Optimal inference in a class of regression models*

Timothy B. Armstrong† Michal Kolesár‡
Yale University Princeton University

November 20, 2015

Abstract

We consider the problem of constructing confidence intervals (CIs) for a linear functional of a regression function, such as its value at a point, the regression discontinuity parameter, or a regression coefficient in a linear or partly linear regression. Our main assumption is that the regression function is known to lie in a convex function class, which covers most smoothness and/or shape assumptions used in econometrics. We derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with known variance. We show that these results translate to uniform (over the function class) asymptotic results when the error distribution is not known. When the function class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to efficient at smooth regression functions. This implies, in particular, that it is impossible to form CIs that are tighter using data-dependent tuning parameters, and maintain coverage over the whole function class. We specialize our results to inference in a linear regression, and inference on the regression discontinuity parameter, and illustrate them in an empirical application.

*We thank Denis Chetverikov, Ulrich M"uller, and Azeem Shaikh for useful discussions, and numerous seminar and conference participants for helpful comments and suggestions. All remaining errors are our own.
†email: timothy.armstrong@yale.edu
‡email: mkolesar@princeton.edu
1 Introduction

In this paper, we study the problem of constructing one- and two-sided confidence intervals (CIs) for a linear functional Lf of an unknown regression function f in a broad class of regression models with fixed regressors, in which f is known to belong to some convex function class \mathcal{F}. The linear functional may correspond to the value of f at a point, the regression discontinuity parameter, an average treatment effect under unconfoundedness, or a regression coefficient in a linear or partly linear regression. The class \mathcal{F} may contain smoothness restrictions (e.g. a bound on the second derivative, or assuming f is linear as in a linear regression), and/or shape restrictions (such as monotonicity, or sign restrictions on regression coefficients in a linear regression). Often in applications, the function class will be indexed by a smoothness parameter C. This is the case, for instance, when $\mathcal{F} = \mathcal{F}_{\text{Lip}}(C)$, the class of Lipschitz continuous functions with Lipschitz constant C.

We further assume that the regression errors are normal, with known variance, which allows us to derive finite-sample optimal CIs and sharp finite-sample efficiency bounds. We show that these finite-sample results translate to uniform asymptotic results when the error distribution is unknown under high-level regularity conditions, and derive sufficient low-level conditions in an application to regression discontinuity. Furthermore, this finite-sample approach has the advantage of being fully design adaptive, including boundary points and discrete regressors.

When the goal is to construct an optimal estimator of Lf, this setup has been studied extensively in the statistics literature (see, e.g., Stone (1980), Ibragimov and Khas’minskii (1985), Fan (1993), Donoho (1994), Cheng, Fan, and Marron (1997) and references therein). This literature is often cited in econometrics to formalize claims about optimal kernels and rates of convergence.\footnote{For example, in their survey of nonparametric methods in econometrics, Ichimura and Todd (2007) cite optimal rates of convergence for nonparametric estimation given in Stone (1980).} Our results build on a closely related literature that uses this setup to construct CIs, as we describe further below.

To evaluate confidence sets for Lf, we use their expected length, or, if their shape is restricted to take the form of a one-sided CI, a given quantile β of their excess length. We give two main results. First, we characterize the one-sided CI that minimizes the maximum β quantile of excess length over a convex class \mathcal{G}. The optimal CI $[\hat{c}, \infty)$ takes a simple form. The lower limit \hat{c} is obtained by taking an optimal estimator \hat{L} that is linear in the outcome vector and subtracting (1) the standard deviation of \hat{L} times the usual critical value based on a normal distribution and (2) a bias correction to guarantee proper coverage. This bias
correction, in contrast to bias corrections often used in practice, is based on the maximum bias of \(\hat{L} \) over \(F \), and is therefore non-random.

When \(G = F \), this procedure yields minimax one-sided CIs, and the optimal estimator \(\hat{L} \) has the same form as the minimax mean-squared error optimal estimator of Donoho (1994). Setting \(G \subset F \) to a class of smoother functions is equivalent to “directing power” or attempting to “adapt” to these smoother functions while maintaining coverage over \(F \). The procedure gives a sharp bound on the scope for adaptation for one-sided CIs. We show that when the class \(F \) is centrosymmetric (i.e. \(f \in F \) implies \(-f \in F \)), the scope for directing power is severely limited: CIs that are minimax for \(\beta \) quantile of excess length also optimize excess length over a class \(G \) of functions that are sufficiently smooth (such as the singleton class comprising just the zero function, or the class of constant functions if \(F \) places bounds on derivatives) but at a different quantile. Furthermore, a CI that is minimax for a given quantile is also highly efficient at smooth functions for the same quantile. For instance, a CI for the conditional mean at a point that is minimax over the Lipschitz class \(F_{\text{Lip}}(C) \) is asymptotically 95.2% efficient at a constant function relative to a CI that directs all power at this function. For function classes smoother than \(F_{\text{Lip}}(C) \), the efficiency is even higher.

Our second main result is to derive a confidence set that minimizes its expected length at a single function \(g \). We compare the performance of this confidence set to the optimal fixed-length CI derived in Donoho (1994) (i.e. confidence intervals of the form \(\hat{L} \pm \chi \), where \(\hat{L} \) is an affine estimator and the non-random half-length \(\chi \), which depends only on the regressors, is chosen to satisfy the coverage requirement). We find that, similarly to minimax one-sided CIs, when \(F \) is centrosymmetric, confidence sets that optimize expected length at a function \(g \) that is sufficiently smooth are not shorter than fixed-length CI by more than a few percentage points. For instance, the fixed-length CI for a conditional mean at a point when \(f \) is constrained to be in \(F_{\text{Lip}}(C) \) is asymptotically 95.6% efficient at any constant function relative to a confidence set that optimizes its excess length at this function.

These results extend and sharpen findings in Low (1997) and Cai and Low (2004a), who consider confidence sets that take the form of a two-sided CI, and, subject to coverage over \(F \), derive bounds on the maximum expected length over \(G \), and the results in Cai, Low, and Xia (2013), who obtain bounds on the expected length of two-sided CIs at a single function \(g \). The bounds of Low (1997) and Cai and Low (2004a) imply that when \(F \) is constrained only by bounds on a derivative, the expected length of any CI that maintains coverage must shrink at the minimax rate for any any \(f \) in the interior of \(F \). Our results show that, for smooth \(f \), this remains true whenever \(F \) is centrosymmetric, even if we don’t require the
confidence set to take the form of an interval, and, moreover, not only is the rate the same as the minimax rate, the constant must be close to that for fixed-length CIs.

An important practical implication of these results is that it is not possible to avoid having to explicitly specify the smoothness constant C: procedures that use data-driven rules to determine the smoothness of f must either fail to improve upon the minimax CIs or fixed-length CIs (that effectively assume the worst case smoothness), or else fail to maintain coverage over the whole parameter space. In order to avoid having to specify the smoothness constant, one has to strengthen the assumptions on f. For instance, one can impose shape restrictions that break the centrosymmetry, as in Cai, Low, and Xia (2013) or Armstrong (2015), or self-similarity assumptions that break the convexity, as in Giné and Nickl (2010) or Chernozhukov, Chetverikov, and Kato (2014).

We apply these results to two popular models. First, we consider the problem of inference in linear regression with restricted parameter space. The results give bounds for the scope for directing power while maintaining coverage over a convex parameter space. When the parameter space is also centrosymmetric, the results show that the scope for directing power at alternatives where certain parameters are zero is extremely limited. Since directing power at such alternatives is often the goal of model or variable selection, our results imply that, unless one imposes non-convex or asymmetric restrictions on the parameter space, the scope for variable selection is severely limited. We discuss sparsity as a non-convex constraint and point out that, while it is possible to adapt to the indices of non-zero coefficients, our results bound the scope for adapting to the number of non-zero coefficients.

Second, we consider inference about the regression discontinuity parameter. We illustrate our results using an empirical application from Lee (2008), and show that the resulting CIs are informative and simple to construct. We also consider one-sided CIs and two-sided fixed-length CIs based on local linear estimators, with bandwidths chosen to optimize their maximum excess length and half-length, respectively. Local linear estimators have been popular in empirical practice for regression discontinuity due to asymptotic relative efficiency results of Cheng, Fan, and Marron (1997) for minimax estimation with squared error loss. Using the same function classes as Cheng, Fan, and Marron (1997), we consider finite-sample efficiency for CIs, and we compute efficiency at smooth functions as well as minimax efficiency. We show that in the Lee (2008) application, CIs based on local linear estimators with triangular kernel are highly efficient relative to the optimal CIs discussed above.

Many procedures popular in practice avoid having to specify C by dropping the requirement that the CI be valid uniformly over \mathcal{F}, and only require it to be valid pointwise for each
\(f \in \mathcal{F} \). For example, under the assumption that \(f \) has at least one derivative, one can construct a 95% CI for a conditional mean at a boundary point \(x = 0 \) by using a kernel estimator with bandwidth that shrinks at a rate slightly faster than \(n^{-1/3} \) (i.e. undersmooth relative to the mean-square error optimal bandwidth), and adding and subtracting 1.96 times the standard deviation of this estimator. Even though the estimator is biased in finite samples, so that the CI will undercover in finite samples, for any given \(f \) with at least one derivative, the bias is of lower order than the variance, so that asymptotically, it will be negligible and the CI will have pointwise asymptotic coverage equal to 95% under regularity conditions. However, it is clear that, in any given sample, one can make the bias arbitrarily large, and hence the finite-sample coverage arbitrarily close to zero, by setting \(f(x) = Cx \) with \(C \) sufficiently large. Indeed, any bandwidth choice—including one that makes an “asymptotic promise” to undersmooth—implies a maximum value of \(C \) beyond which the coverage of a nominal 95% CI in any given sample will fail to be close (say within 5%) to the nominal coverage. Thus, even if one is willing to accept a given amount of undercoverage, a CI based on undersmoothing involves an implicit choice of \(C \).

One way to try to address this problem is to allow for more flexible bandwidth sequences as in Calonico, Cattaneo, and Titiunik (2014) and Calonico, Cattaneo, and Farrell (2015). However, our results imply that, in order to achieve good coverage over a range of functions \(f \) in a given sample, one cannot avoid having to specify an explicit bound on the smoothness of \(f \), and, once this is done, there is very little scope for improvement beyond a CI that simply uses the optimal bandwidth implied by the researcher’s a priori bound.

Similar problems with CIs that are valid pointwise, but not uniformly, have been pointed out in several parametric and semiparametric models popular in econometrics, including instrumental variables models (Bound, Jaeger, and Baker, 1995; Staiger and Stock, 1997) and moment inequalities (Andrews and Guggenberger, 2009b). They are also central to inference after model selection (Leeb and Pötscher, 2005), as we discuss in detail in the application to linear regression in Section 4. As this literature points out, in any given sample, there will be part of the parameter space where pointwise CIs will severely undercover. In nonparametric settings, however, the problem can be much worse in the sense that the problematic part of the parameter space may be much larger. Brown, Low, and Zhao (1997) give examples of nonparametric estimation problems where every point of the parameter space can be a point of superefficiency, in contrast to parametric estimation problems, where the set of superefficiency has Lebesgue measure zero (see also Chapter 1.2.4 in Tsybakov, 2009). As Robins and van der Vaart (2006) point out, dropping uniformity “appears to contradict
the very definition of a confidence set”—to construct a CI for \(Lf \), one must specify some parameter space \(\mathcal{F} \) such that the CI covers \(Lf \) with the prespecified probability for all \(f \) in the parameter space.

Pointwise-in-\(f \) asymptotics may lead to other inconsistencies, such as assuming that the covariates are continuous even if they are clearly discrete in the given sample. An effort to avoid this problem has lead to considerable confusion in the regression discontinuity literature, where very different modeling approaches have been proposed when covariates are discrete instead of continuous (see Lee and Card, 2008). In this paper, we take the approach of first deriving finite sample results in a model with normal errors, and then using asymptotics to relax the normality assumption. When covariates are continuous, additional simplifications obtain: certain sums are approximated by integrals that do not depend on the design points, and the optimal procedures correspond asymptotically to kernel estimators with different bandwidths. However, one need not use these simplifications in forming finite sample estimates and CIs: the finite sample approach still leads to CIs that are easily computable and relatively simple, as we illustrate in our regression discontinuity application in Section 5. Thus, one can take the same approach whether the covariates are discrete or continuous and not worry about how to best model them.

The remainder of this paper is organized as follows. In Section 2, we illustrate our results in a simple example. Section 3 introduces the general setup and states the main results. Section 4 applies these results to linear regression. Section 5 considers an application to regression discontinuity. Section 6 concludes. Proofs and long derivations are collected in appendices. Appendix A contains proofs for the main results in Section 3, and Appendix B additional details for constructing two-sided CIs studied in that section. The Supplemental Materials contain further appendices. Supplemental Appendix C contains derivations for Sections 4 and 5. Supplemental Appendices D, E, and F contain asymptotic results. Supplemental Appendix G contains additional figures for the application in Section 5.

2 Simple example

To illustrate the main theoretical results, consider the nonparametric regression \(y_i = f(x_i) + u_i \), where \(i = 1, \ldots, n \), the regressors \(x_i \in \mathbb{R} \) are treated as fixed and the errors \(u_i \) are i.i.d. standard normal. We assume that \(f \) lies in a class of Lipschitz continuous functions with constant \(C \),

\[
\mathcal{F}_{\text{Lip}}(C) = \{ f : |f(x_1) - f(x_2)| \leq C|x_1 - x_2| \}. \tag{1}
\]
We are interested in constructing an optimal or near-optimal one-sided confidence interval (CI) for the value of the regression function \(f \) at a point, which we can normalize to zero (see Section 3.4 for general treatment of two-sided CIs).

There are several notions of optimality for one-sided CIs. First, we focus on constructing CIs \([\hat{c}, \infty)\) that minimize the maximum \(\beta \)th quantile of excess length, \(\sup_{f \in \mathcal{F}} q_{f, \beta}(f(0) - \hat{c}) \), where \(q_{f, \beta} \) denotes the \(\beta \)th quantile of the excess length \(f(0) - \hat{c} \). Such CIs can be obtained by inverting tests of the null hypothesis \(H_0: f(0) \leq L_0 \) that maximize their minimum power under the alternative \(H_1: f(0) \geq L_0 + 2b \), where the half-distance \(b \) to the alternative is calibrated so that the minimum power of the minimax test is given by \(\beta \) (see Section 3.3 for derivation).

To construct the minimax test, note that if we set \(\mu = (f(x_1), \ldots, f(x_n))' \), and \(Y = (y_1, \ldots, y_n)' \), we can view the testing problem as an \(n \)-variate normal mean problem \(Y \sim N(\mu, I_n) \). The vector of means \(\mu \) is constrained take values in the convex sets \(M_0 = \{(f(x_1), \ldots, f(x_n))': f \in \mathcal{F}, f(0) \leq L_0\} \) under the null, and \(M_1 = \{(f(x_1), \ldots, f(x_n))': f \in \mathcal{F}, f(0) \geq L_0 + 2b\} \) under the alternative. To solve this problem, let’s first consider a two-point testing problem with the null and alternative given by some \(\mu_0 \in M_0 \) and \(\mu_1 \in M_1 \). By the Neyman-Pearson lemma, the optimal test of \(\mu_0 \) vs \(\mu_1 \) is the likelihood ratio test, which rejects for large values of \((\mu_1 - \mu_0)'Y \), and has power \(\Phi(\|\mu_1 - \mu_0\| - z_{1-\alpha}) \) at \(\mu_1 \).

Since this testing problem is easier than testing \(M_0 \) against \(M_1 \), minimizing this power over \(\mu_0 \in M_0 \) and \(\mu_1 \in M_1 \) must give an upper bound for the minimum power of the minimax test. Let us conjecture that the solution to the minimax testing problem is given by the solution to the two-point testing problem with \(\mu_0 \) and \(\mu_1 \) given by the minimizers \(\mu_0^* \) and \(\mu_1^* \) of \(\Phi(\|\mu_1 - \mu_0\| - z_{1-\alpha}) \). To verify this conjecture, we need to show that the power of the resulting test is minimized over \(M_1 \) at \(\mu_1^* \), and it controls size over \(M_0 \) (see Theorem 8.1.1 in Lehmann and Romano 2005), in which case \(\mu_0^* \) and \(\mu_1^* \) are called “least favorable.” In Lemma A.2, which follows directly from Section 2.4.3 in Ingster and Suslina (2003), we show that for convex \(M_0 \) and \(M_1 \), this is indeed the case.

Since the power \(\Phi(\|\mu_1 - \mu_0\| - z_{1-\alpha}) \) is increasing in the distance between \(\mu_1 \) and \(\mu_0 \), the least favorable functions correspond to the points \(\mu_0^* = (f^*(x_1), \ldots, f^*(x_n))' \) and \(\mu_1^* = (g^*(x_1), \ldots, g^*(x_n))' \) that minimize the Euclidean distance between the sets \(M_0 \) and \(M_1 \),

\[
(f^*, g^*) = \arg\min_{f, g \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - g(x_i))^2 \quad \text{subject to } f(0) \leq L_0, g(0) \geq L_0 + 2b. \quad (2)
\]

To satisfy the constraints, the solution must satisfy \(g^*(x_0) \geq L_0 + 2b - C|x| \) and \(f^*(x) \leq \hat{c} \).
$L_0 + C|x|$ for all x. Therefore, the difference between the two functions is bounded by
$|g^*(x) - f^*(x)| \geq 2 \max \{b - C|x|, 0\}$. Since we can make the bound sharp by setting

$$g^*(x) = L_0 + b + \max\{b - C|x|, 0\}, \quad f^*(x) = L_0 + b - \max\{b - C|x|, 0\},$$

these functions must solve (2). The first panel of Figure 1 shows the least favorable functions.

Intuitively, to make H_0 and H_1 hardest to distinguish, the null and alternative functions f^* and g^* converge to each other as fast as possible under the Lipschitz constraint and the null and alternative constraints $f^*(0) \leq L_0$ and $g^*(0) \geq L_0 + 2b$.

The likelihood ratio test that corresponds to the two-point test based on the least favorable means rejects for large values of $Y'(\mu^*_1 - \mu^*_0)$, with critical value given by the distribution of Y under μ^*_0. By working out this critical value and rearranging the resulting expression, we obtain the minimax test that rejects whenever

$$\hat{L}_h - L_0 - \text{bias}_{f^*}(\hat{L}_h) \geq \text{var}(\hat{L}_h)^{1/2}z_{1-\alpha}. \quad (3)$$

Here \hat{L}_h is a Nadaraya-Watson kernel estimator based on the triangular kernel $k(u) = \max\{0, 1 - |x|\}$ and bandwidth $h = b/C$,

$$\hat{L}_h = \frac{\sum_{i=1}^n (g^*(x_i) - f^*(x_i))y_i}{\sum_{i=1}^n (g^*(x_i) - f^*(x_i))} = \frac{\sum_{i=1}^n k(x_i/h)y_i}{\sum_{i=1}^n k(x_i/h)},$$

$$\text{var}(\hat{L}_h) = \frac{\sum_{i=1}^n k(x_i/h)^2}{(\sum_{i=1}^n k(x_i/h))^2}$$

is the variance of \hat{L}_h, $z_{1-\alpha}$ is the $1 - \alpha$ quantile of a standard normal distribution, and $\text{bias}_{f^*}(\hat{L}_h) = b\left(1 - \frac{\sum_{i=1}^n k(x_i/h)^2}{\sum_{i=1}^n k(x_i/h)^2}\right)$ is the bias of the estimator \hat{L}_h under f^*.

The estimator \hat{L}_h is normally distributed with variance that does not depend on the true function f. Its bias, however, does depend on f. To control size under H_0 in finite samples, it is necessary to subtract the largest possible bias of \hat{L}_h under the null, which obtains at f^* (we show in the next section that this is in fact the largest bias over all of $F_{\text{Lip}}(C)$). Since the rejection probability of the test is decreasing in the bias, its minimum power occurs when the bias is minimal under H_1, which occurs at g^*, and is given by

$$\beta = \Phi\left(2b\sqrt{\sum_{i=1}^n k(x_i/h)^2} - z_{1-\alpha}\right). \quad (4)$$

Since the estimator, its variance, and the non-random bias correction are all independent of
the particular null L_0, the CI based on inverting these tests as H_0 varies over \mathbb{R} is given by
\[
[\hat{c}_{\alpha,b}, \infty), \quad \text{where } \hat{c}_{\alpha,b} = \hat{L}_h - \text{bias}_{f^*}(\hat{L}_h) - \text{var}(\hat{L}_h)z_{1-\alpha}.
\] (5)

This CI minimizes the βth quantile maximum excess length with β given by the minimax power of the tests (4). Equivalently, given a quantile β that we wish to optimize, set the half-distance to the alternative b_β as the solution to $b_\beta = (z_\beta + z_{1-\alpha})/\sqrt{4 \sum_{i=1}^n k(x_i/(C/b_\beta))^2}$.

This solution has four important features. First, it is simple to construct. Second, different choices of the constants C and b (or β) affect the optimal bandwidth, but not the kernel—the triangular kernel is therefore minimax optimal for the Lipschitz class (see Armstrong and Kolesár (2015) and references therein for general results on optimal kernels in these settings). Third, the least favorable functions, g^* and f^*, correspond to scaled versions of this optimal kernel—the least favorable functions and the kernel have the same shape. Fourth, the bias correction is non-random, depends on the worst-case bias of \hat{L}_h (rather than an estimate of its bias), and doesn’t disappear asymptotically. In particular, suppose that for some d, $\frac{1}{nh} \sum_{i=1}^h k(x_i/h)^2 \rightarrow d \int k(u)^2 du = 3d$ and $\frac{1}{nh} \sum_{i=1}^h k(x_i/h) \rightarrow d$ as $n \rightarrow 0$, $nh \rightarrow \infty$ and $h \rightarrow 0$ (under random sampling of the regressors x_i, this holds with d corresponding to the density of x_i at 0). Let h_β denote the bandwidth that is optimal for the β quantile. Then the worst case bias of \hat{L}_{h_β} equals $Ch_\beta/3(1 + o(1))$, while its variance equals $2/3nh_{h_\beta}f_x(0)(1 + o(1))$, with the optimal bandwidth given by
\[
h_\beta = \frac{1}{2} \left(\frac{3}{C_2nf_x(0)} \right)^{1/3} (z_\beta + z_{1-\alpha})^{2/3}(1 + o(1)),
\] (6)
so that the squared bias and variance are of the same order, $O(n^{-2/3})$. Consequently, no CI that “undersmooths” in the sense that it is based on an estimator whose bias is of lower order than its variance can be minimax optimal asymptotically or in finite samples.

An apparent disadvantage of this CI is that it requires the researcher to choose a smoothing constant C. Addressing this issue leads to “adaptive” CIs. Adaptive CIs achieve good excess length properties for a range of parameter spaces $\mathcal{F}_{\text{Lip}}(C_j)$, $C_1 < \cdots < C_J$, while maintaining coverage over their union, which is given by $\mathcal{F}_{\text{Lip}}(C_J)$, where C_J is a conservative upper bound on the possible smoothness of f. In contrast, a minimax CI only considers worst-case excess length over $\mathcal{F}_{\text{Lip}}(C_J)$. To derive an upper bound on the scope for adaptivity, consider the problem of finding a CI that optimizes excess length over $\mathcal{F}_{\text{Lip}}(0)$ (the space of constant functions), while maintaining coverage over $\mathcal{F}_{\text{Lip}}(C)$ for some $C > 0$.

9
To derive the form of such CI, consider the one-sided testing problem \(H_0: f(0) \leq L_0 \) and \(f \in F_{\text{Lip}}(C) \) against the one-sided alternative \(H_1: f(0) \geq L_0 + b \) and \(f \in F_{\text{Lip}}(0) \) (so that now the half-distance to the alternative is given by \(b/2 \) rather than \(b \)). This is equivalent to a multivariate normal mean problem \(Y \sim N(\mu, I_n) \), with \(\mu \in M_0 \) under the null as before, and \(\mu \in \tilde{M}_1 = \{ (L, \ldots, L): L \geq L_0 + b \} \). Since the null and alternative are convex, by the same arguments as before, the least favorable functions minimize the Euclidean distance between the two sets. The minimizing functions are given by \(\tilde{g}^*(x) = L_0 + b \), and \(\tilde{f}^* = f^* \) (same function as before). The second panel of Figure 1 plots this solution. Since \(\tilde{g}^* - \tilde{f}^* = (g^* - f^*)/2 \), the resulting test is again given by (3), and the CI is also the same as before—the only difference is that we moved the half-distance to the alternative from \(b \) to \(b/2 \). Hence, the minimax CI that optimizes a given quantile of excess length over \(F_{\text{Lip}}(C) \) also optimizes its excess length over the space of constant functions, but at a different quantile. By calculating the power of the minimax test at constant alternatives, it can be seen that the scope for improvement is still small if one compares excess length at the same quantile: in Section 3.3, we show that, for this smoothness class, the CI that minimaxes excess length at a given quantile is at least 95.2% optimal asymptotically for constant functions at the same quantile. For function classes smoother than \(F_{\text{Lip}}(C) \), the efficiency is even higher.

Therefore, it is not possible to “adapt” to cases in which the regression function is smoother than the least favorable function. The key to this non-adaptivity result is that the class \(F \) is centrosymmetric (i.e. \(f \in F \) implies \(-f \in F\)) and convex. The centrosymmetry implies that the least favorable functions in the minimax problem (2) are, up to constants, negatives of one another, and the convexity is necessary for Lemma A.2 to apply. For adaptivity to be possible, we need shape restrictions like monotonicity, or non-convexity of \(F \). In the next section, we give a general statement of this result, and also a similar result for two-sided CIs.

3 General characterization of optimal procedures

We consider the following setup and notation, much of which follows Donoho (1994). We observe data \(Y \) of the form

\[
Y = Kf + \sigma \varepsilon
\]

(7)

where \(f \) is known to lie in a convex subset \(F \) of a vector space, and \(K : F \to \mathcal{Y} \) is a linear operator between \(F \) and a Hilbert space \(\mathcal{Y} \). We use \(\langle \cdot, \cdot \rangle \) to denote the inner product on \(\mathcal{Y} \) and \(\| \cdot \| \) to denote the norm. The error term \(\varepsilon \) is standard Gaussian with respect to this
inner product: for any $g \in \mathcal{Y}$, $\langle \varepsilon, g \rangle$ is normal with $E(\varepsilon, g) = 0$ and $\text{var}(\langle \varepsilon, g \rangle) = \|g\|^2$. We are interested in constructing a confidence set for a linear functional L_f.

3.1 Special cases

The general setup (7) covers a number of important models as special cases. First, it can be used to study Gaussian nonparametric regression with fixed design, in which we observe $\{x_i, y_i\}_{i=1}^n$ with x_i a deterministic vector, and

$$y_i = f(x_i) + u_i, \quad u_i \sim N(0, \sigma^2(x_i))$$

independent across i, (8) where $\sigma^2(x)$ is known. This fits into the framework above with $Y = (y_1/\sigma(x_1), \ldots, y_n/\sigma(x_n))'$, $\mathcal{Y} = \mathbb{R}^n$, $Kf = (f(x_1)/\sigma(x_1), \ldots, f(x_n)/\sigma(x_n))'$ and with $\langle x, y \rangle$ given by the Euclidean inner product $x'y$. Depending on the definition of the linear functional L, this model covers several important situations encountered in applied econometrics, including: inference at a point, regression discontinuity (see Section 5), and average treatment effects under unconfounded-ness (with $Lf = \frac{1}{n} \sum_{i=1}^n (f(w_i, 1) - f(w_i, 0))$ where $x_i = (w_i, d_i')'$, d_i is a treatment indicator and w_i are controls). The finite sample results in this model will often lead to analogous uniform (over \mathcal{F}) asymptotic results in the more realistic setting in which the distribution of u_i is not known (see Section 3.6).

Second, the setup (7) can be used to study the linear regression model with restricted parameter space. For simplicity, we consider the case with homoskedastic errors

$$Y = X\theta + \sigma\varepsilon, \quad \varepsilon \sim N(0, I_n),$$

(9)

where X is a fixed $n \times k$ design matrix and σ is known. This fits into our framework with $f = \theta$, X playing the role of K, taking $\theta \in \mathbb{R}^k$ to $X\theta \in \mathbb{R}^n$, and $\mathcal{Y} = \mathbb{R}^n$ with the Euclidean inner product $\langle x, y \rangle = x'y$. We are interested in a linear functional $L_\theta = \ell'\theta$ where $\ell \in \mathbb{R}^k$. We consider this model in Section 4. While we focus on homoskedastic linear regression for exposition, the results extend to the multivariate normal location model $\hat{\theta} \sim N(\theta, \Sigma_\theta)$, which obtains as a limiting experiment of regular parametric models. Thus, the finite sample results for OLS could be extended to local asymptotic results for other regular parametric models, with the constraint sets \mathcal{F} and \mathcal{G} (defined below) shrinking at a \sqrt{n} rate.

In addition to the regression models (8) and (9), the setup (7) includes other nonparametric and semiparametric regression models such as the partly linear model (where f takes...
the form \(g(w_1) + \gamma'w_2 \), and we are interested in a linear functional of \(g \) or \(\gamma \). It also includes the Gaussian white noise model, which can be obtained as a limiting model for nonparametric density estimation (see Nussbaum, 1996) as well as nonparametric regression (see Brown and Low, 1996). We refer the reader to Donoho (1994, Section 9) for details of these and other models that fit into the general setup (7).

3.2 Performance criteria and a class of estimators

Let us now define the performance criteria that we use to evaluate confidence sets for \(Lf \). Following the usual definition, a set \(C = C(Y) \) is a \(100 \cdot (1 - \alpha)\% \) confidence set for \(Lf \) if

\[
\inf_{f \in F} P_f (Lf \in C) \geq 1 - \alpha. \tag{10}
\]

We denote the collection of all confidence sets \(C \) that satisfy (10) by \(\mathcal{I}_\alpha \). Among confidence sets in this collection, we can compare their performance at a particular \(f \in F \) using expected length,

\[
\Lambda_f(C) = E_f \lambda(C(Y)),
\]

where \(\lambda \) is Lebesgue measure.

Allowing confidence sets to have arbitrary form can lead to sets \(C \) that are complicated and difficult to interpret or even compute. One way of avoiding this is to restrict attention to sets in \(\mathcal{I}_\alpha \) that take the form of a fixed-length confidence interval (CI). A fixed-length CI takes the form \([\hat{L} - \chi, \hat{L} + \chi]\) for some estimate \(\hat{L} \) and some nonrandom \(\chi \) (for instance, in the regression model (8), \(\chi \) may depend on the regressors \(x_i \) and \(\sigma^2(x_i) \), but not on \(y_i \)). For an estimator \(\hat{L} \), let

\[
\chi_\alpha(\hat{L}) = \min \left\{ \chi : \inf_{f \in F} P_f (|\hat{L} - Lf| \leq \chi) \geq 1 - \alpha \right\}
\]

denote the half-length of the shortest fixed-length \(100 \cdot (1 - \alpha)\% \) CI centered at \(\hat{L} \).

The restriction to fixed-length CIs simplifies their comparison: for any \(f \in F \), the expected length equals \(2\chi_\alpha(\hat{L}) \), so among fixed-length CIs, one simply prefers those with smaller half-length. On the other hand, one may worry that fixed-length CIs may be costly since the length cannot “adapt” to reflect greater precision for different functions \(f \in F \). To address this concern, in Section 3.4, we compare the length of fixed-length CIs to sharp bounds on the optimal expected length \(\inf_{C \in \mathcal{I}_\alpha} \Lambda_f(C) \).

If \(C \) is restricted to take the form of a one-sided confidence interval (CI) \([\hat{c}, \infty)\), we cannot
use expected length as a criterion. We can, however, compare performance at a particular parameter f using the βth quantile of excess length,

$$q_{f,\beta}(Lf - \hat{c}),$$

where $q_{f,\beta}(Lf - \hat{c})$ denotes the βth quantile of $Lf - \hat{c}$, the excess length, under f. To measure performance globally over some set G, we use the maximum βth quantile of the excess length,

$$q_{\beta}(\hat{c}, G) = \sup_{g \in G} q_{g,\beta}(Lg - \hat{c}). \quad (11)$$

If $G = F$, minimizing $q_{\beta}(\hat{c}, F)$ over one-sided CIs that satisfy (10) gives minimax excess length. If $G \subset F$ is a class of smoother functions, minimizing $q_{\beta}(\hat{c}, G)$ yields CIs that direct power: they achieve good performance when f is smooth, while maintaining coverage over all of F. A CI that achieves good performance over multiple classes G is said to be “adaptive” over these classes. In Section 3.3, we give sharp bounds on (11) for a single class G, which gives a benchmark for adapting over multiple classes (cf. Cai and Low, 2004a).

