As an identification strategy, Palmer

13Note also that this specific computational advantage of the grouped quantile regression estimator exists even

in cases where both standard quantile regression and the grouped approach are valid (i.e. when no group-level

unobservables are present). Larsen (2014) found that estimating (6) using the grouped approach was significantly

faster than estimating (6) in a single standard quantile regression. See also Section A of the Supplemental Appendix

for further discussion of computational advantages of the grouped quantile approach.
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(2011) used the results of Baum-Snow (2007) in instrumenting suburbanization with planned high-

ways.14

The model is

�Qy
igt

|x
g

,s
g

,"
g

(u) = �(u) · suburbanizationg + x0g�1(u) + "g(u)

suburbanizationg = ⇡(u) · planned highway raysg + x0g�2(u) + vg(u)

where �Qy|x
g

,s
g

,"
g

(u) is the change in the uth quantile of log wages yigt within an MSA between

1950 and 1990 and xg is a vector of controls (including a constant) conditional upon which planned

highway raysg is uncorrelated with "g(u) and vg(u). The variable suburbanizationg is a proxy

measure of population decentralization, such as the amount of decline of central city population

density. �(u) is the coe�cient of interest, capturing the e↵ect of suburbanization on the within-

MSA conditional wage distribution. For example, if the process of suburbanization had particularly

acute e↵ects on the prospects of low-wage workers, we may expect �(u) to be negative for u = 0.1.

For a given u, the grouped IV quantile approach estimates �(u) through a 2SLS regression.

Example 4: The Relationship Between Productivity and Competition. Backus (2014)

studied the relationship between competition and productivity in the ready-mix concrete industry.

The author discussed the fact that competition and productivity are positively correlated, and

studied whether this relationship is similar for firms of all productivity levels (e.g. through encour-

aging better monitoring of firm managers or better investments), or whether increased competition

primarily a↵ects the lower tail of the productivity distribution (driving out less productive firms).

Let ⇢imt represent a measure of productivity of firm i in market m and time period t. Using

our notation, define a group as a pair m⇥ t. The author assumes that ⇢imt satisfies the following

quantile regression model:

Q⇢
imt

|c
mt

,n
mt

,"
mt

(u) = �t(u) + cmt�c(u) + g(nmt, u) + "mt(u) (7)

where cmt is a group-level measure of competition, nmt is the number of firms in the group, g(nmt, u)

is the third order polynomial of nmt), and "mt is an unobserved group-level disturbance, which is

possibly correlated with cmt.

Backus (2014) instrumented for cmt using group-level measures which shift the demand for con-

crete. Thus, the IV regression in (7) represents an application of our estimator when group-level

shocks are endogenous and no micro-level covariates are present. The author found some evi-

dence that the e↵ect of competition on the left tail of the productivity distribution may be more

positive than at some quantiles in the middle of the distribution (consistent with selection of low-

productivity firms out of the industry), but was unable to reject the hypothesis of a constant e↵ect.

14Baum-Snow (2007) instrumented for actual constructed highways with planned highways and estimated that

each highway ray emanating out of a city caused an 18% decline in central-city population.
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Backus (2014) reported standard errors clustered at the market level, which we demonstrate are

valid in Section E of the Supplemental Appendix.

5. Asymptotic Theory

In this section, we formulate our assumptions and present our main theoretical results.

5.1. Assumptions. Let cM , cf , CM , Cf , CL be strictly positive constants whose values are fixed

throughout the paper. Recall that NG = ming=1,...,GNg. We start with specifying our main

assumptions.

A1 (Design). (i) Observations are independent across groups. (ii) For all g = 1, . . . , G, the pairs

(zig, yig) are i.i.d. across i = 1, . . . , Ng conditional on (xg,↵g).

