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Competitive markets may under-
incentivize private research investments
relative to what the social planner would
prefer. The patent system aims to ad-
dress this potential under-investment
problem by granting innovators a fixed
time period during which they can charge
supra-competitive prices, thus increasing
incentives for private research by allowing
innovators to capture a higher share of the
social returns to their inventions.

A well-developed theoretical literature —
dating back at least to Nordhaus (1969) —
has analyzed optimal patent policy design.
In this paper, we have three main goals.
First, we re-present the core trade-off of the
Nordhaus model in a manner more similar
to how it would be presented today, with
the aim of making the model more accessi-
ble to current readers. Second, we highlight
an empirical question which emerges from
the Nordhaus framework as a key input into
optimal patent policy design: namely, what
is the elasticity of R&D investment with re-
spect to the patent term? Finally, we re-
view the — surprisingly small — body of
empirical evidence that has been developed
on this question over the nearly half century
since the publication of Nordhaus’s book.
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I. A model of optimal patent length:
Nordhaus (1969)

The Nordhaus (1969) model of optimal
patent length identifies the following core
trade-off. On one hand, increasing patent
duration benefits society by eliciting R&D
activity that would otherwise not have been
conducted, which yields socially valuable
inventions. On the other hand, increasing
patent duration harms society by giving ad-
ditional monopoly protection to the inven-
tions that society would have enjoyed even
absent the increase in protection, which
leads to socially harmful supra-competitive
pricing. Optimal policy equates these ben-
efits and costs at the margin.

We present a simplified and slightly mod-
ified version of the Nordhaus (1969) model,
mostly following the notation of Budish,
Roin and Williams (2015).1 A represen-
tative firm conducts R&D. In the original
Nordhaus model R&D is a scalar decision
variable, and R&D benefits the firm and
society by lowering the firm’s production
costs for its single output good. In this
presentation, to facilitate the discussion of
empirical elasticities, the firm’s R&D deci-
sion is instead modeled as a decision over
which potential R&D projects to pursue,
and R&D benefits the firm and society by
bringing to market inventions that other-
wise would not have existed.

Potential inventions are indexed by i ∈ I,
and in total have unit mass. Associated
with each potential invention are: the cost,
ci, of pursuing the invention; the probabil-
ity, pi, that the R&D will successfully yield

1What we refer to as the Nordhaus model is Nord-
haus (1969), Chapter 5, pages 76-86. Much of the no-
tation used in this analysis is defined and explained in

Nordhaus (1969) Chapter 2. Importantly, as in the orig-
inal Nordhaus (1969) book, this model abstracts away

from important topics such as how patents may affect

cumulative innovation.
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the invention; the annual profitability, πi,
of the invention to a monopolist; the an-
nual social value of the invention, vmi and
vci , under monopoly and competitive pric-
ing, respectively; and the number of years
of socially useful life of the invention, Ti,
that is, the amount of time until the inven-
tion becomes obsolete. For simplicity, we
assume that after a patent expires there is
free entry and firm profits drop to zero. We
also assume that the cost of pursuing the in-
vention is a one-time cost incurred at time
0, that the R&D takes no time to conduct,
and that the annual amounts πi, v

m
i , and vci

grow at the discount rate, which is the same
for the firm and society. Together, these as-
sumptions let us ignore discounting which
simplifies the math considerably.2 Note too
that in the original Nordhaus model the pa-
rameters πi, v

m
i , and vci are implicit in a

demand system for the firm’s product; ex-
plicitly modeling demand is unnecessary for
our purposes here, but is essential in mod-
els of optimal patent breadth or models in-
corporating business stealing effects (as in,
e.g., Klemperer (1990)).

The social planner chooses tpatent, the
number of years the firm enjoys a monopoly
for an invention whose R&D is successful.
Hence, the firm will choose to pursue in-
vention i if and only if pi ·min(tpatent, Ti) ·
πi ≥ ci; that is, if the number of years of
expected monopoly (the success probabil-
ity times the minimum of the patent life
and the total life) times per-year profitabil-
ity exceed the R&D costs. Social welfare
from invention i, should the firm pursue
the invention, is pi · [min(tpatent, Ti) · vmi +
(Ti −min(tpatent, Ti)) · vci ]− ci.