We will also relate the optimal decision rules for constructing CIs to the rules for constructing estimators that minimize the maximum mean squared error (MSE) over F. For an estimator \hat{L}, the maximum mean squared error over F is defined as

$$R(\hat{L}) = \sup_{f \in F} E_f (\hat{L} - Lf)^2.$$

The main tool in deriving decision rules that are optimal or close to optimal for these performance criteria will be the ordered modulus of continuity between F and G, defined by Cai and Low (2004a)

$$\omega(\delta; F, G) = \sup \left\{ Lg - Lf : \|K(g - f)\| \leq \delta, f \in F, g \in G \right\}$$

for any sets F and G with a non-empty intersection (so that the set over which the supremum is taken is non-empty). When $G = F$, $\omega(\delta; F, F)$ is the (single-class) modulus of continuity over F (Donoho and Liu, 1991), and we will denote it by $\omega(\delta; F)$. The ordered modulus $\omega(\cdot; F, G)$ is concave, which implies that the superdifferential at δ (the set of slopes of tangent lines at $(\delta, \omega(\delta; F, G))$) is nonempty for any $\delta > 0$. Throughout the paper, we let $\omega'(\delta; F, G)$ denote an (arbitrary unless otherwise stated) element in this set. Typically, $\omega(\cdot; F, G)$ is differentiable, in which case $\omega'(\delta; F, G)$ is defined uniquely as the derivative at δ. We use
Let \(g_{\delta,G}^* \) and \(f_{M,\delta,F,G}^* \) denote a solution to the ordered modulus problem (assuming it exists), and \(f_{M,\delta,F,G}^* = (f_{\delta,F,G}^* + g_{\delta,F,G}^*)/2 \) to denote the midpoint.

We will show that optimal decision rules will in general depend on the data \(Y \) through an estimator of the form

\[
\hat{L}_{\delta,F,G} = Lf_{M,\delta,F,G}^* + \frac{\omega'(\delta;F,G)}{\delta} \langle K(g_{\delta,F,G}^* - f_{\delta,F,G}^*), Y - Kf_{M,\delta,F,G}^* \rangle,
\]

with \(\delta \) and \(G \) depending on the optimality criterion. When \(F = G \), we denote the estimator \(\hat{L}_{\delta,F} \) by \(\hat{L}_{\delta,F} \). When the sets \(F \) and \(G \) are clear from the context, we use \(\omega(\delta), \hat{L}_\delta, f_\delta^*, g_\delta^* \) and \(f_{M,\delta}^* \) in place of \(\omega(\delta;F,G), \hat{L}_{\delta,F,G}, f_{\delta,F,G}^*, g_{\delta,F,G}^* \) and \(f_{M,\delta,F,G}^* \) to avoid notational clutter.

Let \(\text{bias}_G(L) = \sup_{f \in G} E_f(\hat{L} - Lf) \) and \(\text{bias}_G(L) = \inf_{f \in G} E_f(\hat{L} - Lf) \) denote the maximum and minimum bias of an estimator \(\hat{L} \) over the set \(G \). As we show in Lemma A.1 in the Appendix, a useful property of \(\hat{L}_{\delta,F,G} \) is that its maximum bias over \(F \) and minimum bias over \(G \) are attained at \(f_\delta^* \) and \(g_\delta^* \), respectively, and are given by

\[
\text{bias}_F(\hat{L}_{\delta,F,G}) = -\text{bias}_G(\hat{L}_{\delta,F,G}) = \frac{1}{2} (\omega(\delta;F,G) - \delta \omega'(\delta;F,G)).
\]

As remarked by Cai and Low (2004b), no estimator can simultaneously achieve lower maximum bias over \(F \), higher minimum bias over \(G \), and lower variance (which for \(\hat{L}_{\delta,F,G} \) doesn’t depend on \(f \)) than the estimators in the class \(\{\hat{L}_{\delta,F,G} \}_{\delta > 0} \). Estimators (12) can thus be used to optimally trade off various levels of bias and variance.

Let us briefly discuss two symmetry properties that lead to simplifications when satisfied by \(F \). The first we call translation invariance.

Definition 1 (Translation Invariance). The function class \(F \) is translation invariant if there exists a function \(\iota \in F \) such that \(L\iota = 1 \) and \(c\iota \in F \) for all \(c \in \mathbb{R} \).

Translation invariance will hold in most cases where the parameter of interest \(Lf \) is unrestricted. For example, if \(Lf = f(0) \), it will hold with \(\iota(x) = 1 \) if \(F \) places monotonicity restrictions and/or restrictions on the derivatives of \(f \), but not if \(F \) places a bound on the function itself. Under translation invariance, by Lemma A.3 in the Appendix, the modulus is differentiable and \(\omega'(\delta;F,G) = \delta/\langle K\iota, K(g_\delta^* - f_\delta^*) \rangle \), which gives

\[
\hat{L}_{\delta,F,G} = Lf_{M,\delta}^* + \frac{\langle K(g_\delta^* - f_\delta^*), Y - Kf_{M,\delta}^* \rangle}{\langle K(g_\delta^* - f_\delta^*), K\iota \rangle}.
\]

The second property we consider is centrosymmetry.
Definition 2 (Centrosymmetry). The function class F is centrosymmetric if $f \in F \implies -f \in F$.

Under centrosymmetry, the functions that solve the single-class modulus problem can be seen to satisfy $g_\delta^* = -f_\delta^*$, and the modulus is given by

$$\omega(\delta; F) = \sup \{2L_f : \|Kf\| \leq \delta/2, f \in F\}. \quad (14)$$

Since $f_\delta^* = -g_\delta^*$, $f_{M,\delta}$ is the zero function and $\hat{L}_{\delta,F}$ is linear:

$$\hat{L}_{\delta,F} = \frac{2\omega'(\delta; F)}{\delta} \langle K g_\delta^*, Y \rangle = \frac{\langle K g_\delta^*, Y \rangle}{\langle K g_\delta^*, K \iota \rangle}, \quad (15)$$

where the last equality holds when F is translation invariant as well as centrosymmetric.

Centrosymmetry and translation invariance are not needed for most of the results in this paper. However, centrosymmetry will play central role in bounding the gains from directing power at smooth functions, as we show in Section 3.3 for one-sided CIs and in Section 3.4 for two-sided CIs.

3.3 Optimal one-sided CIs

Given β, a one-sided CI that minimizes (11) among all one-sided CIs with level $1 - \alpha$ is based on $\hat{L}_{\delta, F, G}$ where $\delta_\beta = \sigma(z_\beta + z_{1-\alpha})$ and z_q denotes the qth quantile of a standard normal distribution. The CI takes a simple form, which is given in the following theorem. Proofs of the results in this section are given in Appendix A.

Theorem 3.1. Let F and G be convex with $G \subseteq F$, and suppose that f_δ^* and g_δ^* achieve the ordered modulus at δ with $\|K(f_\delta^* - g_\delta^*)\| = \delta$. Let

$$\hat{c}_{\alpha, \delta, F, G} = \hat{L}_{\delta, F, G} - \text{bias}_F(\hat{L}_{\delta, F, G}) - z_{1-\alpha} \sigma \omega'(\delta; F, G).$$

Then, for $\beta = \Phi(\delta/\sigma - z_{1-\alpha})$, $\hat{c}_{\alpha, \delta, F, G}$ minimizes $q_\beta(\cdot, G)$ among all one-sided $1 - \alpha$ CIs, where Φ denotes the standard normal cdf. The minimum coverage is taken at f_δ^* and equals $1 - \alpha$. All quantiles of excess length are maximized at g_δ^*. The worst case βth quantile of excess length is $q_\beta(\hat{c}_{\alpha, \delta, F, G}, G) = \omega(\delta; F, G)$.

The assumption that the modulus is achieved with $\|K(f_\delta^* - g_\delta^*)\| = \delta$ rules out degenerate cases: if $\|K(f_\delta^* - g_\delta^*)\| < \delta$, then relaxing this constraint does not increase the modulus, which means that $\omega'(\delta; F, G) = 0$ and the optimal CI does not depend on the data.
The estimator $\hat{L}_{\delta,F,G}$ is normally distributed with bias that depends on f, and variance $\sigma^2 \omega' (\delta; F, G)^2$, which is independent of f. The CI in Theorem 3.1 uses the fact that the maximum bias over F and minimum bias over G are taken at f^*_δ and g^*_δ. Since the coverage of a one-sided CI decreases with the bias of the estimator that it is based on, to ensure proper coverage, we need to subtract $\text{bias}_F (\hat{L}_{\delta,F,G})$, the maximum bias under F, from $\hat{L}_{\delta,F,G}$, and then subtract the $1 - \alpha$ quantile of the of a standard normal variable with the same variance as $\hat{L}_{\delta,F,G}$. On the other hand, all quantiles of excess length decrease with the bias: they are greatest when the bias is minimal, which gives the second part of the theorem.

One can’t do better than using $\hat{c}_{\alpha,\delta,F,G}$ because the test that rejects L_0 when $L_0 \notin [\hat{c}_{\alpha,\delta,F,G}, \infty)$ is minimax for $H_0 : Lf \leq L_0$ and $f \in F$ against $H_1 : Lf \geq L_0 + \omega(\delta; F, G)$ and $f \in G$, where $L_0 = Lf^*_\delta$. If both F and G are translation invariant, $f^*_\delta + c\ell$ and $g^*_\delta + c\ell$ achieve the ordered modulus for any $c \in \mathbb{R}$, so that, varying c, this test can be seen to be minimax for any L_0. Thus, under translation invariance, the CI in Theorem 3.1 inverts minimax one sided tests with distance to the null given by $\omega(\delta)$. These results for minimax tests can be derived from an application of a result characterizing minimax tests as Neyman-Pearson tests for mixtures over least favorable distributions over the null and alternative (Theorem 8.1.1 in Lehmann and Romano, 2005), where the least favorable null and alternative are given by point masses at f^*_δ and g^*_δ (see Lemma A.2 in the Appendix and Section 2.4.3 in Ingster and Suslina, 2003).

Given the model (7), implementing the CI from Theorem 3.1 requires the researcher to choose a quantile β to optimize, and to choose the set G. There are two natural choices for β. If the objective is to optimize the performance of the CI “on average,” then optimizing the median excess length ($\beta = 0.5$) is a natural choice. Since for any CI $[\hat{c}, \infty)$ that is an affine function of the data Y, the median and expected excess lengths coincide, and since $\hat{c}_{\alpha,\delta,F,G}$ is affine in the data, setting $\beta = 0$ also has the advantage that it minimizes the expected excess length among CIs that are affine. Alternatively, if the CI is being computed as part of a power analysis, then setting $\beta = 0.8$ is natural, as under translation invariance, it translates directly to statements about 80% power, a standard benchmark in such analyses (Cohen, 1988).

For the set G, there are two leading choices. First, setting $G = F$ yields minimax CIs:

Corollary 3.1 (One-sided minimax CIs). Let F be convex, and suppose that f^*_δ and g^*_δ achieve the single-class modulus at δ with $\|K(f^*_\delta - g^*_\delta)\| = \delta$. Let

$$
\hat{c}_{\alpha,\delta,F} = \hat{L}_{\delta,F} - \frac{1}{2} (\omega(\delta; F) - \delta \omega'(\delta; F)) - z_{1-\alpha} \sigma \omega'(\delta; F).
$$

16
Then, for $\beta = \Phi(\frac{\delta}{\sigma} - z_{1-\alpha})$, $\hat{c}_{\alpha, \delta, \mathcal{F}}$ minimizes the maximum βth quantile of excess length among all $1 - \alpha$ CIs for Lf. The minimax excess length is given by $\omega(\delta; \mathcal{F})$.

The minimax criterion may be considered overly pessimistic: it focuses on controlling the excess length under the least favorable function. This leads to the second possible choice for \mathcal{G}: set it to a smaller convex class of smoother functions $\mathcal{G} \subset \mathcal{F}$. The resulting CIs will then achieve the best possible performance when f is smooth, while maintaining coverage over all of \mathcal{F}.

It is instructive to consider the case in which \mathcal{F} is centrosymmetric, and the solution to the ordered modulus problem satisfies

$$ f - g^*_{\delta, \mathcal{F}, \mathcal{G}} \in \mathcal{F} \quad \text{for all } f \in \mathcal{F}. \quad \text{(16)} $$

This will be satisfied if $g^*_{\delta, \mathcal{F}, \mathcal{G}}$ is “smooth” enough. If \mathcal{F} is translation invariant, then (16) holds for $\mathcal{G} = \text{span}(\iota)$. If \mathcal{F} places a bound on the pth derivative of f (e.g. \mathcal{F} is a Hölder class) it holds if all $g \in \mathcal{G}$ are polynomials of order $p - 1$ or lower: the pth derivative of any $g \in \mathcal{G}$ is always zero, so that if f satisfies the particular bound, so does $f - g$.

Under condition (16), if $f^*_{\delta, \mathcal{F}}$ and $g^*_{\delta, \mathcal{F}, \mathcal{G}}$ solve the modulus problem $\omega(\delta; \mathcal{F}, \mathcal{G})$, then $f^*_{\delta, \mathcal{F}, \mathcal{G}} - g^*_{\delta, \mathcal{F}, \mathcal{G}}$ and 0 (the zero function) solve $\omega(\delta; \mathcal{F}, \{0\})$ and vice versa (note that, under centrosymmetry, (16) holds for $g^*_{\delta, \mathcal{F}, \mathcal{G}}$ iff. it holds for $-g^*_{\delta, \mathcal{F}, \mathcal{G}}$), so that

$$ \omega(\delta; \mathcal{F}, \mathcal{G}) = \omega(\delta; \mathcal{F}, \{0\}) = \sup \{-Lf : \|Kf\| \leq \delta, f \in \mathcal{F}\} = \frac{1}{2} \omega(2\delta; \mathcal{F}), \quad \text{(17)} $$

where the last equality obtains because under centrosymmetry, maximizing $-Lf = L(-f)$ and maximizing Lf are equivalent, so that the maximization problem is equivalent to (14). Furthermore, $g^*_{\delta, \mathcal{F}, \mathcal{G}} - f^*_{\delta, \mathcal{F}, \mathcal{G}} = \frac{1}{2}(g^*_{2\delta, \mathcal{F}} - f^*_{2\delta, \mathcal{F}})$, so that

$$ \hat{L}_{\delta, \mathcal{F}, \mathcal{G}} = \hat{L}_{2\delta, \mathcal{F}} + Lf^*_{M, \delta, \mathcal{F}, \mathcal{G}} - \frac{\omega(2\delta; \mathcal{F})}{2\delta} \langle K(g^*_{2\delta, \mathcal{F}} - f^*_{2\delta, \mathcal{F}}), Kf^*_{M, \delta, \mathcal{F}, \mathcal{G}} \rangle $$

$$ = \hat{L}_{2\delta, \mathcal{F}} - \text{bias}_{\mathcal{F}}(\hat{L}_{2\delta, \mathcal{F}})/2, \quad \text{(18)} $$

where the second line follows since $\text{bias}_{\mathcal{F}}(\hat{L}_{\delta, \mathcal{F}, \mathcal{G}}) = \text{bias}_{\mathcal{F}}(\hat{L}_{2\delta, \mathcal{F}})/2$ by (17). Since $\hat{L}_{\delta, \mathcal{F}, \mathcal{G}}$ and $\hat{L}_{2\delta, \mathcal{F}}$ are equal up to a constant, $\hat{c}_{\alpha, \delta, \mathcal{F}, \mathcal{G}} = \hat{c}_{\alpha, \delta, \mathcal{F}, \{0\}} = \hat{c}_{\alpha, 2\delta, \mathcal{F}}$. Thus, when (16) holds, optimizing excess length over \mathcal{G} is equivalent to optimizing excess length at $\{0\}$, and it leads to the same class of CIs as the minimax criterion—the only difference is that the excess length is calibrated differently:
Corollary 3.2. Let \(\delta = \sigma(z_\beta + z_{1-\alpha}) \). Let \(\mathcal{F} \) be centrosymmetric, and let \(\mathcal{G} \subseteq \mathcal{F} \) be any convex set such that the solution to the ordered modulus problem exists and satisfies (16) with \(\|K(f^*_\beta - g^*_\beta)\| = \delta_\beta \). Then the one-sided CI \(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}} \) that is minimax for the \(\beta \)th quantile also optimizes \(q_\beta(\hat{c}; \mathcal{G}) \), where \(\tilde{\beta} = \Phi((z_\beta - z_{1-\alpha})/2) \). In particular, \(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}} \) optimizes \(q_\tilde{\beta}(\hat{c}; \{0\}) \).

Moreover, the efficiency of \(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}} \) for the \(\beta \)th quantile of maximum excess length over \(\mathcal{G} \) is given by

\[
\inf_{\hat{c}: [\hat{c}, \infty) \in \mathcal{I}_{\alpha}} q_\beta(\hat{c}, \mathcal{G}) = \frac{\omega(\delta_\beta; \mathcal{F}, \mathcal{G})}{q_\beta(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}}, \mathcal{G})} = \frac{\omega(2\delta_\beta; \mathcal{F})}{\omega(\delta_\beta; \mathcal{F}) + \delta_\beta \omega'(\delta_\beta; \mathcal{F})}.
\] (19)

The second part of the Corollary follows since by (18), \(\text{bias}_G(\hat{L}_\delta; \mathcal{F}) = 0 \), which implies \(q_\beta(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}}, \mathcal{G}) = (\omega(\delta_\beta; \mathcal{F}) + \delta_\beta \omega'(\delta_\beta; \mathcal{F}))/2 \).

The first part of Corollary 3.2 states that minimax CIs that optimize a particular quantile \(\beta \) will also minimize the maximum excess length over \(\mathcal{G} \) at a different quantile \(\tilde{\beta} \). For instance, a CI that is minimax for median excess length among 95\% CIs also optimizes \(\Phi(-z_{0.95}/2) \approx 0.205 \) quantile under the zero function. Vice versa, the CI that optimizes median excess length under the zero function is minimax for the \(\Phi(2z_{0.5} + z_{0.95}) = 0.95 \) quantile.

The second part of Corollary 3.2 gives the exact cost of optimizing the “wrong” quantile \(\tilde{\beta} \). Since the one-class modulus is concave, \(\delta \omega'(\delta) \leq \omega(\delta) \), and we can lower bound the efficiency of \(\hat{c}_{\alpha,\delta_\beta,\mathcal{F}} \) given in (19) by \(\omega(2\delta_\beta)/(2\omega(\delta_\beta)) \geq 1/2 \). Typically, however, the efficiency is much higher. In particular, in the regression model (8), the one-class modulus often satisfies

\[
\omega(\delta; \mathcal{F}) = n^{-r/2} A \delta^r (1 + o(1))
\] (20)
as \(n \to \infty \) for some constant \(A \), where \(r/2 \) is the rate of convergence of the minimax root MSE. We show that this is the case under regularity conditions in the regression discontinuity application in Lemma F.6 (see Donoho and Low, 1992, for other cases where (20) holds). In this case, (19) evaluates to \(\frac{2r}{1+r}(1 + o(1)) \), so that the asymptotic efficiency depends only on \(r \). Figure 2 plots the asymptotic efficiency as a function of \(r \).

Suppose \(\mathcal{F} \) is smooth enough so that the rate of convergence satisfies \(r \geq 1/2 \) (as is the case for inference at a point when functions in \(\mathcal{F} \) have at least one directional derivative). Then the asymptotic efficiency of minimax CIs relative to CIs that optimize their excess length for the zero function is at least \(2^{1/2}/(1 + 1/2) = 94.3\% \) when indeed \(f = 0 \). Since adapting to the zero function is at least as hard as adapting to any set \(\mathcal{G} \) that includes it,
this implies that if \mathcal{F} is convex and centrosymmetric, “directing power” yields very little gain in excess length no matter how optimistic one is about where to direct it.

This result places a severe bound on the scope for adaptivity in settings in which \mathcal{F} convex and centrosymmetric: any CI that performs better than the minimax CI by more than the ratio in (19) must fail to control coverage at some $f \in \mathcal{F}$. Adaptation is only possible when centrosymmetry fails (typically by placing shape restrictions on f, such as monotonicity), or convexity fails (by say placing sparsity assumptions on the coefficients in a series expansion of f).

3.4 Two-sided CIs and minimax MSE estimators

Finding optimal rules for two-sided confidence intervals, or for estimation criteria such as mean squared error, is more complicated. However, it is known that estimators in the class $\hat{L}_{\delta,\mathcal{F}}$ and the associated fixed-length CIs are minimax optimal when one restricts attention to affine estimators (i.e. estimators of the form $\hat{L} = a + \langle b, Y \rangle$ for constants $a \in \mathbb{R}$ and $b \in \mathcal{Y}$) if δ is chosen optimally. These results are due to Donoho (1994), and we state them below for convenience. We then give a solution to the problem of constructing confidence sets that optimize expected length $\Lambda_f(\mathcal{C})$ at a single function f, and use this result to bound the efficiency of fixed-length affine CIs among all confidence sets.

To describe the Donoho (1994) results, first consider the normal model $Z \sim N(\mu, 1)$ where $\mu \in [-\tau, \tau]$. The minimax affine mean squared error for this problem is

$$\rho_A(\tau) = \min_{\delta(Y) \text{ affine}} \max_{\mu \in [-\tau, \tau]} E_\mu(\delta(Y) - \mu)^2.$$

The solution is achieved by shrinking Y toward 0, namely $\delta(Y) = c_\rho(\tau)Y$, with $c_\rho(\tau) = \tau^2/(1 + \tau^2)$, which gives $\rho_A(\tau) = \tau^2/(1 + \tau^2)$. The length of the smallest fixed-length affine 100 · (1 − α)% confidence interval is

$$\chi_{A,\alpha}(\tau) = \min \left\{ \chi : \text{there exists } \delta(Y) \text{ affine s.t. } \inf_{\mu \in [-\tau, \tau]} P_\mu(|\delta(Y) - \mu| \leq \chi) \geq 1 - \alpha \right\}.$$

The solution is achieved at some $\delta(Y) = c_\chi(\tau)Y$, and it is characterized in Drees (1999). We give the details in Appendix B for convenience.

By a sufficiency argument, the minimax MSE affine estimator in the one-dimensional submodel $\{g\lambda + f(1 - \lambda) : \lambda \in [0, 1]\}$ is characterized by a scaling of $\rho_A(\tau)$ for an appropriate choice of τ, and similarly for $\chi_{A,\alpha}$. Donoho (1994) then uses the modulus of continuity to
find the least favorable submodel such that minimax affine estimators and fixed-length CIs in the submodel are also minimax in the full model. This leads to the following result:

Theorem 3.2 (Donoho 1994). Suppose that δ_ρ is a solution to

$$c_\rho(\delta/(2\sigma)) = \delta \omega'(\delta)/\omega(\delta),$$

and that $f^*_{\delta_\rho}, g^*_{\delta_\rho}$ achieve the one-class modulus $\omega(\cdot; \mathcal{F})$ at δ_ρ. Then the MSE minimax affine estimator is of $L f$ is $\hat{L}_{\delta_\rho, \mathcal{F}}$, and its maximum root MSE is given by

$$R(\hat{L}_{\delta_\rho, \mathcal{F}})^{1/2} = \frac{\omega(\delta_\rho)}{\delta_\rho} \sqrt{\rho_A \left(\frac{\delta_\rho}{2\sigma} \right) \sigma}.$$

Similarly, suppose that δ_χ is a solution to

$$c_\chi(\delta/(2\sigma)) = \delta \omega'(\delta)/\omega(\delta),$$

and that $f^*_{\delta_\chi}, g^*_{\delta_\chi}$ achieve the one-class modulus $\omega(\cdot; \mathcal{F})$ at δ_χ. Then the shortest fixed-length affine CI is given by

$$\hat{L}_{\delta_\chi, \mathcal{F}} \pm \frac{\omega(\delta_\chi)}{\delta_\chi} \chi_{A, \alpha} \left(\frac{\delta_\chi}{2\sigma} \right) \sigma.$$

Theorem 3.2 gives the optimal δ for a particular performance criterion in terms of the shrinkage coefficient in the one dimensional bounded normal means problem ($c_\rho(\cdot)$ or $c_\chi(\cdot)$). Often (at least asymptotically), $\hat{L}_{\delta, \mathcal{F}}$ takes the form of a kernel estimator with bandwidth determined by δ; this allows for comparisons of optimal bandwidths for different performance criteria. We perform such comparisons in a companion paper (Armstrong and Kolesár, 2015).

Donoho (1994) also bounds the penalty for restricting attention to affine procedures, using a formula based on the modulus of continuity. Since the bounds turn out to be very tight in many situations, the cost of restricting attention to affine procedures is typically not too large. We refer the reader to Donoho (1994), Drees (1999) and references therein for details.

On the other hand, just as with minimax one-sided CIs, one may worry that since the length of fixed-length CIs is driven by the least favorable functions, restricting attention to fixed-length CIs may be very costly when the true f is smoother. The next result characterizes the confidence sets that optimizes expected length at a single function g, and thus gives bounds for the possible performance gains.
Theorem 3.3. Let $g \in \mathcal{F}$, and assume that a minimizer f_{L_0} of $\|K(g - f)\|$ subject to $Lf = L_0$ and $f \in \mathcal{F}$ exists for all $L_0 \in \mathbb{R}$, and let $\delta_{L_0} = \|K(g - f_{L_0})\|$. Then the confidence set $\mathcal{C}_g(Y)$ that minimizes $E_{g^A}(C)$ subject to $1 - \alpha$ coverage on \mathcal{F} inverts the family of tests ϕ_{L_0} that reject for large values of $\langle K(g - f_{L_0}), Y \rangle$ with critical value given by the $1 - \alpha$ quantile under f_{L_0}. The expected length of this confidence set is given by

$$E_g[\Lambda(\mathcal{C}_g(Y))] = (1 - \alpha)E [(\omega(\sigma(z_{1-\alpha} - Z); \mathcal{F}, \{g\}) + \omega(\sigma(z_{1-\alpha} - Z); \{g\}, \mathcal{F})) | Z \leq z_{1-\alpha}],$$

where Z is a standard normal random variable.

This result gives the exact solution to the problem of “adaptation to a function” posed by Cai, Low, and Xia (2013), who obtain bounds for this problem in the case where \mathcal{C} is required to be an interval. It follows from the observation in Pratt (1961) that minimum expected length CIs are obtained by inverting a family of uniformly most powerful tests of $H_0 : f = L_0$ against $H_1 : f = g$. The least favorable null f_{L_0} for such a test is given by a minimizing $\|K(g - f)\|$ subject to $Lf = L_0$. Equivalently, we can obtain it as a solution to the ordered modulus problem $\omega(\delta_{L_0}; \mathcal{F}, \{g\})$ (if $L_0 \leq Lg$), or $\omega(\delta_{L_0}; \{g\}, \mathcal{F})$ (if $L_0 \geq Lg$). The expression for the expected length of $\mathcal{C}_g(Y)$ follows by computing the power of these tests. The assumption that a minimizer of $\|K(g - f)\|$ subject to $Lf = L_0$ and $f \in \mathcal{F}$ exists for all $L_0 \in \mathbb{R}$ means that Lf is unbounded over \mathcal{F}. This assumption is made to simplify the statement; a truncated version of the same formula holds when \mathcal{F} places a bound on Lf.

Directing power at a single function is seldom desirable in practice. Theorem 3.3 is very useful, however, in bounding the efficiency of other procedures, such as fixed-length CIs from Theorem 3.2. In particular, suppose $f - g \in \mathcal{F}$ for all f (so that (16) holds with $\mathcal{G} = \{g\}$) and that \mathcal{F} is centrosymmetric. Then, by arguments in Section 3.3, $\omega(\delta; \mathcal{F}, \{g\}) = \omega(\delta; \{g\}, \mathcal{F}) = \frac{1}{2} \omega(2\delta; \mathcal{F})$, which yields:

Corollary 3.3. Consider the setup in Theorem 3.3 with the additional assumption that \mathcal{F} is centrosymmetric and g satisfies $f - g \in \mathcal{F}$ for all f. Then the efficiency of the fixed-length CI around $\hat{L}_{\delta, \mathcal{F}}$ at g relative to all confidence sets is

$$\inf_{\mathcal{C} \in \mathcal{L}_0} \Lambda(\mathcal{C}(Y), \{g\}) = \frac{(1 - \alpha)E [\omega(2\sigma(z_{1-\alpha} - Z); \mathcal{F}) | Z \leq z_{1-\alpha}]}{\omega(\delta, \mathcal{F}) \chi_{A, \alpha} \left(\frac{\delta}{2\sigma}\right)}.$$

The assumption of Corollary 3.3 will be satisfied for smooth functions g, including the zero function. This efficiency ratio can easily be computed in particular applications, and
we do in Section 5.2 in an application to regression discontinuity. However, it is insightful to consider the asymptotic efficiency implied by (21) when the one-class modulus satisfies (20). In this case Theorem 3.2 implies that
\[\delta = 2\sigma \chi^{-1}(r) + o(1), \]
so that the length of the fixed-length CI around \(\hat{L}_{\delta} \) is given by
\[n^{-r/2} A^2 \sigma^r \chi_{A,\alpha} \left(\frac{c^{-1}(r)}{(c^{-1}(r))^{1-r}} \right) (1 + o(1)), \]
and we get
\[\inf_{C \in I} \Lambda(C(Y), \{g\}) = \frac{(1 - \alpha) E[(z_{1-\alpha} - Z)^r \mid Z \leq z_{1-\alpha}]}{\chi_{A,\alpha} \left(\frac{c^{-1}(r)}{(c^{-1}(r))^{1-r}} \right)} (1 + o(1)) \tag{22} \]
(here, we use properties of the modulus and \(\chi_{A,\alpha} \) to obtain the above display from the pointwise-in-\(\delta \) convergence in (20); see Lemma E.2 in the Supplemental Materials). This asymptotic efficiency is plotted in Figure 2 as a function of \(r \) for \(\alpha = 0.05 \). When \(r = 4/5 \) (as in the regression discontinuity application in Section 5), for instance, the asymptotic efficiency is 95.7%. When \(r = 1 \) (parametric rate of convergence), the asymptotic efficiency equals \((1 - \alpha)z_{1-\alpha} + \phi(z_{1-\alpha})/z_{1-\alpha}/2, \) as in the normal mean example in Pratt (1961, Section 5), where \(\phi \) is standard normal density. For \(\alpha = 0.05, \) this yields 84.99%.

Just like with minimax one-sided CIs, this result places a severe bound on the scope for improvement over fixed-length CIs when \(F \) is centrosymmetric. It strengthens the finding in Low (1997) and Cai and Low (2004a), who derive bounds on the expected length of random length \(1 - \alpha \) CIs (i.e. CIs in the set \(I_\alpha \)). Their bounds imply that when \(F \) is constrained only by bounds on a derivative, the expected length of any CI in \(I_\alpha \) must shrink at the minimax rate \(n^{-r/2} \) for any \(f \) in the interior of \(F \). Equation (22) shows that for smooth functions \(f \), this remains true whenever \(F \) is centrosymmetric, even if we don’t require \(C \) to take the form of an interval, and, moreover, not only is the rate the same as the minimax rate, the constant must be close to that for fixed-length CIs.

On the other hand, when \(F \) is not centrosymmetric, it is possible to improve upon the fixed-length CIs, and Cai and Low (2004a) give a general procedure that is rate-adaptive.

3.5 Confidence Intervals Based on Suboptimal Estimators

The confidence intervals discussed in Sections 3.3 and 3.4 are based on the worst case bias of \(\hat{L}_{\delta, F} \) for \(\delta \) chosen optimally. More generally, for any affine estimator \(\hat{L} \), the set of possible
distributions of $\hat{L} - Lf$ as f ranges over F is characterized by the set of possible biases of \hat{L}, and a CI can be constructed based on the maximum and minimum bias. For $\hat{L}_{δ,F}$, the maximum and minimum bias are attained $g_δ^*$ and $f_δ^*$ no matter how $δ$ is chosen (see Lemma 4 in Donoho, 1994, and Lemma A.1 in the Appendix); this allows a further simplification.

To describe the results, let $cv_α(b)$ be the shortest half-length of a $1 - α$ CI for some parameter that is centered around a normally distributed estimator with variance one and maximum absolute bias equal to b. In other words, $cv_α(b)$ solves $P(|Z+b| ≤ cv) = Φ(cv - b) - Φ(−cv - b) = 1 - α$, where $Z ∼ N(0, 1)$. We tabulate these critical values in Table 1.

