Wage Dynamics and Peer Referrals*

Vincent Boucher and Marion Goussé
October 2015

Abstract

We present a flexible model of wage dynamics where information about job openings is transmitted through social networks. The model is based on Calvó-Armengol & Jackson (2004, 2007) and extends their results outside the stationary distribution, and under observed and unobserved heterogeneity. We present an empirical application using the British Household Panel Survey by exploiting direct information about individual’s social networks. We find that the distribution of job offers is positively affected by the employment status of an individual’s friends, and that this relationship is stronger for women.

JEL Codes: C33, J31, J46
Keywords: Labour Market, Peer Referrals, Social Networks

Boucher: Department of Economics, Université Laval and CIRPÉE; vincent.boucher@ecn.ulaval.ca.
Goussé: Department of Economics, Université Laval, marion.gouss@ecn.ulaval.ca

We would like to thank Bernard Beaudreau, Luc Bissonnette, Bernard Fortin, Patrick Gonzalez and Kevin Moran for interesting comments and suggestions. Vincent Boucher gratefully acknowledges financial support from FRQ-SC.
1. Introduction

Many workforce characteristics (such as wages) are determined outside formal market structures. For example, it is estimated that between 18% and 45% of jobs are found using personal contacts (Pellizzari, 2010). A significant portion of wage inequality between different groups, and the persistence of this inequality, may be due to differences in the composition of social networks (Ioannides & Soetevent, 2006; Fontaine, 2008). Understanding non-market forces governing employment and wages has been a preoccupation for economists, going back to Rees (1966), Granovetter (1973, 1983) and Montgomery (1991, 1992).

In this paper, we present a flexible framework for analyzing how non-market institutions (e.g. peer referrals) affect wages. Our contribution is twofold. First, we contribute to the theoretical literature on network effects in the labour market (e.g. Calvó-Armengol & Zenou, 2005; Cahuc & Fontaine, 2009, and Fontaine, 2008) by extending the results of Calvó-Armengol & Jackson (2004, 2007). Specifically, we show that a natural extension of their results holds 1) outside the stationary distribution, and 2) under observed and unobserved heterogeneity. Second, we present an empirical application using data from the British Household Panel Survey (BHPS) from 1992 to 2008, where we exploit direct information on individuals’ friendship networks and the employment status of their friends. We find that the number of employed friends has a significant positive impact on the distribution of job offers (and therefore on wages), and that this effect is stronger for women.

A particular feature of our approach is that it allows for a dependence between the individuals’ wages. For example, the positive impact of an individual’s peers on his wage is likely to grow with the proportion of his peers who are employed. This may result from the fact that employed individuals have better information on the state of the labour market, or from the fact that unemployed individuals may be more reluctant to share private information about jobs.

We build on the important contribution of Calvó-Armengol & Jackson (2004, 2007) by extending their model to include observed heterogeneity (e.g. gender)
and unobserved heterogeneity (i.e. random-effect model). In contrast with most of the literature, our results also hold outside the stationary distribution. This is empirically important since periods of interest often include short-term events such as recessions. In other words, we do not need to assume that the data is generated from the stationary distribution.

We find that the individuals’ wages dynamic is associated. This implies that, conditional on the observables, the wages of any two individuals are positively correlated, across any point in time. We also show that, as time passes, this dependence is strict for any two socially connected individuals, and that the speed at which this dependence spreads can be expressed as a function of the social network. This allows us to describe the impact of a shock to an individual’s wage on the overall distribution of wages, at any point in time.

We restrict our analysis to a time-invariant network. Although our theoretical model abstracts away from strategic network formation considerations, such as in Calvó-Armengol (2004) and Galeotti & Merlino (2014), our empirical analysis controls for the endogeneity of the network structure as in Qu & Lee (2015) and Hsieh & Lee (2014). Coherently with the literature (see Boucher & Fortin (2015)), we find little difference between the model allowing for an endogenous network and the model assuming that the network is exogenous.

We present an empirical application using data from the BHPS from 1992 to 2008. We develop a non-linear panel dynamic spatial autoregressive (DSAR) model and show that it constitutes a special case of our general framework. An important feature of our model is that an individual’s wage is not only dependent on his position in the network, but also on the employment status of the other individuals in the network. We model the dependence on the initial state using random effects, as in Wooldridge (2005).

We find that the number of employed friends an individual has at time t has a positive impact on his wage at time $t+1$, and that this effect is much stronger for women. This result is in line with findings of stronger peer-effects.

1 See Ioannides & Loury (2004) for an extensive review of the literature on social networks and the labour market.
for women (Dieye & Fortin 2014; Neumark & Postlewaite 1998). Our findings could be explained by better communication and greater solidarity among women, which complements previous interpretations in other contexts, such as social conformism or complementarities. Our findings enrich the existing literature (e.g. Ibarra 1992, Campbell 1988, Hanson & Pratt 1991 and Mar-
maros & Sacerdote 2002) that find that women’s job networks are relatively “poor” as compared to men’s (lower density and “quality”) and that social networks contribute to the gender gap in wages and promotions. We find that a small increase in connections to employed individuals has a stronger effect on employment outcomes for women than for men. This is an indication that women’s wage may be more dependent on social connections than men’s.

We contribute to the empirical literature on the effects of networks on the labour market (e.g. Ioannides & Soetevent 2006). There are still relatively few empirical works looking at friendship networks. This is mostly due to lack of detailed data. Existing studies use either information on close neighbourhoods (Bayer et al. 2009), or on co-workers’ networks (Cingano & Rosolia 2012, Dustmann et al. 2011, Ashlund et al. 2014). Kramarz & Skans 2014 analyze the effect of strong family ties on young workers’ success in finding jobs. Galeotti & Merling 2014 use data on friends and relatives, although they do not observe their employment status.

We use the information provided by the BHPS, which contains direct information about individuals’ friendship networks and the employment status of their friends. To our knowledge, Cappellari & Tatsiramos 2011 is the only paper exploiting this data in a similar fashion. Using a static linear instrumental variables approach, they find that having one more employed friend increases an individual’s probability of being employed by 12%. We complement and extend their analysis by proposing a structural non-linear DSAR model in which friends’ wages are correlated across time. We focus on changes in the wage distribution and find that one additional employed friend increases future wage

2Substantial work has been done on the impacts of friendship networks of teenagers, using the Addhealth database. See http://www.cpc.unc.edu/projects/addhealth.
by 2.5%. Our analysis also complements Arulampalam & Stewart (2009), who also use the BHPS in order to estimate the dynamics of wages and employment using a similar methodology. We enrich their findings by including the impact of the friendship network.

The remainder of the paper is organized as follows. In section 2, we present the microeconomic framework. In section 3, we present our structural econometric model. We conclude in section 4.

2. Wage Distributions with Network Effects

We consider an economy composed of a finite set of individuals, \(N \). Each individual \(i \in N \) is characterized by a time-varying type \([x_t^i, \varepsilon_t^i] \), where \(x_t^i \) is observed, but not \(\varepsilon_t^i \). Typically, \(x_t^i \) will include socio-economic characteristics such as the individual’s gender, level of education, and age. We assume that the \(\varepsilon_t^i \) are independent and identically distributed across time only, so \(\varepsilon_t^i \) and \(\varepsilon_j^i \) may be correlated for a given period of time \(t \). Individuals interact in a time-invariant social network represented by the matrix \(G^s \), such that \(g_{ij}^s = 1 \) if \(i \) and \(j \) are linked, and \(g_{ij}^s = 0 \) otherwise. For instance, \(G^s \) may represent friendships (Galeotti & Merlino, 2014) or family ties (Kramarz & Skans, 2014). We denote by \(N^s(i) = \{ j \in N : g_{ij}^s = 1 \} \) the set of \(n_i^s \) individuals linked to \(i \) (i.e. the set of \(i \)'s peers). We also denote by \(\rho^s(i, j) \) the shortest path between \(i \) and \(j \). The shortest path is the minimum number of links needed to reach \(j \) from \(i \) in the network. If it is not possible to reach \(j \) from \(i \), we let \(\rho^s(i, j) = \infty \). If \(\rho^s(i, j) < \infty \), we say that \(i \) and \(j \) are “socially connected.” At every period \(t = 0, 1, ..., \) each individual earns a wage \(w_t^i \in W \equiv [b, \infty) \), where \(b \geq 0 \) is interpreted as social benefit.