A2 (Instruments). (i) For all u 2 U and g = 1, . . . , G, E[wg"g(u)] = 0. (ii) As G ! 1,

G�1PG
g=1E[xgw0

g] ! Qxw and G�1PG
g=1E[wgw

0
g] ! Qww where Qxw and Qww are matrices with

singular values bounded in absolute value from below by cM and from above by CM . (iii) For all

g = 1, . . . , G and i = 1, . . . , Ng, yig is independent of wg conditional on (zig, xg,↵g). (iv) For all

g = 1, . . . , G, E[kwgk4+c
M ]  CM .

A3 (Growth Condition). As G ! 1, we have G2/3(logNG)/NG ! 0.

Assumption 1(i) holds, for example, if groups are sampled randomly from some population of

groups. This assumption precludes the possibility of clustering across groups (for example, if a

group is a state-by-year combination, there may be clustering on the state level). Since clustered

standard errors are important in practice, however, we derive an extension of our results relaxing the

independence across groups condition and allowing for clustering in Section E of the Supplemental

Appendix. Assumption 1(ii) allows for inter-dependence (clustering) within groups but imposes the

restriction that the inter-dependence between observations within the group g is fully controlled

for by the group-level covariates xg and the group-specific e↵ect ↵g. Assumption 2 is our main

identification condition. Note that Assumption 2 allows for internal instruments. In particular, if

wg = N
�1/2
g

PN
g

i=1 zig,k for some k, then Assumption 2(iii) automatically follows from Assumption

1(ii). Assumption 3 implies that the number of observations per group grows su�ciently fast as G

gets large, and gives a particular growth rate that su�ces for our results. Note that our growth

condition is rather weak and, most importantly, allows for the case when the number of observations

per group is small relative to the number of groups.15

Next, we specify technical conditions that are required for our analysis. Let Eg[·] = E[·|xg,↵g],

and let fg(·) denote the conditional density function of y1g given (z1g, xg,↵g) (dependence of fg(·)
15Using the more common notation of panel data models, where N is the number of individuals (groups) and T is

the number of time periods (individuals within the group), Assumption 3 would take the form: N

2/3(log T )/T ! 0

as N ! 1.
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on (z1g, xg,↵g) is not shown explicitly for brevity of notation). Also denote Bg(u, c) = (z01g↵g(u)�
c, z01g↵g(u) + c) for c > 0. We will assume the following regularity conditions:

A4 (Covariates). (i) For all g = 1, . . . , G and i = 1, . . . , Ng, random vectors zig and xg satisfy

kzigk  CM and kxgk  CM . (ii) For all g = 1, . . . , G, all eigenvalues of Eg[z1gz01g] are bounded

from below by cM .

A5 (Coe�cients). For all u1, u2 2 U and g = 1, . . . , G, k↵g(u2)� ↵g(u1)k  CL|u2 � u1|.
A6 (Noise). (i) For all g = 1, . . . , G, E[supu2U |"g(u)|4+c

M ]  CM . (ii) For some (matrix-valued)

function J : U ⇥U ! Rd
w

⇥d
w , G�1PG

g=1E["g(u1)"g(u2)wgw
0
g] ! J(u1, u2) uniformly over u1, u2 2

U . (iii) For all u1, u2 2 U , |"g(u2)� "g(u1)|  CL|u2 � u1|.
A7 (Density). (i) For all u 2 U and g = 1, . . . , G, the conditional density function fg(·) is continu-
ously di↵erentiable on Bg(u, cf ) with the derivative f 0

g(·) satisfying |f 0
g(y)|  Cf for all y 2 Bg(u, cf )

and |f 0
g(z

0
1g↵g(u))| � cf . (ii) For all u 2 U and g = 1, . . . , G, fg(y)  Cf for all y 2 Bg(u, cf ) and

fg(z01g↵g(u)) � cf .

A8 (Quantile indices). The set of quantile indices U is a compact set included in (0, 1).