Theorem 3.4. Let $\hat{L} = a + \langle w, Y \rangle$ be an affine estimator such that $\text{bias}_F(\hat{L})$ and $\overline{\text{bias}}_F(\hat{L})$ are finite. Let $b = \max\{|\text{bias}_F(\hat{L})|, |\overline{\text{bias}}_F(\hat{L})|\}$. Then: (i) $[\hat{L} - \text{bias}_F(\hat{L}) - \|w\|z_{1 - α}\sigma, \infty)$ is a valid CI, and it has maximum excess length

$$q_β(\hat{L}; F) = \sigma\|w\|(z_β + z_{1 - α}) + \overline{\text{bias}}_F(\hat{L}) - \text{bias}_F(\hat{L}).$$

(ii) $\hat{L} ± cv_α(b)\sigma\|w\|$ is the shortest fixed-length $1 - α$ CI centered at \hat{L}.

For $\hat{L}_{δ,F}$, this holds with

$$\overline{\text{bias}}_F(\hat{L}_{δ,F}) = -\text{bias}_F(\hat{L}_{δ,F}) = \frac{1}{2}(\omega(δ) - δ\omega'(δ)) \text{ and } \|w\| = ω'(δ). \quad (23)$$

Theorem 3.4 can be used along with Theorem 3.2 to bound the efficiency loss from basing a confidence interval on a suboptimal estimator, or from basing a confidence interval on an estimator that is optimal for mean squared error, rather than CI length. We do this in Section 5 for a regression discontinuity application. In Armstrong and Kolesár (2015), we consider asymptotic implications of this result.

3.6 Unknown Error Distribution

Throughout this section, we have assumed that the error term ε is normal with known variance. When the error distribution is unknown, one can form estimates and CIs based on an estimate or guess for the variance function. If the variance function used in forming the estimate is misspecified, one can use a robust estimate of the variance of the estimate along with the approach in Section 3.5 in forming the CI. In Supplemental Appendix D we consider a version of the nonparametric fixed-design regression model with nonnormal errors and show that, under regularity conditions, this leads to CIs that are valid in a uniform asymptotic sense, with the efficiency bounds carrying over to this setup in an asymptotic
sense as well. These results show that optimal CIs are based on asymptotically normal estimates in a broad class of settings with nonnormal errors.

4 Linear regression

This section considers the linear regression model (9). The results in Section 3 apply to the problem of optimizing performance over $\theta \in \mathcal{G}$ subject to a coverage requirement over $\theta \in \mathcal{F}$, where \mathcal{F} and \mathcal{G} are convex sets. Many constraints used in parametric models in econometrics lead to convex parameter sets, including restrictions on the sign and magnitude of particular coefficients (see Andrews, 2001, and references therein).

Consider a linear functional $L\beta = \ell^\prime \beta$, where ℓ is a $k \times 1$ column vector. The ordered modulus problem for $\omega(\delta; \mathcal{F}, \mathcal{G})$ is

$$\sup_{\beta} \ell^\prime (\gamma - \theta) \text{ s.t. } \|X(\gamma - \theta)\| \leq \delta, \gamma \in \mathcal{G}, \theta \in \mathcal{F},$$ \hspace{1cm} (24)

which is a finite dimensional convex optimization problem. For translation invariance, we can take $\iota = \iota_\ell = \ell / \|\ell\|^2$. In the remainder of this section, we discuss the form of optimal procedures in some special cases (in Section 4.1), as well as implications of the results in Section 3 for variable selection (in Section 4.2).

4.1 Examples

We solve (24) in some examples. First, we show that the problem reduces to inference based on the ordinary least squares (OLS) estimate when the parameter space is unconstrained. Next, we note that elliptical constraints lead to inference based on ridge regression estimates. Finally, we consider the bivariate case and analyze how restrictions on the coefficient of one variable affect inference on the other variable.

4.1.1 Unconstrained Parameter Space

In the unconstrained case $\mathcal{F} = \mathcal{G} = \mathbb{R}^k$ the modulus problem (24) reduces to $2 \max_\theta \ell^\prime \theta$ s.t. $\|X\theta\| \leq \delta/2$. Simple calculations involving the Lagrangian leads to the solution $\hat{L}_\delta = \ell'(X'X)^{-1}X'Y$, (see Supplemental Appendix C.1 for details). Thus, \hat{L}_δ is given by applying the linear transformation L to the OLS estimator $(X'X)^{-1}X'Y$, regardless of δ. The worst-case bias is zero, and the fact that the estimator minimizes variance subject to this bound on
the bias reduces to the Gauss-Markov theorem. Since the parameter space is unconstrained, we can take ι to be any element with $\ell'\iota = 1$. By centrosymmetry, the one-sided confidence set that minimizes any quantile of excess length uniformly over the span of ι is based on \hat{L}_δ for δ chosen appropriately. Since \hat{L}_δ does not depend on δ and the span of ι gives the entire parameter space by varying the definition of ι, we obtain the classic result that the uniformly most powerful test of $H_0 : \ell'\theta \leq L_0$ is the one-sided z-test based on the OLS estimate.

4.1.2 Elliptical Constraints

Suppose that $\mathcal{F} = \mathcal{G} = \{\theta : \|M\theta\| \leq C\}$ for some $k \times k$ matrix M. The form of the class of optimal estimators can again be derived by solving the Lagrangian; it is given by

$$\hat{L}_\delta = \ell' (X'X + \tilde{\lambda}_\delta M'M)^{-1} X'Y$$

where $\tilde{\lambda}_\delta$ is given by the ratio of Lagrange multipliers (see Supplemental Appendix C.2 for details). Note that \hat{L}_δ is obtained by applying the transformation L to the ridge regression estimator $(X'X + \tilde{\lambda}_\delta M'M)^{-1} X'Y$, with the regularization parameter $\tilde{\lambda}_\delta$ depending on δ. The minimaxity of this class of estimators for mean squared error has been noted by Li (1982). The results in Section 3 show that minimax one-sided CIs take this form as well. In addition, since the class \mathcal{F} is centrosymmetric, one-sided CIs that optimize performance at $\theta = 0$ also take this form, and Corollaries 3.2 and 3.3 give bounds on the scope for “adapting” to $\theta = 0$ while maintaining correct coverage over the elliptical class.

4.1.3 Sign Restrictions in the Two Parameter Case

Consider the case where $k = 2$, and we are interested in inference on $L\theta = \theta_1$ with θ_1 unconstrained and θ_2 restricted to be positive: $\mathcal{F} = \mathbb{R} \times [0, \infty)$. For the minimax criterion ($\mathcal{G} = \mathcal{F}$), the modulus problem is

$$\sup_{\theta, \gamma} \gamma_1 - \theta_1 \text{ s.t. } (\gamma - \theta)'X'X(\gamma - \theta) \leq \delta^2, \gamma_2 \geq 0, \theta_2 \geq 0.$$

For any θ and γ that solve this problem without the second constraint, we can add $(c, c)'$ to both θ and γ for a large constant c and obtain the same value without the second constraint binding. Thus, for $\mathcal{G} = \mathcal{F}$, the constraint on θ_2 does not affect the optimal procedure.

Suppose that we wish to optimize performance over the set $\mathbb{R} \times \{\tilde{\gamma}_2\}$ for some fixed $\tilde{\gamma}_2 > 0$. Let us normalize the parameter θ so that the diagonal elements of $X'X$ are 1,
and let \(\rho \) be the off-diagonal element of \(X'X \) (this reparameterizes \(\theta \) as \(\text{diag}(X'X)\theta \)). The modulus problem is
\[
\sup_{\theta, \gamma_1} \gamma_1 - \theta_1 \text{ s.t. } (\gamma_1 - \theta_1)^2 + 2\rho(\gamma_1 - \theta_1)(\gamma_2 - \theta_2) + (\gamma_2 - \theta_2)^2 \leq \delta^2, \theta_2 \geq 0.
\]
The constraint \(\theta_2 \geq 0 \) will bind iff. dropping the constraint leads to a negative value of \(\theta \). Dropping this constraint, the first order conditions for \(\theta_2 \) give
\[
-2\lambda(\rho(\gamma_1 - \theta_1) + (\gamma_2 - \theta_2)) = 0
\]
so that \(\tilde{\gamma}_2 - \theta_2 = -\rho(\gamma_1 - \theta_1) \). Thus, the unconstrained \(\theta_2 \) is given by \(\theta_2 = \tilde{\gamma}_2 + \rho\omega(\delta) \). If \(\rho > 0 \), the constraint will never bind, and the test will be the same as in the unconstrained problem. If \(\rho < 0 \), the constraint will always bind when \(\tilde{\gamma}_2 = 0 \), and the range of \(\tilde{\gamma}_2 \) on which the constraint binds is given by \([0, |\rho|\omega(\delta)] \).

To get some intuition for this, note that, for \(\hat{\theta}_{OLS} \), the covariance between the estimates of the two parameters is positive iff. \(\rho \) is negative. Thus, if \(\rho < 0 \), one can decrease the variance of the OLS estimate \(\hat{\theta}_{OLS,1} \) by subtracting some fraction of \(\hat{\theta}_{OLS,2} \). If we maintain the restriction \(\theta_2 \geq 0 \) under the null, then this can only introduce downward bias, so we do not need to adjust the critical value when constructing a lower CI. This strategy works for “directing power” against \(\tilde{\gamma}_2 \) so long as \(\tilde{\gamma}_2 \) is not too large, so that the negative bias does not decrease power too much under the alternative. Another source of intuition is the formula for omitted variables bias. If \(\rho < 0 \) (the regressors are negatively correlated), then, under the maintained hypothesis \(\theta_2 \geq 0 \), ignoring the second regressor leads to downward bias, so it is possible to form a lower CI based on the OLS estimate in the regression with the second regressor omitted, or by using some combination of the OLS estimates of \(\theta_1 \) with and without the second regressor.

4.2 Implications for Variable Selection

The results of Section 3 can be used to address the question: under what conditions does variable selection or shrinkage make sense for confidence interval construction? Inference after model selection has been a topic of interest in the recent econometrics and statistics literature (see, among others, Andrews and Guggenberger, 2009a; Belloni, Chernozhukov, and Hansen, 2014; Leeb and Pötscher, 2005; McCloskey, 2012; van de Geer, Bühlmann, Ritov, and Dezeure, 2014; Zhang and Zhang, 2014).

If the parameter space is completely unrestricted under the null \((F = \mathbb{R}^k) \), then, as discussed in Section 4.1.1, the one-sided test based on the unrestricted OLS estimator is uniformly most powerful. This is an extremely powerful result regarding the use of anything
other than the one-sided z-test based on the unrestricted OLS estimator: even if one only cares about power in the case where all parameters are zero except for the parameter of interest, the optimal test still uses the unrestricted OLS estimator.

To get around this negative result, one must restrict the parameter space under the null. Consider the case where L is a single element of the parameter vector: $L\theta = \theta_1$. Consider inference on θ_1 with the remaining parameters $\theta_{-1} = (\theta_2, \ldots, \theta_k)' \in \mathbb{R}^{k-1}$ constrained to some set $\mathcal{F}_{-1} \subseteq \mathbb{R}^{k-1}$. This fits into our framework with $\mathcal{F} = \mathbb{R} \times \mathcal{F}_{-1}$. If \mathcal{F}_{-1} places nontrivial restrictions on the remaining parameters, optimal one-sided tests will, in general, not be based on the unrestricted OLS estimator.

Suppose that we suspect that the remaining coefficients θ_{-1} are zero, and want to optimize the performance of a confidence interval for this parameter value while maintaining size control over \mathcal{F}_{-1}. If \mathcal{F}_{-1} is centrosymmetric, then it follows from Corollary 3.2 that the minimax one-sided CI for β quantile excess length also optimizes $\tilde{\beta}$ quantile excess length at $\theta_{-1} = 0$, where $\tilde{\beta} = \Phi((z_{\beta} - z_{1-\alpha})/2)$. Furthermore, Corollary 3.2 gives the relative efficiency for the minimax one-sided CI for optimizing excess length at $\theta_{-1} = 0$. For two-sided CIs, Corollary 3.3 gives the potential improvement from optimizing expected length at a value of $(\theta_1, \theta_{-1}')'$ with $\theta_{-1} = 0$ relative to fixed-length affine CIs. Note that the same argument holds for optimizing performance at some parameter value $\tilde{\theta}$ if the parameter space is centrosymmetric about $\tilde{\theta}$. For example, if one defines the parameter space by choosing a plausible parameter value and placing symmetric bounds around it, Corollaries 3.2 and 3.3 give bounds on the scope for adapting at this parameter.

These results severely limit the scope for variable selection or other procedures that attempt to “adapt” to particular parameter values when \mathcal{F}_{-1} is convex and centrosymmetric. To get around this, one must consider situations where parameters are restricted to a non-convex or asymmetric parameter space under the null. Sparsity is one example of a non-convex restriction under which variable selection has been used fruitfully (see Belloni, Chernozhukov, and Hansen, 2014, for an example). If \mathcal{F}_{-1} is the set of s-sparse vectors $\{\theta_{-1} : \#\{j : \theta_{-1,j} \neq 0\} \leq s\}$ one can use pre-testing to find the indices of the non-zero coefficients while controlling size. However, Corollaries 3.2 and 3.3 are relevant here as well. While we do not need to know the location of the non-zero coefficients, we must impose sparsity when defining size. Furthermore, Corollaries 3.2 and 3.3 can be used to bound the scope for adapting to the level of sparsity.

Suppose that we wish to impose only s-sparsity under the null, while optimizing performance when the parameter vector is p-sparse, where $p < s < k$. Using βth quan-
tile excess length of one-sided CIs as the performance criterion, this amounts to optimizing \(q_\beta(\hat{c}; \{\theta_{-1} : \#\{j : \theta_{-1,j} \neq 0\} \leq p\}) \) subject to \(1 - \alpha \) coverage of \([\hat{c}, \infty)\) over \(\{\theta_{-1} : \#\{j : \theta_{-1,j} \neq 0\} \leq s\} \). Since the sets involved in this problem are non-convex, the results in this paper do not apply immediately. However, relaxing the problem by assuming that we know the indices of the nonzero components under the null and alternative can only make the problem easier: the convex problem of optimizing \(q_\beta(\hat{c}; \{\theta_{-1} : \theta_{-1,j} = 0 \text{ for } j > p\}) \) subject to coverage over \(\{\theta_{-1} : \theta_{-1,j} = 0 \text{ for } j > s\} \) provides a lower bound. By Corollaries 3.2 and 3.3, one cannot do much better at \(p \)-sparse parameters subject to coverage over \(s \)-sparse parameters than than the minimax CI over \(s \)-sparse parameters with the nonzero components known. Thus, for confidence interval construction, the scope for adapting between different levels of sparsity is severely limited. The same arguments go through if one considers approximately sparse sets of the form \(\{\theta_{-1} : \#\{j : |\theta_{-1,j}| > c\} \leq s\} \), or if one considers the set of regression functions with a bound on the approximation error of sparse linear functions. See Cai and Guo (2015) for recent work on adaptation to sparsity in high-dimensional regression.

5 Regression discontinuity

In a (sharp) regression discontinuity (RD) design, we are interested in estimating a jump in the regression function in the model (8) at a known threshold, which we normalize to 0, so that throughout this section, we set

\[
Lf = \lim_{x \downarrow 0} f(x) - \lim_{x \uparrow 0} f(x).
\]

The threshold determines participation in a binary treatment: units with \(x_i > 0 \) are treated; units with \(x_i < 0 \) are controls (we assume that \(x_i \neq 0 \) for all \(i \)). If the regression functions of potential outcomes are continuous at zero, then \(Lf \) measures the average effect of the treatment for units with covariate values equal to the threshold.

Let \(f_+(x) = f(x)I(x > 0) \) and \(f_-(x) = -f(x)I(x < 0) \) so that we can write \(f = f_+ - f_- \). Also let \(f_+(0) = \lim_{x \downarrow 0} f_+(x) \) and \(f_-(0) = \lim_{x \uparrow 0} f_-(x) \), so that \(Lf = f_+(0) + f_-(0) \). We will assume that \(f \) lies in the class of functions

\[
\mathcal{F}_{\text{RDT},p}(C) = \{ f_+ - f_- : f_+ \in \mathcal{F}_{T,p}(C; \mathbb{R}_+), f_- \in \mathcal{F}_{T,p}(C; \mathbb{R}_-) \},
\]

where \(\mathcal{F}_{T,p}(C; \mathcal{X}) \) consists of functions \(f \) such that the approximation error from \(p \)th order
Taylor expansion of \(f(x) \) about 0 is bounded by \(C|x|^p \), uniformly over \(X \):

\[
\mathcal{F}_{T,p}(C; X) = \{ f : \left| f(x) - \sum_{j=0}^{p-1} f^{(j)}(0)x^j \right| \leq C|x|^p \text{ all } x \in X \}.
\]

The class \(\mathcal{F}_{T,p}(C; X) \) formalizes the idea that the \(p \)th derivative of \(f \) at zero should be bounded by \(p!C \). Minimax estimation using this class of functions goes back at least to Legostaeva and Shiryaev (1971). Sacks and Ylvisaker (1978) and Cheng, Fan, and Marron (1997) considered minimax MSE estimation of \(f(0) \) in this class of functions when 0 is a boundary point. Their results formally justify using local polynomial regression to estimate the RD parameter. When the degree of smoothness \(p \) is not known, Sun (2005) proposes an adaptive version of the local polynomial estimator that achieves the optimal rate of convergence up to a logarithm factor. In contrast, since the class \(\mathcal{F}_{RDT,p}(C) \) is symmetric, Corollaries 3.2 and 3.3 imply that it is not possible to construct confidence intervals that shrink at the optimal rate without knowing \(p \). The researcher will therefore need to specify both \(p \) and \(C \) to construct confidence intervals.

To illustrate the theoretical results in this section, we use the dataset from Lee (2008). The dataset consists of 6,558 observations that correspond to elections to the US House of Representatives between 1946 and 1998. The running variable \(x_i \in [-100, 100] \) is the Democratic margin of victory (in percentages) in a given election \(i \). The outcome variable \(y_i \in [0, 100] \) is the Democratic vote share (in percentages) in the next election. Given the inherent uncertainty in final vote counts, the party that wins is essentially randomized in elections that are decided by a narrow margin, so that \(Lf \) measures the incumbency advantage for Democrats for elections decided by a narrow margin—the impact of being the current incumbent party in a congressional district on the probability of winning the next election.

To implement the optimal procedures in the Lee application, we will need to use an estimated version of \(\sigma(x)^2 \), as the true variance function is unknown. We assume that the variance is homoscedastic on either side of the cutoff and use the estimates \(\hat{\sigma}_+^2(x) = 14.5^2 \) and \(\hat{\sigma}_-^2(x) = 12.5^2 \), which are based on residuals form a local linear regression with bandwidth selected using the Imbens and Kalyanaraman (2012, IK hereafter) selector. In Section 5.5, we show that the resulting confidence intervals will be asymptotically valid and optimal so long as \(\hat{\sigma}_+(0) \) and \(\hat{\sigma}_-(0) \) converge to \(\sigma_+(0) \) and \(\sigma_-(0) \) uniformly over \(\mathcal{F} \), even if the true variance function is not constant.

We use variance estimates based on the IK bandwidth for comparison with the previous literature. While the optimality-within-a-class results of IK for estimating the regression
discontinuity parameter do not apply in the uniform sense considered in this paper, the
tuning parameters they use guarantee uniform convergence of the variance estimate based
on this bandwidth when the regression and variance functions are restricted to an appropriate
class. While in Section 5.5, we show that the particulars of the variance estimate do not
matter for first order asymptotics (so long as it is uniformly consistent), investigation of the
choice of the variance estimator through higher order asymptotics or Monte Carlo analysis
is an interesting question for future research.

5.1 Least favorable functions

To construct optimal estimators and confidence sets, we first need to find functions g^*_δ and
f^*_δ that solve the modulus problem. Since the class $\mathcal{F}_{RDT,p}(C)$ is symmetric, $f^*_\delta = -g^*_\delta$, and the (single-class) modulus of continuity $\omega(\delta; \mathcal{F}_{RDT,p}(C))$ is given by the value of the problem

$$
\sup_{f_+ - f_- \in \mathcal{F}_{RDT,p}(C)} 2(f_+(0) + f_-(0)) \quad \text{st} \quad \sum_{i=1}^n f_+(x_i)^2 \sigma^2(x_i) + \sum_{i=1}^n f_-(x_i)^2 \sigma^2(x_i) \leq \delta^2 / 4.
$$

(25)

Let $g^*_{\delta,C}$ denote the (unique up to the values at the x_is) solution to this problem. The solution $g^*_{\delta,C}$ can be obtained using a simple generalization of Theorem 1 of Sacks and Ylvisaker (1978); it is characterized by a system of $2p$ equations in $2p$ unknowns. We provide details in Supplemental Appendix C.3.

Using the fact that the class $\mathcal{F}_{RDT,p}(C)$ is translation invariant (we can take $\iota(x) = c_0 + 1(x > 0)$ for any c_0 and $\sum_{i=1}^n \frac{g^*_{\delta,C}(x_i)}{\sigma^2(x_i)} = \sum_{i=1}^n \frac{g^*_{\delta,C}(x_i)}{\sigma^2(x_i)}$ (this can be seen by noting that the bias at any constant function must be zero—otherwise the bias could be made arbitrarily large by increasing the constant; see Supplemental Appendix C.3 for details), the class of estimators \hat{L}_δ can be written as

$$
\hat{L}_\delta = \hat{L}_{\delta,\mathcal{F}_{RDT,p}(C)} = \frac{\sum_{i=1}^n g^+_{\delta,C}(x_i) y_i / \sigma^2(x_i)}{\sum_{i=1}^n g^+_\delta(x_i) / \sigma^2(x_i)} - \frac{\sum_{i=1}^n g^-_{\delta,C}(x_i) y_i / \sigma^2(x_i)}{\sum_{i=1}^n g^-_\delta(x_i) / \sigma^2(x_i)}.
$$

(26)

To illustrate these results using the Lee data, we fix $p = 2$. Figure 3 plots the least favorable function $g^*_{\delta,C}$ for this data, with δ calibrated to be optimal for one-sided CIs that minimax the excess length at the $\beta = 0.8$ quantile (so that $\delta = z_{0.95} + z_{0.8} = 2.49$), and several choices of C. It is clear from the figure that the smoothness parameter C effectively rescales the least favorable function while preserving its shape. Indeed, we show in Armstrong and Kolesár (2015) that \hat{L}_δ is asymptotically equivalent to a local linear estimator with bandwidth
that depends on C and δ, and kernel for which the equivalent kernel (as defined in Fan and Gijbels, 1996, p. 72) is given by $k(u) = (3.95 - 9.11u + 4.88u^2)_+ - (3.95 - 9.11u - 4.88u^2)_-$ where $(t)_+ = \max\{t,0\}$ and $(t)_- = -\min\{t,0\}$.

Let us briefly discuss the interpretation of the smoothness constant C in this application. By definition of the class $\mathcal{F}_{RDT,2}(C)$, C determines how large the approximation error can be if we approximate the regression functions f_+ and f_- on either side of the cutoff by a linear Taylor approximation at the cutoff: the approximation error is no greater than $C x^2$. Thus, if $C = 0.05$, and we are predicting the vote share in the next election when the margin of victory is, say, $x = 10\%$, the linear approximation and the true conditional expectation differ by at most 5%, and they differ by no more than 20% when $x = 20\%$. Suppose that the conditional variance is homoscedastic and equal to the IK estimate of 14.5%. Then $C = 0.05$ implies that the prediction MSE at can be reduced by at most $5^2/(14.5^2 + 5^2) = 10.6\%$ at $x = 10\%$, and at most by $20^2/(14.5^2 + 20^2) = 65.5\%$ at $x = 20\%$ when we use the true regression function rather than the linear approximation. To the extent that researchers agree that the vote share in the next election varies smoothly enough with the margin of victory in the current election to make such large reductions in MSE unlikely, $C = 0.05$ is quite a conservative choice.

5.2 Bounds on adaptation

Since the class $\mathcal{F}_{RDT,p}(C)$ is centrosymmetric, Corollaries 3.2 and 3.3 apply to bound the scope for adaptation to C. To the extent that the bounds are tight (which, as we will see below, is indeed the case), the a priori choice of C for confidence interval construction cannot be avoided if one is only willing to place f in the smoothness class $\mathcal{F}_{RDT,p}(C)$ for some C.

Let $\mathcal{G}_p = \left\{ (\sum_{j=0}^{p-1} a_j x^j)1(x < 0) + (\sum_{j=0}^{p-1} b_j x^j)1(x > 0) : a_1, a_2, a_3, a_4 \in \mathbb{R} \right\}$ denote the class of piecewise polynomial functions. Since for any $f \in \mathcal{F}_{RDT,p}(C), g \in \mathcal{G}_p$, $f - g \in \mathcal{F}_{RDT,p}(C)$, it follows from Corollary 3.2 that the efficiency of minimax CIs relative to CIs that direct power at any subset of $\mathcal{G}_0 \subseteq \mathcal{G}_p$ is given by

$$\frac{\inf_{\hat{\epsilon} : [\hat{\epsilon}, \infty) \subseteq \mathcal{I}_\alpha} q_\beta(\hat{\epsilon}, \mathcal{G}_0)}{q_\beta(\alpha, \delta, \mathcal{F}_{RDT,p}(C), \mathcal{G}_0)} = \frac{\omega(2\delta; \mathcal{F}_{RDT,p}(C))}{\delta^2/(2 \sum_{i=1}^{n} g^*_+, \delta, C_*(x_i)/\sigma^2(x_i)) + \omega(\delta; \mathcal{F}_{RDT,p}(C))},$$

with $\delta = z_{1-\alpha} + z_\beta$. In the Lee dataset with $p = 2$, the relative efficiency of CIs that minimax the 0.8 quantile is between 96% and 99.6% in for $C \in [0.0001, 0.1]$. The relative efficiency of CIs that minimax the median is between 96% and 99.4%. Since the optimal rate of convergence is $r = 4/5$, this is very close to the asymptotic prediction $2^r/(1 + r) = 96.7\%$.

31
For the fixed-length CIs, the efficiency at any $g \in \mathcal{G}_p$ is given by Corollary 3.3. In the Lee example with $p = 2$ and $C \in [0.0001, 0.1]$, which corresponds to a very wide range of smoothness classes, the efficiency varies between 95.4% and 95.9%. For very small C, it drops down to 91.3%. Unless C is extremely small, this matches the asymptotic efficiency of 95.7% implied by Equation (22) almost exactly.

5.3 Optimal inference procedures

To construct procedures that are optimal for a given performance criterion, we need to calibrate δ optimally. For one-sided CIs that minimax the excess length at the β quantile, the optimal δ is given by $\delta = z_{1-\alpha} + z_\beta$. The one-sided CI is then given by Corollary 3.1. The optimal δ for constructing fixed-length CIs and minimax MSE estimators is given in Theorem 3.2. We give implementation details in Supplemental Appendix C.3.

To illustrate the sensitivity of the results to the choice of C, Figure 4 plots these estimators and confidence intervals for the Lee data for $C \in [0.00002, 0.1]$. To understand the effect of C on the optimal amount of smoothing, we use the following definition of effective sample size. Let $\hat{L} = \sum_{i=1}^n w_+(x_i) y_i - \sum_{i=1}^n w_-(x_i) y_i$ be a linear estimator, where the weights w_+ and w_- satisfy $w_+(x) = 0$ if $x < 0$ and $w_-(x) = 0$ if $x > 0$. Then define the effective sample size by the variance measure of \hat{L} (Klemelä, 2014)

$$n_e = \frac{1}{\sum_{i=1}^n w_+^2(x_i)} + \frac{1}{\sum_{i=1}^n w_-^2(x_i)}.$$ \hfill (27)

The logic behind this definition is that under homoscedasticity, the variance is given by $\text{var}(\sum_{i=1}^n w_+(x_i) y_i) = \sigma^2 \sum_{i=1}^n w_+^2(x_i)$, and similarly for the negative observations, so that n_e measures how much the variance shrinks. The results in Armstrong and Kolesár (2015) imply that in large samples, $n_e = O(C^{-2/5})$ for any performance criterion (so that doubling C reduces the effective sample size by about 25%), which predicts n_e in the Lee data almost exactly. The x-axis in Figure 4 reports n_e for the minimax MSE estimator.

The range of minimax MSE estimates varies between 5.8% and 7.3% for $C \in [0.005, 0.1]$, which is close to the original Lee estimate of 7.7% that was based on a global fourth degree polynomial. Interestingly, the lower and upper limits \hat{c}_u and \hat{c}_ℓ of the one-sided CIs $[\hat{c}_\ell, \infty)$ and $(-\infty, \hat{c}_u]$ are not always within the corresponding limits for the two-sided CIs. The reason for this is that for any given C, the optimal δ is lower for one-sided CIs than for two-sided fixed-length CIs—it equals 2.49 for one-sided CIs independently of the value of C, but for two-sided CIs, it varies between 4.1 and 11.7, depending on the exact value of C. 32
Consequently, the effective number of observations for one-sided CIs is between 3% and 22% lower than for fixed-length CIs. Thus, when the point estimate decreases with the amount of smoothing as is the case for low values of C, then one-sided CIs are effectively centered around a lower estimate, which explains why at first the one-sided CI limits are both below the two-sided limits. This reverses once the point estimate starts increasing with the amount of smoothing.

On the other hand, the effective number of observations for the minimax MSE estimator is very close to that for fixed-length CIs throughout the entire range of Cs, never differing by more than 3%. This matches the asymptotic predictions in Armstrong and Kolesár (2015).

5.4 Confidence intervals based on suboptimal estimators

The minimax optimal procedures in Section 5.3 require that δ be chosen optimal for each performance criterion. In practice, a researcher may have multiple criteria in mind for a single estimate (e.g. one may want to report an estimator with good MSE, while also reporting a CI centered at this estimator). How much worse is the performance of confidence intervals when δ is not optimally chosen? Such confidence intervals can be constructed using Theorem 3.4.

Figure 5 gives the resulting confidence intervals for the Lee data, with δ chosen so that the \hat{L}_δ is the minimax MSE estimator. In contrast with Figure 4, the limits of the one-sided CIs are now contained within the two-sided CIs, as they are both based on the same estimator, although they are less than $(z_{1-\alpha/2} - z_{1-\alpha}) sd(\hat{L}_\delta)$ apart as would be the case if \hat{L}_δ were unbiased.

The half-length of the two-sided fixed-length CI is at least 99.92% efficient relative to choosing δ optimally for fixed-length confidence intervals over the range of Cs reported in the graph. Similarly, the maximum excess length at the 0.8 quantile of the one-sided CIs is at least 97.3% efficient relative to minimax optimal CI. These results are in line with the asymptotic efficiency of confidence intervals based on the minimax MSE estimator that we compute in Armstrong and Kolesár (2015), which imply that the asymptotic efficiency of two-sided fixed-length CIs is 99.9%, and it is 98.0% for one-sided CIs.

Another natural question is: how much worse do CIs based on a different class of estimators perform? Cheng, Fan, and Marron (1997) show that local polynomial estimators achieve high asymptotic efficiency for the minimax MSE criterion $R(\hat{L})$. Consequently, these estimators have been recommended as an attractive choice in practice (see, e.g. Imbens and Lemieux, 2008), and they have been very popular in recent applied work. Below, we use the results in Section 3 to derive relative efficiency of these estimators in the finite-sample
normal model for the confidence interval criteria introduced in that section.

Consider a linear estimator

$$\hat{L}_{w_+, w_-}^l = \frac{\sum_{i=1}^n w_+(x_i) y_i}{\sum_{i=1}^n w_+(x_i)} - \frac{\sum_{i=1}^n w_-(x_i) y_i}{\sum_{i=1}^n w_-(x_i)},$$

where the weights \(w_+\) and \(w_-\) satisfy \(w_+(-x) = w_-(x) = 0\) for \(x > 0\), and \(\sum_i w_+(x_i)x_i = \sum_i w_-(x_i)x_i = 0\), so that the estimator is unbiased for piecewise linear functions. This covers, in particular, local polynomial estimators of at least linear order. For instance, local linear estimators with kernel \(k\) and bandwidths \(h_+\) and \(h_-\), use the weights

$$w_+(x) = k_+(x/h_+)^n \sum_{i=1}^n k_+(x_i/h_+)(x^2 - x_i^2), \quad k_+(u) = k(u)1(u > 0),$$

and similarly for \(w_-\).