We assume that the evolution of wages can be described as follows:

\[
\mathbf{w}^{t+1} = \varphi(\mathbf{w}^t, \mathbf{X}^t, \varepsilon^t)
\] (1)

\(\mathbf{w}^t \) We assume that wages include any non-monetary benefit or cost associated with an individual’s job, so preferences are strictly increasing in wages.
A simple example of (1) is a standard AR(1) process: \(w_{t+1} = \rho w_t + x_t' \beta + \varepsilon_t \).

However, we are interested in a wider variety of economic situations. We present a motivating example below (see Example 1).

It will sometimes be convenient (as in Example 1) to describe the distribution of wages using probability measures. We can denote the conditional probability of \(A \in B_n \) at \(t+1 \), given \(w_t \) and \(X_t \) as \(P(w_t, X_t; A) \), where \(B_n \) is the Borel set on \(W \subset \mathbb{R}^n \). We also define inductively

\[
P^{t+1}(w^0, (X^t); A) = \int_W P(w, X^t; A)P(w^0, (X^{t-1}); dw)
\]

where we use the short-hand notation \((X^t) \equiv (X^0, ..., X^t) \). Also note that since \((X^t) \) is observed, the conditional probability \(P(w^t, X^t; A) \) defines a non-homogeneous Markov chain. If we further assume that \(X^t = X \) for all \(t \), the model reduces to a standard (homogeneous) Markov chain, as in Calvó-Armengol & Jackson (2004, 2007).

Example 1. We present a motivating example for Equation 1. Suppose that, at every period \(t \), the economy is described by the following phases:

1. Each individual is laid off with probability \(\delta \in (0, 1) \).
2. Each individual receives a job offer with probability \(\gamma \in (0, 1) \). The distribution of offers follows a (shifted) log-normal distribution \(\Lambda(\mu_i, \sigma) + b \), where \(\mu_i = \ln (\alpha w_t^i + (1 - \alpha)x_i) \) for \(\alpha \in (0, 1) \). Here, \(x_i \) can be interpreted as the individual’s natural capacity to attract job offers. The dependence on \(w_t^i \) can be interpreted as the signalling effect of the individual’s current job to potential employers.
3. Offers are either accepted or further transmitted through the network.
 a. If the offer is less than an individual’s current wage, the individual selects one of his peers (independently of his peers’ current wages) and sends him the offer.
 b. If the offer is greater than the individual’s current wage, the individual accepts the offer (and quits his existing job). He then selects one of his peers (independently of his peers’ current wages) and transfers him an offer for his former job.

The fact that \(x_i^t = x_i \) for all \(t \) implies that the dynamics of the economy can be described by a homogeneous Markov chain with transition kernel \(P_X(w; A) \). The

\[\text{Note that } P \text{ does not depend on } t \text{ since the } \varepsilon_t \text{ are independent and identically distributed.}\]
Figure 1: (Example 1) Fix w_i, and let F_t^i represent the cumulative distribution of (direct and indirect) offers for i at time t (so γ is implicitly embedded in F_t^i). The probability that i becomes unemployed is equal to the probability that he gets laid off and that he does not receive any job offer, i.e. $\delta F_t^i(b)$. The “jump” observed at w_i is equal to the probability that the individual keeps his current job, which is equal to the probability that he does not get laid off, and that he receives an offer that is less than w_i, i.e. $(1 - \delta)F_t^i(w_i)$.

The marginal cumulative distribution of w_{i+1} for a given individual $i \in N$ earning w_i at time t is displayed in Figure 1.

Note that in this example, network connections affect wages through two channels. First, indirect offers act as a (partial) insurance against unemployment since it reduces the probability of getting laid off (while receiving no offer). This effect is present, irrespective of the wages individuals’ peers. Second, having connections to peers with higher wages increases the distribution of indirect offers and increases the probability of receiving an offer for a job that pays more than what the individual currently earns.

Note that the specification of the dynamics of wages in Equation 1 will generally impose some restrictions on individual rationality. In Example 1, for instance, we assume that individuals accept any job offer that pays a higher wage. This decision is clearly rational in the short run. However, it may be possible that accepting a highly paid job today reduces the prospect of finding an even better paying job in the future. In this case, the naive decision process described in Example 1 would not be rational in the long run. We abstract from these effects by assuming that an increase in wages cannot reduce an individual’s future wage prospects.\footnote{Note that this assumption imposes more than monotonicity with respect to an individual’s wage.}

Formally: \[\delta F_t^i(b)\]
Assumption 1 (Monotonicity). \(\varphi(w^t, X^t, \varepsilon^t) \) is increasing in \(w^t \) and \(\varepsilon^t \).

An equivalent interpretation of Assumption 1 is the following: increasing wages today leads to a better distribution of wages tomorrow, in the sense of first-order stochastic dominance (FOSD). Let \(\succeq \) represent dominance in the sense of FOSD. Then, we have the following:

Lemma 1. Assumption 1 holds iff \(P(w, X; A) \succeq P(\tilde{w}, X; A) \) whenever \(w \geq \tilde{w} \).

A reference for this lemma can be found in the appendix. Lemma 1 is also useful in order to show that Assumption 1 holds for specific economies, as shown in Example 2.

Example 2 (Example 1 continued). Consider the economy described in Example 1.

Suppose that we increase current wages. The properties of the log-normal distribution imply that this results in an increase to the wage distribution of direct offers for the next period, in the sense of FOSD. Since indirect offers are increasing in direct offers and current wages, it also increases the distribution of indirect offers.

Since future wages are increasing in direct offers, indirect offers and current wages, this results in an increase in the distribution of future wages.

Note, as discussed above, that the monotonicity of the stochastic process provides a rationale for individuals’ behaviour. Since higher wages cannot decrease the distribution of future wages, it is rational for individuals to choose the job with the highest wage.

Since the wage dynamics are monotone, the increase in some individual’s wage has a non-negative impact on every individual’s wage. However, the effect might not be strict and some individuals’ wages may be independent. The dependence structure of \(w^t \) is affected by the shape of \(\varphi \), as well as by the dependence structure of \(\varepsilon^t \). In the next section, we discuss the dependence structure of the wage distribution.

wage, as it is also increasing in other individuals’ wages. This assumption is also implicitly present in Calvó-Armengol & Jackson (2004) (lemma 8) and Calvó-Armengol & Jackson (2007) (lemma A.4).

Recall that \(w \) is greater than \(w' \) in the sense of FOSD iff \(E_u(w) \geq E_u(w') \) for any non-decreasing bounded function \(u \).

7See the appendix for a formal proof of this discussion.
2.1. Dependence Structure

We first introduce our notion of positive dependence.

Definition 1 (Association). Consider the random vector \(\mathbf{w} \). We say that \(\mathbf{w} \) is associated if

\[
\text{Cov}(a(\mathbf{w}), c(\mathbf{w})) \geq 0
\]

for all non-decreasing functions \(a \) and \(c \).