What is the optimal patent term tpatent?
Let 1{·}denote the indicator function which
returns 1 if the statement in brackets is true
and 0 if not. Let EPLi = pi ·min(tpatent, Ti)
and ETLi = pi · Ti, denote the expected
patent life and expected total life of the in-
vention, respectively. The optimal patent

2See Budish, Roin and Williams (2015) for a richer
model in which both excess private discounting and

R&D commercialization lags play central roles in the

analysis.

term solves the following program:

(1) max
tpatent

ˆ
I

1{EPLi·πi≥ci}×[
ETLi · vci︸ ︷︷ ︸

value of new
inventions

− EPLi · (vci − vmi )︸ ︷︷ ︸
deadweight loss

− ci
]
di.

The solution to Equation (1) will depend
on the distribution of invention parame-
ters. To develop the intuition for the core
trade-off, consider a marginal increase in
the patent term tpatent. This has benefits
and costs. The benefits are that more in-
ventions – those that satisfy EPLi · πi = ci
with equality – will be elicited on the mar-
gin. Let ξ denote the quantity of inventions
elicited at the margin – this is the key elas-
ticity parameter that we discuss in greater
detail in Section II. Then the benefits from
increasing the patent term at the margin
can be written as:

(2) Benefits = ξ︸︷︷︸
elasticity of R&D
wrt patent term

×

EEPLi·πi=ci [ETLi · vci − EPLi · (vci − vmi )− ci]︸ ︷︷ ︸
social value of marginal inventions

.

The cost of increasing the patent term at
the margin is that inventions that would
have been elicted anyways – those that sat-
isfy EPLi · πi > ci strictly – are given ad-
ditional time on patent, which causes addi-
tional deadweight loss. These costs can be
written as

Costs =

ˆ
I

1{EPLi·πi≥ci}1{Ti>tpatent}︸ ︷︷ ︸
intensive margin

×(3)

(vci − vmi )︸ ︷︷ ︸ di.
deadweight loss

Estimating the optimal patent term in
practice requires estimating the compo-
nents of Equations (2) and (3). Standard
methodologies from fields such as public fi-
nance and industrial organization can guide
the estimation of most of these components,
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such as the deadweight loss term and the so-
cial value of inventions. More conceptually
difficult is measuring the invention elastic-
ity ξ, which essentially requires drawing in-
ferences about inventions that could have
been developed – in the sense of being sci-
entifically feasible – but were never brought
to market because the current patent term
was insufficient to incentivize their devel-
opment. As we discuss in Section II, it has
thus far proved difficult to construct credi-
ble counterfactuals which allow for the es-
timation of this key parameter.

Equations (2) and (3) also suggest some
heuristic comparative statics for how opti-
mal patent terms should vary across tech-
nologies. The benefits of a marginal in-
crease in the patent term will be higher
when R&D activity is more sensitive to
changes in the patent term (that is, when
ξ is larger), and when marginal inventions
are of higher social value. To take a simple
example, if the social value of additional re-
search on disease prevention is higher than
the social value of additional research on
treating diseases, then society would want
longer patent terms for disease prevention.
The costs of a marginal increase in the
patent term will be higher when a higher
share of potential R&D would be conducted
even in the absence of patents (i.e., there
are many inventions on the intensive mar-
gin), and when the deadweight loss from in-
creasing patent protection is large. Again,
as a simple example, if software inventions
are much more likely to be developed in the
absence of patents than are pharmaceutical
inventions, then society would want longer
patent terms for pharmaceuticals than for
software.3

3This example is in the spirit of Mansfield (1986),
who reports the results of a survey which asked firms
what share of their inventions would not have been de-

veloped had patent protection been unavailable. While
that survey pre-dates many now-controversial types of

patents such as software and business method patents,
his survey estimates would suggest that optimal patent
terms would be longer for pharmaceuticals than they

would be for e.g. electrical equipment, because firms
self-report in that survey that a higher share of electri-

cal equipment products would have been developed even

in the absence of patent protection.

II. Bridging theory and data:
Taking stock of the empirical evidence

A wide variety of methodologies have
been used to investigate the invention elas-
ticity ξ linking patents and research invest-
ments, including e.g. the influential line of
survey work by Mansfield (1986) and oth-
ers. We here focus attention on studies
which have attempted to identify observa-
tional sources of variation in patent protec-
tion, and use this variation to empirically
estimate the invention elasticity ξ.

A. Patent law changes as variation

A natural starting point for estimating
the elasticity of R&D investment with re-
spect to the patent term is to look for vari-
ation over time or across areas in patent
laws. To the best of our knowledge, the
first such contribution was Sakakibara and
Branstetter (2001), who investigate how the
research investments of Japanese firms re-
sponded to a set of 1988 reforms strength-
ening Japanese patent protection. Using
a variety of datasets including a survey
of firm-level R&D spending, they uncover
no evidence that stronger Japanese patent
rights induced higher levels of research in-
vestments among Japanese firms.