The maximum bias of \(\hat{L}_{w_+, w_-}^l\) is attained at \(g_{w_+, w_-}^*(x) = \text{sign}(w_+(x))Cx^21(x > 0) - \text{sign}(w_-(x))Cx^21(x < 0)\). This follows since any \(f \in \mathcal{F}_{RDT,2}(C)\) can be written as \((a_1 + a_2x + r_+(x))1(x > 0) + (a_3 + a_4x + r_-(x))1(x < 0)\), for some \(r_+, r_-\) such that \(|r_\pm(x)| \leq Cx^2\), so that the bias of the estimator under \(f\) can be upper-bounded by the bias at \(g_{w_+, w_-}^*\). The minimum bias attains at \(-g_{w_+, w_-}^*\). Hence,

$$\overline{\text{bias}}_{\mathcal{F}_{RDT,2}(C)}(\hat{L}_{w_+, w_-}^l) = -\text{bias}_{\mathcal{F}_{RDT,2}(C)}(\hat{L}_{w_+, w_-}^l) = C\sum_i w_+(x_i)|x_i|^2 \sum_i w_+(x_i) + C\sum_i w_-(x_i)|x_i|^2 \sum_i w_-(x_i).$$

(28)

The variance of the estimator doesn’t depend on \(f\) and it is given by

$$\text{var}(\hat{L}_{w_+, w_-}^l) = \sum_i w_+(x_i)^2 \sigma^2(x_i) \sum_i w_+(x_i)^2 + \sum_i w_-(x_i)^2 \sigma^2(x_i) \sum_i w_-(x_i)^2.$$

Therefore, given the weights \(w_+\) and \(w_-\), we can again use Theorem 3.4 to construct one and two-sided CIs around \(\hat{L}_{k, h_+, h_-}^l\).

For local linear estimators, optimal bandwidths \(h_+\) and \(h_-\) can be computed by minimizing the maximum excess length (for one-sided CIs) and half-length (for fixed-length CIs) over the bandwidths. We compute these in the Lee application using the triangular kernel. The resulting CIs are very close to the optimal CIs in Figure 4 (see Figure S1 in Supplemental Appendix G). Comparing half-length and excess length of the CIs based on local linear estimates to the optimal CIs over the range of \(C\) reported in the graph, we find that
the two-sided CIs are at least 96.9% efficient, and one-sided CIs (based on optimizing the
0.8 quantile of excess length) are at least 96.9% efficient. This is very close to the asymp-
totic efficiency result in Armstrong and Kolesár (2015) that the local linear estimator with
a triangular kernel is 97.2% efficient, independently of the performance criterion.

5.5 Asymptotic validity

We now give a theorem showing asymptotic validity of the CIs constructed in this section
under an unknown error distribution. We consider uniform validity over regression functions
in \mathcal{F} and error distributions in a sequence of sets \mathcal{Q}_n, and we index probability statements
with $f \in \mathcal{F}$ and $Q \in \mathcal{Q}_n$. We make the following assumptions on the x_is and the class of
error distributions \mathcal{Q}_n.

Assumption 5.1. For some $p_{X,+}(0) > 0$ and $p_{X,-}(0) > 0$, the sequence $\{x_i\}_{i=1}^n$ satisfies
\[\frac{1}{nh_n} \sum_{i=1}^n m(x_i/h_n)I(x_i > 0) \to p_{X,+}(0) \int_0^\infty m(u) \, du \quad \text{and} \quad \frac{1}{nh_n} \sum_{i=1}^n m(x_i/h_n)I(x_i < 0) \to p_{X,-}(0) \int_{-\infty}^0 m(u) \, du \]
for any bounded function m with bounded support and any h_n with
\[0 < \liminf_n h_n n^{1/(2p+1)} \leq \limsup_n h_n n^{1/(2p+1)} < \infty. \]

Assumption 5.2. For some $\sigma(x)$ with $\lim_{x \downarrow 0} \sigma(x) = \sigma_+(0) > 0$ and $\lim_{x \uparrow 0} \sigma(x) = \sigma_-(0) > 0$,

(i) the u_is are independent under any $Q \in \mathcal{Q}_n$ with $E_Q u_i = 0$, $\text{var}_Q (u_i) = \sigma^2(x_i)$

(ii) for some $\eta > 0$, $E_Q |u_i|^{2+\eta}$ is bounded uniformly over n and $Q \in \mathcal{Q}_n$.

While the variance function $\sigma^2(x)$ is unknown, the definition of \mathcal{Q}_n is such that the variance function is the same for all $Q \in \mathcal{Q}_n$. This is done for simplicity. One could consider
uniformity over classes \mathcal{Q}_n that place only smoothness conditions on $\sigma^2(x)$ at the cost of
introducing additional notation and making the optimality statements more cumbersome.

The estimators and CIs in this section are plug-in versions of procedures in Section 3,
where an estimate $\hat{\sigma}(x)$ is used in place of the unknown true variance function. We make
the following assumption on this estimate. As discussed above, this assumption holds for
the variance estimate used here, as well as allowing for other consistent variance estimates.

Assumption 5.3. The estimate $\hat{\sigma}(x)$ is given by $\hat{\sigma}(x) = \hat{\sigma}_+(0) I(x > 0) + \hat{\sigma}_-(0) I(x < 0)$
where $\hat{\sigma}_+(0)$ and $\hat{\sigma}_-(0)$ are consistent for $\sigma_+(0)$ and $\sigma_-(0)$ uniformly over $f \in \mathcal{F}$ and $Q \in \mathcal{Q}_n$.

For asymptotic coverage, we consider uniformity over both \mathcal{F} and \mathcal{Q}_n. Thus, a confidence
set \mathcal{C} is said to have asymptotic coverage at least $1 - \alpha$ if

\[\liminf_{n \to \infty} \inf_{f \in \mathcal{F}, Q \in \mathcal{Q}_n} P_{f,Q} (Lf \in \mathcal{C}) \geq 1 - \alpha. \]
Theorem 5.1. Under Assumptions 5.1, 5.2 and 5.3, the confidence intervals given in Sections 5.3 and 5.4 based on \(\hat{L}_\delta \) have asymptotic coverage at least \(1 - \alpha \). The confidence intervals given in Section 5.4 based on local polynomial estimators have asymptotic coverage at least \(1 - \alpha \) so long as the kernel is bounded and uniformly continuous with bounded support and the bandwidths \(h_+ \) and \(h_- \) satisfy \(h_+ n^{1/(2p+1)} \to h_{+,\infty} \) and \(h_- n^{1/(2p+1)} \to h_{-,\infty} \) for some \(h_{+,\infty} > 0 \) and \(h_{-,\infty} > 0 \).

Let \(\hat{\chi} \) denote the half-length of the optimal fixed-length CI based on \(\hat{\sigma}(x) \). For \(\chi_\infty \) given in Supplemental Appendix F, the scaled half-length \(n^{p/(2p+1)} \hat{\chi} \) converges in probability to \(\chi_\infty \) uniformly over \(F \) and \(Q_n \). If, in addition, each \(Q_n \) contains a distribution where the \(u_i \)s are normal, then for any sequence of confidence sets \(C \) with asymptotic coverage at least \(1 - \alpha \), we have the following bound on the asymptotic efficiency improvement at any \(f \in F_{RDT}(0) \):

\[
\liminf_{n \to \infty} \sup_{Q \in Q_n} \frac{n^{p/(2p+1)} E_{f,Q}(\lambda(C))}{\chi_\infty} \geq \frac{(1 - \alpha) E((z_1 - \alpha - Z)^{2p/(2p+1)} | Z \leq z_1 - \alpha)}{(c_\chi^{-1}(2p/(2p+1)))^{2p/(2p+1)} - 1}.
\]

where \(Z \sim N(0,1) \).

Letting \(\hat{c}_{\alpha,\delta} \) denote the lower endpoint of the one-sided CI corresponding to \(\hat{L}_\delta \), the CI \([\hat{c}_{\alpha,\delta}, \infty)\) has asymptotic coverage at least \(1 - \alpha \). If \(\delta \) is chosen to minimax the \(\beta \) quantile excess length, (i.e. \(\delta = z_\beta + z_1 - \alpha \)), then, if each \(Q_n \) contains a distribution where the \(u_i \)s are normal, any other one-sided CI \([\hat{c}, \infty)\) with asymptotic coverage at least \(1 - \alpha \) must satisfy the efficiency bound

\[
\liminf_{n \to \infty} \sup_{f \in F, Q \in Q_n} \frac{q_{f,Q,\beta}(L f - \hat{c})}{q_{f,Q,\beta}(L f - \hat{c}_{\alpha,\delta})} \geq 1.
\]

In addition, we have the following bound on the asymptotic efficiency improvement at any \(f \in F_{RDT}(0) \):

\[
\liminf_{n \to \infty} \frac{\sup_{Q \in Q_n} q_{f,Q,\beta}(L f - \hat{c})}{\sup_{Q \in Q_n} q_{f,Q,\beta}(L f - \hat{c}_{\alpha,\delta})} \geq \frac{2^{2p/(2p+1)}}{1 + 2p/(2p+1)}.
\]

The proof of Theorem 5.1 is given in Supplemental Appendix F. Theorem 5.1 gives asymptotic validity of the plug-in optimal procedures in this section, and shows that they are efficient when the class of possible distributions \(Q_n \) contains a normal law. The latter assumption is standard in the literature on efficiency bounds in nonparametric models (see, e.g., Fan, 1993, pp. 205-206), and we leave the question of relaxing it for future research. The asymptotic efficiency bounds correspond to those in Section 3 under (20) with \(r = 2p/(2p+1) \).
5.6 Comparison with other methods

An apparent disadvantage of the CIs considered above is that their construction requires an explicit choice of the smoothness constant C. Here we briefly consider two alternative methods based on local polynomial estimators that do not require C to be chosen explicitly. As we argued in the introduction, any such method implies a maximum value of C beyond which it cannot guarantee good finite-sample coverage. We compute this value in the Lee application.

A naïve, but popular approach to inference in RD is to form a nominal $100 \cdot (1 - \alpha)\%$ CI around a local polynomial estimator by adding and subtracting the $1 - \alpha/2$ quantile of the $N(0, 1)$ distribution times the standard error, thereby ignoring bias. Typically, local linear estimators are used, and the justification is based on the accuracy of a linear approximation, often with a citation to Cheng, Fan, and Marron (1997) or other papers that consider min-max MSE in the class $\mathcal{F}_{T,2}(C; \mathbb{R}_+)$ for estimation of $f(0)$. Thus, it is natural to consider the parameter space $\mathcal{F}_{RDT,2}(C)$ and to ask: “what is the largest value of C for which this CI has good coverage?” Since this method ignores bias, there will always be some undercoverage, so we formalize this by finding the largest value of C such that a nominal 95% CI has true coverage 90%. This calculation is easily done using the results in Section 3.5: the naïve approach uses the critical value $z_{1 - \alpha/2} = cv_{0.05}(0)$ to construct a nominal 95% CI, while a valid 90% CI uses $cv_{1}(\text{bias}_{\mathcal{F}_{RDT,2}(C)}(\hat{L})/se(\hat{L}))$ (where \hat{L} denotes the estimator and $se(\hat{L})$ denotes its standard error), so we equate these two critical values and solve for C.

The resulting value of C for which undercoverage is controlled will depend on the bandwidth. If a sequence of bandwidths h_n is chosen so that $h_n n^{1/5} \to 0$ (the researcher makes an “asymptotic promise” to undersmooth), this will lead to a sequence C_n that increases with the sample size. Alternatively, if one chooses a sequence where $h_n n^{1/5}$ converges to a constant (e.g. the researcher forms a CI around the estimate that is MSE optimal for a fixed value of C), C_n will converge to a constant as well. If the bandwidth choice is data dependent, it follows from Corollaries 3.2 and 3.3 that the largest value of C for which coverage is controlled will essentially be determined by the largest bandwidth choice allowed by the tuning parameters used in the procedure. To provide a simple comparison to commonly used procedures while avoiding such extremely negative results, we consider the (data dependent) Imbens and Kalyanaraman (2012) bandwidth \hat{h}_{IK}, but treat it as if it were fixed a priori. We consider CIs based on the local linear estimator with the triangular kernel and this bandwidth, as well as particular strategies for “undersmoothing” relative to this bandwidth.

For the Lee application, the IK bandwidth selector leads to $\hat{h}_{IK} = 29.4$. The naïve
two-sided CI based on this bandwidth is given by 7.99 ± 1.97. Treating the bandwidth as nonrandom, it achieves coverage of at least 90% over $F_{RDT, 2}(C)$ as long as $C \leq C_{\text{na"ive}} = 0.0022$. This is a rather low value, implying that even when $x = 20\%$, the prediction error based on a linear Taylor approximation to f differs at most by 0.9% from the true conditional expectation.

To deal with the coverage problem of the na"ive CI (or, equivalently, to relax the high level of smoothness it requires), a popular approach is to undersmooth. As discussed above, this leads to a sequence $C_n \to \infty$ under which size distortion is controlled by a given amount, and our methods can be used to compute this sequence. Another popular approach is to subtract an estimate of the bias. In an important paper, Calonico, Cattaneo, and Titiunik (2014) link these two approaches in the context of RD. They derive a novel standard error formula that accounts for the additional variability introduced by the estimated bias, and show that if the pilot bandwidth and the kernel used by the bias estimator equal those used by the local linear estimator of Lf, their procedure amounts to running a quadratic instead of a linear local regression, and then using the usual CI. In the Lee application, this method delivers the CI 6.68 ± 2.91, increasing the half-length substantially relative to the na"ive CI. This increase is due to the fact that a local quadratic estimator uses a much smaller effective sample size than a local linear estimator at the same bandwidth resulting in 330 and 718 effective observations, respectively. The maximum smoothness parameter under which these CIs have coverage at least 90% is given by $C_{\text{CCT}} = 0.0027$, which is slightly larger than $C_{\text{na"ive}}$, although not by very much, in spite of the large increase in the CI width. By way of comparison, the optimal 95% fixed-length CIs at C_{CCT} leads to a much narrower CI given by 7.59 ± 2.36.

6 Conclusion

This paper considered the problem of constructing one- and two-sided confidences intervals for a linear functional of an unknown regression function f in a broad class of regression models under the assumption that f lies in a convex function class \mathcal{F}. We showed that, when \mathcal{F} is centrosymmetric, one-sided CIs that minimax a given quantile of excess length that we derive here are also highly efficient at smooth functions relative to CIs that optimize excess length at these smooth functions. Likewise, the fixed-length two-sided CIs of Donoho (1994) are shown to be highly efficient relative to confidence sets that optimize expected length at smooth functions. Both types of CIs are simple to construct. They require an
explicit choice of the function class \mathcal{F}, which sometimes involves placing an explicit bound on the smoothness of f. The above efficiency results imply, however, that specifying this bound can only be avoided at the expense of sacrificing coverage.
Appendix A Proofs for Main Results

This section contains proofs of the results in Section 3. Section A.1 contains auxiliary lemmas used in the proofs. The proofs of the results in Section 3 are given in the remainder of the section. Section A.2 contains the proof of Theorem 3.1. Section A.3 contains the proof of Theorem 3.3. The corollaries to these theorems follow immediately from the theorems and arguments in the main text, and their proofs are omitted from this section. Theorem 3.4 is immediate from Lemma A.1 below (which, as discussed below, reduces to Lemma 4 in Donoho (1994) in this case, since $G = F$).

Before proceeding, we recall that $\omega'(\delta;F,G)$ was defined in Section 3 to be an arbitrary element of the superdifferential. Here, we introduce notation to denote this set. The superdifferential is defined as

$$\partial \omega(\delta;F,G) = \{d: \text{for all } \eta > 0, \omega(\eta;F,G) \leq \omega(\delta;F,G) + d(\eta - \delta)\}.$$

It is nonempty since $\omega(\cdot;F,G)$ is concave (if f_δ^*, g_δ^* attain the modulus at δ and similarly for $\tilde{\delta}$, then, for $\lambda \in [0,1]$, $f_\lambda = \lambda f_\delta^* + (1 - \lambda)f_\tilde{\delta}^*$ and $g_\lambda = \lambda g_\delta^* + (1 - \lambda)g_\tilde{\delta}^*$ satisfy $\|K(g_\lambda - f_\lambda)\| \leq \lambda\delta + (1 - \lambda)\tilde{\delta}$ so that $\omega(\lambda\delta + (1 - \lambda)\tilde{\delta}) \geq Lg_\lambda - Lf_\lambda = \lambda\omega(\delta) + (1 - \lambda)\omega(\tilde{\delta})$).

A.1 Auxiliary Lemmas

The following lemma extends Lemma 4 in Donoho (1994) to the two class modulus (see also Theorem 2 in Cai and Low, 2004b, for a similar result in the Gaussian white noise model). The proof is essentially the same as for the single class case.

Lemma A.1. Let f^* and g^* solve the optimization problem for $\omega(\delta_0;F,G)$ with $\|K(f^* - g^*)\| = \delta_0$, and let $d \in \partial \omega(\delta_0;F,G)$. Then, for all $f \in F$ and $g \in G$,

$$Lg - Lg^* \leq \frac{d \langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|} \quad \text{and} \quad Lf - Lf^* \geq \frac{d \langle K(g^* - f^*), K(f - f^*) \rangle}{\|K(g^* - f^*)\|}. \quad (29)$$

In particular, the test statistic $\hat{L}_{\delta,F,G}$ achieves maximum bias over F at f^* and minimum bias over G at g^*.

Proof. In this proof, we use $\omega(\delta)$ to denote the ordered modulus $\omega(\delta;F,G)$. Suppose that
the first inequality does not hold for some g. Then, for some $\varepsilon > 0$,

$$Lg - Lg^* > (d + \varepsilon) \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|}.$$ \hfill (30)

Let $g_\lambda = (1 - \lambda)g^* + \lambda g$. Since $g_\lambda - g^* = \lambda(g - g^*)$, multiplying by λ gives

$$Lg_\lambda - Lg^* > \lambda(d + \varepsilon) \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|}.$$

The left hand side is equal to $Lg_\lambda - Lf^* - L(g^* - f^*) = Lg_\lambda - Lf^* - \omega(\delta_0)$. Since $g_\lambda \in \mathcal{G}$ by convexity, $Lg_\lambda - Lf^* \leq \omega(\|K(g_\lambda - f^*)\|)$. Note that

$$\frac{d}{d\lambda} \|K(g_\lambda - f^*)\| \bigg|_{\lambda=0} = \frac{1}{2} \frac{d}{d\lambda} \|K(g^* - f^*)\|^2 \bigg|_{\lambda=0} = \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|}$$

so that $\|K(g_\lambda - f^*)\| = \delta_0 + \lambda \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|} + o(\lambda)$. Putting this all together, we have

$$\omega \left(\delta_0 + \lambda \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|} + o(\lambda) \right) > \omega(\delta_0) + \lambda(d + \varepsilon) \frac{\langle K(g^* - f^*), K(g - g^*) \rangle}{\|K(g^* - f^*)\|},$$

which is a contradiction unless $\langle K(g^* - f^*), K(g - g^*) \rangle = 0$.

If $\langle K(g^* - f^*), K(g - g^*) \rangle = 0$, then (30) gives $Lg - Lg^* > 0$, which implies

$$\omega(\|K(g_\lambda - f^*)\|) \geq Lg_\lambda - Lf^* = \lambda c + \omega(\delta_0)$$

where $c = Lg - Lg^* > 0$. But in this case (31) implies $\|K(g_\lambda - f^*)\| = \delta_0 + o(\lambda)$, again giving a contradiction. This proves the first inequality, and a symmetric argument applies to the inequality involving $Lf - Lf^*$, thereby giving the first result.

Now consider the test statistic $\hat{L}_{\delta, \mathcal{F}, \mathcal{G}}$. Under $g \in \mathcal{G}$, the bias of this statistic is equal to a constant that does not depend on g plus

$$\omega(\|K(g^* - f^*)\|) \geq Lg - Lg^* = \lambda c + \omega(\delta_0)$$

It follows from (29) that this is minimized over $g \in \mathcal{G}$ by taking $g = g^*$. Similarly, the maximum bias over \mathcal{F} is taken at f^*. \hfill \square

The next lemma is a result from the literature on nonparametric testing. It is used in
the proof of Theorem 3.3.

Lemma A.2. Let \(\tilde{F} \) and \(\tilde{G} \) be convex sets, and suppose that \(f^* \) and \(g^* \) minimize \(\|K(f-g)\| \) over \(f \in \tilde{F} \) and \(g \in \tilde{G} \). Then, for any level \(\alpha \), the minimax test of \(H_0 : \tilde{F} \) vs \(H_1 : \tilde{G} \) is given by the Neyman-Pearson test of \(f^* \) vs \(g^* \). It rejects when \(\langle K(f^* - g^*), Y \rangle \) is greater than its \(1 - \alpha \) quantile under \(f^* \). The minimum power of this test over \(\tilde{G} \) is taken at \(g^* \).

Proof. The result is immediate from results stated in Section 2.4.3 in Ingster and Suslina (2003), since the sets \(\{Kf: f \in \tilde{F}\} \) and \(\{Kg: g \in \tilde{G}\} \) are convex. \(\square \)

The following lemma derives the form of the derivative of \(\omega \) under translation invariance, and is used in deriving the form of \(\hat{L}_\delta \) given in the main text.

Lemma A.3. Let \(f^* \) and \(g^* \) solve the modulus problem with \(\delta_0 = \|K(g^*-f^*)\| > 0 \), and suppose that \(f^* + c\iota \in \mathcal{F} \) for all \(c \) in a neighborhood of zero, where \(L\iota = 1 \). Then

\[
\partial \omega(\delta_0; \mathcal{F}, \mathcal{G}) = \left\{ \frac{\delta_0}{\langle K(g^*-f^*),\iota \rangle} \right\}.
\]

Proof. Let \(d \in \partial \omega(\delta_0; \mathcal{F}, \mathcal{G}) \) and let \(f_c = f^* - c\iota \). Let \(\eta \) be small enough so that \(f_c \in \mathcal{F} \) for \(|c| \leq \eta \). Then, for \(|c| \leq \eta \),

\[
L(g^* - f^*) + d \|K(g^*-f_c)\| - \delta_0 \geq \omega(\|K(g^*-f_c)\|; \mathcal{F}, \mathcal{G}) \geq L(g^* - f_c) = L(g^* - f^*) + c
\]

where the first inequality follows from the definition of the superdifferential and the second inequality follows from the definition of the modulus. Since the left hand side of the above display is greater than or equal to the right hand side of the display for \(c \) in a neighborhood of zero, and the two sides are equal at \(c = 0 \), the derivatives of both sides with respect to \(c \) must be equal. The result follows since

\[
\frac{d}{dc}\|K(g^* - f_c)\| \bigg|_{c=0} = \frac{d}{dc}\|K(g^*-f_c)\|^2 \bigg|_{c=0} = \frac{\langle K(g^* - f^*), \iota \rangle}{\delta_0}.
\]

\(\square \)
A.2 Proof of Theorem 3.1

For ease of notation in this proof, let \(f^* = f^*_\delta \) and \(g^* = g^*_\delta \) denote the functions that solve the modulus problem with \(\|K(f^* - g^*)\| = \delta \), and let \(d = \omega'(\delta; \mathcal{F}, \mathcal{G}) \in \partial\omega(\delta; \mathcal{F}, \mathcal{G}) \) so that

\[
\hat{c}_\alpha = \hat{c}_{\alpha, \delta, \mathcal{F}, \mathcal{G}} = Lf^* + d \left(\frac{\langle K(g^* - f^*), KY \rangle}{\|K(g^* - f^*)\|} \right) - d \left(\frac{\langle K(g^* - f^*), Kf^* \rangle}{\|K(g^* - f^*)\|} \right) - z_{1-\alpha}\sigma d.
\]

Note that \(\hat{c}_\alpha = \hat{L}_{\delta, \mathcal{F}, \mathcal{G}} + a \) for \(a \) chosen so that the \(1 - \alpha \) quantile of \(\hat{c}_\alpha - Lf^* \) under \(f^* \) is zero. Thus, it follows from Lemma A.1 that \([\hat{c}_\alpha, \infty) \) is a valid \(1 - \alpha \) CI for \(Lf \) over \(\mathcal{F} \), and that all quantiles of excess coverage \(Lg - \hat{c}_\alpha \) are maximized over \(\mathcal{G} \) at \(g^* \). In particular, \(q_\beta(\hat{c}_\alpha; \mathcal{G}) = q_{\beta, g^*}(Lg^* - \hat{c}_\alpha) \). To calculate this, note that, under \(g^* \), \(Lg^* - \hat{c}_\alpha \) is normal with variance \(d^2\sigma^2 \) and mean

\[
Lg^* - Lf^* - d \left(\frac{\langle K(g^* - f^*), K(g^* - f^*) \rangle}{\|K(g^* - f^*)\|} \right) + z_{1-\alpha}\sigma d = \omega(\delta; \mathcal{F}, \mathcal{G}) + d(z_{1-\alpha}\sigma - \delta).
\]

The probability that this normal variable is less than or equal to \(\omega(\delta; \mathcal{F}, \mathcal{G}) \) is given by the probability that a normal variable with mean \(d(z_{1-\alpha}\sigma - \delta) \) and variance \(d^2\sigma^2 \) is less than or equal to zero, which is \(\Phi(\delta/\sigma - z_{1-\alpha}) = \beta \). Thus \(q_\beta(\hat{c}_\alpha; \mathcal{G}) = \omega(\delta; \mathcal{F}, \mathcal{G}) \) as claimed.

It remains to show that no other \(1 - \alpha \) CI can strictly improve on this. Suppose that some other \(1 - \alpha \) CI \([\tilde{c}, \infty) \) obtained a strictly shorter \(\beta \)th quantile of excess length for all \(g \in \mathcal{G} \). Applying this with \(g = g^* \), we would have, for some \(\eta > 0 \),

\[
P_{g^*}(Lg^* - \tilde{c} \leq \omega(\delta; \mathcal{F}, \mathcal{G}) - \eta) \geq \beta.
\]

Let \(\tilde{f} \) be given by a convex combination between \(g^* \) and \(f^* \) such that \(Lg^* - L\tilde{f} = \omega(\delta; \mathcal{F}, \mathcal{G}) - \eta/2 \). Then the above display gives

\[
P_{g^*}(\tilde{c} > L\tilde{f}) \geq P_{g^*}(\tilde{c} \geq L\tilde{f} + \eta/2) = P_{g^*}(Lg^* - \tilde{c} \leq Lg^* - L\tilde{f} - \eta/2) \geq \beta.
\]

But this would imply that the test that rejects when \(\tilde{c} > L\tilde{f} \) is level \(\alpha \) for \(H_0 : \tilde{f} \) and has power \(\beta \) at \(g^* \). This can be seen to be impossible by calculating the power of the Neyman-Pearson test of \(\tilde{f} \) vs \(g^* \), since \(\beta \) is the power of the Neyman-Pearson test of \(f^* \) vs \(g^* \), and \(\tilde{f} \) is a strict convex combination of these functions.
A.3 Proof of Theorem 3.3

Following Pratt (1961), note that, for any confidence set \(C \) for \(\vartheta = Lf \), we have

\[
E_g \lambda(C) = E_g \int (1 - \phi_C(\vartheta)) \, d\vartheta = \int E_g (1 - \phi_C(\vartheta)) \, d\vartheta
\]

by Fubini’s theorem, where \(\phi_C(\vartheta) = I(\vartheta \notin C) \). Thus, the CI that minimizes this inverts the family of most powerful tests of \(H_0: Lf = \vartheta, f \in F \) against \(H_1: f = g \). By Lemma A.2 since the sets \(\{f: Lf = \vartheta, f \in F\} \) and \(\{g\} \) are convex, the least favorable function \(f_\vartheta \) minimize \(\|K(g - f)\| \) subject to \(Lf = \vartheta \), which gives the first part of the theorem.

To derive the expression for expected length, note that if \(Lg \leq \vartheta \), then the minimization problem is equivalent to solving the inverse ordered modulus problem \(\omega^{-1}(\vartheta - Lg; \{g\}, F) \), and if \(Lg \geq \vartheta \), it is equivalent to solving \(\omega^{-1}(Lg - \vartheta; F, \{g\}) \). This follows because if the ordered modulus \(\omega(\delta; F, \{g\}) \) attained at some \(f_\delta^* \) and \(g \), then the inequality \(\|K(f - g)\| \leq \delta \) must be binding: otherwise a convex combination of \(\tilde{f} \) and \(f_\delta^* \), where \(\tilde{f} \) is such that \(L(g - f_\delta^*) < L(g - \tilde{f}) \) would achieve a strictly larger value, and similarly for \(\omega(\delta; \{g\}, F) \). Such \(\tilde{f} \) always exists since by the assumption that \(f_\vartheta \) exists for all \(\vartheta \). Consequently, it also follows that that the modulus and inverse modulus are strictly increasing.

Next, it follows from the proof of Theorem 3.1 that the power of the test \(\phi_\vartheta \) at \(g \) is given by \(\Phi(\delta_\vartheta/\sigma - z_{1-\alpha}) \). Therefore,

\[
E_g[\lambda(C_g(Y))] = \int \Phi \left(z_{1-\alpha} - \frac{\delta_\vartheta}{\sigma} \right) \, d\vartheta \\
= \int \int 1(\delta_\vartheta \leq \sigma(z_{1-\alpha} - z)) \, d\vartheta \, d\Phi(z),
\]

where the second line swaps the order of integration. Splitting the inner integral, using fact that \(\delta_\vartheta = \omega^{-1}(Lg - \vartheta; F, \{g\}) \) for \(\vartheta \leq Lg \) and \(\delta_\vartheta = \omega^{-1}(\vartheta - Lg; \{g\}, F) \) for \(\vartheta \geq Lg \), and taking a modulus on both sides of the inequality of the integrand then yields

\[
E_g[\lambda(C_g(Y))] = \int_{\vartheta \leq Lg} 1(\vartheta \leq \omega(\sigma(z_{1-\alpha} - z); F, \{g\})) 1(z \leq z_{1-\alpha}) \, d\vartheta \, d\Phi(z) \\
+ \int_{\vartheta > Lg} 1(\vartheta - Lg \leq \omega(\sigma(z_{1-\alpha} - z); \{g\}, F)) 1(z \leq z_{1-\alpha}) \, d\vartheta \, d\Phi(z) \\
= (1 - \alpha)E[\omega(\sigma(z_{1-\alpha} - Z); F, \{g\}) + \omega(\sigma(z_{1-\alpha} - Z); \{g\}, F)] \mid Z \leq z_{1-\alpha},
\]

where \(Z \) is standard normal, which yields the result.
Appendix B Fixed-length CIs in the bounded normal mean model

Let $Z \sim N(\mu, 1)$, with $\mu \in [-\tau, \tau]$. Consider first the problem of finding an affine estimator $\hat{\mu} = b + cY$ that maximizes the coverage of the confidence intervals $\hat{\mu} \pm \chi$, with χ given. This problem is equivalent to minimizing the maximum risk under the 0-1 loss $\ell_{0-1,\chi}(\hat{\mu}, \mu) = 1(|\hat{\mu} - \mu| \geq \chi))$. By symmetry, it is clear that $b = 0$ is optimal. The coverage of a linear estimator cZ if $c \neq 0$ is

$$1 - \sup_{|\mu| \leq \tau} E_{\mu}[\ell_{0-1,\chi}(cZ, \mu)] = \Phi \left(\frac{\tau + \chi}{c} - \tau \right) - \Phi \left(\frac{\tau - \chi}{c} - \tau \right).$$

(32)

Drees (1999) shows that the affine estimator that is minimax for the 0-1 loss is given by

$$c_{0-1,\chi}(\tau) = \begin{cases}
\left(1/2 + \sqrt{\frac{1}{4} + \frac{1}{2\tau \chi} \log \left(\frac{\tau + \chi}{\tau - \chi} \right)} \right)^{-1} & \text{if } \chi < \tau, \\
0 & \text{otherwise.}
\end{cases}$$

so that the coverage is 1 if $\chi \geq \tau$ and it is given by (32) otherwise. Hence, the shortest fixed-length $1 - \alpha$ affine confidence interval is given by $c(\tau)Z \pm \chi_{A,\alpha}(\tau)$, where $c(\tau) = c_{0-1,\chi A,\alpha}(\tau)$, and $\chi_{A,\alpha}(\tau)$ solves $E[\ell_{0-1,\chi}(c_{0-1,\chi}(\tau))] = \alpha$ if $\tau \geq \Phi^{-1}(1 - \alpha)$, and $\chi_{A,\alpha}(\tau) = \tau$ otherwise.
References

Table 1: Critical values $cv_\alpha(b)$ for selected confidence levels and values of maximum absolute bias b. For $b \geq 2$, $cv_\alpha(b) \approx b + z_{1-\alpha}$ up to 3 decimal places for these values of α.

\[
\begin{array}{cccc}
\alpha & 0.01 & 0.05 & 0.1 \\
0.0 & 2.576 & 1.960 & 1.645 \\
0.1 & 2.589 & 1.970 & 1.653 \\
0.2 & 2.626 & 1.999 & 1.677 \\
0.3 & 2.683 & 2.045 & 1.717 \\
0.4 & 2.757 & 2.107 & 1.772 \\
0.5 & 2.842 & 2.181 & 1.839 \\
0.6 & 2.934 & 2.265 & 1.916 \\
0.7 & 3.030 & 2.356 & 2.001 \\
0.8 & 3.128 & 2.450 & 2.093 \\
0.9 & 3.227 & 2.548 & 2.187 \\
1.0 & 3.327 & 2.646 & 2.284 \\
1.5 & 3.826 & 3.145 & 2.782 \\
2.0 & 4.326 & 3.645 & 3.282 \\
\end{array}
\]

Figure 1: Least favorable null and alternative functions in the simple example for the mini-max test (left), and test that directs power at constant alternatives (right).
Figure 2: Asymptotic efficiency bounds for one-sided and fixed-length confidence intervals as function of the optimal rate of convergence r under centrosymmetry. Minimax one-sided refers to ratio of β-quantile of excess length of CIs that direct power at smooth functions relative to minimax one-sided CIs given in (19). Shortest fixed-length refers the ratio of expected length of CIs that direct power at a given smooth function relative to shortest fixed-length affine CIs given in (22).
Figure 3: Least favorable function $g^*_δ, C$ that solves the modulus problem for in the class $\mathcal{F}_{RDT,2}(C)$ in the Lee (2008) RD example for different values of the smoothness parameter C. $δ = 2.49$, which is optimal for constructing minimax one-sided 95% CIs at 0.8 quantile.
Figure 4: Lee (2008) RD example: minimax MSE estimator (estimator), lower and upper limits of minimax one-sided confidence intervals for 0.8 quantile (one-sided), and fixed-length CIs (two-sided) as function of smoothness C. Effective number of observations corresponds to n_e for the minimax MSE estimator as defined in Equation (27) in the text.
Figure 5: Lee (2008) RD example: minimax MSE estimator (estimator) with two-sided CI (two-sided) as well as lower and upper limits of one-sided CIs around it as function of smoothness C. Effective number of observations corresponds to n_e for the minimax MSE estimator as defined in Equation (27) in the text.
Supplemental Materials for “Optimal inference in a class of regression models”

Timothy B. Armstrong* Yale University
Michal Kolesár† Princeton University

November 20, 2015

These supplemental materials provide appendices not included in the main text. Supplemental Appendix C gives derivations for the examples given in Sections 4 and 5. Supplemental Appendix D considers feasible versions of the procedures in Section 3 in the case with unknown error distribution and derives their asymptotic efficiency. Supplemental Appendix E gives some auxiliary results used for relative asymptotic asymptotic efficiency comparisons. Supplemental Appendix F gives the proof of Theorem 5.1. Supplemental Appendix G contains additional figures for the Lee (2008) empirical example in Section 5.