In particular, letting \(a(\mathbf{w}) = w_i \) and \(c(\mathbf{w}) = w_j \) for some \(i, j \in N \), we have the following corollary: if \(\mathbf{w} \) is associated, then \(\text{Cov}(w_i, w_j) \geq 0 \) for all \(i, j \in N \). Association has been used in a very similar context by Calvó-Armengol & Jackson (2004, 2007). We assume the following:

Assumption 2. \(\varepsilon_t \) is associated for all \(t \).

In particular, Assumption 2 implies that unobserved shocks are positively correlated across individuals. Note that the case where the \(\varepsilon_t \) are independent is a special case. An important consequence of this assumption (together with Assumption 1) is the following:

Proposition 2 (Association). Suppose that \(\mathbf{w}^0 \) is associated and that Assumptions 1 and 2 hold. Then, \((\mathbf{w}_t) | (\mathbf{X}_{t-1}) \) is associated, for all \(t \).

This result follows directly from the literature on monotone stochastic processes (references are provided in the appendix). Recall that \((\mathbf{w}^t) = (\mathbf{w}^0, ..., \mathbf{w}^t) \), so Proposition 2 implies that association holds for any two individuals, across any points in time.

However, Proposition 2 includes two unwanted features. First, it only describes weak dependence, since any two independent variables are necessarily associated. Second, it depends on the initial state \(\mathbf{w}^0 \), which may be unknown in practice. We address these issues below.

We assume the following technical assumption, which will be convenient in order to simplify the exposition of the model:

Assumption 3 (Positive Distribution). For any \(\mathbf{w}, \mathbf{X} \), \(P(\mathbf{w}, \mathbf{X}; A) > 0 \) for all strictly positive \(A \in B^\mathbf{w} \).

-- See proofs of Propositions 3 and 4, in the appendix, for details.
This assumption is not particularly strong as any non-positive distribution can be closely approximated by a positive distribution. It simply implies that any wage distribution is possible. Note that Assumption 3 holds for Example 1.

We now describe the dependence structure of the wage distribution. Specifically, we want to know which individuals’ wages are dependent, and which are not. It will be useful to describe the dependence of the stochastic process using a network structure. However, that network structure may not be the same as the social network structure G^s. We assume that the dependence structure can be summarized as follows:

Assumption 4 (Dependence Network). There exists a network G^d, called the “dependence network,” which is the smallest network such that for all $i \in N$:

$$w^{t+1}_i | w^{t+1}_{-i}, w^t, X^t = w^{t+1}_i | w^t_{N^d(i)}, w^t_{N^d(i) \cup \{i\}}, x^t_i$$

Assumption 4 describes two important features of the model. First, the dependence network characterizes the dependence structure of the wage distribution at any point in time. Note that this is done without any loss of generality, since G^d can be the complete network. Also note that G^d is stable through time, since the ε^t are independent and identically distributed. Second, the model is limited to endogenous interactions: an individual is not affected by his peers’ types, only by their wages.

Note that even if G^s and G^d need not be related, the dependence network will often turn out to be a function of the social network. Example 3 highlights the differences between G^s and G^d.

Example 3 (Example 1 continued). Consider the economy described in Example 1. We have $G^s = G^d$ since the distribution of (indirect) offers is only a function of the wages of individuals’ peers. Put differently, future wages of unlinked individuals are not correlated, conditional on current wages. However, suppose that the network phase is repeated as follows:

3. Offers are either accepted or further transmitted through the network.

9Note that one can always define x_i as $[\hat{x}_i, \hat{X}_{N^d(i)}]$ for some initial matrix \hat{X}. In this case, however, any change in G^d leads to a change in X. Assumption 4 allows us to abstract from these unwanted effects.
(a) If the offer is less than an individual’s current wage, the individual selects one of his peers (independently of his peers’ current wages) and sends him the offer.

(b) If the offer is greater than the individual’s current wage, the individual accepts the direct offer (and quits his existing job). He then selects one of his peers (independently of his peers’ current wages) and transfers him an offer for his former job.

(c) Steps (a) and (b) are repeated (for indirect offers) until no offer is accepted.

Contrary to the original game in Example 1, indirect offers can be transmitted through the network (individuals can re-send unwanted offers). Then, the wage distribution of an individual’s offers is a function of the wages of their peers, their peers’ peers, and so on. Then, the wages of any two socially connected individuals are dependent, i.e. $G^d_{ij} = 1$ iff $\rho^s(i, j) < \infty$, so $G^s \subset G^d$.

An implication of Assumption 4 is that the distance in the dependence network allows us to describe how fast shocks (e.g. information) spread in the economy. Formally:

Proposition 3. Under Assumptions 3 and 4,

$$(w^t_i \perp w^t_j) | w^0, (X^{t-1}) \iff \rho^d(i, j) > t$$

See the appendix for a proof. Remark that this last proposition only depends on assumptions 3 and 4 and does not rely, for instance, on monotonicity. Since the dependence network characterizes the dependence of w^t, the shortest path in the dependence network allows us to describe how many periods are needed in order for a shock to spread from one individual to another. Note that if the dependence network is such that $\rho^d(i, j) < \infty$ iff $\rho^s(i, j) < \infty$ for all $i \neq j$, Propositions 2 and 3 imply that the wages of any socially connected individuals are strictly associated after some finite amount of time.\(^\text{10}\)

Note, however, that Proposition 3 suffers from the same limitation as Proposition 2, the dependence on the initial state, w^0. We now provide sufficient conditions for the dependence on w^0 to vanish asymptotically. We assume the following:

\(^{10}\)This generalizes Calvó-Armengol & Jackson (2004) (Proposition 1) and Calvó-Armengol & Jackson (2007) (Theorem 1), where they present results for the stationary distribution of a homogeneous Markov chain.
Assumption 5 (Layoff Probability). There exists $\delta \in (0, 1)$ such that

$$\delta \leq P(w, X; b)$$

for all w, X.

This assumption is quite standard and assumes a positive separation rate for every individual. Technically, it ensures the recurrence of the stochastic process at state b. Note that Assumption 5 holds for Example 1, since $P(w, X; b) \geq (1 - \gamma)^n \delta^n$ for all w, X.

Let us define the “total variation norm” as $\|P\| = 2 \sup_{A \subseteq W} |P(A)|$. Then, the next proposition follows. (See the appendix for a proof.)

Proposition 4. Under Assumptions 3 and 5 and for any w^0 and \tilde{w}^0:

$$\|P^t(\tilde{w}^0, (X^{t-1}); \cdot) - P^t(w^0, (X^{t-1}); \cdot)\| \to 0$$

as $t \to \infty$. Moreover, if $X^t = X$ for all t, there exists a unique probability measure π such that for any w^0:

$$\|P^t(w^0, X; \cdot) - \pi\| \to 0$$

as $t \to \infty$.

When X^t is time dependent, the model may not have a stationary distribution. However, as $t \to \infty$, the dependence on the initial state vanishes. When $X^t = X$ for all t, the model does have a stationary distribution, π. Finally, note that proposition 4 only depends on assumptions 3 and 5 and not on the monotonicity of stochastic process.

The next corollary follows from Propositions 2, 3 and 4 and summarizes the economic significance of this section’s results.

Corollary 1. Suppose that $\rho^d(i, j) < \infty$ iff $\rho^s(i, j) < \infty$ for all $i \neq j$ and that Assumptions 4, 3, 3, 3, 3 and 5 hold. Then,

$$(w_i^t \perp w_j^t | (X^{t-1})$$

as $t \to \infty$ iff i and j are not socially connected. Moreover, as $t \to \infty$, $w^t | (X^{t-1})$ becomes associated.