Assumption 4(i) requires that both individual and group-level observable covariates zig and xg are

bounded. Assumption 4(ii) is a familiar identification condition in regression analysis. Assumption

5 is a mild continuity condition. Assumption 6(i) requires su�cient integrability of the noise

"g(u), which is a mild regularity condition. In fact, under Assumption 6(iii), which is also a mild

continuity condition, Assumption 6(i) is satisfied as long as E[|"g(u)|4+c
M ]  CM for some u 2 U

(with a possibly di↵erent constant CM ). Assumption 6(ii) is trivially satisfied if the pairs (wg, "g)

are i.i.d. across g. Assumption 7 is a mild regularity condition that is typically imposed in the

quantile regression analysis. Finally, Assumption 8 excludes quantile indices that are too close to

either 0 or 1 (when the quantile index u is close to either 0 or 1, one obtains a so called extremal

quantile model, which requires a rather di↵erent analysis; see, for example, Chernozhukov (2005)

and Chernozhukov and Fernández-Val (2011)).

5.2. Results. We now present our main results. In Theorem 1, we derive the asymptotic dis-

tribution of our estimator. In Theorem 2, we show how to estimate the asymptotic covariance

of our estimator. For brevity of the paper, further results are relegated to Sections C-E of the

Supplemental Appendix. In particular, in Section C, we describe a multiplier bootstrap method

for constructing uniform over u 2 U confidence intervals for �(u) and prove its validity relying on

results from Chernozhukov, Chetverikov, and Kato (2013). In Section D, we present an approach

for uniform inference on {↵g,1(u), g = 1, . . . , G} in the model (2)–(3) by constructing the confi-

dence bands [↵̂l
g,1(u), ↵̂

r
g,1(u)] that cover the true group-specific e↵ects ↵g,1(u) for all g = 1, . . . , G

simultaneously with probability approximately 1�↵. In Section E, we consider clustered standard

errors.
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The first theorem derives the asymptotic distribution of our estimator.

Theorem 1 (Asymptotic Distribution). Let Assumptions 1-8 hold. Then

p
G(�̂(·)� �(·)) ) G(·), in `1(U)

where G(·) is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function C(u1, u2) = SJ(u1, u2)S0 where S =
�
QxwQ

�1
wwQ

0
xw

��1
QxwQ

�1
ww, Qxw and Qww appear in

Assumption 2, and J(u1, u2) in Assumption 6.

Remark 1. (i) This is our main convergence result that establishes the asymptotic behavior of our

estimator. Note that we provide the joint asymptotic distribution of our estimator for all u 2 U .
In addition, Theorem 1 implies that for any u 2 U ,

p
G(�̂(u)� �(u)) ) N(0, V )

where V = SJ(u, u)S0, which is the asymptotic distribution of the classical 2SLS estimator.

(ii) In order to establish the joint asymptotic distribution of our estimator for all u 2 U , we have
to deal with G independent quantile processes {↵̂g,1(u)� ↵g,1(u), u 2 U}. Since G ! 1, classical

functional central limit theorems do not apply. Therefore, we employ a non-standard but powerful

Bracketing by Gaussian Hypotheses Theorem; see Theorem 2.11.11 in Van der Vaart and Wellner

(1996).

(iii) Since quantile regression estimators are biased in finite samples, our estimator ↵̂g,1(u) of

↵g,1(u) does not necessarily satisfy E[(↵̂g,1(u) � ↵g,1(u))wg] = 0. For this reason, our estimator

�̂(u) of �(u) is not consistent if Ng is bounded from above uniformly over g = 1, . . . , G and

G � 2. We note, however, that quantile estimators are asymptotically unbiased, and so we use the

Bahadur representation of quantile estimators to derive weak condition on the growth of NG =

min1gGNg relative to G, so that consistent estimation of �(u) is indeed possible. Specifically,

we prove consistency and asymptotic zero-mean normality under Assumption 3 that states that

G2/3(logNG)/NG ! 0 as G ! 1, which is a mild growth condition. In principle, it is also possible

to consider bias correction of the quantile regression estimators. This would further relax the growth

condition on NG relative to G at the expense of stronger side assumptions and more complicated

estimation procedures.