Appendix C Details for calculations in Sections 4 and 5

This section gives details for the solutions to the modulus problem described in the examples in the main text.

C.1 Unconstrained Linear Regression

For the unconstrained linear regression model of Section 4.1.1, the modulus problem (24) reduces to 2 maxθ $\ell'\theta$ s.t $\|X\theta\| \leq \delta/2$. This leads to the Lagrangian

$$2\ell'\theta + \lambda (\delta^2/4 - \theta'X'X\theta) ,$$

*email: timothy.armstrong@yale.edu
†email: mkolesar@princeton.edu
which gives the first order condition

\[2\ell - 2\lambda X'X\theta_\delta^* = 0 \implies X'X\theta_\delta^* = \ell/\lambda \implies \theta_\delta^* = (X'X)^{-1}\ell/\lambda \]

where the last implication holds assuming \(X'X \) is invertible. Using the formula for \(\hat{L}_\delta \) under translation invariance and centrosymmetry, we obtain

\[\hat{L}_\delta = \frac{\theta_\delta^*X'Y}{\theta_\delta^*X'X_{1L}} = \frac{\ell'(X'X)^{-1}X'Y}{\ell'(X'X)^{-1}X'X_{1L}} = \ell'(X'X)^{-1}X'Y. \]

C.2 Linear Regression with Elliptical Constraints

For the linear regression model with elliptical constraints considered in Section 4.1.2, the Lagrangian becomes

\[2\ell'\theta + \lambda_1 \left(\delta^2/4 - \theta'X'X\theta \right) + \lambda_2 \left(C^2 - \theta'M'M\theta \right) \]

and the first order conditions give

\[\ell - \lambda_1 X'X\theta_\delta^* - \lambda_2 M'M\theta_\delta^* = 0 \implies \theta_\delta^* = (\lambda_1 X'X + \lambda_2 M'M)^{-1}\ell \]

assuming \((\lambda_1 X'X + \lambda_2 M'M) \) is invertible. By the envelope theorem, we have \(\frac{d\omega(\delta)}{d\delta}\big|_{s=\delta^2} = \lambda_1/4 \). Using the formula for \(\hat{L}_\delta \) under centrosymmetry, this gives

\[\hat{L}_\delta = \frac{2\omega'(\delta)}{\delta} \theta_\delta^*X'Y = \lambda_1 \theta_\delta^*X'Y = \ell'(X'X + (\lambda_2/\lambda_1)M'M)^{-1}X'Y \]

where \(\lambda_1 \) and \(\lambda_2 \) depend on \(\delta \) and are given by the solution to the equations

\[\ell'(\lambda_1 X'X + \lambda_2 M'M)^{-1}M'M(\lambda_1 X'X + \lambda_2 M'M)^{-1}\ell = \theta_\delta^*M'M\theta_\delta^* = C^2 \]
\[\ell'(\lambda_1 X'X + \lambda_2 M'M)^{-1}X'X(\lambda_1 X'X + \lambda_2 M'M)^{-1}\ell = \theta_\delta^*X'X\theta_\delta^* = \delta^2/4. \]

C.3 Regression Discontinuity

This section gives the details for the solution to the modulus problem \(\omega(\delta; F_{RDT,p}) \) for the regression discontinuity parameter given in Section 5.1, which is a simple generalization of the results of Sacks and Ylvisaker (1978). It also gives details for implementing the optimal inference procedures in Section 5.3.
To describe the solution to the modulus problem, define

\[g_{b,C}(x) = g_{+,b,C}(x) - g_{-,b,C}(x), \]

where

\[g_{+,b,C}(x) = \left((b - b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j - C|x|^p)_+ - (b + b_- + \sum_{j=1}^{p-1} d_{+,j} x^j + C|x|^p)_- \right) 1(x > 0), \]

\[g_{-,b,C}(x) = \left((b + \sum_{j=1}^{p-1} d_{-,j} x^j - C|x|^p)_+ - (b + \sum_{j=1}^{p-1} d_{-,j} x^j + C|x|^p)_- \right) 1(x < 0), \]

and we use the notation \((t)_+ = \max\{t,0\} \) and \((t)_- = -\min\{t,0\} \). The solution is given by \(g_{b,C}^* = g_{b(\delta),C} \) where the coefficients \(d_+ = (d_{+,1}, \ldots, d_{+,p-1}), d_- = (d_{-,1}, \ldots, d_{-,p-1}) \), and \(b(\delta) \) and \(b_- \) solve a system of equations given below. To see that the solution must take the form \(g_{b,C}(x) \) for some \(b, b_-, d_+, d_- \), note that any function \(f_+ \) in the class \(F_{T,p} \) can be written as

\[f_+(x) = b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j + r_+(x) \]

where \(|r_+(x)| \leq C|x|^p \). Given \(b_+, d_+ \), the function \(r_+(x) \) given by \(-C|x|^p\) when \(b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j \geq C|x|^p \), \(-\left(b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j \right) \) when \(\left| b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j \right| < C|x|^p \) and \(C|x|^p \) when \(b_+ + \sum_{j=1}^{p-1} d_{+,j} x^j \leq -C|x|^p \) minimizes \(|f_+(x_i)|\) simultaneously for all \(i \). If \(r_+(x) \) did not take this form, one could strictly decrease \(\sum_{i=1}^{n} |f_-(x_i)^2/\sigma^2(x_i) + f_+(x_i)^2/\sigma^2(x_i)| \), thereby making this quantity strictly less than \(\delta^2/4 \). But this would allow for a strictly larger value off \(2(f_+(0) + f_-(0)) \) by increasing \(b_+ \) and leaving \(d_+ \) and \(r_+ \) the same. Thus, \(r_+(x) \) takes the form given above, and plugging this in to the above display shows that \(f_+(x) = g_{+,b,C}(x) \) for some \(b_+, d_+ \). Similar arguments apply for \(f_- \).

Setting up the Lagrangian for the problem with \(f \) constrained to the class of functions that take the form \(g_{b,C} \) for some \(b, b_-, d_+, d_- \), and taking first order conditions with respect to \(b_-, d_+ \) and \(d_- \) gives

\[0 = \sum_{i=1}^{n} \frac{g_{-,b,C}(x_i)}{\sigma^2(x_i)} (x_i, \ldots, x_i^{p-1})', \quad (S1) \]

\[0 = \sum_{i=1}^{n} \frac{g_{+,b,C}(x_i)}{\sigma^2(x_i)} (x_i, \ldots, x_i^{p-1})', \quad (S2) \]
and
\[\sum_{i=1}^{n} \frac{g_{+,b,c}(x_i)}{\sigma^2(x_i)} = \sum_{i=1}^{n} \frac{g_{-,b,c}(x_i)}{\sigma^2(x_i)}. \] (S3)

The constraint in (25) must be binding at the optimum, which gives the additional equation
\[\frac{\delta^2}{4} = \sum_{i=1}^{n} \frac{g_{b,c}(x_i)^2}{\sigma^2(x_i)} = b \sum_{i=1}^{n} \frac{g_{+,b,c}(x_i)}{\sigma^2(x_i)} - C \sum_{i=1}^{n} \frac{|g_{b,c}(x_i)||x_i|^p}{\sigma^2(x_i)}, \] (S4)

where the equality follows from (S1)–(S2).

To get some intuition for these conditions, note that Conditions (S1) and (S2) ensure that \(\hat{L}_\delta \hat{\delta} \) is unbiased for piecewise polynomial functions of the form \((b_+ + \sum_{j=1}^{p-1} d_+ x^j)1(x > 0) - (b_- + \sum_{j=1}^{p-1} d_- x^j)1(x < 0) \) —otherwise the bias of \(\hat{L}_\delta \) would be unbounded. Condition (S3) ensures that the weight given to observations on either side of the cutoff is the same, so that \(\hat{L}_\delta \) is unbiased for constant functions. Note also that, since \(g^*_b,c = g_{b(\delta),c} \) solves the modulus problem and gives the modulus as \(2b(\delta) \), it also gives the solution to the inverse modulus problem
\[\omega^{-1}(2b; F_{RDTP,C}) = \inf_{f_+, f_- \in F_{RDTP,C}} \sum_{i=1}^{n} \frac{f_+^2(x_i)}{\sigma^2(x_i)} + \sum_{i=1}^{n} \frac{f_-^2(x_i)}{\sigma^2(x_i)} \text{ s.t. } 2(f_+(0) + f_-(0)) \geq 2b \] (S5)

for \(b = b(\delta) \). Since the objective for the inverse modulus is strictly convex, this also shows that the solution is unique up to the values at the \(x_i \)s. Using the fact that \(F_{RDTP,C} \) is translation invariant and symmetric then yields the expression (26).

The worst-case bias and standard deviation of \(\hat{L}_{\delta, F_{RDTP,C}} \) is given by
\[\text{bias}(\hat{L}_{\delta, F_{RDTP,C}}) = -\text{bias}(\hat{L}_{\delta, F_{RDTP,C}}) = b(\delta) - \frac{\sum_{i=1}^{n} g^2_{b(\delta),c}(x_i)/\sigma^2(x_i)}{\sum_{i=1}^{n} g_{+,b(\delta),c}(x_i)/\sigma^2(x_i)}, \]
\[\text{sd}(\hat{L}_{\delta}) = \sqrt{\frac{\sum_{i=1}^{n} g^2_{b(\delta),c}(x_i)/\sigma^2(x_i)}{\sum_{i=1}^{n} g_{+,b(\delta),c}(x_i)/\sigma^2(x_i)}}. \]

To construct two-sided fixed-length CIs, we need to find \(\delta_\chi \) given in Theorem 3.2. It follows
from Equation (S4) that finding δ_χ is equivalent to finding a solution b_χ to

$$b \cdot c_\chi \left(\sqrt{\sum_{i=1}^{n} \frac{g_{b,C}(x_i)^2}{\sigma^2(x_i)}} \sum_{i=1}^{n} \frac{g_{+,b,C}(x_i)}{\sigma^2(x_i)} = \sum_{i=1}^{n} \frac{g_{b,C}(x_i)^2}{\sigma^2(x_i)} \right),$$

with the least favorable function given by $g_{b_\chi,0}$. By similar arguments, the least favorable function for MSE estimators is given by $g_{b_\rho,0}$, where b_ρ solves

$$1 = C \sum_{i=1}^{n} \frac{|g_{b,C}(x_i)| |x_i|^p}{\sigma^2(x_i)}.$$

Appendix D Unknown Error Distribution

The Gaussian regression model (8) makes the assumption of normal iid errors with a known variance conditional on the x_i's, which is often unrealistic. This section considers a model that relaxes these assumptions on the error distribution:

$$y_i = f(x_i) + u_i, \quad \{u_i\}_{i=1}^{n} \sim Q, \quad f \in F, \quad Q \in Q_n \tag{S6}$$

where Q_n denotes the set of possible joint distributions of $\{u_i\}_{i=1}^{n}$ and, as before, $\{x_i\}_{i=1}^{n}$ is deterministic and F is a convex set. Since the distribution of the data $\{y_i\}_{i=1}^{n}$ now depends on both f and Q, we now index probability statements by both of these quantities: $P_{f,Q}$ denotes the distribution under (f, Q) and similarly for $E_{f,Q}$. The coverage requirements and definitions of minimax performance criteria in Section 3 are the same, but with infima and suprema over functions f now taken over both functions f and error distributions $Q \in Q_n$. We will also consider asymptotic results. We use the notation $Z_n \xrightarrow{d,F,Q} \mathcal{L}$ to mean that Z_n converges in distribution to \mathcal{L} uniformly over $f \in F$ and $Q \in Q_n$, and similarly for $P_{f,Q}$. If the variance function is unknown, the estimator \hat{L}_{δ} is infeasible. However, we can form an estimate based on an estimate of the variance function, or based on some candidate variance function. For a (possibly data dependent) candidate variance function $\tilde{\sigma}^2(\cdot)$, let $K_{\tilde{\sigma}(\cdot),n} f = (f(x_1)/\tilde{\sigma}(x_1), \ldots, f(x_n)/\tilde{\sigma}(x_n))'$, and let $\omega_{\tilde{\sigma}(\cdot),n}(\delta)$ denote the modulus of continuity defined with this choice of K. Let $\hat{L}_{\delta,\tilde{\sigma}(\cdot)} = \hat{L}_{\delta,F,g,\tilde{\sigma}(\cdot)}$ denote the estimator defined in (12) with this choice of K and $Y = (y_1/\tilde{\sigma}(x_1), \ldots, y_n/\tilde{\sigma}(x_n))'$, and let $f^*_{\tilde{\sigma}(\cdot),\delta}$ and $g^*_{\tilde{\sigma}(\cdot),\delta}$ denote the least favorable functions used in forming this estimate. We allow δ to be data dependent as well unless stated otherwise, but leave this implicit in the notation. We assume throughout.
this section that \(\mathcal{G} \subseteq \mathcal{F} \). More generally, we will consider estimators of the form

\[
\hat{L} = a_n + \sum_{i=1}^{n} w_{i,n} y_i \tag{S7}
\]

where \(a_n \) and \(w_{i,n} \) are a (potentially data dependent) sequence and triangular array respectively. For a class \(\mathcal{G} \), define

\[
\text{bias}_{\mathcal{G}}(\hat{L}) = \sup_{f \in \mathcal{G}} \left[a_n + \sum_{i=1}^{n} w_{i,n} f(x_i) - Lf \right], \quad \text{bias}_{\mathcal{G}}(\hat{L}) = \inf_{f \in \mathcal{G}} \left[a_n + \sum_{i=1}^{n} w_{i,n} f(x_i) - Lf \right].
\]

In the case where \(a_n \) and \(w_{i,n} \) are deterministic, \(\text{bias}_{\mathcal{G}}(\hat{L}) \) and \(\text{bias}_{\mathcal{G}}(\hat{L}) \) give the worst-case bias on each side over the class \(\mathcal{G} \), which matches the definition in Section 3. However, with random \(a_n \) and \(w_{i,n} \), \(\text{bias}_{\mathcal{G}}(\hat{L}) \) and \(\text{bias}_{\mathcal{G}}(\hat{L}) \) are random and no longer give the worst-case bias. The arguments used to derive the formula (13) extend to this definition of \(\text{bias}_{\mathcal{G}} \), so that

\[
\text{bias}_{\mathcal{F}}(\hat{L}, \tilde{\sigma}) = \sup_{f \in \mathcal{F}, Q \in Q_n} \left[a_n + \sum_{i=1}^{n} w_{i,n} f(x_i) - Lf \right], \quad \text{bias}_{\mathcal{F}}(\hat{L}, \tilde{\sigma}) = \inf_{f \in \mathcal{F}, Q \in Q_n} \left[a_n + \sum_{i=1}^{n} w_{i,n} f(x_i) - Lf \right].
\]

Suppose that an estimate \(\hat{s}_n \) of the standard deviation of \(\hat{L} \) is available such that the uniform central limit theorem

\[
\sum_{i=1}^{n} w_{i,n} u_i \xrightarrow{d,F,Q_n} N(0,1) \tag{S8}
\]

holds. Using these quantities, one can form analogues of the CIs treated in Theorem 3.4, where the worst-case bias and standard deviation are replaced by \(\text{bias}_{\mathcal{F}}(\hat{L}) \) and \(\hat{s}_n \). The following theorem shows that this gives asymptotically valid CIs.

Theorem D.1. Let \(\hat{L} \) be an estimator of the form (S7), and suppose that (S8) holds. Let \(\hat{c} = \hat{L} - \text{bias}_{\mathcal{F}}(\hat{L}) - \hat{s}_n z_{1-\alpha} \), and let \(b = \max\{ |\text{bias}_{\mathcal{F}}(\hat{L})|, |\text{bias}_{\mathcal{F}}(\hat{L})| \} \). Then

\[
\liminf_{n \to \infty} \inf_{f \in \mathcal{F}, Q \in Q_n} P_{f,Q} (Lf \in [\hat{c}, \infty)) \geq 1 - \alpha \tag{S9}
\]

and

\[
\liminf_{n \to \infty} \inf_{f \in \mathcal{F}, Q \in Q_n} P_{f,Q} \left(Lf \in \left\{ \hat{L} \pm \hat{s}_n \text{cv}_{\alpha} (b/\hat{s}_n) \right\} \right) \geq 1 - \alpha.
\]

If, in addition,

\[
\frac{\text{bias}_{\mathcal{F}}(\hat{L}) - \text{bias}_{\mathcal{F}}(\hat{L})}{\hat{s}_n} \xrightarrow{p,F, Q_n} 0, \quad \frac{\text{bias}_{\mathcal{G}}(\hat{L}) - \text{bias}_{\mathcal{G}}(\hat{L})}{\hat{s}_n} \xrightarrow{p,F, Q_n} 0, \quad \frac{\hat{s}_n}{\hat{s}_n} \xrightarrow{p,F, Q_n} 1 \tag{S10}
\]
for some nonrandom sequences \(\overline{\text{bias}}_{n,Q}, \text{bias}_{n,Q} \) and \(s_{n,Q} \), then the same statements hold with \(\overline{\text{bias}}_{n,Q}, \text{bias}_{n,Q} \) and \(s_{n,Q} \) replacing \(\overline{\text{bias}}_{F}(\hat{L}), \text{bias}_{G}(\hat{L}) \) and \(\tilde{s}_n \). In addition, the worst-case \(\beta \)th quantile excess length of the one-sided CI over \(\mathcal{G} \) will satisfy

\[
\limsup_{n \to \infty} \sup_{Q \in \mathcal{Q}_n} \sup_{g \in \mathcal{G}} q_{g,Q,\beta} (\hat{c} - L_g) \leq 1 \tag{S11}
\]

and the length of the two-sided CI will satisfy

\[
\frac{\overline{c}_{\alpha} (b/\hat{s}_n)}{\overline{c}_{\alpha} (b_{n,Q}/s_{n,Q})} s_{n,Q} \xrightarrow{p} 1
\]

where \(b_{n,Q} = \max\{|\overline{\text{bias}}_{n,Q}|, |\text{bias}_{n,Q}|\} \). If (S10) holds with

\[
\overline{\text{bias}}_{n,Q} = -\text{bias}_{n,Q} = \frac{1}{2} \left(\omega_{\sigma_Q(\cdot),n}(z_{1-\alpha} + z_{\beta}) - (z_{1-\alpha} + z_{\beta}) \omega'_{\sigma_Q(\cdot),n}(z_{1-\alpha} + z_{\beta}) \right),
\]

\[
s_{n,Q} = \omega'_{\sigma_Q(\cdot),n}(z_{1-\alpha} + z_{\beta}) \tag{S12}
\]

where \(\sigma_Q^2(x_i) = \text{var}_Q(u_i) \) and, for each \(n \), there exists a \(Q_n \in \mathcal{Q}_n \) such that \(\{u_i\}_{i=1}^n \) are independent and normal under \(Q_n \), then no one-sided CI satisfying (S9) can satisfy (S11) with the constant \(1 \) replaced by a strictly smaller constant on the right hand side.

Proof. Let \(Z_n = \sum_{i=1}^n w_{i,n} u_i / \hat{s}_n \), and let \(Z \) denote a standard normal random variable. To show asymptotic coverage of the one-sided CI, note that

\[
P_{f,Q} (Lf \in (\hat{c}, \infty)) = P_{f,Q} (\hat{s}_n z_{1-\alpha} \geq \hat{L} - Lf - \overline{\text{bias}}_F(\hat{L})) \geq P_{f,Q} (z_{1-\alpha} \geq Z_n)
\]

using the fact that \(\overline{\text{bias}}_F(\hat{L}) + \sum_{i=1}^n w_{i,n} u_i \geq \hat{L} - Lf \) for all \(f \in \mathcal{F} \) by the definition of \(\overline{\text{bias}}_F \). The right hand side converges to \(1 - \alpha \) uniformly over \(f \in \mathcal{F} \) and \(Q \in \mathcal{Q}_n \) by (S8). For coverage of the two-sided CI, note that \((\hat{L} - Lf)/\hat{s}_n = Z_n + s \) where \(s = (a_n + \sum_{i=1}^n w_{i,n} f(x_i) - Lf) / \hat{s}_n \), and \(|s| \leq b/\hat{s}_n \) by definition. Hence,

\[
P_{f,Q} \left(Lf \in \left\{ \hat{L} \pm \overline{c}_{\alpha} (b/\hat{s}_n) \hat{s}_n \right\} \right) = P_{f,Q} \left(\left| \hat{L} - Lf \right| / \hat{s}_n \leq \overline{c}_{\alpha} (b/\hat{s}_n) \right) \\
\geq \inf_{|s| \leq t} P_{f,Q} (|Z_n + s| \leq \overline{c}_{\alpha}(t)).
\]
By definition of \(cv_\alpha \), the difference between the last probability and \(1 - \alpha \) is bounded by

\[
\left| \inf_{|s| \leq t} P_{f,Q} (|Z_n + s| \leq cv_\alpha(t)) - \inf_{|s| \leq t} P (|Z + s| \leq cv_\alpha(t)) \right|
\leq \sup_{c,d} |P_{f,Q} (c \leq Z_n \leq d) - P (c \leq Z \leq d)|,
\]

which converges to zero uniformly over \(f \in \mathcal{F} \) and \(Q \in \mathcal{Q}_n \) (using the fact that convergence in distribution to a continuous distribution implies uniform convergence of the cdfs; see Lemma 2.11 in van der Vaart 1998). Similar arguments apply under (S10) with \(\bar{\text{bias}}_{n,Q}, \text{bias}_{n,Q} \) and \(s_{n,Q} \) replacing \(\text{bias}_{\mathcal{F}}(\hat{L}), \text{bias}_{G}(\hat{L}) \) and \(\hat{\sigma}_n \).

To show (S11), note that,

\[
Lg - \hat{c} = Lg - a_n - \sum_{i=1}^{n} w_i g(x_i) - \hat{\sigma}_n Z_n + \bar{\text{bias}}_{\mathcal{F}}(\hat{L}) + \hat{\sigma}_n z_{1-\alpha}
\leq \text{bias}_{\mathcal{F}}(\hat{L}) - \text{bias}_{G}(\hat{L}) + \hat{\sigma}_n (z_{1-\alpha} - Z_n)
\]

for any \(g \in \mathcal{G} \). Thus,

\[
\frac{Lg - \hat{c}}{\text{bias}_{n,Q} - \text{bias}_{n,Q} + s_{n,Q}(z_{1-\alpha} + z_\beta)} - 1 \leq \frac{\text{bias}_{\mathcal{F}}(\hat{L}) - \text{bias}_{G}(\hat{L}) - \text{bias}_{n,Q} + \hat{\sigma}_n (z_{1-\alpha} - Z_n) - (z_{1-\alpha} + z_\beta)}{(\text{bias}_{n,Q} - \text{bias}_{n,Q})/s_{n,Q} + (z_{1-\alpha} + z_\beta)}.
\]

The \(\beta \) quantile of the above display converges to 0 uniformly over \(f \in \mathcal{F} \) and \(Q \in \mathcal{Q}_n \), which gives the result. For convergence of the relative length of the two-sided CIs, note that

\[
\frac{\text{cv}_\alpha(b/\hat{\sigma}_n) \hat{\sigma}_n}{\text{cv}_\alpha(b_{n,Q}/s_{n,Q}) s_{n,Q}} - 1 = \frac{\text{cv}_\alpha(b/\hat{\sigma}_n) - \text{cv}_\alpha(b_{n,Q}/s_{n,Q}) + \text{cv}_\alpha(b_{n,Q}/s_{n,Q}) (1 - s_{n,Q}/\hat{\sigma}_n)}{\text{cv}_\alpha(b_{n,Q}/s_{n,Q}) (s_{n,Q}/\hat{\sigma}_n)}
\]

which converges to zero uniformly over \(f \in \mathcal{F}, Q \in \mathcal{Q}_n \) since \(\text{cv}_\alpha(t) \) is bounded from below and uniformly continuous with respect to \(t \).

For the last statement, let \([\hat{c}, \infty)\) be a sequence of CIs with asymptotic coverage \(1 - \alpha \). Let \(Q_n \) be the distribution from the conditions in the theorem, in which the \(u_i \)'s are independent.
and normal. Then, by Theorem 3.1,

$$\sup_{g \in \mathcal{F}} q_{f,Q_n,\beta}(\tilde{c} - L_g) \geq \omega_{\sigma_{Q_n}(\cdot),n}(\tilde{\delta}_n),$$

where \(\tilde{\delta}_n = z_1 - \alpha_n + z_\beta\) and \(1 - \alpha_n\) is the coverage of \([\tilde{c}, \infty)\) over \(\mathcal{F}, Q_n\). Under (S12), the denominator in (S11) for \(Q = Q_n\) is equal to \(\omega_{\sigma_{Q_n}(\cdot),n}(z_1 - \alpha + z_\beta)\), which gives

$$\sup_{g \in G} q_{g,Q_n,\beta}(\hat{c} - L_g) \geq \frac{\omega_{\sigma_{Q_n}(\cdot),n}(z_1 - \alpha_n + z_\beta)}{\omega_{\sigma_{Q_n}(\cdot),n}(z_1 - \alpha + z_\beta)} \cdot (z_1 - \alpha_n + z_\beta),$$

where \(\tilde{\delta}_n = z_1 - \alpha_n + z_\beta\) and \(1 - \alpha_n\) is the coverage of \([\tilde{c}, \infty)\) over \(\mathcal{F}, Q_n\). If \(\alpha_n \leq \alpha\), then \(z_1 - \alpha_n + z_\beta \geq z_1 - \alpha - z_\beta\) so that the above display is greater than one by monotonicity of the modulus. If not, then by concavity, \(\omega_{\sigma_{Q_n}(\cdot),n}(z_1 - \alpha_n + z_\beta) \geq \left[\frac{\omega_{\sigma_{Q_n}(\cdot),n}(z_1 - \alpha + z_\beta)}{(z_1 - \alpha_n + z_\beta)}\right] \cdot (z_1 - \alpha_n + z_\beta)\), so the above display is bounded from below by \((z_1 - \alpha_n + z_\beta)/(z_1 - \alpha + z_\beta)\), and the lim inf of this is at least one by the coverage requirement.

The efficiency bounds in Theorem D.1 use the assumption that the class of possible distributions contains a normal law, as is often done in the literature on efficiency in non-parametric settings (see, e.g., Fan, 1993, pp. 205-206). We leave the topic of relaxing this assumption for future research.

Theorem D.1 gives a high level result that allows for different estimators or guesses of the variance function \(\hat{\sigma}(\cdot)\) used when forming \(\hat{L}_{\delta,\hat{\sigma}(\cdot),n}\), as well as different choices for the estimate \(\hat{s}_n^2\) of the variance of the estimator. The best choices will depend on the particulars of the situation. If the variance function is difficult to estimate, one can compromise by choosing \(\hat{\sigma}(\cdot)\) to be a constant function such as an estimate of the average of the variance function or an estimate of the variance function at a particular point. In forming the standard error \(\hat{s}_n\), one can use the formula \(\omega'_{\hat{\sigma}(\cdot),n}(\delta)\) from Theorem 3.1 if \(\hat{\sigma}(\cdot)\) is a good enough estimate of the variance function. If not, one can use a heteroskedasticity consistent variance estimator. This mirrors the situation in the special case where \(\mathcal{F}\) imposes a (otherwise unconstrained) linear model: one can use OLS or feasible weighted least squares. In the former case, one must use a sandwich variance estimator if there is heteroskedasticity. In the latter case, one need not use the sandwich variance estimator if the conditional variance can be estimated well enough, although one may want to use it anyway to guard against misspecification in the conditional variance estimator. This approach has been proposed, for instance, in Wooldridge (2010).\(^1\)

\(^1\)See also Romano and Wolf (2015) for a recent discussion of these issues in the context of the unconstrained linear model.
With this in mind, we now introduce an estimator and standard error formula that give asymptotic coverage for essentially arbitrary statistics L under generic conditions on F and the x_i's. The estimator is based on a nonrandom guess for the variance function and, if this guess is correct up to scale (e.g. if the researcher correctly guesses that the errors are homoskedastic), the one-sided CI based on this estimator will be asymptotically optimal for some quantile of excess length.

Let $\tilde{\sigma}(\cdot)$ be some nonrandom guess for the variance function bounded away from 0 and ∞, and let $\delta > 0$ be a deterministic constant specified by the researcher. Let \hat{f} be an estimator of f. The variance of $L_{\delta,\tilde{\sigma}(\cdot)}$ under some $Q \in Q_n$ is equal to

$$\text{var}_{Q}(L_{\delta,\tilde{\sigma}(\cdot),n}) = \left(\frac{\omega'_{\tilde{\sigma}(\cdot),n}(\delta)}{\delta}\right)^2 \sum_{i=1}^{n} \frac{(g_{\tilde{\sigma}(\cdot),\delta}^*(x_i) - f_{\tilde{\sigma}(\cdot),\delta}^*(x_i))^2 \sigma^2 Q(x_i)}{\tilde{\sigma}^4(x_i)}.$$

We consider the estimate

$$\hat{\text{se}}^2_{\delta,\tilde{\sigma}(\cdot),n} = \left(\frac{\omega'_{\tilde{\sigma}(\cdot),n}(\delta)}{\delta}\right)^2 \sum_{i=1}^{n} \frac{(g_{\tilde{\sigma}(\cdot),\delta}^*(x_i) - f_{\tilde{\sigma}(\cdot),\delta}^*(x_i))^2 (y_i - \hat{f}(x_i))^2}{\tilde{\sigma}^4(x_i)}.$$

Suppose that $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is a metric space with metric d_X such that the functions $f_{\tilde{\sigma}(\cdot),\delta}^*$ and $g_{\tilde{\sigma}(\cdot),\delta}^*$ satisfy the uniform continuity condition

$$\sup_{n} \sup_{x,x' : d_X(x,x') \leq \eta} \max \left\{ |f_{\tilde{\sigma}(\cdot),\delta}^*(x) - f_{\tilde{\sigma}(\cdot),\delta}^*(x')|, |g_{\tilde{\sigma}(\cdot),\delta}^*(x) - g_{\tilde{\sigma}(\cdot),\delta}^*(x')| \right\} \leq \overline{g}(\eta), \quad (S13)$$

where $\lim_{\eta \to 0} \overline{g}(\eta) = 0$ and, for all $\eta > 0$,

$$\min_{1 \leq i \leq n} \sum_{j=1}^{n} I (d_X(x_j, x_i) \leq \eta) \to \infty. \quad (S14)$$

We also assume that the estimator \hat{f} used to form the variance estimate satisfies the uniform convergence condition

$$\sup_{f \in \mathcal{F}} \max_{1 \leq i \leq n} |\hat{f}(x_i) - f(x_i)| \xrightarrow{p} 0. \quad (S15)$$

Finally, we impose conditions on the moments of the error distribution. Suppose that there exist K and $\eta > 0$ such that, for all n, $Q \in Q_n$, the errors $\{u_i\}_{i=1}^{n}$ are independent with, for
each i,

$$1/K \leq \sigma^2_{Q}(x_i) \leq K \quad \text{and} \quad E_Q|u_i|^{2+\eta} \leq K.$$ \hfill (S16)

In cases where function class \mathcal{F} imposes smoothness on f, (S13) will often follow directly from the definition of \mathcal{F}. For example, it holds for the Lipschitz class $\{f : |f(x) - f(x')| \leq Cd_x(x, x')\}$. The condition (S14) will hold with probability one if the x_i’s are sampled from a distribution with density bounded away from zero on a sufficiently regular bounded support. The condition (S15) will hold under regularity conditions for a variety of choices of \hat{f}. It is worth noting that smoothness assumptions \mathcal{F} needed for this assumption are typically weaker than those needed for asymptotic equivalence with Gaussian white noise. For example, if $\mathcal{X} = \mathbb{R}^k$ with the Euclidean norm, (S13) will hold automatically for Hölder classes with exponent less than or equal to 1, while equivalence with Gaussian white noise requires that the exponent be greater than $k/2$ (see Brown and Zhang, 1998).