The assumption that $\rho^d(i, j) < \infty$ iff $\rho^s(i, j) < \infty$ reflects the fact that the social network has an influence on the dependence structure of the wage distribution
(see Example 2). Since the dependence on the initial state vanishes as \(t \to \infty \) (see Proposition 4), Propositions 2 and 3 hold irrespective of the initial state as \(t \to \infty \).

This completes the analysis of the dependence structure of the model. In the next section, we study the comparative dynamics of the model.

2.2. The Impacts of Shocks on Wage Dynamics

In this section, we discuss the impact of changes in \(X_t \) on the distributions of wages. We assume the following:

Assumption 6. \(\varphi(w, X, \varepsilon) \) is increasing in \(X \).

This implies that \(X \) has a positive impact (in the sense of FOSD; see Lemma 1) on the distribution of future wages. It implies the following:

Proposition 5. Suppose that Assumption 1 and 6 hold and let \((X_t) \geq (\tilde{X}_t)\). Then, \(w^0 \preceq \tilde{w}^0 \) implies that \(w^t | (X_{t-1}) \succeq \tilde{w}^t | (\tilde{X}_{t-1}) \) for all \(t \).

Proposition 5 follows from standard results for the comparison of monotone stochastic processes (see the appendix for a proof and references). Note that under the conditions of Proposition 4, the dependence on the initial state vanishes as \(t \to \infty \). Note also that Proposition 5 can be applied to Example 1 with \(X_t = x \).

Suppose that \(X_t \) represents individuals’ levels of education. This implies that increasing the level of education of some individual \(i \) will have a positive impact on the entire distribution of wages. Coupled with Corollary 1, it implies that the increase in \(i \)'s level of education will have, for a sufficiently large \(t \), a positive impact on any individual socially connected to \(i \), and no impact on the rest of the population.

Note that in principle, Proposition 5 could be applied to changes in the network structure. Suppose that \(G^* \supseteq \tilde{G}^* \) implies that \(\varphi_{G^*}(w, X, \varepsilon) \geq \varphi_{\tilde{G}^*}(w, X, \varepsilon) \). That is, adding links to the social network has a positive impact on the wage distribution at a given time. Then, Proposition 5 implies that this dominance holds \(^{11}\).

\[^{11}\text{Another example is the drop-out functions from Calvó-Armengol & Jackson (2004) and Calvó-Armengol & Jackson (2007).}\]
for all t. Such an assumption may represent situations where the information transmitted through the network is non-rival. For example, individuals may gain information from their peers about how to access government programs or evade taxes [Bellemare et al., 2012]. The key is that when information is non-rival, everyone benefits from an individual having more links.

However, if the information transmitted through the network is rival (for example, information about a particular job opening, as in Example 1), the addition of a link will usually be beneficial to some, but detrimental to others. In Example 1, individuals prefer to have many links since it increases the probability that they receive indirect job offers. However, they prefer to be linked (all else equal) to individuals with relatively few links, as it increases the probability that such an individual will transmit an (indirect) offer to them, and not to another peer. Increasing the number of links will therefore have ambiguous effects on the wage distribution.

This completes the analysis of the theoretical framework. In the next section, we present our empirical application.

3. A Coherent Structural Econometric Model

We now discuss our ability to estimate the model developed in the previous sections. Although there is nothing that conceptually prevents the estimation of models such as the one presented in Example 1, we lack of available data which would allow us to identify such models. One would have to observe the entire network structure, as well as the offers transmitted.

An alternative would be to use existing econometric models such as linear DSAR models [Baltagi et al., 2014], where:

$$\ln(w_{t+1}) = X\beta + \lambda G^s \ln(w_{t+1}) + \rho \ln(w_t) + e_{t+1}$$

Note that this linear DSAR model is monotone, and that Assumption 3 holds.\(^{12}\) Also note that even if Assumption 5 does not hold, the linear DSAR is stationary, provided conditions on λ are met.
However, the linearity of the model has many unwanted features.

First, individuals’ wages are negatively (and symmetrically) influenced by peers with lower wages (through $\lambda G^s \ln(w_{t+1})$). This is incompatible with an interpretation of peer effects in terms of information transmission. Second, there is no well-defined unemployment level. Third, the model features too much variation in wages, compared to what is observed. In particular, the probability that an individual keeps the same wage for two consecutive periods is 0 if ε is drawn from a continuous distribution. Finally, as in Example 1, it requires detailed knowledge of the social network and of the wage distribution for the entire population.

We therefore propose the following model, which does not have the unwanted features of the linear DSAR, but can be identified using available data.

3.1. The Econometric Model

We assume that every period is characterized by the following phases:

1. Each individual is laid off with probability $\delta \in (0, 1)$.
2. Each individual receives a job offer with probability $\gamma \in (0, 1)$. Let $\omega(X^t, w^t)$ be the distribution of offers. Assume that it follows a log-normal distribution,

 \[
 \ln \omega_{i}^{t+1} = x_i^t \beta + \lambda \ln(w_i^t) + \tau E_i^t + \varepsilon_i^t
 \]

 where E_i^t is the number of i’s peers who are employed at time t, with $\lambda, \tau > 0$ and ε_i^t is normally distributed. We assume that:

 (a) If the direct offer received is less than the individual’s current wage, the individual keeps his current job

 (b) If the direct offer received is larger than the individual’s current wage, the individual accepts the job offer

 It is worth noting that E_i^t is a function of G^s and w^t. Note also that, contrary to Example 1, the network effects are directly embedded in the distribution of
offers, which allows for the identification and estimation of the model. Note that we can write i’s wage at $t + 1$ as follows:

$$\ln(w_{i}^{t+1}) = (1 - D_\delta)D_\gamma \max\{0, (x_i^t\beta + (\lambda - 1) \ln(w_i^t) + 2\tau E_i^t + \varepsilon_i^t)\}$$

$$+ D_\delta D_\gamma \max\{0, (x_i^t\beta + \lambda \ln(w_i^t) - \ln(b) + \tau E_i^t + \varepsilon_i^t)\}$$

$$+ (1 - D_\delta) \ln(w_i^t) + D_\delta \ln(b)$$

where D_p denotes the (Bernoulli distributed) random variable that takes a value of 1 with probability p, and 0 otherwise.

We obtain a dynamic nonlinear panel data model that we can estimate using actual data. Such a model needs some additional assumptions to deal with the initial condition issue. Specifically, we do not observe the initial state, but it is likely to be correlated with individuals’ unobserved characteristics. To our knowledge, there is no transformation that controls for unobservable individual fixed effects in non-linear settings. We therefore use the estimation method proposed by Wooldridge (2005) and assume the following random effects model:

$$\varepsilon_i^t = \alpha_i + u_i^t,$$

where $u_i^t \sim N(0, \sigma_u)$.

We then model the random effects as a function of the initial conditions. Specifically:

$$\alpha_i = \theta \ln w_i^0 + \eta_i,$$

where $\eta_i \sim N(0, \sigma_\eta)$ and w_i^0 is i’s initial wage.