(iv) The requirement thatNG ! 1 as G ! 1 is in contrast with the classical results of Hausman

and Taylor (1981) on estimation of panel data mean regression model. The main di↵erence is

that the fixed e↵ect estimator in the panel data mean regression model is unbiased even in finite

samples leading to consistent estimators of the e↵ects of group-level covariates with the number of

observations per group being fixed. ⇤
The result in Theorem 1 derives asymptotic behavior of our estimator. In order to perform

inference, we also need an estimator of the asymptotic covariance function. We suggest using an
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estimator Ĉ(·, ·) that is defined for all u1, u2 2 U as

Ĉ(u1, u2) = ŜĴ(u1, u2)Ŝ
0, where

Ĵ(u1, u2) =
1

G

GX

g=1

⇣
(↵̂g,1(u1)� x0g�̂(u1))(↵̂g,1(u2)� x0g�̂(u2))wgw

0
g

⌘
,

Ŝ = (Q̂xwQ̂
�1
wwQ̂

0
xw)

�1Q̂xwQ̂
�1
ww, Q̂xw = X 0W/G, and Q̂ww = W 0W/G. In the theorem below, we

show that Ĉ(u1, u2) is consistent for C(u1, u2) uniformly over u1, u2 2 U .

Theorem 2 (Estimating C). Let Assumptions 1-8 hold. Then kĈ(u1, u2) � C(u1, u2)k = op(1)

uniformly over u1, u2 2 U .

Remark 2. Theorems 1 and 2 can be used for hypothesis testing concerning �(u) for a given

quantile index u 2 U . In particular, we have that
p
GĈ(u, u)�1/2(�̂(u)� �(u)) ) N(0, 1). (8)

Importantly for applied researchers, Theorems 1 and 2 demonstrate that heteroskedasticity-robust

standard errors for our estimator can be obtained by the traditional White (1980) standard errors

where we proceed as if ↵̂g,1(u) were equal to ↵g,1(u), that is, as if there were no first-stage estimation

error. Traditional approaches to clustered standard errors are also valid in this setting; extending

Theorems 1 and 2 to apply to settings with clustering is straightforward, but requires additional

notation, and therefore we present these results in Section E of the Supplemental Appendix. As

highlighted above, clustering in this context refers to clustering across groups. For example, if a

group is state-by-year cell, the researcher could cluster at the state level.

⇤

6. The effect of Chinese import competition on the local wage distribution

6.1. Background on wage inequality. Over the past 40 years, wage inequality within the United

States has increased drastically.16 Economists have engaged in heated debates about the primary

causes of the rising wage inequality—such as globalization, skill-biased technological change, or

the declining real minimum wage—and how the importance of these factors has changed over the

years.17 Recent work in Autor, Dorn, and Hanson (2013) (hereafter ADH) focused on import

competition and its e↵ects on wages and employment in US local labor markets. ADH studied the

period 1990–2007, when the share of US spending on Chinese imports increased dramatically from

0.6% to 4.6%. For identification, the authors used spatial variation in manufacturing concentration,

16Autor, Katz, and Kearney (2008) documented that, from 1963 to 2005, the change in wages for the 90th percentile

earner was 55% higher than for the 10th percentile earner.
17See, for example, Leamer (1994), Krugman (2000), Feenstra and Hanson (1999), Katz and Autor (1999), as well

as many other papers cited in Feenstra (2010) or in Haskel, Lawrence, Leamer, and Slaughter (2012).
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showing that localized US labor markets which specialize in manufacturing were more a↵ected by

increased import competition from China. The authors found that those markets which were more

exposed to increased import competition in turn had lower employment and lower wages.

We contribute to this debate by studying the e↵ect of increased trade, in the form of increased

import competition, on the distribution of local wages (rather than on the average local wages as in

ADH). Given that we exploit the same variation in import competition as in ADH, we first describe

the ADH framework below and then present our results.