The condition (S16) is used to verify a Lindeberg condition for the central limit theorem used to obtain (S8), which we do in the next Lemma.

Lemma D.1. Let $Z_{n,i}$ be a triangular array of independent random variables and let $a_{n,j}$, $1 \leq j \leq n$ be a triangular array of constants. Suppose that there exist constants K and $\eta > 0$ such that, for all i,

$$1/K \leq \sigma^2_{n,i} \leq K \quad \text{and} \quad E|Z_{n,i}|^{2+\eta} \leq K$$

where $\sigma^2_{n,i} = EZ^2_{n,i}$, and that

$$\lim_{n \to \infty} \max_{1 \leq j \leq n} \frac{a_{n,j}^2}{\sum_{j=1}^{n} a_{n,j}^2} = 0.$$

Then

$$\frac{\sum_{i=1}^{n} a_{n,i} Z_{n,i}}{\sqrt{\sum_{i=1}^{n} a_{n,i}^2 \sigma^2_{n,i}}} \overset{d}{\to} N(0, 1).$$

Proof. We verify the conditions of the Lindeberg-Feller theorem as stated on p. 116 in Durrett (1996), with $X_{n,i} = a_{n,i} Z_{n,i}/\sqrt{\sum_{j=1}^{n} a_{n,j}^2 \sigma^2_{j}}$. To verify the Lindeberg condition, note
Let \(\sum_{i=1}^{n} E \left(|X_{n,m}|^2 I(|X_{n,m}| > \varepsilon) \right) = \frac{\sum_{i=1}^{n} E \left[|a_{n,i}Z_{n,i}|^2 I \left(|a_{n,i}Z_{n,i}| > \varepsilon \sqrt{\sum_{j=1}^{n} a_{n,j}^2 \sigma_j^2} \right) \right]}{\sum_{i=1}^{n} a_{n,i}^2 \sigma_{n,i}^2} \leq \frac{\sum_{i=1}^{n} E \left(|a_{n,i}Z_{n,i}|^{2+\eta} \right)}{\varepsilon^{\eta} \left(\sum_{i=1}^{n} a_{n,i}^2 \sigma_{n,i}^2 \right)^{1+\eta/2}} \leq \frac{K^{2+\eta/2}}{\varepsilon^{\eta}} \left(\sum_{i=1}^{n} a_{n,i}^2 \right)^{1+\eta/2} \leq \frac{K^{2+\eta/2}}{\varepsilon^{\eta}} \left(\max_{1 \leq i \leq n} a_{n,i}^2 \right)^{1+\eta/2}.

This converges to zero under the conditions of the lemma. \(\square \)

Theorem D.2. Let \(\hat{L}_{\delta,\tilde{\sigma}(\cdot)} \) and \(\tilde{s}_{\delta,\tilde{\sigma}(\cdot),n}^2 \) be defined above. Suppose that, for each \(n \), \(f^*_{\tilde{\sigma}(\cdot),\delta} \) \(g^*_{\tilde{\sigma}(\cdot),\delta} \) achieve the modulus under \(\tilde{\sigma}(\cdot) \) with \(\|K_{\tilde{\sigma}(\cdot),n}(g^*_{\tilde{\sigma}(\cdot),\delta} - f^*_{\tilde{\sigma}(\cdot),\delta})\| = \delta \), and that (S13) and (S14) hold. Suppose the errors satisfy (S16) and are independent over \(i \) for all \(n \) and \(Q \in Q_n \). Then (S8) holds with \(\tilde{s}_{e,n} \) given by \(\var_Q(\hat{L}_{\delta,\tilde{\sigma}(\cdot)}) \). If, in addition, the estimator \(\hat{f} \) satisfies (S15), then \(\tilde{s}_{e,n}^2 / \var_Q(\hat{L}_{\delta,\tilde{\sigma}(\cdot)}) \overset{p}{\rightarrow} 1 \) and (S8) holds with \(\tilde{s}_{e,n} \) given by \(\tilde{s}_{e,n}^2 / \var_Q(\hat{L}_{\delta,\tilde{\sigma}(\cdot)}) \).

Proof. The first part of the theorem will follow by applying Lemma D.1 to show convergence under arbitrary sequences \(Q_n \in Q_n \) so long as

\[
\max_{1 \leq i \leq n} \frac{\left(g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i) \right)^2}{\sum_{i=1}^{n} (f^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - g^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 / \tilde{\sigma}(x_i)^4} \rightarrow 0.
\]

Since the denominator is bounded from below by \(\tilde{\sigma}^2 / \max_{1 \leq i \leq n} \tilde{\sigma}^2(x_i) \) and \(\tilde{\sigma}^2(x_i) \) is bounded away from 0 and \(\infty \) over \(i \), it suffices to show that \(\max_{1 \leq i \leq n} (g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 \rightarrow 0 \). To this end, suppose, to the contrary, that there exists some \(c > 0 \) such that \(\max_{1 \leq i \leq n} (g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 > c^2 \) infinitely often. Let \(\eta \) be small enough so that \(\tilde{\sigma}(\eta) \leq c/4 \). Then, for \(n \) such that this holds and \(k_n \) achieving this maximum,

\[
\sum_{i=1}^{n} (g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 \geq \sum_{i=1}^{n} (c - c/2)^2 I(d_X(x_i, x_{k_n}) \leq \eta) \rightarrow \infty.
\]

But this is a contradiction since \(\sum_{i=1}^{n} (g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 \) is bounded by a constant times \(\sum_{i=1}^{n} (g^*_{\tilde{\sigma}(\cdot),\delta}(x_i) - f^*_{\tilde{\sigma}(\cdot),\delta}(x_i))^2 / \tilde{\sigma}^2(x_i) = \delta^2 \).

To show convergence of \(\tilde{s}_{e,n}^2 / \var_Q(\hat{L}_{\delta,\tilde{\sigma}(\cdot)}) \), note that

\[
\frac{\tilde{s}_{e,n}^2}{\var_Q(\hat{L}_{\delta,\tilde{\sigma}(\cdot)})} - 1 = \frac{\sum_{i=1}^{n} a_{n,i} \left[(y_i - \hat{f}(x_i))^2 - \sigma_Q^2(x_i) \right]}{\sum_{i=1}^{n} a_{n,i} \sigma_Q^2(x_i)}
\]
where \(a_{n,i} = \frac{(g_{\hat{\alpha}},d(x_i) - f_{\hat{\alpha}},d(x_i))^2}{\hat{\sigma}^2(x_i)} \). Since the denominator is bounded from below by a constant times \(\sum_{i=1}^{n} a_{n,i} \hat{\sigma}^2(x_i) = \delta^2 \), it suffices to show that the numerator, which can be written as

\[
\sum_{i=1}^{n} a_{n,i} [u_i^2 - \sigma_Q(x_i)^2] + \sum_{i=1}^{n} a_{n,i} (f(x_i) - \hat{f}(x_i))^2 + 2 \sum_{i=1}^{n} a_{n,i} u_i (f(x_i) - \hat{f}(x_i)),
\]

converges in probability to zero uniformly over \(f \) and \(Q \). The second term is bounded by a constant times \(\max_{1 \leq i \leq n} (f(x_i) - \hat{f}(x_i))^2 \sum_{i=1}^{n} a_{n,i} \hat{\sigma}^2(x_i) = \max_{1 \leq i \leq n} (f(x_i) - \hat{f}(x_i))^2 \delta^2 \), which converges in probability to zero uniformly over \(f \) and \(Q \) by assumption. Similarly, the last term is bounded by \(\max_{1 \leq i \leq n} |f(x_i) - \hat{f}(x_i)| \) times \(2 \sum_{i=1}^{n} a_{n,i} |u_i| \), and the expectation of the latter term is bounded uniformly over \(\mathcal{F} \) and \(\mathcal{Q} \). Thus, the last term converges in probability to zero uniformly over \(f \) and \(Q \) as well. For the first term in this display, an inequality of von Bahr and Esseen (1965) shows that the expectation of the absolute \(1 + \eta/2 \) moment of this term is bounded by a constant times

\[
\sum_{i=1}^{n} a_{n,i}^{1+\eta/2} E_Q |u_i^2 - \sigma_Q(x_i)^2|^{1+\eta/2} \leq \left(\max_{1 \leq i \leq n} a_{n,i}^{\eta/2} \right) \max_{1 \leq i \leq n} E_Q |\varepsilon_i^2 - \sigma_Q^2(x_i)|^{1+\eta/2} \sum_{i=1}^{n} a_{n,i},
\]

which converges to zero since \(\max_{1 \leq i \leq n} a_{n,i} \to 0 \) as shown earlier in the proof and \(\sum_{i=1}^{n} a_{n,i} \) is bounded by a constant times \(\sum_{i=1}^{n} a_{n,i} \hat{\sigma}^2(x_i) = \delta^2 \).

If the variance function used by the researcher is correct up to scale (for example, if the variance function is known to be constant), the one-sided confidence intervals in (D.2) will be asymptotically optimal for some level \(\beta \), which depends on \(\delta \) and the magnitude of the true error variance relative to the one used by the researcher. We record this as a corollary.

Corollary D.1. If, in addition to the conditions in Theorem D.2, \(\sigma_Q^2(x) = \sigma^2 \cdot \hat{\sigma}^2(x) \) for all \(n \) and \(Q \in \mathcal{Q}_n \), then (S10) and (S12) hold with \(\beta = \Phi(\delta/\sigma - z_{1-\alpha}) \).

Appendix E Asymptotics for the Modulus and Efficiency Bounds

As discussed in Section 3, asymptotic relative efficiency comparisons can often be performed by calculating the limit of the scaled modulus. Here, we state some lemmas that can be used to obtain asymptotic efficiency bounds and limiting behavior of the value of \(\delta \) that
optimizes a particular performance criterion. We use these results in the proof of Theorem 5.1 in Supplemental Appendix F.

Before stating these results, we recall the characterization of minimax affine performance given in Donoho (1994), which we restated in Theorem 3.2: the optimal affine minimax root MSE is given by

$$\frac{\omega(\delta_\rho)}{\delta_\rho} \sqrt{\rho_A \left(\frac{\delta_\rho}{2\sigma} \right) \sigma},$$

and is achieved by L_{δ_ρ}, where δ_ρ solves $c_\rho(\delta/(2\sigma)) = \delta \omega'(\delta)/\omega(\delta)$, assuming a solution exists. Donoho (1994) shows that, when this holds, δ_ρ maximizes the above display over all values of $\delta > 0$, so that the minimax root MSE is given by

$$\sup_{\delta > 0} \frac{\omega(\delta)}{\delta} \sqrt{\rho_A \left(\frac{\delta}{2\sigma} \right) \sigma}.$$

Similarly, the optimal fixed-length affine CI has half length

$$\sup_{\delta > 0} \frac{\omega(\delta)}{\delta} \chi_{A,\alpha} \left(\frac{\delta}{2\sigma} \right) \sigma,$$

and is centered at \hat{L}_{δ_χ} where δ_χ maximizes the above display. The results below give the limiting behavior of these quantities as well as the bound on expected length in Corollary 3.3 under pointwise convergence of a sequence of functions $\omega_n(\delta)$ that satisfy the conditions of a modulus scaled by a sequence of constants.

Lemma E.1. Let $\omega_n(\delta)$ be a sequence of concave nondecreasing nonnegative functions on $[0, \infty)$ and let $\omega_\infty(\delta)$ be a concave nondecreasing function on $[0, \infty)$ with range $[0, \infty)$. Then the following are equivalent.

(i) For all $\delta > 0$, $\lim_{n \to \infty} \omega_n(\delta) = \omega_\infty(\delta)$.

(ii) For all $b \in (0, \infty)$, b is in the range of ω_n for large enough n, and $\lim_{n \to \infty} \omega_n^{-1}(b) = \omega_\infty^{-1}(b)$.

(iii) For any $\bar{\delta} > 0$, $\lim_{n \to \infty} \sup_{0 < \delta \leq \bar{\delta}} |\omega_n(\delta) - \omega_\infty(\delta)| = 0$.

Proof. Clearly $(iii) \implies (i)$. To show $(i) \implies (iii)$, given $\varepsilon > 0$, let $0 < \delta_1 < \delta_2 < \ldots < \delta_k = \bar{\delta}$ be such that $\omega(\delta_j) - \omega(\delta_{j-1}) \leq \varepsilon$ for each j. Then, using monotonicity of ω_n and ω_∞, we
have $\sup_{\delta \in [0, \delta]} |\omega_n(\delta) - \omega_\infty(\delta)| \leq \max\{|\omega_n(\delta_1)|, |\omega_n(0) - \omega_\infty(\delta_1)|\} \to \omega_\infty(\delta_1)$ and

$$\sup_{\delta \in [\delta_{j-1}, \delta_j]} |\omega_n(\delta) - \omega_\infty(\delta)| \leq \max\{|\omega_n(\delta_j) - \omega_\infty(\delta_{j-1})|, |\omega_n(\delta_{j-1}) - \omega_\infty(\delta_j)|\}$$

$$\to |\omega_\infty(\delta_{j-1}) - \omega_\infty(\delta_j)| \leq \varepsilon.$$

The result follows since ε can be chosen arbitrarily small. To show $(i) \implies (ii)$, let δ_ℓ and δ_u be such that $\omega_\infty(\delta_\ell) < b < \omega_\infty(\delta_u)$. For large enough n, we will have $\omega_n(\delta_\ell) < b < \omega_n(\delta_u)$ so that b will be in the range of ω_n and $\delta_\ell < \omega_\infty^{-1}(b) < \delta_u$. Since ω_∞ is strictly increasing, δ_ℓ and δ_u can be chosen arbitrarily close to $\omega_\infty^{-1}(b)$, which gives the result. To show $(ii) \implies (i)$, let b_ℓ and b_u be such that $\omega_\infty^{-1}(b_\ell) < \delta < \omega_\infty^{-1}(b_u)$. Then, for large enough n, $\omega_n^{-1}(b_\ell) < \delta < \omega_n^{-1}(b_u)$, so that $b_\ell < \omega_n(\delta) < b_u$, and the result follows since b_ℓ and b_u can be chosen arbitrarily close to $\omega_\infty(\delta)$ since ω_∞^{-1} is strictly increasing.

Lemma E.2. Suppose that the conditions of Lemma E.1 hold with $\lim_{\delta \to 0} \omega_\infty(\delta) = 0$ and $\lim_{\delta \to \infty} \omega_\infty(\delta) / \delta = 0$. Let r be a nonnegative function with $0 \leq r(\delta/2) \leq \overline{\sigma} \min\{\delta, 1\}$ for some $\overline{\sigma} < \infty$. Then

$$\lim_{n \to \infty} \sup_{\delta > 0} \frac{\omega_n(\delta)}{\delta} r\left(\frac{\delta}{2}\right) = \sup_{\delta > 0} \frac{\omega_\infty(\delta)}{\delta} r\left(\frac{\delta}{2}\right).$$

If, in addition r is continuous, $\frac{\omega_\infty(\delta)}{\delta} r\left(\frac{\delta}{2}\right)$ has a unique maximizer δ^*, and, for each n, δ_n maximizes $\frac{\omega_n(\delta)}{\delta} r\left(\frac{\delta}{2}\right)$, then $\delta_n \to \delta^*$ and $\omega_n(\delta_n) \to \omega_\infty(\delta^*)$. In addition, for any $\sigma > 0$ and $0 < \alpha < 1$ and Z a standard normal variable,

$$\lim_{n \to \infty} (1 - \alpha)E[\omega_n(2\sigma(z_{1-\alpha} - Z)) \mid Z \leq z_{1-\alpha}] = (1 - \alpha)E[\omega_\infty(2\sigma(z_{1-\alpha} - Z)) \mid Z \leq z_{1-\alpha}].$$

Proof. We will show that the objective can be made arbitrarily small for δ outside of $[\underline{\delta}, \overline{\delta}]$ for $\underline{\delta}$ small enough and $\overline{\sigma}$ large enough, and then use uniform convergence over $[\underline{\delta}, \overline{\delta}]$. First, note that, if we choose $\underline{\delta} < 1$, then, for $\delta \leq \underline{\delta}$,

$$\frac{\omega_n(\delta)}{\delta} r\left(\frac{\delta}{2}\right) \leq \omega_n(\delta) \overline{\sigma} \leq \omega_n(\delta) \overline{\sigma} \to \omega_\infty(\delta),$$

which can be made arbitrarily small by making $\underline{\delta}$ small. Since $\omega_n(\delta)$ is concave and nonneg-
ative, $\omega_n(\delta)/\delta$ is nonincreasing, so, for $\delta > \bar{\delta}$,

$$
\frac{\omega_n(\delta)}{\delta} r \left(\frac{\delta}{2} \right) \leq \frac{\omega_n(\delta) r}{\delta} \leq \frac{\omega_\infty(\delta) r}{\delta} \to \frac{\omega_\infty(\bar{\delta}) r}{\delta},
$$

which can be made arbitrarily small by making $\bar{\delta}$ large. Applying Lemma E.1 to show convergence over $[\delta, \bar{\delta}]$ gives the first claim. The second claim follows since δ and $\bar{\delta}$ can be chosen so that $\delta_n \in [\delta, \bar{\delta}]$ for large enough n (the assumption that $\frac{\omega_\infty(\delta)}{\delta} r \left(\frac{\delta}{2} \right)$ has a unique maximizer means that it is not identically zero), and uniform convergence to a continuous function with a unique maximizer on a compact set implies convergence of the sequence of maximizers to the maximizer of the limiting function.

For the last statement, note that, by positivity and concavity of ω_n, we have, for large enough n, $0 \leq \omega_n(\delta) \leq \omega_n(1) \max\{\delta, 1\} \leq (\omega_n(1) + 1) \max\{\delta, 1\}$ for all $\delta > 0$. The result then follows from the dominated convergence theorem. □

Lemma E.3. Let $\omega_n(\delta)$ be a sequence of nonnegative concave functions on $[0, \infty)$ and let $\omega_\infty(\delta)$ be a nonnegative concave differentiable function on $[0, \infty)$. Let $\delta_0 > 0$ and suppose that $\omega_n(\delta) \to \omega_\infty(\delta)$ for all δ in a neighborhood of δ_0. Then, for any sequence $d_n \in \partial \omega_n(\delta_0)$, we have $d_n \to \omega_n'(\delta_0)$. In particular, if $\omega_n(\delta) \to \omega_\infty(\delta)$ in a neighborhood of δ_0 and $2\delta_0$, then

$$
\frac{\omega_n(2\delta_0)}{\omega_n(\delta_0) + \delta_0 \omega_n'(\delta_0)} \to \frac{\omega_\infty(2\delta_0)}{\omega_\infty(\delta_0) + \delta_0 \omega_\infty'(\delta_0)}.
$$

Proof. By concavity, for $\eta > 0$ we have $[\omega_n(\delta_0) - \omega_n(\delta_0 - \eta)]/\eta \geq d_n \geq [\omega_n(\delta_0 + \eta) - \omega_n(\delta_0)]/\eta$. For small enough η, the left and right hand sides converge, so that $[\omega_\infty(\delta_0) - \omega_\infty(\delta_0 - \eta)]/\eta \geq \limsup_n d_n \geq \liminf_n d_n \geq [\omega_\infty(\delta_0 + \eta) - \omega_\infty(\delta_0)]/\eta$. Taking the limit as $\eta \to 0$ gives the result. □

Appendix F Asymptotics for Regression Discontinuity

This section proves Theorem 5.1. We first give a general result for linear estimators under high-level conditions in Section F.1. We then consider local polynomial estimators in Section F.2 and optimal estimators with a plug-in variance estimate in Section F.3. Theorem 5.1 follows immediately from the results in these sections.

Throughout this section, we consider the RD setup where the error distribution may be non-normal as in Section 5.5, using the conditions in that section. We repeat these conditions here for convenience.
Assumption F.1. For some $p_{X,+}(0) > 0$ and $p_{X,-}(0) > 0$, the sequence $\{x_i\}_{i=1}^n$ satisfies
\[
\frac{1}{n} \sum_{i=1}^n m(x_i/h_n) I(x_i > 0) \to p_{X,+}(0) \int_0^\infty m(u) \, du \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^n m(x_i/h_n) I(x_i < 0) \to p_{X,-}(0) \int_{-\infty}^0 m(u) \, du
\]
for any bounded function m with bounded support and any h_n with $0 < \lim \inf_n h_n n^{1/(2p+1)} \leq \lim \sup_n h_n n^{1/(2p+1)} < \infty$.

Assumption F.2. For some $\sigma(x)$ with $\lim_{x \downarrow 0} \sigma(x) = \sigma_+(0) > 0$ and $\lim_{x \uparrow 0} \sigma(x) = \sigma_-(0) > 0$, we have

(i) the u_i’s are independent under any $Q \in \mathcal{Q}_n$ with $E_Q u_i = 0$, $\text{var}_Q(u_i) = \sigma^2(x_i)$

(ii) for some $\eta > 0$, $E_Q |u_i|^{2+\eta}$ is bounded uniformly over n and $Q \in \mathcal{Q}_n$.

Theorem 5.1 considers affine estimators that are optimal under the assumption that the variance function is given by $\hat{\sigma}_+ I(x > 0) + \hat{\sigma}_- I(x < 0)$, which covers the plug-in optimal affine estimators used in our application. Here, it will be convenient to generalize this slightly by considering the class of affine estimators that are optimal under a variance function $\tilde{\sigma}(x)$, which may be misspecified or data-dependent, but which may take some other form. We consider two possibilities for how $\tilde{\sigma}(\cdot)$ is calibrated.

Assumption F.3. $\tilde{\sigma}(x) = \hat{\sigma}_+ I(x > 0) + \hat{\sigma}_- I(x < 0)$ where $\hat{\sigma}_+ \xrightarrow{P} \tilde{\sigma}_+(0) > 0$ and $\hat{\sigma}_- \xrightarrow{P} \tilde{\sigma}_-(0) > 0$.

Assumption F.4. $\tilde{\sigma}(x)$ is a deterministic function with $\lim_{x \downarrow 0} \tilde{\sigma}(x) = \tilde{\sigma}_-(0) > 0$ and $\lim_{x \uparrow 0} \tilde{\sigma}(x) = \tilde{\sigma}_+(0) > 0$.

Assumption F.3 corresponds to the estimate of the variance function used in the application. It generalizes Assumption 5.3 slightly by allowing $\hat{\sigma}_+$ and $\hat{\sigma}_-$ to converge to something other than the left- and right-hand limits of the true variance function. Assumption F.4 is used in deriving bounds based on infeasible estimates that use the true variance function.

Note that, under Assumption F.3, $\tilde{\sigma}_+(0)$ is defined as the probability limit of $\hat{\sigma}_+$ as $n \to \infty$, and does not give the limit of $\tilde{\sigma}(x)$ as $x \downarrow 0$ (and similarly for $\tilde{\sigma}_-(0)$). We use this notation so that certain limiting quantities can be defined in the same way under each of the Assumptions F.4 and F.3.
F.1 General Results for Kernel Estimators

We first state results for affine estimators where the weights asymptotically take a kernel form. We consider a sequence of estimators of the form

\[\hat{L} = \frac{\sum_{i=1}^{n} k_n^+(x_i/h_n)I(x_i > 0)\gamma_i}{\sum_{i=1}^{n} k_n^+(x_i/h_n)I(x_i > 0)} - \frac{\sum_{i=1}^{n} k_n^-(x_i/h_n)I(x_i < 0)\gamma_i}{\sum_{i=1}^{n} k_n^-(x_i/h_n)I(x_i < 0)} \]

where \(k_n^+ \) and \(k_n^- \) are sequences of kernels. The assumption that the same bandwidth is used on each side of the discontinuity is a normalization: it can always be satisfied by redefining one of the kernels \(k_n^+ \) or \(k_n^- \). We make the following assumption on the sequence of kernels.

Assumption F.5. The sequences of kernels and bandwidths \(k_n^+ \) and \(h_n \) satisfy

(i) \(k_n^+ \) has support bounded uniformly over \(n \) and, for some kernel \(k^+ \) with \(\int k^+(u)\ du > 0 \), we have \(\sup_x |k_n^+(x) - k^+(x)| \to 0 \)

(ii) \(\frac{1}{nh_n} \sum_{i=1}^{n} k_n^+(x_i/h_n)I(x_i > 0)(x_i, \ldots, x_i^{p-1})' = 0 \) for each \(n \)

(iii) \(h_n n^{1/(2p+1)} \to h_\infty \) for some constant \(0 < h_\infty < \infty \),

and similarly for \(k_n^- \) for some \(k^- \).

Under Assumption F.5, the sequences of kernels \(k_n^+ \) and \(k_n^- \) are nonrandom: they can depend on the \(x_i \)’s but not on the \(y_i \)’s. We will also consider estimators where \(k_n^+ \) and \(k_n^- \) depend on the \(Y_i \)’s, usually through a preliminary estimate of the variance (as with the optimal affine estimator computed with an estimated variance function). For these, we use the following assumption as an alternative to Assumption F.5(i).

Assumption F.6. For some constant \(B \), \(k_n^+ \) has support contained in \([0, B]\) with probability approaching one uniformly over \(F, Q_n \). In addition, for some \(k^+ \) with \(\int k^+(u)\ du > 0 \), \(\sup_x |k_n^+(x) - k^+(x)| \rightarrow^p 0 \), and \(\frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} [k_n^-(x_i/h_n) - k^+(x_i/h_n)]u_i \rightarrow^p 0 \). The same holds for \(k_n^- \) for some \(k^- \).

Let

\[
\text{bias}_n = \sum_{i=1}^{n} \frac{|k_n^+(x_i/h_n)|I(x_i > 0)C|x_i|^p}{\sum_{i=1}^{n} k_n^+(x_i/h_n)I(x_i > 0)} + \sum_{i=1}^{n} \frac{|k_n^-(x_i/h_n)|I(x_i < 0)C|x_i|^p}{\sum_{i=1}^{n} k_n^-(x_i/h_n)I(x_i < 0)}
\]

\[
= C h_n^p \left(\frac{\sum_{i=1}^{n} |k_n^+(x_i/h_n)|I(x_i > 0)|x_i/h_n|^p}{\sum_{i=1}^{n} k_n^+(x_i/h_n)I(x_i > 0)} + \frac{\sum_{i=1}^{n} |k_n^-(x_i/h_n)|I(x_i < 0)|x_i/h_n|^p}{\sum_{i=1}^{n} k_n^-(x_i/h_n)I(x_i < 0)} \right)
\]
and
\begin{align*}
v_n &= \frac{\sum_{i=1}^n k^+_n(x_i/h_n)^2 I(x_i > 0) \sigma^2(x_i)}{\sum_{i=1}^n k^+_n(x_i/h_n) I(x_i > 0)^2} + \frac{\sum_{i=1}^n k^-_n(x_i/h_n)^2 I(x_i < 0) \sigma^2(x_i)}{\sum_{i=1}^n k^-_n(x_i/h_n) I(x_i < 0)^2} \\
&= \frac{1}{nh_n} \left(\frac{1}{nh_n} \sum_{i=1}^n k^+_n(x_i/h_n)^2 I(x_i > 0) \sigma^2(x_i) \right) + \frac{1}{nh_n} \sum_{i=1}^n k^-_n(x_i/h_n)^2 I(x_i < 0) \sigma^2(x_i) \right).
\end{align*}

Note that, when k^+_n and k^-_n are nonrandom, v_n is the (constant over $Q \in \mathcal{Q}_n$) variance of \hat{L}, and that $\overline{\text{bias}}_n = \sup_{f \in \mathcal{F}} (E_{f,Q} \hat{L} - Lf) = -\inf_{f \in \mathcal{F}} (E_{f,Q} \hat{L} - Lf)$ for any $Q \in \mathcal{Q}_n$ under Assumption F.5(ii), since, for any $f \in \mathcal{F}$, we can write $f_+(x) = f_+(0) + \sum_{j=1}^{p-1} \frac{f^{(j)}(0)}{j!} x^j + r_+(x)$ and $f_-(x) = f_-(0) + \sum_{j=1}^{p-1} \frac{f^{(j)}(0)}{j!} x^j + r_-(x)$ with $|r_+(x)| \leq C|x|^p$ and $|r_-(x)| \leq C|x|^p$, which gives
\begin{align*}
E_{f,Q} \hat{L} - Lf &= \frac{\sum_{i=1}^n k^+_n(x_i/h_n) I(x_i > 0) (f_+(x_i) - f_+(0))}{\sum_{i=1}^n k^+_n(x_i/h_n) I(x_i > 0)} + \frac{\sum_{i=1}^n k^-_n(x_i/h_n) I(x_i < 0) (f_-(x_i) - f_-(0))}{\sum_{i=1}^n k^-_n(x_i/h_n) I(x_i < 0)} \\
&= \frac{\sum_{i=1}^n k^+_n(x_i/h_n) I(x_i > 0) Cr_+(x)}{\sum_{i=1}^n k^+_n(x_i/h_n) I(x_i > 0)} + \frac{\sum_{i=1}^n k^-_n(x_i/h_n) I(x_i < 0) Cr_-(x)}{\sum_{i=1}^n k^-_n(x_i/h_n) I(x_i < 0)},
\end{align*}

which is maximized over $f \in \mathcal{F}$ by taking any function with $r_+(x) = C|x|^p I(x > 0)$ sign($k^+_n(x/h_n)$) and $r_-(x) = C|x|^p I(x < 0)$ sign($k^-_n(x/h_n)$) and minimized by taking the negative of these functions. In the case where k^+_n and k^-_n are random, we keep the definitions of v_n and $\overline{\text{bias}}_n$ given above, but we note that, in this case, v_n and $\overline{\text{bias}}_n$ are random variables and do not give the actual variance and maximum bias of \hat{L}.

To form a feasible CI, we need an estimate of v_n. For a possibly data dependent guess $\tilde{\sigma}(\cdot)$ of the variance function, let \tilde{v}_n denote v_n with $\sigma(\cdot)$ replaced by $\tilde{\sigma}(\cdot)$. We record the limiting behavior of $\overline{\text{bias}}_n$, v_n and \tilde{v}_n in the following lemma. Let
\begin{align*}
\overline{\text{bias}}_\infty &= C h^p \left(\frac{\int_0^\infty |k^+(u)||u|^p du}{\int_0^\infty k^+(u) du} + \frac{\int_{-\infty}^0 |k^-(u)||u|^p du}{\int_{-\infty}^0 k^-(u) du} \right)
\end{align*}
and
\[v_\infty = \frac{1}{h_\infty} \left(\frac{\sigma^2(0) \int_0^\infty k^+(u)^2 \, du}{p_{X,+}(0) \left[\int_0^\infty k^+(u) \, du \right]^2} + \frac{\sigma^2(0) \int_{-\infty}^0 k^-(u)^2 \, du}{p_{X,-}(0) \left[\int_{-\infty}^0 k^-(u) \, du \right]^2} \right). \]

Lemma F.1. Suppose that Assumption F.1 holds. If Assumption F.5 also holds, then \(\lim_{n \to \infty} n^{p/(2p+1)} \text{bias}_n = \text{bias}_\infty \) and \(\lim_{n \to \infty} n^{2p/(2p+1)} v_n = v_\infty. \) If, in addition, \(\hat{\sigma}(\cdot) \) satisfies Assumption F.4 with \(\hat{\sigma}_+(0) = \sigma_+(0) \) and \(\hat{\sigma}_-(0) = \sigma_-(0) \), then \(\lim_{n \to \infty} n^{2p/(2p+1)} \hat{v}_n = v_\infty. \) If Assumption F.5 holds with part (i) replaced with Assumption F.6, then \(\lim_{n \to \infty} n^{p/(2p+1)} \text{bias}_n \xrightarrow{p} \mathcal{F}_n \text{bias}_\infty. \) If, in addition, \(\tilde{\sigma}(\cdot) \) satisfies Assumption F.3 or F.4 with \(\tilde{\sigma}_+(0) = \sigma_+(0) \) and \(\tilde{\sigma}_-(0) = \sigma_-(0) \), then \(\lim_{n \to \infty} n^{p/(2p+1)} \tilde{v}_n \xrightarrow{p} \mathcal{F}_n \text{bias}_\infty. \)

Proof. The results are immediate from the calculations preceding the lemma.