To provide more flexibility in the specification of the conditional distribution of the unobserved effect, we allow α_i to be correlated with the exogenous regressors over all the periods. To this end, we use the Mundlak specification of correlated random effects (CRE) (Mundlak, 1978):

1 Arulampalam & Stewart (2009) compare three parametric estimation methods to address initial condition issues in non-linear dynamic settings: the Heckman method, the Orme method and the Wooldridge method. They do not find one to be clearly superior to the others.
\[\alpha_i = \theta \ln w^0_i + z_i \rho + \eta_i, \]

where \(z_i = (\bar{x}_{i1}, \ldots, \bar{x}_{iK}, \ln w^0_i \times \bar{x}_{i1}, \ldots, \ln w^0_i \times \bar{x}_{iK}) \) is a vector of the means of the exogenous regressors over all the periods and their interaction with the initial state. The individual-specific random-effects specification implies that the correlation between \(v^s_t = \eta_i + u^s_t \) in any two different periods will be the same:

\[\text{corr}(v^s_t, v^s_s) = \frac{\sigma^2_\eta}{\sigma^2_\eta + \sigma^2_u}, \]

for \(t, s = 2, \ldots, T, t \neq s. \)

Then, we can write the contribution of the likelihood of observing \(w^{t+1}_t \) conditional on \(w^t_t, E^t_t, w^0_i \), on the exogenous regressors \(x^t_i \) and \(z_i \), on the unobserved heterogeneity \(\eta_i \) and on all the parameters of the model. Using Equation 2, we define five probabilities: the probability that the individual receives an offer between \(t \) and \(t+1 \) that is superior to his wage in \(t \) \((w^{t+1}_t > w^t_t) \), the probability that the individual is both working at \(t \) and \(t+1 \) at the same wage rate \((w^{t+1}_t = w^t_t|w^t_t > b) \), the probability that the individual is unemployed both in \(t \) and in \(t+1 \) and earns social welfare \((w^{t+1}_t = w^t_t|w^t_t = b) \), the probability that the individual has lost his job at \(t \) but simultaneously receives a job offer for \(t+1 \) that is inferior to his wage in \(t \) but still superior to the social welfare \(b \) and that he accepts \((w^{t+1}_t < w^t_t|w^{t+1}_t > b) \), and finally the probability that the individual loses his job without finding a new one between \(t \) and \(t+1 \) \((w^{t+1}_t = b|w^t_t > b) \). Then, the conditional contribution of individual \(i \) to the likelihood at time \(t+1 \)
can be written as:

\[
L_i^{t+1} = L(w_i^{t+1}|w_i^t, E_i^t, w_i^0, \eta_i, x_i^t, z_i, \Xi) = \left[\frac{\gamma \phi}{\sigma_u} \left(\frac{\ln(w_i^{t+1}) - (x_i^t \beta + \lambda \ln(w_i^t) + \tau E_i^t + \theta \ln w_i^0 + z_i \rho + \eta_i)}{\sigma_u} \right) \right]^{1\{w_i^{t+1}>w_i^t\}} \\
\times \left[(1-\delta)(1-\gamma) + (1-\delta)\gamma \Phi \left(-\frac{x_i^t \beta + (\lambda - 1) \ln(w_i^t) + \tau E_i^t + \theta \ln w_i^0 + z_i \rho + \eta_i}{\sigma_u} \right) \right]^{1\{w_i^{t+1}=w_i^t\}} \\
\times \left[(1-\gamma) + \gamma \Phi \left(-\frac{x_i^t \beta + (\lambda - 1) \ln(w_i^t) + \tau E_i^t + \theta \ln w_i^0 + z_i \rho + \eta_i}{\sigma_u} \right) \right]^{1\{w_i^{t+1}=0\}} \\
\times \left[\frac{\delta \gamma}{\sigma_u} \left(\frac{\ln(w_i^{t+1}) - (x_i^t \beta + \lambda \ln(w_i^t) + \tau E_i^t + \theta \ln w_i^0 + z_i \rho + \eta_i)}{\sigma_u} \right) \right]^{1\{w_i^{t+1}<w_i^t\}} \\
\times \left[(\delta - 1 - \gamma) + \delta \gamma \Phi \left(-\frac{x_i^t \beta + (\lambda - 1) \ln(w_i^t) - \ln(b) + \tau E_i^t + \theta \ln w_i^0 + z_i \rho + \eta_i}{\sigma_u} \right) \right]^{1\{w_i^{t+1}=b\}}
\]

with \(\phi \) and \(\Phi \) denoting, respectively, the probability and cumulative density functions of the standard normal distribution and \(\Xi \), the set of all parameters of the model.

Then, we integrate out \(\eta_i \) to obtain the conditional contribution of individual \(i \) to the likelihood of the model that is the density of \((w_i^1, w_i^2, \ldots, w_i^T)\) given \((w_i^0, x_i, z_i, E_i, \Xi)\):

\[
L((w_i^1, w_i^2, \ldots, w_i^T)|w_i^0, x_i, z_i, E_i, \Xi) = \int \left(\prod_{t=1}^{T} L(w_i^t|w_i^{t-1}, E_i^{t-1}, w_i^0, \eta_i, x_i^t, z_i, \Xi) \right) \frac{1}{\sigma_\eta} \phi(\eta_i) d\eta
\]

where the integral will be computed using the Gaussian-Hermite quadrature.

Then, we sum the log transformation of each contribution over all individuals to obtain the log-likelihood of the model:

\[
L = \sum_{i=1}^{N} \ln \left[\int \left(\prod_{t=1}^{T} L(w_i^t|w_i^{t-1}, E_i^{t-1}, w_i^0, \eta_i, x_i^t, z_i, \Xi) \right) \frac{1}{\sigma_\eta} \phi(\eta_i) d\eta \right]. \tag{4}
\]

One could argue that the random effect corrects for the endogeneity of \(w_i^{t-1} \), but not for the possible endogeneity of the number of employed peers, \(E_i^{t-1} \).
As a robustness check, we estimate a joint model for the wage dynamics and the number of employed friends where we permit correlated random effects on two endogenous variables (an individual’s number of employed peers and his previous wage). That is, we add to the previous estimation an ordered probit model of the number of employed peers:

\[
\ln(w_{i,t+1}) = f_w(w_{i,t}, E_{i,t}, x_{i,t}, z_i, \eta_i, \Xi, u_{i,t})
\]

\[
E_{i,t+1} = \begin{cases}
0 & \text{if } e_0 w_{i,t} + e_1 E_{i,t} + x_{i,t}^e + \nu_i + u_{2i} < a_0 \\
1 & \text{if } a_0 \leq e_0 w_{i,t} + e_1 E_{i,t} + x_{i,t}^e + \nu_i + u_{2i} < a_1 \\
2 & \text{if } a_1 \leq e_0 w_{i,t} + e_1 E_{i,t} + x_{i,t}^e + \nu_i + u_{2i} < a_2 \\
3 & \text{if } a_2 \leq e_0 w_{i,t} + e_1 E_{i,t} + x_{i,t}^e + \nu_i + u_{2i}
\end{cases}
\]

where the random effects \(\nu_i \) and \(\eta_i \) are jointly normally distributed with variances \(\sigma_\nu \) and \(\sigma_\eta \), and correlation \(\rho \). The errors \((u_{i,t}, u_{2i})\) are assumed to be independent and normally distributed, with variances \(\sigma_u \) to be estimated and \(\sigma_{u_2} \) fixed at 1.

Note that this model is compatible with the framework developed in Section 2:

Proposition 6. The econometric model respects Assumptions 7 to 9 and is such that \(G^d = G^s \).

A proof is provided in the appendix. In particular, note that the conditions of Proposition 5 hold so that any change in the parameters driving the distribution of offers (i.e. \(\beta, \lambda \) and \(\tau \)) does not only have an impact on the expected wage, but on the entire distribution of future wages.

We now briefly present the data.

14 Stewart (2007) also estimates a joint bivariate probit model with correlated error terms and random effects.

15 Qu & Lee (2015) also use a similar strategy for modelling the dependence between the network and the outcome equation.

16 See the proof of Proposition 6 in the appendix for details with respect to FOSD.
3.2. Data

We use the BHPS, covering the period 1991-2008, to examine the wage dynamics of British men and women. This panel is a nationally representative sample of households whose members are re-interviewed each year.