This conclusion that country-specific
patent law changes induce no measurable
increase in domestic R&D investment also
emerged from the work of Qian (2007), who
analyzed the passage of national pharma-
ceutical laws in 26 countries from 1978-
2002; and from the work of Lerner (2009),
who analyzed the impact of major patent
policy shifts in 60 countries over a 150 year
period.4

4In a more recent contribution, Aghion, Howitt and
Prantl (2013) document evidence that product market
reforms which increased competition induced more in-

novation in countries with strong patent rights relative
to countries with weak patent rights. This result is con-

sistent with stronger patent terms encouraging research

investments, but is difficult to translate into an implied
elasticity of R&D investments with respect to changes

in the patent term. Their estimates suggest, for exam-

ple, that a one unit increase in their product market
reform intensity measure increased real R&D spending

by an average of 950 million US dollars more in indus-

tries in countries with strong patent protection relative
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Such analyses of patent law changes face
several limitations. As caveated by the au-
thors of these studies, many recent patent
law changes were implemented together
with changes in trade policy, which may in-
dependently affect domestic R&D through
other mechanisms such as changes in for-
eign competition. A more substantive con-
cern is that these studies investigate how
R&D investments by domestic firms re-
spond to domestic changes in patent laws.
Conceptually, this concern raises two sepa-
rate issues. First, if a “large” economy like
the US were to lengthen its patent term,
we would expect that to affect R&D invest-
ments of non-US firms who sell products
to US consumers. Second, because tech-
nologies are developed for a global mar-
ket, country-specific patent law changes in
“small” economies may be a a relatively
small source of variation in global R&D
incentives. That is, a priori, one might
expect to find that the change in private
research investments induced by a smaller
economy extending its patent term from –
say – 17 years to 20 years might be quite
small. This is one potential reason why the
available empirical estimates of how domes-
tic R&D investments respond to country-
specific changes in patent strength may all
center around zero.

One exception to this conclusion is pro-
vided by Abrams (2009), who estimates
how patent filings (as a measure of R&D)
responded to patent term adjustment under
the Agreement on Trade Related Aspects
of Intellectual Property Rights (TRIPS).
Abrams estimates that a 114 day increase
in patent term generates a 21% increase
in patent filings, implying that a one year
increase in patent term would generate a
66% increase in patent filings. However,
Abrams acknowledges that this extremely
large response could be driven largely or
completely by substitution in when patent

to the reform’s effect on R&D in industries in countries
with weak patent protection. Also, as the authors note,

one difficulty with this approach is that countries with
strong and weak patent regimes may also differ on other
dimensions as well, which is why other papers in this

area have focused on studying changes in patent laws
rather than cross-sectional differences in legal regimes.

applications were filed over time, as his data
suggest a large amount of strategic “bunch-
ing” of application filings around the date
of the policy change. In addition, because
Abrams uses patent filings (as opposed to
a measure of “real” R&D) as his outcome
variable, we would expect his estimate to
exaggerate the true semielasticity of inter-
est: lengthening the patent term makes it
more attractive to file patents on existing
R&D investments - because the benefits of
filing increase - so more patent filings could
be observed even in the absence of any
change in “real” R&D investment. For both
reasons, it is hard to know how to interpret
this empirical estimate.

B. Alternative sources of variation

Given the potential limitations associated
with using patent law changes as variation,
a question naturally arises of whether other
types of variation could be used to estimate
the elasticity of R&D investment with re-
spect to a change in the patent term.

In Budish, Roin and Williams (2015), we
investigate the following question: are pri-
vate research investments distorted away
from long-term research projects, i.e.
projects that take a long time to complete?
We assess this question in the context of
cancer clinical trials, where – because those
trials are generally required to show evi-
dence that a drug improves patient survival
– clinical trials for cancers with short life
expectancies can be completed much faster
than clinical trials for cancers with longer
life expectancies. We document a variety of
evidence suggesting that allowing firms to
conduct shorter clinical trials would indeed
increase research investments. One poten-
tial mechanism for these results is the in-
centive provided by the patent system: be-
cause pharmaceutical firms almost always
file for patents prior to starting clinical tri-
als, and because the patent term runs from
the filing date, effective patent protection
is longer for drugs that reach the market
faster (by nature of requiring shorter clin-
ical trials). Importantly, there are other
plausible mechanisms through which short-
ening clinical trials could also increase re-
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search investments, and in Budish, Roin
and Williams (2015) we do not disentan-
gle the impact (if any) of patents. How-
ever, if we make the very strong assumption
that the only mechanism through which
shortening clinical trials would affect re-
search investments is through lengthening
the effective patent term, then a back-of-
the-envelope calculation based on our esti-
mates suggests an elasticity of research in-
vestment with respect to a one year increase
in the patent term of 7-24%.5