6.2. Framework of Autor, Dorn, and Hanson (2013). To study the e↵ect of Chinese import

competition on average domestic wages, ADH used Census microdata to calculate the mean wage

within each Commuting Zone (CZ) in the United States.18 The authors then estimated the following

regression:

�lnwg = �1�IPWU
g +X 0

g�2 + "g (9)

where �lnwg is the change in average individual log weekly wage in a given CZ in a given decade,

Xg are characteristics of the CZ and decade, including indicator variables for each decade. Note

that we have changed the notation slightly from that in ADH in order to improve clarity for our

application—a “group” g in this setting is a given CZ in a given decade. The variable of interest is

�IPWU
g , which represents the decadal change in Chinese imports per US worker for the CZ and

decade corresponding to group g.19

To address endogeneity concerns (i.e. that imports from China may be correlated with unob-

served labor demand shocks), the authors instrumented for imports per last-period worker using

�IPWO
g , a measure of import exposure that replaces the change in Chinese imports to the US in

a given industry with the change in Chinese imports to other similarly developed nations for the

same industry and uses one decade lagged employment shares in calculating the weighted average.

Using this 2SLS approach, the authors found that a $1,000 increase in Chinese imports per worker

in a CZ decreases average log weekly wage by -0.76 log points, corresponding to decrease in wages

for the average CZ of 0.9% from 1990–2000 and 1.4% from 2000–2007. When estimated separately

by gender, the e↵ect was more negative for males (-0.89 log points) and less so for females (-0.61

log points).20

18The United States is covered exhaustively by 722 Commuting Zones (Tolbert and Sizer 1996), each roughly

corresponding to a local labor market.
19Due to data limitations, ADH proxy for the change in actual local imports per worker with the weighted average

of industry-level changes in the value of Chinese imports to the US with the weights corresponding to the beginning

of decade employment share of each industry in each CZ.
20As discussed by ADH, the existence of an extensive-margin labor supply response—imports a↵ecting whether

individuals are employed—makes these results likely a lower-bound for the e↵ect on all workers because we don’t

observe wages for the unemployed population.



IV QUANTILE REGRESSION FOR GROUP-LEVEL TREATMENTS 17

6.3. Distributional e↵ects of increased import competition. We build on the ADH frame-

work to analyze whether low-wage earners were more adversely a↵ected than high-wage earners by

Chinese import competition. To apply the grouped IV quantile regression estimator to this setting,

we replace �lnwg, the change in the average log weekly wage in equation (9) with � lnwu
g , the

change in the u-quantile of log wages in the CZ and decade corresponding to group g. We calculate

these quantiles using micro-level observations from the Census Integrated Public Use Micro Samples

for 1990 and 2000 and the American Community Survey for 2006-2008, matching these observations

to CZs following the strategy described in ADH.21 We instrument for �IPWU
g using �IPWO

g as

described above. Recall that existing methods for handling endogeneity in quantile models are

suited for the case where the individual-level unobserved conditional quantile itself is correlated

with the treatment and would be inconsistent in this setting because the endogeneity consists of a

group-level treatment being correlated with the group-level unobservable additive term.

Figures 1, 2, and 3 display the results of the grouped IV quantile regression estimator for the

full sample, for females only, and for males only. Each figure displays u-quantile estimates for

u 2 {0.05, 0.1, ..., 0.95}, along with pointwise 95% confidence bands about each estimate. The

figures also display the 2SLS e↵ect found in ADH and 95% confidence intervals corresponding to

their IV estimate of Chinese import penetration on the change in CZ-level average wages.

Each figure provides evidence that Chinese import competition a↵ected the wages of low-wage

earners more than high-wage earners, demonstrating how increases in trade can causally exacer-

bate local income inequality. For all three samples, the magnitude of the estimated causal e↵ect

of Chinese import penetration is much larger for lower quantiles of the conditional wage distribu-

tion. The point estimates suggest that the average negative e↵ect of Chinese import penetration

estimated by ADH is primarily driven by large negative e↵ects for those in the bottom tercile,

where the e↵ect is twice as large as the average e↵ect.22 Wages not in the bottom tercile were less

a↵ected than the average—Figure 1 shows that for most wage-earners (from the 0.35 quantile and

above) the e↵ect of Chinese import competition was one-third smaller in magnitude than the e↵ect

on the average estimated by ADH. Comparing the pattern of the coe�cients across two gender

subsamples in Figures 2 and 3, there is more distributional heterogeneity for females than males,

a finding that additional testing shows is even more pronounced for non-college educated females.