The sample is restricted to 18- to 65-year-olds who are in the labour force during the whole period (we thus exclude retired individuals, full-time students and individuals in family care). We drop all observations with missing information on usual gross pay per month and the number of hours normally worked per week. We trim the top and bottom 1% tails of wages and working hours, and we compute the hourly wage by dividing the usual gross pay per month by the number of hours normally worked per month. Finally, wages are deflated by the consumer price index and computed in 2008 British pounds. We also observe the year in which individuals begin their current job. We use that information to identify changes in wages between two periods that come from a job offer or termination, and not from measurement errors or salary raises.

For all individuals, we observe their education level, age, marital status and the employment status of their three best friends. The survey also collects information on individuals’ health status, which we use as a dummy variable indicating whether the health of an individual limits the type or amount of work he could perform. Finally, we add the regional unemployment rate for each period to the panel. As information on friends is only collected in even-numbered years, we restrict our sample to those years. To increase the sample size, we keep individuals who are present in the sample from 1998 to 2008 so that we consider six periods of two years (1998, 2000, 2002, 2004, 2006, 2008).

We keep observations for individuals who provide information on at least one friend each year; we obtain a balanced panel of 1709 individuals (10,254 observations) among whom 845 women. Descriptive statistics are presented in Tables 1 and 2. More than 90% of individuals declare having at least three best

\[17\] Twelve regions are reported: North East, North West, Yorkshire and the Humber, East Midlands, West Midlands, East of England, London, South East, South West, Wales, Scotland and Northern Ireland.
friends. 53% of individuals have their three best friends employed, whereas it is
the case for only 45% of women.

3.3. Results

Estimates of the parameters are presented in Table 3. We compare three
models: one with uncorrelated random effects where initial conditions are as-
sumed to be exogenous, a second with uncorrelated random effects where we
include a dependency to the initial wage, and a third with correlated random
effects and a dependency to the initial conditions. 18

We find a job destruction rate (δ) of 15% and a rate of offers (γ) of 65%.
The probability of being unemployed in a given period is then approximately
5.1% ($0.146 \times (1 - 0.65)$), which is close to the unemployment rate in the UK
during this time period. 19 Also note that the rate of offers represents any offers,
and not necessarily offers that are accepted, which accounts for the relatively
high rate. The hypothesis $\theta = 0$, exogeneity of the initial condition, is strongly
rejected. A 10% increase in the initial wage increases the average wage of one
individual’s job by 4.2%. When we relax the hypothesis of the exogeneity of
initial conditions, the effect of the current wage on the distribution of offers
decreases significantly (columns 2 and 3). However, we still find a small but
positive and significant effect of the current wage on the average distribution
of job offers. A 10% increase in the current wage increases the average wage
of an individual’s job offers by by 0.35%. There is a significant impact of the
number of employed friends in the third model (column 3 of Table 3). Having
an additional employed friend increases the average wage of an individual’s job
offers by by 2.5%. Not surprisingly, a high unemployment rate, having minimal
education and being female all have a negative effect on the distribution
of job offers. We find no impact of the single status and no impact of the

18 Correlated random effects are computed by including the means of the exogenous variables
over the periods and their interactions with the initial wage.

19 A precise calculation of the probability of being unemployed would include the probability
that an individual receives an offer that they refuse.
health status on the short term. However, having bad health status for several periods has a strong negative impact on the average distribution of job offers. If we compute the cross-period correlation for the composite error term $\text{corr}(v_t^i, v_s^i) = \frac{\sigma^2_\eta}{\sigma^2_\eta + \sigma^2_u}$, we obtain 0.59. This also the proportion of the error variance due to the individual-specific effects.

We further compare the results with those obtained when we estimate the model for women only. Wage dynamics are very gender dependent, so separate estimations may be more relevant. Furthermore, we observe greater variability for women than for men with respect to the number of employed friends an individual has. Results are displayed in Table 4. Estimates are very close to the previous results but show a stronger effect of the network on women’s wages. For women, having one more employed friend increases the average offer by 4% instead of 2.5% for all individuals.

Whereas gender differences in the density and composition of social networks have been studied in the literature, it would also be interesting to understand gender differences in the use and the efficiency of social contacts for improving labour-market outcomes.

Finally, we estimate a joint model for wage dynamics and for the number of friends employed. Results are presented in Table 5. The estimation is for women only. We find a stronger effect of the network. Other coefficients are remarkably stable. Our estimation of the correlation between the two random effects is not statistically significant.

We conclude by discussing areas for further research.

20 Other studies working on the BHPS find similar results.
21 More than 65% of employed men have their three best friends employed, compared with 45% for employed women.
22 The results are qualitatively the same for the whole sample. Results are available upon request.
4. Conclusion

The empirical literature on the effects of personal networks in the labour market is small but expanding. We contribute to that literature by proposing a non-linear DSAR and estimating the impact of the employment status of an individual’s three best friends on the distribution of his job offers. Our structural econometric model is based on our general microeconomic framework, which allows for a large variety of econometric specifications. We discuss some examples below.

We find that the number of employed friends has a positive effect on the distribution of job offers. This finding is important, as it introduces dependence between individuals’ wages. It also suggests that information about the status of an individual’s peers can be as relevant as the information about the peers themselves.

An interesting finding is that the employment status of an individual’s peers has a larger effect on the distribution of job offers for women than for men. This suggests that certain groups of individuals (in this case, women) can be more affected by negative shocks on their peers. Determining which groups are more or less exposed to the status of their peers is a promising area of research.

Another potential area for future research (which may be constrained by a lack of available data) is to study the spread of negative aggregate shocks. Our general framework allows for the study of wage dynamics outside the stationary distribution. The fact that wages are positively correlated points to a multiplicative effect of recessions: the total impact is a combination of both the direct impact of a shock, as well as the indirect impact that occurs through the employment status of individuals’ peers.

Throughout the paper, we assume that the social network structure is fixed and independent of wage dynamics. This is consistent with our empirical application, since wages are unlikely to be a significant determinant of close friendships. However, some networks (e.g. co-workers) are much more likely to be determined as a function of labour-market outcomes. This raises interesting
and challenging questions as to the extent to which individuals are strategic in choosing their friends in time-varying endogenous social networks.
5. References

6. Appendix

6.1. Proofs

Proof (of Lemma 1). See Müller & Stoyan (2002), theorem 5.2.3.

Proof (of the Discussion in Example 2). From Lemma 1 it is sufficient to show that \(w^t \geq \hat{w}^t \) implies that \(w^{t+1} \geq \hat{w}^{t+1} \). The direct offers are given by:

\[
\omega^t_i = D_\gamma (\alpha w^t_i + (1 - \alpha) x_i) \exp\{\varepsilon^t_i\} + b
\]

where \(\varepsilon^t_i \) is independent and identically distributed from \(N(0, \sigma^2) \) and \(D_\gamma \) is a Bernoulli distributed random variable that takes a value of 1 with probability \(\gamma \). Note that \(w^t \geq \hat{w}^t \) implies that \(\omega^t \geq \hat{\omega}^t \) (see Müller & Stoyan (2002), theorems 3.3.10, 3.3.11 and 3.3.13). We can define the following:

\[
r_i = \max\{D_\delta b + (1 - D_\delta) w^t_i, \omega^t_i\}
\]

and

\[
s_i = \min\{D_\delta b + (1 - D_\delta) w^t_i, \omega^t_i\}
\]

where \(D_\delta \) is a Bernoulli distributed random variable that takes value 1 with probability \(\delta \). Therefore, \(w^t \geq \hat{w}^t \) implies that \(r \geq \hat{r} \) and \(s \geq \hat{s} \) (see Müller & Stoyan (2002), theorem 3.3.10). Finally, we have that

\[
w^{t+1} = \max\{r, s_d, \ldots, s_d\}
\]

so, (again from Müller & Stoyan (2002), theorem 3.3.10), we have that \(w^t \geq \hat{w}^t \) implies that \(w^{t+1} \geq \hat{w}^{t+1} \). QED

Proof (of Proposition 3). The proof is based on the theory of independencies for Markov network models. The reference used here is Koller & Friedman (2009), section 4.3.