Theorem F.1. Suppose that Assumptions F.1 and F.2 hold, Assumption F.3 or F.4 holds with \(\hat{\sigma}_+(0) = \sigma_+(0) \) and \(\hat{\sigma}_-(0) = \sigma_-(0) \), and that Assumption F.5 holds, with part (i) possibly replaced by Assumption F.6. Then
\[\lim_{n \to \infty} \inf_{f \in \mathcal{F}_{RDT,p}(C), Q \in \mathcal{Q}_n} P_{f,Q} \left(Lf \in \left\{ \hat{L} \pm c \text{av} \left(\text{bias}_n / \bar{v}_n \right) \sqrt{\bar{v}_n} \right\} \right) = 1 - \alpha \]
and, letting \(\hat{c} = \hat{L} - \text{bias}_n - \sqrt{\bar{v}_n} \),
\[\lim_{n \to \infty} \inf_{f \in \mathcal{F}_{RDT,p}(C), Q \in \mathcal{Q}_n} P_{f,Q} \left(Lf \in [\hat{c}, \infty) \right) = 1 - \alpha. \]

In addition, \(n^{p/(2p+1)} \text{cv}_\alpha \left(\text{bias}_n / \bar{v}_n \right) \hat{v}_n \xrightarrow{p} \mathcal{F}_n \text{cv}_\alpha \left(\text{bias}_\infty / v_\infty \right) v_\infty \) under Assumption F.3 and \(n^{p/(2p+1)} \text{cv}_\alpha \left(\text{bias}_n / \bar{v}_n \right) \tilde{v}_n \to \text{cv}_\alpha \left(\text{bias}_\infty / v_\infty \right) v_\infty \) under Assumption F.4. The minimax \(\beta \) quantile of the one-sided CI is given asymptotically by
\[\lim_{n \to \infty} n^{p/(2p+1)} \sup_{f \in \mathcal{F}_{RDT,p}(C), Q \in \mathcal{Q}_n} q_{f,Q,\beta}(Lf - \hat{c}) = 2\text{bias}_\infty + (z_\beta + z_1 - \alpha)\sqrt{v_\infty}. \]

The worst-case \(\beta \) quantile over \(\mathcal{F}_{RDT,p}(0) \) is
\[\lim_{n \to \infty} n^{p/(2p+1)} \sup_{f \in \mathcal{F}_{RDT,p}(0), Q \in \mathcal{Q}_n} q_{f,Q,\beta}(Lf - \hat{c}) = \text{bias}_\infty + (z_\beta + z_1 - \alpha)\sqrt{v_\infty}. \]

Proof. For the first three displays, we verify the conditions of Theorem D.1 with \(\text{bias}_{n,Q} = \)}
\[n^{-p/(2p+1)} \bar{\text{bias}}_\infty, \quad \text{bias}_{n, Q} = -n^{-p/(2p+1)} \bar{\text{bias}}_\infty \quad \text{and} \quad s_{n,q} = n^{-p/(2p+1)} \sqrt{v_\infty}. \] This gives the first three displays with \(= \) replaced by \(\geq \) in the first two displays and \(\leq \) in the third display. We then give sequences \(f_n \) under which each of the statements hold with equality with the supremum or infimum over \(\mathcal{F} \) replaced by \(\{ f_n \} \).

Let

\[
\text{bias}_n(f) = \frac{\sum_{i=1}^n k^+_n(x_i/h_n)I(x_i > 0)(f(x_i) - f_+(0))}{\sum_{i=1}^n k^+_n(x_i/h_n)I(x_i > 0)} + \frac{\sum_{i=1}^n k^-_n(x_i/h_n)I(x_i < 0)(f_-(x_i) - f_-(0))}{\sum_{i=1}^n k^-_n(x_i/h_n)I(x_i < 0)}.
\]

Then \(\overline{\text{bias}}_n = \sup_{f \in \mathcal{F}} \text{bias}_n(f) = -\inf_{f \in \mathcal{F}} \text{bias}_n(f) \) (note that, as with \(\overline{\text{bias}}_n \), \(\text{bias}_n(f) \) is a random quantity in the case where \(k^+_n \) and \(k^-_n \) are random). Note that

\[
\frac{\hat{L} - L f - \text{bias}_n(f)}{\sqrt{v_n}} = \frac{\sum_{i=1}^n w_{i,n} u_i}{\sqrt{\sum_{i=1}^n w_{i,n}^2 \sigma^2(x_i)}},
\]

where \(w_{i,n} \) is given by \(w_{i,n} = k^+_n(x_i/h_n)/\sum_{j=1}^n k^+_n(x_j/h_n)I(x_j > 0) \) for \(x_i > 0 \) and \(w_{i,n} = k^-_n(x_i/h_n)/\sum_{j=1}^n k^-_n(x_j/h_n)I(x_j < 0) \) for \(x_i < 0 \). Under Assumption F.4, this converges in distribution to a \(N(0,1) \) law uniformly over \(\mathcal{F}, \mathcal{Q}_n \) by Lemma D.1. Under Assumption F.3, the same convergence can be seen to hold by noting that the sequence is asymptotically equivalent to the same sequence with \(k^+_n \) replaced by \(k^+ \) and \(k^-_n \) replaced by \(k^- \). The same central limit theorem holds with \(v_n \) replaced by \(\hat{v}_n \) by Lemma F.1. This verifies condition (S8). Condition (S10) holds with \(\overline{\text{bias}}_{n, Q} = n^{-p/(2p+1)} \overline{\text{bias}}_\infty, \quad \text{bias}_{n, Q} = -n^{-p/(2p+1)} \overline{\text{bias}}_\infty \) and \(s_{n,q} = n^{-p/(2p+1)} \sqrt{v_\infty} \) by Lemma F.1.

To show that these statements hold with equality, we consider the sequences \(f_n \) and \(-f_n\) with \(f_n(x) = C|x|^p I(x > 0) \text{sign}(k^+(x/h_n)) - C|x|^p I(x < 0) \text{sign}(k^-(x/h_n)) \). Note that \(n^{p/(2p+1)} (\overline{\text{bias}}_n - \text{bias}_n(f_n)) \) is equal to the sum of

\[
n^{p/(2p+1)} \frac{1}{nh_n} \sum_{i=1}^n k^+_n(x_i/h_n)I(x_i > 0)C|x_i/h_n|^p \left[\text{sign}(k^+_n(x_i/h_n)) - \text{sign}(k^+(x_i/h_n)) \right]
\]

and the corresponding term for the negative observations. For any \(i \) such that \(\text{sign}(k^+_n(x_i/h_n)) - \text{sign}(k^+(x_i/h_n)) \neq 0 \), we must have \(|k^+_n(x_i/h_n)| \leq \sup_x |k^+_n(x) - k^+(x)| \). It follows from this and the bound on the support of \(k^+_n \) that the above display converges in probability to zero uniformly over \(\mathcal{F}, \mathcal{Q}_n \). From this and a similar argument for the negative observations, it fol-
lows that \(n^{p/(2p+1)} \left(\text{bias}_n - \text{bias}_n(f_n) \right) \overset{p}{\xrightarrow{\mathcal{F}, Q_n}} 0 \). Similarly, \(n^{p/(2p+1)} \left(-\text{bias}_n - \text{bias}_n(-f_n) \right) \overset{p}{\xrightarrow{\mathcal{F}, Q_n}} 0 \). From this and Lemma F.1, it follows that \((\hat{L} - L f_n)/\sqrt{v_n} \overset{d}{\xrightarrow{\mathcal{F}, Q_n}} N(\text{bias}_\infty/\sqrt{v_\infty}, 1) \) and \((\hat{L} - L(-f_n))/\sqrt{v_n} \overset{d}{\xrightarrow{\mathcal{F}, Q_n}} N(-\text{bias}_\infty/\sqrt{v_\infty}, 1) \). Replacing the infimum in the first two displays with \(f_n, Q_n \) for any \(Q_n \in Q_n \) and replacing the supremum in the third display with \(-f_n, Q_n\), it follows that these limits hold with equality.

For the last display, note that \(\text{bias}(f) = 0 \) for any \(f \in \mathcal{F}_{RDT,p}(0) \), so \((\hat{L} - Lf)/\sqrt{v_n} \overset{d}{\xrightarrow{\mathcal{F}_{RDT,p}(0), Q_n}} N(0, 1) \). Thus, letting \(Z_n = -(\hat{L} - Lf)/\sqrt{v_n} \), we have

\[
\frac{n^{p/(2p+1)}}{\sup_{f \in \mathcal{F}_{RDT,p}(0), Q \in Q_n} q_f, Q, \beta(Lf - \hat{c})}
= n^{p/(2p+1)} \sup_{f \in \mathcal{F}_{RDT,p}(0), Q \in Q_n} q_f, Q, \beta \left(\sqrt{v_n} Z_n + \text{bias}_n + z_{1-\alpha} \sqrt{v_n} \right) \to \text{bias}_\infty + (z_\beta + z_{1-\alpha}) \sqrt{v_\infty}.
\]

\(\square \)

F.2 Local Polynomial Estimators

The \((p-1) \)th order local polynomial estimator of \(f_+ (0) \) based on kernel \(k^*_+ \) and bandwidth \(h_{+,n} \) is given by

\[
\hat{f}_+(0) = e'_1 \left(\sum_{i=1}^n p(x_i/h_{+,n}) p(x_i/h_{+,n})' k^*_+(x_i/h_{+,n}) I(x_i > 0) \right)^{-1} \sum_{i=1}^n k^*_+(x_i/h_{+,n}) I(x_i > 0) p(x_i/h_{+,n}) y_i
\]

where \(e_1 = (1, 0, \ldots, 0)' \) and \(p(x) = (1, x, x^2, \ldots, x^{p-1})' \). Letting the local polynomial estimator of \(f_- (0) \) be defined analogously for some kernel \(k^*_- \) and bandwidth \(h_{-,n} \), the local polynomial estimator of \(Lf = f_+(0) + f_- (0) \) is given by

\[
\hat{L} = \hat{f}_+(0) + \hat{f}_-(0).
\]

This takes the form given in Section F.1, with \(h_n = h_{n,+} \),

\[
k^*_n(u) = e'_1 \left(\frac{1}{nh_n} \sum_{i=1}^n p(x_i/h_{+,n}) p(x_i/h_{+,n})' k^*_+(x_i/h_{+,n}) I(x_i > 0) \right)^{-1} k^*_+(u) p(u) I(u > 0)
\]

S22
and

\[k_n^-(u) = c_1 \left(\frac{1}{nh_n} \sum_{i=1}^n p(x_i/h_{-n}) p(x_i/h_{-n})' k_+^*(x_i/h_{-n}) I(x_i < 0) \right)^{-1} \]

\[k_+^*(u(h_{n,+}/h_{n,-})) p(u(h_{n,+}/h_{n,-})) I(u < 0). \]

Let \(M^+ \) be the \((p-1) \times (p-1)\) matrix with \(\int_0^\infty u^j k^2(u) \) as the \(i, j\)th entry, and let \(M^-\) be the \((p-1) \times (p-1)\) matrix with \(\int_0^\infty u^j k^2(u) \) as the \(i, j\)th entry. Under Assumption F.1, for \(k^*_+ \) and \(k^*_\) bounded with bounded support, \(\frac{1}{nh_n} \sum_{i=1}^n p(x_i/h_{+n}) p(x_i/h_{+n})' k^*_+(x_i/h_{+n}) I(x_i > 0) \to M^+ p_{X,+}(0) \) and \(\frac{1}{nh_n} \sum_{i=1}^n p(x_i/h_{-n}) p(x_i/h_{-n})' k^*_-(x_i/h_{-n}) I(x_i < 0) \to M^- p_{X,-}(0) \).

Furthermore, Assumption F.5(ii) follows immediately from the normal equations for the local polynomial estimator. This gives the following result.

Theorem F.2. Let \(k^*_+ \) and \(k^*_\) be bounded and uniformly continuous with bounded support. Let \(h_{n,+} n^{1/(2p+1)} \to h_\infty > 0 \) and suppose \(h_{n,-}/h_{n,+} \) converges to a strictly positive constant. Then Assumption F.5 holds for the local polynomial estimator so long as Assumption F.1 holds.

F.3 Optimal Affine Estimators

We now consider the class of affine estimators that are optimal under the assumption that the variance function is given by \(\tilde{\sigma}(\cdot) \), which satisfies either Assumption F.3 or Assumption F.4. We use the same notation as in Section 5, except that \(n \) and/or \(\tilde{\sigma}(\cdot) \) are added as subscripts for many of the objects under consideration to make the dependence on \(\{x_i\}_{i=1}^n \) and \(\tilde{\sigma}(\cdot) \) explicit.

The modulus problem is given by (25) in Section 5.1 with \(\tilde{\sigma}(\cdot) \) in place of \(\sigma(\cdot) \). We use \(\omega_{\tilde{\sigma}(\cdot),n}(\delta) \) to denote the modulus, or \(\omega_n(\delta) \) when the context is clear. The corresponding estimator \(\hat{L}_{\delta,\tilde{\sigma}(\cdot)} \) is then given by (26) in Section 5.1 with \(\tilde{\sigma}(\cdot) \) in place of \(\sigma(\cdot) \).

We will deal with the inverse modulus, and use Lemma E.1 to obtain results for the modulus itself. The inverse modulus \(\omega_{\tilde{\sigma}(\cdot),n}^{-1}(2b) \) is given by (S5) in Section C.3, with \(\tilde{\sigma}^2(x_i) \) in place of \(\sigma^2(x_i) \), and the solution takes the form given in that section. Let \(h_n = n^{-1/(2p+1)} \).

We will consider a sequence \(b = b_n \), and will define \(\tilde{b}_n = n^{p/(2p+1)} b_n = h_n^{p} b_n \). Under Assumption F.4, we will assume that \(\tilde{b}_n \to \tilde{b}_\infty \) for some \(\tilde{b}_\infty > 0 \). Under Assumption F.3, we will assume that \(\tilde{b}_n \overset{P}{\to} \tilde{b}_\infty \) for some \(\tilde{b}_\infty > 0 \). We will then show that this indeed holds for \(2b_n = \omega_{\tilde{\sigma}(\cdot),n}(\delta_n) \) with \(\delta_n \) chosen as in Theorem F.3 below.
Let \(\tilde{b}_n = n^{p/(2p+1)}b_n = h_n^{-p}b_n \), \(\tilde{b}_{-n} = n^{p/(2p+1)}b_{-n} = h_n^{-p}b_{-n} \), \(\tilde{d}_{+,n} = n^{(p-j)/(2p+1)}d_{+,j,n} = h_n^{-p}d_{+,j,n} \) and \(\tilde{d}_{-,n} = n^{(p-j)/(2p+1)}d_{-,j,n} = h_n^{-p}d_{-,j,n} \) for \(j = 1, \ldots, p - 1 \), where \(b_n, b_{-n}, d_{+,n}, \) and \(d_{-,n} \) correspond to the function \(g_{b,C} \) that solves the inverse modulus problem, given in Section C.3. These values of \(\tilde{b}_{+,n}, \tilde{b}_{-,n}, \tilde{d}_{+,n} \) and \(\tilde{d}_{-,n} \) minimize \(G_n(b_+, b_-, d_+, d_-) \) subject to \(b_+ + b_- = \tilde{b}_n \) where, letting \(A(x_i, b) = h_n^{p}b + \sum_{j=1}^{p-1} h_n^{p-j}d_j x_i^j \),

\[
G_n(b_+, b_-, d_+, d_-) =
\sum_{i=1}^{n} \tilde{\sigma}^{-2}(x_i) \left((A(x_i, b_+, d_+) - C|x_i|^p)_+ + (A(x_i, b_+, d_+) + C|x_i|^p)_- \right)^2 I(x_i > 0)
+ \sum_{i=1}^{n} \tilde{\sigma}^{-2}(x_i) \left((A(x_i, b_-, d_-) - C|x_i|^p) + (A(x_i, b_-, d_-) + C|x_i|^p)_- \right)^2 I(x_i < 0)
= \frac{1}{nh_n} \sum_{i=1}^{n} k^+_\tilde{\sigma}(x_i/h_n; b_+, d_+) \tilde{\sigma}^2(x_i) + \frac{1}{nh_n} \sum_{i=1}^{n} k^-\tilde{\sigma}(x_i/h_n; b_-, d_-) \tilde{\sigma}^2(x_i)
\]

with

\[
k^+_\tilde{\sigma}(u; b, d) = \tilde{\sigma}^{-2}(uh_n) \left(b + \sum_{j=1}^{p-1} d_j u^j - C|u|^p \right)_+ \left(b + \sum_{j=1}^{p-1} d_j u^j + C|u|^p \right)_- I(u > 0),
\]

\[
k^-\tilde{\sigma}(u; b, d) = \tilde{\sigma}^{-2}(uh_n) \left(b + \sum_{j=1}^{p-1} d_j u^j - C|u|^p \right)_+ \left(b + \sum_{j=1}^{p-1} d_j u^j + C|u|^p \right)_- I(u < 0).
\]

We use the notation \(k^c \) for a scalar \(c \) to denote \(k^c_\tilde{\sigma}(\cdot) \) where \(\tilde{\sigma}(\cdot) \) is given by the constant function \(\tilde{\sigma}(x) = c \). The estimator \(\hat{L}_{\delta,\tilde{\sigma}} \) with \(\omega_{\tilde{\sigma}}(\cdot, n)(\delta) = 2b_n \) takes the general kernel form in Section F.1 with \(k^+_n(u) = k^+_\tilde{\sigma}(u; \tilde{b}_n, \tilde{d}_n) \) and similarly for \(k^-_n \). In the notation of Section F.1, \(\text{bias}_n \) (which is a random quantity under Assumption F.3) is given by \(\frac{1}{2} (\omega_{\tilde{\sigma}}(\cdot, n)(\delta) - \delta \omega'_{\tilde{\sigma}}(\cdot, n)(\delta)) \) and \(\bar{v}_n \) is given by \(\omega'_{\tilde{\sigma}}(\cdot, n)(\delta)^2 \) (see Theorem 3.4). If \(\delta \) is chosen to minimize the length of the fixed-length CI, the half-length will be given by

\[
\text{CV}_\alpha(\text{bias}_n / \sqrt{\bar{v}_n}) \sqrt{\bar{v}_n} = \sup_{\delta > 0} \frac{\omega_{\tilde{\sigma}}(\cdot, n)(\delta)}{\delta} \chi_{\lambda,\alpha} \left(\frac{\delta}{2} \right),
\]

and \(\delta \) will achieve the maximum (see Theorem 3.2 and the discussion at the beginning of Supplemental Appendix E).
Consider the limiting inverse modulus problem

\[
\omega_{\tilde{\sigma}_+(0), \tilde{\sigma}_-(0), \infty}(2\tilde{b}_\infty) = \min_{f_+, f_-} \frac{p_{X,+}(0)}{\tilde{\sigma}_+^2(0)} \int_0^\infty f_+(u)^2 \, du + \frac{p_{X,-}(0)}{\tilde{\sigma}_-^2(0)} \int_{-\infty}^0 f_-(u)^2 \, du
\]

\[
\text{s.t. } f_+(0) + f_-(0) \geq \tilde{b}_\infty.
\]

We use \(\omega_\infty(\delta) = \omega_{\tilde{\sigma}_+(0), \tilde{\sigma}_-(0), \infty}(\delta)\) to denote the limiting modulus corresponding to this inverse modulus. The limiting inverse modulus problem is solved by \(f_+(u) = \tilde{\sigma}_+^2(0)k_1^+(u; b_+, d_+)\) and \(f_-(u) = \tilde{\sigma}_-^2(0)k_1^-(u; b_-, d_-)\) for some \((b_+, b_-, d_+, d_-)\) with \(b_+ + b_- = \tilde{b}_\infty\) (this holds by the same arguments as for the modulus problem in Section C.3). Thus, for any minimizer of \(G_\infty\), the functions \(k_1^+(\cdot; b_+, d_+)\) and \(k_1^-(\cdot; b_-, d_-)\) must solve the above inverse modulus problem. The solution to this problem is unique by strict convexity, which implies that \(G_\infty\) has a unique minimizer. Similarly, the minimizer of \(G_n\) is unique for each \(n\). Let \((\tilde{b}_{+,\infty}, \tilde{b}_{-,\infty}, \tilde{d}_{+,\infty}, \tilde{d}_{-,\infty})\) denote the minimizer of \(G_\infty\).

To derive the form of the limiting modulus of continuity, we argue as in Donoho and Low (1992). Let \(k_1^+(\cdot; \tilde{b}_{+,\infty,1}, \tilde{d}_{+,\infty,1})\) and \(k_1^-(\cdot; \tilde{b}_{-,\infty,1}, \tilde{d}_{-,\infty,1})\) solve the inverse modulus problem \(\omega_{\infty}^{-1}(2\tilde{b}_\infty)\) for \(\tilde{b}_\infty = 1\). The feasible set for a given \(\tilde{b}_\infty\) consists of all \(b_+, b_-, d_+, d_-\) such that \(b_+ + b_- \geq \tilde{b}_\infty\), and a given \(b_+, b_-, d_+, d_-\) in this set achieves the value

\[
\left(\frac{p_{X,+}(0)}{\tilde{\sigma}_+^2(0)} \int_0^\infty k_1^+(u; b_+, d_+)^2 \, du + \frac{p_{X,-}(0)}{\tilde{\sigma}_-^2(0)} \int_{-\infty}^0 k_1^-(u; b_-, d_-)^2 \, du\right)^{\frac{1}{2}}
\]

\[
= \left(\frac{p_{X,+}(0)}{\tilde{\sigma}_+^2(0)} \int_0^\infty k_1^+(v\tilde{b}_\infty^{1/p}; b_+, d_+)^2 \, dv + \frac{p_{X,-}(0)}{\tilde{\sigma}_-^2(0)} \int_{-\infty}^0 k_1^-(v\tilde{b}_\infty^{1/p}; b_-, d_-)^2 \, dv\right)^{\frac{1}{2}}
\]

\[
= \left(\frac{p_{X,+}(0)}{\tilde{\sigma}_+^2(0)} \tilde{b}_\infty^{1/p} \int_0^\infty \tilde{b}_\infty^2 k_1^+(v; b_+/\tilde{b}_\infty, \tilde{d}_+) \, dv + \frac{p_{X,-}(0)}{\tilde{\sigma}_-^2(0)} \tilde{b}_\infty^{1/p} \int_{-\infty}^0 \tilde{b}_\infty^2 k_1^-(v; b_-/\tilde{b}_\infty, \tilde{d}_-)^2 \, dv\right)^{\frac{1}{2}}
\]

where \(\tilde{d}_+ = (d_{+,1}/\tilde{b}_\infty^{p-1}/p, \ldots, d_{+,p-1}/\tilde{b}_\infty^{p-1}/p)\) and similarly for \(\tilde{d}_-\). This uses the fact that, for any \(h > 0\), \(h^p k_1^+(u/h; b_+, d_+) = k_1^+(u; b_+ h^p, d_{+,1} h^{p-1}, \ldots, d_{+,p-1} h)\) and similarly for \(k_1^-\). This can be seen to be \(\tilde{b}_\infty^{(2p+1)/(2p)}\) times the objective evaluated at \((b_+/\tilde{b}_\infty, b_-/\tilde{b}_\infty, \tilde{d}_+, \tilde{d}_-),\)
which is feasible under \(\tilde{b}_\infty = 1 \). Similarly, for any feasible function under \(\tilde{b}_\infty = 1 \), there is a feasible function under a given \(\tilde{b}_\infty \) that achieves \(\tilde{b}_\infty^{(2p+1)/(2p)} \) times the value of under \(\tilde{b}_\infty = 1 \). It follows that \(\omega_\infty^{-1}(2b) = b^{(2p+1)/(2p)} \omega_\infty(2) \). Thus, \(\omega_\infty^{-1} \) is invertible and the inverse \(\omega_\infty \) satisfies \(\omega_\infty(\delta) = \omega_{\tilde{\sigma}+(0),\tilde{\sigma}-(0),\infty}(\delta) = \delta^{2p/(2p+1)}\omega_{\tilde{\sigma}+(0),\tilde{\sigma}-(0),\infty}(1) \).

We are now ready to state the main result concerning the asymptotic validity and efficiency of feasible CIs based on the estimator given in this section. We recall that, by results in Donoho (1994), choosing \(\delta \) to optimize the fixed-length CI criterion leads to maximizing \(\frac{\omega_{\hat{\sigma}+},\hat{\sigma}-(0)\|\delta\|}{\sqrt{\rho_A(\frac{\delta}{2})}} \), and the half-length of the resulting CI is given by the maximized value of this formula. Similarly, choosing \(\delta \) to optimize minimax MSE leads to maximizing \(\frac{\omega_{\hat{\sigma}+},\hat{\sigma}-(0)\|\delta\|}{\sqrt{\rho_A(\frac{\delta}{2})}} \). (See Theorem 3.2 and the discussion at the beginning of Supplemental Appendix E.)

Theorem F.3. Suppose Assumptions F.1 and F.2 hold. Let \(k^+(x) = k^+_{\hat{\sigma}+(0)}(x; \hat{b}_{+,\infty}, \hat{d}_{+,\infty}) \) and \(k^-(x) = k^-_{\hat{\sigma}-(0)}(x; \hat{b}_{-,\infty}, \hat{d}_{-,\infty}) \), where \((\hat{b}_{+,\infty}, \hat{d}_{+,\infty}, \hat{b}_{-,\infty}, \hat{d}_{-,\infty}) \) minimize \(G_\infty(\hat{b}_{+,\infty}, \hat{d}_{+,\infty}, \hat{b}_{-,\infty}, \hat{d}_{-,\infty}) \) subject to \(\hat{b}_{+,\infty} + \hat{b}_{-,\infty} = \omega_\infty(\delta^*)/2 \) for some \(\delta^* > 0 \). Then, under Assumption F.4, Assumption F.5 holds for \(\hat{L}_{\delta,\hat{\sigma}(\cdot)} \) with this definition of \(k^+ \) and \(k^- \) so long as \(\delta_n \to \delta^* \).

Under Assumption F.3, Assumption F.6 holds for \(\hat{L}_{\delta,\hat{\sigma}(\cdot)} \) with this definition of \(k^+ \) and \(k^- \) so long as \(\delta_n \to \delta^* \). If \(\delta_n \) is chosen to maximize \(\frac{\omega_{\hat{\sigma}+},\hat{\sigma}-(0)\|\delta\|}{\sqrt{\rho_A(\frac{\delta}{2})}} \), then this holds with \(\delta^* \) maximizing \(\frac{\omega_{\hat{\sigma}+},\hat{\sigma}-(0)\|\delta\|}{\sqrt{\rho_A(\frac{\delta}{2})}} \), and similarly for the case where \(\sqrt{\rho_A} \) is replaced by \(\chi_{\delta,\alpha} \).

If these assumptions hold with \(\hat{\sigma}+(0) = \sigma+(0) \) and \(\hat{\sigma}-(0) = \sigma-(0) \), then, letting \(\hat{\chi} \) be the half-length of the fixed-length CI based on \(\hat{L}_{\delta} \) and the modulus \(\omega_{\hat{\sigma}(\cdot),n} \) (using the formula (23) from Theorem 3.4), we have \(\frac{\rho_{\hat{\sigma},Q}}{\rho_{\hat{\sigma},Q}} \chi \leq \frac{\rho_{\hat{\sigma},Q}}{\rho_{\hat{\sigma},Q}} \chi \leq \frac{cv(\hat{\sigma},\alpha)}{cv(\hat{\sigma},\alpha)} \chi \geq \frac{cv(\hat{\sigma},\alpha)}{cv(\hat{\sigma},\alpha)} \chi \), where \(\chi \) is given in Theorem F.1 for \(k^+ \) and \(k^- \) given above. If, in addition, for each \(n \), there exists a \(Q \in Q_n \) such that the errors are normally distributed, then we have the following. If \(\delta_n \) is chosen to maximize \(\frac{\omega_{\hat{\sigma}+},\hat{\sigma}-(0)\|\delta\|}{\sqrt{\rho_A(\frac{\delta}{2})}} \chi_{\delta,\alpha} \), and either Assumption F.4 or Assumption F.3 holds, then no other sequence of linear estimators \(\tilde{L} \) can satisfy

\[
\liminf_{n \to \infty} \inf_{f \in F, Q \in Q_n} P_{f, Q} \left(\tilde{L} \in \left\{ \tilde{L} \pm n^{-p/(2p+1)} \chi \right\} \right) \geq 1 - \alpha
\]

with \(\chi \) a constant with \(\chi < cv(\hat{\sigma},\alpha) \chi \), where \(\hat{\sigma},\alpha \) are given in Theorem F.1 for \(k^+ \) and \(k^- \) given above). In addition, for any sequence of confidence sets \(C \) with \(\liminf_{n \to \infty} \inf_{f \in F, Q \in Q_n} P_{f, Q} (\tilde{L} \in C) \geq 1 - \alpha \), we have the following bound on the asymptotic
efficiency improvement at any \(f \in \mathcal{F}_{\text{RDT}, p}(0) \):

\[
\liminf_{n \to \infty} \sup_{Q \in \mathcal{Q}_n} \frac{n^{p/(2p+1)} E_{f, Q} \lambda(C)}{v^{1/2} \text{cv} \left(\frac{\text{bias}_\infty}{v^{1/2}} \right)} \geq \frac{(1 - \alpha) E \left[(z_{1-\alpha} - Z)^{2p/(2p+1)} \mid Z \leq z_{1-\alpha} \right]}{\left(c^{-1}(2p/(2p+1)) \right)^{2p/(2p+1)} - 1} \chi_{A, \alpha} \left(c^{-1}(2p/(2p+1)) \right) \]

where \(Z \sim N(0, 1) \). If \(\delta_n = z_\beta + z_{1-\alpha} \), then, letting \([\hat{c}, \infty) \) be the CI formed with \(\hat{L}_\delta \) based on the modulus \(\omega_{\hat{g}(\cdot), n} \) (using the formula (23) from Theorem 3.4), any one-sided CI \([\hat{c}, \infty) \) with

\[
\liminf_{n \to \infty} \inf_{f \in \mathcal{F}, Q \in \mathcal{Q}_n} P_{f, Q} (Lf \in [\hat{c}, \infty)) \geq 1 - \alpha
\]

must satisfy

\[
\liminf_{n \to \infty} \frac{\sup_{f \in \mathcal{F}, Q \in \mathcal{Q}_n} q_{f, Q, \beta} (Lf - \hat{c})}{\sup_{f \in \mathcal{F}, Q \in \mathcal{Q}_n} q_{f, Q, \beta} (Lf - \hat{c}_{\alpha, \delta})} \geq 1
\]

and, for any \(f \in \mathcal{F}_{\text{RDT}, p}(0) \),

\[
\liminf_{n \to \infty} \frac{\sup_{Q \in \mathcal{Q}_n} q_{f, Q, \beta} (Lf - \hat{c})}{\sup_{Q \in \mathcal{Q}_n} q_{f, Q, \beta} (Lf - \hat{c}_{\alpha, \delta})} \geq \frac{2^{2p/(2p+1)}}{1 + 2p/(2p+1)}.
\]

To prove this theorem, we first prove a series of lemmas.