21The thought experiment behind the asymptotics in this application is that the estimator is consistent as the

number of groups (G = 722 CZs ⇥ two decades) and the number of individuals within each group (N
G

= 543,

the size of the smallest group) both grow large. We follow ADH by clustering at the state level and weighting by

start-of-decade CZ population in the second stage of our estimator. To cluster, we are relying on Section E of the

Supplemental Appendix, which relaxes Assumption 1 to allow for observations to be dependent across groups. We

also follow the ADH individual weighting procedure in the first stage given that not all individuals can be mapped

to a unique CZ.
22A coe�cient of -1.4 log points, e.g. for the lower quantiles of Figure 1, corresponds to a 2.6% decrease in wages

from 2000–2007 for the average commuting zone’s change in Chinese import exposure.
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For each sample, we can reject an e↵ect size of zero for almost all quantiles below the median but

cannot for all quantiles above the median.

7. Conclusion

In this paper, we present a quantile extension of Hausman and Taylor (1981), modeling the

distributional e↵ects of an endogenous group-level treatment. We develop an estimator, which we

refer to as grouped IV quantile regression, and show that the estimator, as well as its standard

errors, are easy to compute. We demonstrate that, in contrast to standard quantile regression, this

estimator is asymptotically unbiased in the presence of the group-level shocks that are ubiquitous

in applied microeconomic models. We illustrate the model and estimator with examples from labor,

education, industrial organization, and urban economics. An empirical application to the setting of

Autor, Dorn, and Hanson (2013) highlights the usefulness of our approach by estimating the e↵ects

of Chinese import competition on the distribution of wages—insights which would be missed by

focusing on average e↵ects alone. We believe the estimator has the potential for widespread practical

use in applied microeconomics.
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22 Figures

Figure 1. E↵ect of Chinese Import Competition on Conditional Wage Distribution:
Full Sample

Notes: Figure plots grouped IV quantile regression estimates of the e↵ect of a $1,000 increase in Chinese imports
per worker on the conditional wage distribution (�1 in equation (9) in the text when the change in average log
wages for the commuting zone and decade corresponding to group g, �lnw

g

, is replaced with the change in the
u-quantile of log wages � lnwu

g

). The dashed horizontal line is the ADH estimate of �1 in equation (9). 95%
pointwise confidence intervals are constructed from robust standard errors clustered by state and observations are
weighted by CZ population, as in ADH. Units on the vertical axis are log points.
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Figure 2. E↵ect of Chinese Import Competition on Conditional Wage Distribution:
Females Only

Notes: Figure plots grouped IV quantile regression estimates for the female-only sample of the e↵ect of a $1,000
increase in Chinese imports per worker on the female conditional wage distribution (�1 in equation (9) in the text
when the change in average log wages for the commuting zone and decade corresponding to group g, �lnw

g

, is
replaced with the change in the u-quantile of log wages � lnwu

g

). The dashed horizontal line is the ADH estimate of
�1 in equation (9). 95% pointwise confidence intervals are constructed from robust standard errors clustered by
state and observations are weighted by CZ population, as in ADH. Units on the vertical axis are log points.
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Figure 3. E↵ect of Chinese Import Competition on Conditional Wage Distribution:
Males Only

Notes: Figure plots grouped IV quantile regression estimates for the male-only sample of the e↵ect of a $1,000
increase in Chinese imports per worker on the male conditional wage distribution (�1 in equation (9) in the text
when the change in average log wages for the commuting zone and decade corresponding to group g, �lnw

g

, is
replaced with the change in the u-quantile of log wages � lnwu

g

). The dashed horizontal line is the ADH estimate of
�1 in equation (9). 95% pointwise confidence intervals are constructed from robust standard errors clustered by
state and observations are weighted by CZ population, as in ADH. Units on the vertical axis are log points.