Let us consider the set of all wages, for all individuals, at any point in time from \(t = 0 \) to \(t = T \), conditional on the characteristics \(X^t \), i.e. \(\{w^t_1, \ldots, w^T_n\|X^{T-1}\} \).

We now define a Markov network structure. Let \(\mathcal{H} \) be an undirected graph where a typical node is \((i, t) \) for \(i \in N \) and \(0 \leq t \leq T \). Consider \((i, t) \) and \((j, \tau) \) in \(\mathcal{H} \). We set \(\tau \geq t \) without a loss of generality. We assume that a link exists between \((i, t) \) and \((j, \tau) \) if one of the following conditions holds:

1. \(i = j \) and \(\tau = t - 1 \)
2. \(j \in N^d(i) \) and \(\tau = t - 1 \)
3. \(j \in N^d(i) \) and \(\tau = t \)

We provide an example in Figure 2.
Given an arbitrary graph G on (i, t), the Markov blanket of a generic random variable $Z = \{z^t_i\}$ is defined as:

$$I(G) = \{(z^t_i \perp Z - \{z^T_j\}_{(j, \tau), (i, t) \in g} - z^t_i)\}$$

Conditional on the neighbours of (i, t) in G, the realizations on z^t_i are independent of the other variables in Z.

In the context of $\{w^t_i, \ldots, w^T_n\} | (X^{T-1})$ and \mathcal{H}, Assumption 4 implies that \mathcal{H} summarizes the dependence structure of $z^t_i \equiv w^t_i | (X^{t-1})$. Since Assumption 3 holds, looking at the Markov blanket is sufficient to describe the dependence structure (see Koller & Friedman (2009), corollary 4.1).

For instance, in the example in Figure 2, we see that w^1_i and w^1_j are independent, conditional on w^0_i (X^0) (i.e. there is no path between $(i, 1)$ and $(j, 1)$). However, there are paths between, say, $(j, 2)$ and $(l, 2)$. More importantly, there is at least one path between $(j, 2)$ and $(l, 2)$ that does not pass through $[(i, 0), (j, 0), (k, 0), (l, 0)]$: the path through $(k, 1)$, as shown in Figure 3.
Then, $w_2^2(X^1)$ and $w_2^2(X^1)$ are dependent, conditional on w^0. This follows formally from the definition of the dependence network, which implies that H is the minimal I - map (see Koller & Friedman (2009), theorem 4.6).

The same argument applies in general: w_0 separates $w_{ti}|(X_{t-1})$ and $w_{tj}|(X_{t-1})$ if and only if the shortest path between i and j in the dependence network is greater than t, i.e. iff $\rho^d(i, j) > t$. QED

Proof (of Proposition 4). The proof is based on Dorea & Pereira (2006). From Theorems 2 and 3, it is sufficient to show that there exists a probability μ_t, an integer $m_t \geq 1$, and constants $\alpha_t < 1/2$ and $\beta_t > 0$ such that for any $A \in \mathcal{B}^n$, $\mu_t(A) > \alpha_t$ implies that

$$\inf_{w \in W} P^{m_t}(w^0, (X^{m_t-1}), A) \geq \beta_t$$

(5)

We have:

$$P^{m_t}(w^0, (X^{m_t-1}), A) = \int_{w} P(w, X^{m_t-1}, A) P^{m_t-1}(w^0, (X^{m_t-2}), dw) \geq P(b, X^{m_t-1}, A) P^{m_t-1}(w^0, (X^{m_t-2}), b) \geq P(b, X^{m_t-1}, A)$$

where the last inequality follows from Assumption 5. Letting $\mu_t(A) = P(b, X^{m_t-1}, A)$ completes the proof. QED

Proof (of Proposition 5). The proof follows directly from the successive application of theorem 4.3.8 from Müller & Stoyan (2002).

Proof (of Proposition 6).

Monotone Process: First, note that ω is monotone (see Müller & Stoyan (2002), theorems 3.3.10, 3.3.11 and 3.3.13). For any $i \in N$, we have

$$w_{i+1} = \max\{D_\delta b + (1 - D_\delta)w_i, D_\gamma \omega_i\}$$

Then, ϕ is \succeq-monotone from Müller & Stoyan (2002), theorem 3.3.10.

Association: This follows directly from the specification of ϵ^i_1.

Positive Distribution and Layoff Probability: Every individual has a positive probability of being laid off, as well as receiving a job offer, and the distribution of offers has full support on W. This implies that Assumptions 3 and 5 hold.

Dependence Network: Assumption 4 holds for $G^d = G^s$. QED

6.2. Tables
Table 1: Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean**</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (N=1709)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>35.355</td>
<td>10.317</td>
</tr>
<tr>
<td>Education level*</td>
<td>3.614</td>
<td>1.61</td>
</tr>
<tr>
<td>Single</td>
<td>0.233</td>
<td>0.423</td>
</tr>
<tr>
<td>Health status</td>
<td>0.086</td>
<td>0.281</td>
</tr>
<tr>
<td>Employment</td>
<td>0.938</td>
<td>0.241</td>
</tr>
<tr>
<td>Hourly wage</td>
<td>11.924</td>
<td>6.198</td>
</tr>
<tr>
<td>Log of hourly wage</td>
<td>2.215</td>
<td>0.739</td>
</tr>
<tr>
<td>Number of Friends</td>
<td>2.894</td>
<td>0.369</td>
</tr>
<tr>
<td>Number of employed Friends</td>
<td>2.335</td>
<td>0.812</td>
</tr>
<tr>
<td>Regional unemployment rate</td>
<td>5.378</td>
<td>1.286</td>
</tr>
<tr>
<td>Women (N=832)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>35.635</td>
<td>10.072</td>
</tr>
<tr>
<td>Education level*</td>
<td>3.531</td>
<td>1.591</td>
</tr>
<tr>
<td>Single</td>
<td>0.249</td>
<td>0.432</td>
</tr>
<tr>
<td>Health status</td>
<td>0.084</td>
<td>0.277</td>
</tr>
<tr>
<td>Employment</td>
<td>0.944</td>
<td>0.23</td>
</tr>
<tr>
<td>Hourly wage</td>
<td>10.504</td>
<td>5.423</td>
</tr>
<tr>
<td>Log of hourly wage</td>
<td>2.115</td>
<td>0.690</td>
</tr>
<tr>
<td>Number of Friends</td>
<td>2.914</td>
<td>0.321</td>
</tr>
<tr>
<td>Number of employed Friends</td>
<td>2.484</td>
<td>0.806</td>
</tr>
<tr>
<td>Regional unemployment rate</td>
<td>5.399</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*Education is coded in seven levels.