Lemma F.2. For any constant \(B \), the following holds. Under Assumption F.4,

\[
\lim_{n \to \infty} \sup_{\| (b_+, b_-, d_+, d_-) \| \leq B} |G_n(b_+, b_-, d_+, d_-) - G_\infty(b_+, b_-, d_+, d_-)| = 0.
\]

Under Assumption F.3,

\[
\sup_{\| (b_+, b_-, d_+, d_-) \| \leq B} |G_n(b_+, b_-, d_+, d_-) - G_\infty(b_+, b_-, d_+, d_-)| \xrightarrow{p} 0.
\]

Proof. Define \(\tilde{G}_n^+(b_+, d_+) = \frac{1}{nh_n} \sum_{i=1}^n k_1^+ (x_i/h_n; b_+, d_+)^2 \), and define \(\tilde{G}_n^- \) analogously. Also, \(\tilde{G}_\infty^+(b_+, d_+) = p_{X, +}(0) \int_0^\infty k_1^+(u; b_+, d_+)^2 du \), with \(G^- \) defined analogously. For each \((b_+, d_+) \), \(\tilde{G}_n(b_+, d_+) \to G_\infty(b_+, d_+) \) by Assumption F.1. To show uniform convergence, first note that, for some constant \(K_1 \), the support of \(k_1^+(\cdot; b_+, d_+) \) is bounded by \(K_1 \) uniformly over
\[\| (b_+, d_+) \| \leq B \] and similarly for \(k_1^+ (\cdot; b_+, d_+) \). Thus, for any \((b_+, d_+)\) and \((\tilde{b}_+, \tilde{d}_+)\),

\[|G_n^+(b_+, d_+) - G_n^+(\tilde{b}_+, \tilde{d}_+) | \leq \left[\frac{1}{nh_n} \sum_{i=1}^{n} I(|x_i/h_n| \leq K_1) \right] \sup_{|u| \leq K_1} |k_1^+(u; b_+, d_+) - k_1^+(u; \tilde{b}_+, \tilde{d}_+) |. \]

Since the term in brackets converges to a finite constant by Assumption F.1 and \(k_1^+ \) is Lipschitz continuous on any bounded set, it follows that there exists a constant \(K_2 \) such that \[|G_n^+(b_+, d_+) - G_n^+(\tilde{b}_+, \tilde{d}_+) | \leq K_2 \| (b_+, d_+) - (\tilde{b}_+, \tilde{d}_+) \| \] for all \(n \). Using this and applying pointwise convergence of \(G_n^+(b_+, d_+) \) on a small enough grid along with uniform continuity of \(G_\infty(b_+, d_+) \) on compact sets, it follows that

\[\lim_{n \to \infty} \sup_{\| (b_+, b_-, d_-, d_-) \| \leq B} | \tilde{G}_n(b_+, d_+) - \tilde{G}_\infty(b_+, d_+) | = 0, \]

and similar arguments give the same statement for \(\tilde{G}_n^- \) and \(\tilde{G}_\infty^- \). Under Assumption F.4,

\[| G_n(b_+, b_-, d_+, d_-) - \left[\tilde{G}_n(b_+, d_+) \tilde{\sigma}_+^2(0) + \tilde{G}_n(b_-, d_-) \tilde{\sigma}_-^2(0) \right] | \leq \bar{k} \cdot \left[\frac{1}{nh_n} \sum_{i=1}^{n} I(|x_i/h_n| \leq K_1) \right] \sup_{0 < z \leq K_1 h_n} | \tilde{\sigma}_+^2(0) - \tilde{\sigma}_+^2(x) | + \sup_{-K_1 h_n \leq x < 0} | \tilde{\sigma}_-^2(0) - \tilde{\sigma}_-^2(x) | \]

where \(\bar{k} \) is an upper bound for \(|k_1^+(x)| \) and \(|k_1^-(x)| \). This converges to zero by left- and right-continuity of \(\tilde{\sigma} \) at 0. The result then follows since \(G_\infty(b_+, b_-, d_+, d_-) = \tilde{\sigma}_+^2(0) \tilde{G}_\infty^+(b_+, d_+) + \tilde{\sigma}_-^2(0) \tilde{G}_\infty^-(b_-, d_-) \). Under Assumption F.3, \(G_n(b_+, b_-, d_+, d_-) = \tilde{G}_n^+(b_+, d_+) \tilde{\sigma}_+^2 + \tilde{G}_n^-(b_-, d_-) \tilde{\sigma}_-^2 \), and the result follows from uniform convergence in probability of \(\tilde{\sigma}_+^2 \) and \(\tilde{\sigma}_-^2 \) to \(\tilde{\sigma}_+^2 \) and \(\tilde{\sigma}_-^2 \).

Lemma F.3. Under Assumption F.4, \(\| (\tilde{b}_+^n, \tilde{b}_-^n, \tilde{d}_+^n, \tilde{d}_-^n) \| \leq B \) for some constant \(B \) and \(n \) large enough. Under Assumption F.3, the same statement holds with probability approaching one uniformly over \(\mathcal{F}, \mathcal{Q}_n \).

Proof. Let \(A(x, b, d) = b + \sum_{i=1}^{p-1} d(x/h_n)^i \), where \(d = (d_1, \ldots, d_{p-1}) \). Note \(G_n(b_+, b_-, d_+, d_-) \) is bounded from below by \(1/\sup_{|x| \leq h_n} \tilde{\sigma}^2(x) \) times

\[\frac{1}{nh_n} \sum_{i: 0 < x_i \leq h_n} (|A(x_i, b_+, d_+)| - C)_+^2 + \frac{1}{nh_n} \sum_{i: -h_n \leq x_i < 0} (|A(x_i, b_-, d_-)| - C)_+^2 \geq \frac{1}{4nh_n} \sum_{i: 0 < x_i \leq h_n} [A(x_i, b_+, d_+)^2 - 4C^2] + \frac{1}{4nh_n} \sum_{i: -h_n \leq x_i < 0} [A(x_i, b_-, d_-)^2 - 4C^2] \]
(the inequality follows since, for any \(s \geq 2C \), \((s - C)^2 \geq s^2/4 \geq s^2/4 - C^2 \) and, for \(2C \geq s \geq C \), \((s - C)^2 \geq 0 \geq s^2/4 - C^2 \)). Note that, for any \(B > 0 \)

\[
\inf_{\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|\} \geq B} \frac{1}{4nh_n} \sum_{i:0 < x_i \leq h_n} A(x_i, b_+, d_+)^2
\]

\[
= B^2 \inf_{\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|\} \geq B} \frac{1}{4nh_n} \sum_{i:0 < x_i \leq h_n} A(x_i, b_+, d_+)^2
\]

\[
\rightarrow \frac{p(x_0(0))}{4} B^2 \inf_{\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|\} \geq 1} \int_0^\infty \left(b_+ + \sum_{i=1}^{p-1} d_+ u^i \right)^2 du
\]

and similarly for the term involving \(A(x_i, b_-, d_-) \) (the convergence follows since the infimum is taken on the compact set where \(\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|\} = 1 \)). Combining this with the previous display and the fact that \(\frac{1}{nh} \sum_{i:|x_i| \leq h} C^2 \) converges to a finite constant, it follows that, for some \(\eta > 0 \), \(\inf_{\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|\} \geq B} G_n(b_+, b_-, d_+, d_-) \geq (B^2 \eta - \eta^{-1})/\sup_{|x| \leq h} \tilde{\sigma}^2(x) \) for large enough \(n \). Let \(K \) be such that \(G_n(b_{+\infty}, b_{-\infty}, \tilde{d}_{+\infty}, \tilde{d}_{-\infty}) \leq K/2 \) and \(\max\{\tilde{\sigma}_1^2(0), \tilde{\sigma}_2^2(0)\} \leq K/2 \). Under Assumption F.4, \(G_n(b_{+\infty}, b_{-\infty}, \tilde{d}_{+\infty}, \tilde{d}_{-\infty}) < K \) and \(\sup_{|x| \leq h} \tilde{\sigma}^2(x) \leq K \) for large enough \(n \). Under Assumption F.3, \(G_n(b_{+\infty}, b_{-\infty}, \tilde{d}_{+\infty}, \tilde{d}_{-\infty}) < K \) and \(\sup_{|x| \leq h} \tilde{\sigma}^2(x) \leq K \) with probability approaching one uniformly over \(\mathcal{F}, Q_n \). Let \(B \) be large enough so that \((B^2 \eta - \eta^{-1})/K > K\). Then, when \(G_n(b_{+\infty}, b_{-\infty}, \tilde{d}_{+\infty}, \tilde{d}_{-\infty}) \leq K \) and \(\sup_{|x| \leq h} \tilde{\sigma}^2(x) \leq K \), \((b_{+\infty}, b_{-\infty}, \tilde{d}_{+\infty}, \tilde{d}_{-\infty})\) will give a lower value of \(G_n \) than any \((b_+, b_-, d_+, d_-)\) with \(\max\{b_+, |d_{i+1}|, \ldots, |d_{n+1-1}|, b_-, |d_{i+1}|, \ldots, |d_{n+1-1}|\} \geq B \). The result follows from the fact that the max norm on \(\mathbb{R}^{2p} \) is bounded from below by a constant times the Euclidean norm.

\(\square\)

Lemma F.4. If Assumption F.4 holds and \(\bar{b}_n \to \bar{b}_\infty \), then \((\bar{b}_{+n}, \bar{b}_{-n}, \bar{d}_{+n}, \bar{d}_{-n}) \to (\bar{b}_{+\infty}, \bar{b}_{-\infty}, \bar{d}_{+\infty}, \bar{d}_{-\infty})\). If Assumption F.3 holds and \(\bar{b}_n \overset{p}{\to} \bar{b}_\infty > 0 \), \((\bar{b}_{+n}, \bar{b}_{-n}, \bar{d}_{+n}, \bar{d}_{-n}) \overset{p}{\to} (\bar{b}_{+\infty}, \bar{b}_{-\infty}, \bar{d}_{+\infty}, \bar{d}_{-\infty})\).

Proof. By Lemma F.3, \(B \) can be chosen so that \(\| (\bar{b}_{+n}, \bar{b}_{-n}, \bar{d}_{+n}, \bar{d}_{-n}) \| \leq B \) for large enough \(n \) under Assumption F.4 and \(\| (\bar{b}_{+n}, \bar{b}_{-n}, \bar{d}_{+n}, \bar{d}_{-n}) \| \leq B \) with probability one uniformly over \(\mathcal{F}, Q_n \) under Assumption F.3. The result follows from Lemma F.2, continuity of \(G_\infty \) and the fact that \(G_\infty \) has a unique minimizer.

\(\square\)

Lemma F.5. If Assumption F.4 holds and \(\bar{b}_n \to \bar{b}_\infty > 0 \), then \(\omega_n^{-1}(n^{p/(2p+1)}\bar{b}_n) \to \omega^{-1}(\bar{b}_\infty) \).

If Assumption F.3 holds and \(\bar{b}_n \overset{p}{\to} \bar{b}_\infty > 0 \), then \(\omega_n^{-1}(n^{p/(2p+1)}\bar{b}_n) \overset{p}{\to} \omega^{-1}(\bar{b}_\infty) \).

S29
Proof. The result is immediate from Lemmas F.2 and F.4.

Lemma F.6. Under Assumption F.4, we have, for any $\delta > 0$,
\[
\sup_{0 < \delta \leq \delta} |n^{p/(2p+1)} \omega_n(\delta) - \omega_\infty(\delta)| \to 0.
\]

Under Assumption F.3, we have, for any $\delta > 0$,
\[
\sup_{0 < \delta \leq \delta} |n^{p/(2p+1)} \omega_n(\delta) - \omega_\infty(\delta)| \xrightarrow{P_{\mathcal{F}, \mathcal{Q}_n}} 0.
\]

Proof. The first statement is immediate from Lemma F.5 and Lemma E.1 (with $n^{p/(2p+1)} \omega_n$ playing the role of ω_n in that lemma). For the second claim, note that, if $|\hat{\sigma}_+ - \sigma_+(0)| \leq \eta$ and $|\hat{\sigma}_- - \sigma_-(0)| \leq \eta$, $\omega_{n, \hat{\sigma}(\cdot)}(\delta) \leq \omega_{n, \sigma(\cdot)}(\delta)$, where $\sigma(x) = (\sigma_+(0) - \eta)I(x > 0) + (\sigma_-(0) - \eta)I(x < 0)$ and $\hat{\sigma}(x)$ is defined similarly. Applying the first statement in the lemma and the fact that $|\hat{\sigma}_+ - \sigma_+(0)| \leq \eta$ and $|\hat{\sigma}_- - \sigma_-(0)| \leq \eta$ with probability approaching one uniformly over $\mathcal{F}, \mathcal{Q}_n$, it follows that, for any $\varepsilon > 0$, we will have
\[
\omega_{n, \hat{\sigma}_+(0), \sigma_-(0), \infty}(\delta) - \varepsilon \leq n^{p/(2p+1)} \omega_n(\delta) \leq \omega_{\sigma_+(0), \sigma_-(0), \infty}(\delta) + \varepsilon
\]
for all $0 < \delta < \delta$ with probability approaching one uniformly over $\mathcal{F}, \mathcal{Q}_n$. By making η and ε small, both sides can be made arbitrarily close to $\omega_\infty(\delta) = \omega_{\infty, \sigma_+(0), \sigma_-(0)}(\delta)$.

Lemma F.7. Let r denote $\sqrt{p_A}$ or $\chi_{\rho, \alpha}$. Under Assumption F.4,
\[
\sup_{\delta > 0} n^{p/(2p+1)} \omega_n(\delta)r(\delta/2)/\delta \to \sup_{\delta > 0} \omega_\infty(\delta)r(\delta/2)/\delta.
\]

Let δ_n minimize the left hand side of the above display, and let δ^* minimize the right hand side. Then $\delta_n \to \delta^*$ under Assumption F.4 and $\delta_n \xrightarrow{P_{\mathcal{F}, \mathcal{Q}_n}} \delta^*$ under Assumption F.3. In addition, for any $0 < \alpha < 1$ and Z a standard normal variable,
\[
\lim_{n \to \infty} (1 - \alpha)E[n^{p/(2p+1)} \omega_n(2(z_{1-\alpha} - Z))|Z \leq z_{1-\alpha}] = (1 - \alpha)E[\omega_\infty(2(z_{1-\alpha} - Z))|Z \leq z_{1-\alpha}].
\]

Proof. All of the statements are immediate from Lemmas F.6 and E.2 except for the statement that $\delta_n \xrightarrow{P_{\mathcal{F}, \mathcal{Q}_n}} \delta^*$ under Assumption F.3. The statement that $\delta_n \xrightarrow{P_{\mathcal{F}, \mathcal{Q}_n}} \delta^*$ under Assumption F.3 follows by using Lemma F.6 and analogous arguments to those in Lemma E.2 to show that that there exist $0 < \tilde{\delta} < \delta$ such that $\delta_n \in [\tilde{\delta}, \delta]$ with probability approaching on
uniformly in $\mathcal{F}, \mathcal{Q}_n$, and that $\sup_{\delta \in [\delta_n, \delta]} |n^{p/(2p+1)} \omega_n(\delta)r(\delta/2)/\delta - \omega(\delta)r(\delta/2)/\delta| \mathop{\xrightarrow{\mathcal{P}, \mathcal{Q}_n}} 0$. \hfill \square

Lemma F.8. Under Assumptions F.1 and F.2, the following hold. If Assumption F.4 holds and \tilde{b}_n is a deterministic sequence with $\tilde{b}_n \to \tilde{b}_{\infty} > 0$, then

$$
\sup_x |k_{\tilde{\sigma}}^+(x; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}_+(0)}^+(x; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty})| \to 0,
$$
$$
\sup_x |k_{\tilde{\sigma}}^-(x; \tilde{b}_{-,n}, \tilde{d}_{-,n}) - k_{\tilde{\sigma}_-(0)}^-(x; \tilde{b}_{-\infty}, \tilde{d}_{-\infty})| \to 0.
$$

If Assumption F.3 holds and \tilde{b}_n is a random sequence with $\tilde{b}_n \mathop{\xrightarrow{\mathcal{F}, \mathcal{Q}_n}} \tilde{b}_\infty > 0$, then

$$
\frac{1}{\sqrt{n}h_n} \sum_{i=1}^n \left[k_{\tilde{\sigma}}^+(x_i/h_n; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}_+(0)}^+(x_i/h_n; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right] u_i \mathop{\xrightarrow{\mathcal{F}, \mathcal{Q}_n}} 0
$$

and

$$
\frac{1}{\sqrt{n}h_n} \sum_{i=1}^n \left[k_{\tilde{\sigma}}^-(x_i/h_n; \tilde{b}_{-,n}, \tilde{d}_{-,n}) - k_{\tilde{\sigma}_-(0)}^-(x_i/h_n; \tilde{b}_{-\infty}, \tilde{d}_{-\infty}) \right] u_i \mathop{\xrightarrow{\mathcal{F}, \mathcal{Q}_n}} 0.
$$

Proof. For the first four statements, note that

$$
|k_{\tilde{\sigma}}^+(x; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}_+(0)}^+(x; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty})| \leq |k_{\tilde{\sigma}}^+(x; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}_+(0)}^+(x; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty})| + |k_{\tilde{\sigma}}^+(x; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}_+(0)}^+(x; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty})|.
$$

Under Assumption F.4, the first term is, for large enough n, bounded by a constant times $\sup_{0 < x < h_n} K |\tilde{\sigma}^{-2}(x) - \tilde{\sigma}_+^{-2}(0)|$, where K is bound on the support of $k_1^+(\cdot; b_+, d_+)$ over b_+, d_+ in a neighborhood of $\tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}$. This converges to zero by Assumption F.4. The second term converges to zero by Lipschitz continuity of $k_{\tilde{\sigma}_+(0)}^+$. Under Assumption F.3, the first term is bounded by a constant times $|\tilde{\sigma}_+^{-2} - \tilde{\sigma}_+(0)|$, which converges in probability to zero uniformly over $\mathcal{F}, \mathcal{Q}_n$ by assumption. The second term converges in probability to zero uniformly over $\mathcal{F}, \mathcal{Q}_n$ by Lipschitz continuity of $k_{\tilde{\sigma}_+(0)}^-$. Similar arguments apply to $k_{\tilde{\sigma}}^-$ in both cases.
For the last two statements, note that, under Assumption F.3,

\[
\frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} \left[k_{\tilde{\sigma}^+}^+(x_i/h_n; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right] u_i
\]

\[
= \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} \left[k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,n}, \tilde{d}_{+,n}) - k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right] u_i
\]

\[
+ \frac{\tilde{\sigma}_{-2}^2 - \tilde{\sigma}_{-2}^2(0)}{\sigma_{-2}^2(0)} \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,n}, \tilde{d}_{+,n}) u_i. \tag{S17}
\]

Under Assumptions F.1, F.2 and F.3, \(\frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) u_i \) converges in distribution to a normal law uniformly over \(F, Q_n \). Thus, assuming that the first term converges in probability to zero uniformly over \(F, Q_n \), the same convergence to a normal law will hold for \(\frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} k_{\tilde{\sigma}^+}^+(0)(x_i/h_n; \tilde{b}_{+,n}, \tilde{d}_{+,n}) u_i \) and, from this and the fact that \(\tilde{\sigma}_{-2}^2 - \tilde{\sigma}_{-2}^2(0) \xrightarrow{p} 0 \), it will follow that the second term in the display converges in probability to zero in probability uniformly over \(F, Q_n \). It therefore suffices to show that the first term converges in probability to zero in probability uniformly over \(F, Q_n \).

To this end, note that,

\[
\frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} \left[\left(\tilde{b}_{+,n} + \sum_{j=1}^{p-1} \tilde{d}_{+,n}(x_i/h_n)^j - C|x_i/h_n|^p \right) - \left(\tilde{b}_{+,\infty} + \sum_{j=1}^{p-1} \tilde{d}_{+,\infty}(x_i/h_n)^j - C|x_i/h_n|^p \right) \right] u_i
\]

\[
= \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} \left(\tilde{b}_{+,n} - \tilde{b}_{+,\infty} + \sum_{j=1}^{p-1} \left(\tilde{d}_{+,n,j} - \tilde{d}_{+,\infty,j} \right)(x_i/h_n)^j \right) I \left(x_i/h_n \in A(\tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right) u_i
\]

\[
+ \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} \left(\tilde{b}_{+,n} + \sum_{j=1}^{p-1} \tilde{d}_{+,n}(x_i/h_n)^j - C|x_i/h_n|^p \right)
\]

\[
\cdot \left[I(x_i/h_n \in A(\tilde{b}_{+,n}, \tilde{d}_{+,n})) - I(x_i/h_n \in A(\tilde{b}_{+,\infty}, \tilde{d}_{+,\infty})) \right] u_i \tag{S18}
\]

where \(A(b_+, d_+) = \left\{ u : b_+ + \sum_{j=1}^{p-1} d_{+,j} u^j - C|u|^p \geq 0 \right\} \). The first term can be written as

\[
\left(\tilde{b}_{+,n} - \tilde{b}_{+,\infty} \right) \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} I \left(x_i/h_n \in A(\tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right) u_i
\]

\[
+ \sum_{j=1}^{p-1} \left(\tilde{d}_{+,n,j} - \tilde{d}_{+,\infty,j} \right) \frac{1}{\sqrt{nh_n}} \sum_{i=1}^{n} (x_i/h_n)^j I \left(x_i/h_n \in A(\tilde{b}_{+,\infty}, \tilde{d}_{+,\infty}) \right) u_i,
\]
which converges in probability to zero uniformly over \(\mathcal{F}, \mathcal{Q}_n \) since \(\bar{b}_{+,-} - \bar{b}_{+,-} \xrightarrow{P}_{\mathcal{F},\mathcal{Q}_n} 0, \) \(\bar{d}_{+,-} - \bar{d}_{+,-} \xrightarrow{P}_{\mathcal{F},\mathcal{Q}_n} 0 \) and \(\frac{1}{\sqrt{n}h_n} \sum_{i=1}^n (x_i/h_n)^j I \left(x_i/h_n \in A(\bar{b}_{+,-}, \bar{d}_{+,-}) \right) u_i \) converges in distribution to a normal law uniformly over \(\mathcal{F}, \mathcal{Q}_n \) for \(j = 0, 1, \ldots, p-1. \)

For the second term in (S18), it suffices to show that

\[
\frac{1}{\sqrt{n}h_n} \sum_{i=1}^n (x_i/h_n)^j \left[I(x_i/h_n \in A(\bar{b}_{+,-}, \bar{d}_{+,-})) - I(x_i/h_n \in A(\bar{b}_{+,-}, \bar{d}_{+,-})) \right] u_i \xrightarrow{P}_{\mathcal{F},\mathcal{Q}_n} 0,
\]

since the second term in (S18) can be written as a sum of terms of this form times terms that converge in probability to finite constants uniformly over \(\mathcal{F}, \mathcal{Q}_n. \) To this end, note that, letting \(u_1^*, \ldots, u_k^* \) be the positive zeros of the polynomial \(\bar{b}_{+,-} + \sum_{j=1}^{p-1} \bar{d}_{+,-} u^j + Cu^p, \) the following statement will hold with probability approaching one uniformly over \(\mathcal{F}, \mathcal{Q}_n \) for any \(\eta > 0: \) for all \(u \) with \(I(u \in A(\bar{b}_{+,-}, \bar{d}_{+,-})) - I(u \in A(\bar{b}_{+,-}, \bar{d}_{+,-})) \neq 0, \) there exists \(\ell \) such that \(|u - u_{\ell}^*| \leq \eta. \) It follows that the above display is, with probability approaching one uniformly over \(\mathcal{F}, \mathcal{Q}_n, \) bounded by a constant times the sum over \(j = 0, \ldots, p \) and \(\ell = 1, \ldots, k \) of

\[
\max_{-1 \leq \ell \leq 1} \left| \frac{1}{\sqrt{n}h_n} \sum_{i: u_{\ell} - \eta \leq x_i/h_n \leq u_{\ell} + \eta} (x_i/h_n)^j u_i \right|.
\]

By Kolmogorov’s inequality (see pp. 62-63 in Durrett, 1996), the probability of this quantity being greater than a given \(\delta > 0 \) under a given \(f, Q \) is bounded by

\[
\frac{1}{\delta^2} \frac{1}{n h_n} \sum_{i: u_{\ell} - \eta \leq x_i/h_n \leq u_{\ell} + \eta} \text{var} Q [(x_i/h_n)^j u_i] = \frac{1}{\delta^2} \frac{1}{n h_n} \sum_{i: u_{\ell} - \eta \leq x_i/h_n \leq u_{\ell} + \eta} (x_i/h_n)^j \sigma^2(x_i)
\]

\[
\rightarrow \frac{p X_{+}(0) \sigma^2_{+}(0)}{\delta^2} \int_{u_{\ell} - \eta}^{u_{\ell} + \eta} u^{2j} du
\]

which can be made arbitrarily small by making \(\eta \) small.

This shows that (S18) converges in probability to zero uniformly over \(\mathcal{F}, \mathcal{Q}_n. \) A similar argument applies to the rest of the terms that make up the first term in (S17), which, along with similar arguments for \(k^{+}_{\sigma(j)}, \) gives the result. \(\square \)

We are now ready to prove Theorem F.3. If \(\delta_n \rightarrow \delta^*, \) then \(n^{p/(2p+1)} \omega_n(\delta) \rightarrow \omega_{\infty}(\delta^*) \) by Lemma F.6, so, applying Lemma F.8 with \(2\bar{b}_n = n^{p/(2p+1)} \omega_n(\delta) \), it follows that Assumption F.5 holds with the given choices of \(k^+ \) and \(k^- \) as required. Similarly, if \(\delta_n \) is random and \(\delta_n \xrightarrow{P}_{\mathcal{F},\mathcal{Q}_n} \delta^*, \) we have \(n^{p/(2p+1)} \omega_n(\delta) \xrightarrow{P}_{\mathcal{F},\mathcal{Q}_n} \omega_{\infty}(\delta^*) \) by Lemma F.6, so the ver-
sion of Lemma F.8 with random \(\tilde{b}_n \) applies to verify Assumption F.6. The statement that
\[\delta_n \rightarrow \delta^* \] under Assumption F.4 and \(\delta_n \xrightarrow{p} \delta^* \) under Assumption F.3 when \(\delta_n \) maximizes
\[\left(\omega_{\tilde{\sigma}(.)},n(\delta)/\delta \right) \sqrt{\rho_A(\delta/2)} \] or \(\left(\omega_{\tilde{\sigma}(.)},n(\delta)/\delta \right) \chi_{A,\alpha}(\delta/2) \) and \(\delta^* \) maximizes \(\left(\omega_{\infty}(\delta)/\delta \right) \sqrt{\rho_A(\delta/2)} \) or
\(\left(\omega_{\infty}(\delta)/\delta \right) \chi_{A,\alpha}(\delta/2) \) follows from Lemma F.7. Next, the statement that
\[n^{p/(2p+1)} \tilde{\chi}_{F,\mathcal{Q}_n} \]
\(\text{cv}(\text{bias}_\infty/v_\infty^{1/2})v_\infty^{1/2} \) where \(\tilde{\chi} \) is the half-length of the two-sided CI formed using \(\omega_{\tilde{\sigma}(.)},n \) follows from Theorem F.1, since \(\tilde{\chi} = \text{cv}(\text{bias}_n/v_n^{1/2})v_n^{1/2} \) where \(\text{bias}_n \) and \(v_n^{1/2} \) are defined as in Section F.1 for \(k_n^+(u) = k_{\tilde{\sigma}(.)}^+(u; \tilde{b}_n, \tilde{d}_n) \) and \(k_n^-(u) = k_{\tilde{\sigma}(.)}^-(u; \tilde{b}_n, \tilde{d}_n) \) with \(2\tilde{b}_n = \omega_{\tilde{\sigma}(.)},n(\delta) \).

We now prove the optimality statements (under which the assumption was made that
\(\tilde{\sigma}_+(0) = \sigma_+(0) \) and \(\tilde{\sigma}_-(0) = \sigma_-(0) \) and, for each \(n \), there exists a \(Q \in \mathcal{Q}_n \) such that the errors are normally distributed). In this case, for any \(\eta > 0 \), if a linear estimator \(\tilde{L} \) and constant \(\chi \) satisfy
\[\inf_{f \in F, Q \in \mathcal{Q}_n} P \left(Lf \in \{ \tilde{L} \pm n^{-p/(2p+1)} \chi \} \right) \geq 1 - \alpha - \eta, \]
we must have \(\chi \geq \sup_{\delta > 0} n^{p/(2p+1)} \omega_{\tilde{\sigma}(.)},n(\delta)/\delta \chi_{A,\alpha+\eta}(\delta/2) \) by Theorem 3.2 (using the characterization of optimal half-length at the beginning of Supplemental Appendix E). This converges to \(\sup_{\delta > 0} \omega_{\infty,\tilde{\sigma}_+(0),\sigma_+(0)}(\delta)/\delta \chi_{A,\alpha+\eta}(\delta/2) \) by Lemma F.7. If \(\liminf_n \inf_{f \in F, Q \in \mathcal{Q}_n} P \left(Lf \in \{ \tilde{L} \pm n^{-p/(2p+1)} \chi \} \right) \geq 1 - \alpha \), then, for any \(\eta > 0 \), the above display must hold for large enough \(n \), so that \(\chi \geq \lim_{\eta \downarrow 0} \sup_{\delta > 0} \omega_{\infty,\tilde{\sigma}_+(0),\sigma_+(0)}(\delta)/\delta \chi_{A,\alpha+\eta}(\delta/2) = \sup_{\delta > 0} \omega_{\infty,\tilde{\sigma}_+(0),\sigma_+(0)}(\delta)/\delta \chi_{A,\alpha}(\delta/2) \) (the limit with respect to \(\eta \) follows since there exist \(0 < \tilde{\delta} < \delta < \infty \) such that the supremum over \(\delta \) is taken \(\tilde{\delta}, \delta \) for \(\eta \) in a neighborhood of zero, and since \(\chi_{A,\alpha}(\delta/2) \) is continuous with respect to \(\alpha \) uniformly over \(\delta \) in compact sets). Since \(\text{cv}_\alpha(\text{bias}_n/v_n^{1/2})v_n^{1/2} = \sup_{\delta > 0} n^{p/(2p+1)} \omega_{\tilde{\sigma}(.)},n(\delta)/\delta \chi_{A,\alpha}(\delta/2) \) under Assumption F.4 with \(\delta \) optimizing the fixed-length CI, it follows from Lemma F.7 and the first part of the theorem shown above that
\[\text{cv}_\alpha(\text{bias}_\infty/v_\infty^{1/2})v_\infty^{1/2} = \lim_{n \rightarrow \infty} \text{cv}_\alpha(\text{bias}_n/v_n^{1/2})v_n^{1/2} = \limsup_{n \rightarrow \infty} \sup_{\delta > 0} n^{p/(2p+1)} \omega_{\tilde{\sigma}(.)},n(\delta)/\delta \chi_{A,\alpha}(\delta/2) \]
where the first two equalities use the definition of \(v_n \) under Assumption F.4. This is the lower bound for \(\chi \) given above, which proves the asymptotic efficiency bound for fixed-length affine confidence intervals.

For the asymptotic efficiency bound regarding expected length among all confidence intervals, note that, for any \(\eta > 0 \), any CI satisfying the asymptotic coverage requirement
must be a $1 - \alpha - \eta$ CI for large enough n, which means that, since the CI is valid under the $Q_n \in \mathcal{Q}_n$ where the errors are normal, the expected length of the CI at $f = 0$ and this Q_n scaled by $n^{p/(2p+1)}$ is at least

$$(1 - \alpha - \eta) E \left[n^{p/(2p+1)} \omega_{\sigma(\cdot),n}(2(z_{1-\alpha-\eta} - Z)) \middle| Z \leq z_{1-\alpha-\eta} \right]$$

by Corollary 3.3. This converges to

$$(1 - \alpha - \eta) E \left[\omega_{\infty,\sigma_+(0),\sigma_-(0)}(2(z_{1-\alpha-\eta} - Z)) \middle| Z \leq z_{1-\alpha-\eta} \right]$$

by Lemma F.7. The result follows from taking $\eta \to 0$ and using the dominated convergence theorem, and using the fact that $\omega_{\infty,\sigma_+(0),\sigma_-(0)}(\delta) = \omega_{\infty,\sigma_+(0),\sigma_-(0)}(1)\delta^{2p/(2p+1)}$ along with calculations similar to those given after Corollary 3.3. The asymptotic efficiency bounds for the feasible one-sided CI follow from similar arguments, using Theorem 3.1 and Corollary 3.2 along with Theorem F.1 and Lemma E.3.

Appendix G Supplemental Figures

Figure S1 plots a point estimator and one- and two-sided CIs based on a local linear estimator and triangular kernel and bandwidths chosen to be minimax optimal for the given performance criterion. Figure S2 plots plots one- and two-sided CIs based on a local linear estimator with bandwidths that minimize the maximum MSE.
Figure S1: Lee (2008) RD example: local linear regression with triangular kernel. Estimator based on minimax MSE bandwidths (estimator), lower and upper limits of one-sided confidence intervals with bandwidths that are minimax for 0.8 quantile of excess length (one-sided), and shortest fixed-length CIs (two-sided) as function of smoothness C. Effective number of observations corresponds to n_e for the minimax MSE estimator as defined in Equation (27) in the text.
Figure S2: Lee (2008) RD example: local linear regression with triangular kernel and minimax MSE bandwidths (estimator) with two-sided CI (two-sided) as well as lower and upper limits of one-sided CIs around it as function of smoothness C. Effective number of observations corresponds to n_e for the minimax MSE estimator as defined in Equation (27) in the text.
References

38