**Mean over the nine periods (1998-2008).

Table 2: Summary statistics for the number of declared friends

<table>
<thead>
<tr>
<th>Number of friends</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2.1%</td>
<td>6.2%</td>
<td>91.7%</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.3%</td>
<td>5.0%</td>
<td>92.9%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of employed friends</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2.7%</td>
<td>12.4%</td>
<td>31.6%</td>
<td>53.2%</td>
</tr>
<tr>
<td>Female</td>
<td>2.7%</td>
<td>14.2%</td>
<td>38.1%</td>
<td>44.9%</td>
</tr>
</tbody>
</table>
Table 3: Estimates. 1998-2008

<table>
<thead>
<tr>
<th></th>
<th>Random effects with exogeneity of initial conditions</th>
<th>Random effects with initial conditions</th>
<th>Correlated Random effects with initial conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.0296***</td>
<td>0.0227***</td>
<td>0.0010***</td>
</tr>
<tr>
<td>Age</td>
<td>0.0005***</td>
<td>0.0005***</td>
<td>0.0000***</td>
</tr>
<tr>
<td>Female</td>
<td>-0.1481***</td>
<td>-0.1169***</td>
<td>-0.1255***</td>
</tr>
<tr>
<td>Education Level</td>
<td>0.1075***</td>
<td>0.0875***</td>
<td>0.0811***</td>
</tr>
<tr>
<td>Single status</td>
<td>-0.0061</td>
<td>0.0223</td>
<td>0.0176***</td>
</tr>
<tr>
<td>Health status</td>
<td>0.0273</td>
<td>0.0363</td>
<td>0.0389</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-0.0286***</td>
<td>-0.0142*</td>
<td>-0.0570***</td>
</tr>
<tr>
<td>Hourly wage (t-1)</td>
<td>0.1066***</td>
<td>0.0405***</td>
<td>0.0335***</td>
</tr>
<tr>
<td>Number of Employed friends (t-1)</td>
<td>0.0322***</td>
<td>0.0316***</td>
<td>0.0254***</td>
</tr>
<tr>
<td>δ</td>
<td>0.1460***</td>
<td>0.1459***</td>
<td>0.1459***</td>
</tr>
<tr>
<td>γ</td>
<td>0.5918***</td>
<td>0.5999***</td>
<td>0.6511***</td>
</tr>
<tr>
<td>σ_υ</td>
<td>0.2977***</td>
<td>0.2945***</td>
<td>0.3004***</td>
</tr>
<tr>
<td>Constant</td>
<td>1.3760***</td>
<td>1.0000***</td>
<td>0.0986***</td>
</tr>
<tr>
<td>δ_0</td>
<td>0.1460***</td>
<td>0.1459***</td>
<td>0.1459***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0.5918***</td>
<td>0.5999***</td>
<td>0.6511***</td>
</tr>
<tr>
<td>σ_υ_0</td>
<td>0.2977***</td>
<td>0.2945***</td>
<td>0.3004***</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-5898</td>
<td>-5816</td>
<td>-5702</td>
</tr>
<tr>
<td>N</td>
<td>1709</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Estimates. 1998-2008. Women only

<table>
<thead>
<tr>
<th></th>
<th>Random effects with exogeneity of initial conditions</th>
<th>Random effects with initial conditions</th>
<th>Correlated Random effects with initial conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.0193***</td>
<td>0.0203***</td>
<td>0.0062***</td>
</tr>
<tr>
<td>Age</td>
<td>-0.0004***</td>
<td>-0.0004***</td>
<td>0.0000***</td>
</tr>
<tr>
<td>Education level</td>
<td>0.0987***</td>
<td>0.0737***</td>
<td>0.0743***</td>
</tr>
<tr>
<td>Single</td>
<td>0.0302</td>
<td>0.0412</td>
<td>0.0189***</td>
</tr>
<tr>
<td>Health</td>
<td>-0.0341</td>
<td>0.0414</td>
<td>0.0577***</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-0.0259***</td>
<td>-0.0229**</td>
<td>0.0596***</td>
</tr>
<tr>
<td>Hourly Wage (t-1)</td>
<td>0.0779***</td>
<td>0.0422</td>
<td>0.0519***</td>
</tr>
<tr>
<td>Number of employed friends (t-1)</td>
<td>0.0417***</td>
<td>0.0524***</td>
<td>0.0460***</td>
</tr>
<tr>
<td>δ</td>
<td>0.1433***</td>
<td>0.1433***</td>
<td>0.1433***</td>
</tr>
<tr>
<td>γ</td>
<td>0.5958***</td>
<td>0.6046***</td>
<td>0.6043***</td>
</tr>
<tr>
<td>σ_υ</td>
<td>0.3014***</td>
<td>0.2951***</td>
<td>0.2923***</td>
</tr>
<tr>
<td>Constant</td>
<td>1.4043***</td>
<td>1.0000***</td>
<td>1.0480***</td>
</tr>
<tr>
<td>δ_0</td>
<td>0.1433***</td>
<td>0.1433***</td>
<td>0.1433***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0.5958***</td>
<td>0.6046***</td>
<td>0.6043***</td>
</tr>
<tr>
<td>σ_υ_0</td>
<td>0.3014***</td>
<td>0.2951***</td>
<td>0.2923***</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-2898</td>
<td>-2856</td>
<td>-2849</td>
</tr>
<tr>
<td>N</td>
<td>845</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1
Table 5: Joint model of the number of employed friends and wage dynamics

<table>
<thead>
<tr>
<th>Wage equation</th>
<th>Joint Model</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.0063***</td>
<td>0.0013</td>
<td></td>
</tr>
<tr>
<td>Age²</td>
<td>-0.0002***</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Education Level</td>
<td>0.0749***</td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>Single status</td>
<td>-0.0191</td>
<td>0.0460</td>
<td></td>
</tr>
<tr>
<td>Health status</td>
<td>0.0569</td>
<td>0.0575</td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-0.0597***</td>
<td>0.0175</td>
<td></td>
</tr>
<tr>
<td>Hourly Wage (t-1)</td>
<td>-0.0145</td>
<td>0.0226</td>
<td></td>
</tr>
<tr>
<td>Number of employed friends (t-1)</td>
<td>0.0457**</td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>0.1433***</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0.6043***</td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>σ_u</td>
<td>0.2926***</td>
<td>0.0082</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.0416***</td>
<td>0.3501</td>
<td></td>
</tr>
<tr>
<td>Single status</td>
<td>0.1214</td>
<td>0.1466</td>
<td></td>
</tr>
<tr>
<td>Health status</td>
<td>0.2949</td>
<td>0.2904</td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.0715</td>
<td>0.0687</td>
<td></td>
</tr>
<tr>
<td>Initial hourly wage</td>
<td>0.3857***</td>
<td>0.1491</td>
<td></td>
</tr>
<tr>
<td>Initial hourly wage *Single status</td>
<td>-0.0122</td>
<td>0.0649</td>
<td></td>
</tr>
<tr>
<td>Initial hourly wage *Health status</td>
<td>-0.2529*</td>
<td>0.1424</td>
<td></td>
</tr>
<tr>
<td>Initial hourly wage *Unemployment rate</td>
<td>-0.0129</td>
<td>0.0291</td>
<td></td>
</tr>
<tr>
<td>σ_n</td>
<td>0.4152***</td>
<td>0.0425</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment status of friends</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rate</td>
<td>-0.0072</td>
<td>0.0197</td>
</tr>
<tr>
<td>Hourly Wage (t-1)</td>
<td>0.2191***</td>
<td>0.0383</td>
</tr>
<tr>
<td>Number of employed friends (t-1)</td>
<td>0.6311***</td>
<td>0.0356</td>
</tr>
<tr>
<td>a₀</td>
<td>-0.4985***</td>
<td>0.1592</td>
</tr>
<tr>
<td>a₁</td>
<td>0.6928***</td>
<td>0.1523</td>
</tr>
<tr>
<td>a₂</td>
<td>2.0392***</td>
<td>0.1510</td>
</tr>
<tr>
<td>σ_u</td>
<td>0.3383***</td>
<td>0.0099</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.0724</td>
<td>0.1735</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-6160</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>845</td>
<td></td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1