A strength of this approach is that – un-
like the patent law change approach – we
focus on a quantitatively large source of
variation in the effective patent protection
provided to inventors who develop differ-
ent types of technologies, and we measure
the research investments from essentially
all firms participating in the relevant mar-
kets. However, the key limitation with this
approach is that – as highlighted above –
translating our estimates into estimates of
how patents affect research investments re-
quires a very strong assumption (namely,
that shortening clinical trials would affect
research investments only through length-
ening the effective patent term). Hence,
we describe this example simply as an illus-
tration of how alternative (non-patent law)
sources of variation could be used to inves-
tigate how R&D responds to changes in the
patent term.

III. Conclusions

A key parameter needed to inform op-
timal patent policy design is the elastic-
ity of research investments with respect to
the patent term. Estimating this elasticity
is conceptually difficult because it requires
constructing a counterfactual in which we
can infer that some scientifically feasible in-
ventions would have been brought to mar-
ket under an alternative patent policy de-
sign. Despite a near half-century of re-
search effort, we have essentially no credible
empirical evidence on this elasticity. Our
goal in this paper has been to make the
theoretical and empirical literature on this

5See the online appendix for details.

question more accessible in hopes of encour-
aging the development of novel research ap-
proaches to this topic.
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Online appendix

A1. Elasticity calculation from Budish, Roin and Williams (2015)

This section re-prints (with minimal edits) Online Appendix Section A.10 of Budish,
Roin and Williams (2015), as a point of comparison for the other elasticity estimates we
discuss in this paper.

As described in Section II, the empirical estimates in Budish, Roin and Williams (2015)
provide an estimate of how R&D investment changes with the 5-year survival rate (our

proxy for clinical trial length), ∂(R&D investment)

∂(5-year survival rate)
. To translate this estimate into an estimate

of how R&D investment would respond to an increase in the patent term, we would like to
scale ∂(R&D investment)

∂(5-year survival rate)
by an estimate of how the patent term varies with the 5-year survival

rate. In practice, we do this scaling — under a strong assumption, as detailed below —
using an estimate of how a drug’s commercialization lag varies with the 5-year survival
rate, since one less year of commercialization lag is equivalent (under this assumption) to
one additional year of patent life. By combining these estimates, we can then estimate the
elasticity of interest:

∂(R&D investment)

∂(5-year survival rate)

∂(commercialization lag)

∂(5-year survival rate)

=
∂ (R&D investment)

∂ (commercialization lag)
≈ ∂ (R&D investment)

∂ (patent term)

The conceptual problem with estimating ∂(commercialization lag)

∂(5-year survival rate)
is that - by construction

- we only observe clinical trial length conditional on a drug compound being placed in
clinical trials. Because - consistent with the theoretical model presented in Budish, Roin
and Williams (2015) - we document that fewer drug compounds are placed in clinical trials
for patients with longer survival times, we expect selection into clinical trials to bias the
relationship between patient survival and clinical trial length in the set of observed clinical
trials.6 Given this selection bias in which trials are observed in our data, we cannot obtain
an unbiased empirical estimate of ∂(commercialization lag)

∂(5-year survival rate)
. To overcome this selection problem,

we instead calibrate the relationship between commercialization lag and the 5-year survival
rate using the power calculation outlined in Online Appendix Section A.9 of Budish, Roin
and Williams (2015).

We can approximate our estimate of ∂(commercialization lag)

∂(5-year survival rate)
with an estimate of

∂(clinical trial length)

∂(5-year survival rate)
, given that we expect commercialization lag to scale one-for-one with

clinical trial length. In the language of the power calculation outlined in Online Appendix
Section A.9 of Budish, Roin and Williams (2015), we can re-write this elasticity as:

∂ (clinical trial length)

∂ (5-year survival rate)
=
∂k

∂µ
=

kµk−1 +Rk(1−R(1− µ))k−1

−[µk lnµ+ (1−R(1− µ))k ln(1− (R(1− µ))]

where µ is the per-period survival rate of untreated individuals, k is the number of periods
of patient follow-up, and R is a constant per-period multiplicative treatment effect such
that in a given period 1− µ individuals die in the control group and R(1− µ) individuals

6As discussed in detail in Budish, Roin and Williams (2015), perhaps the most natural selection story is that

firms are only willing to place a drug compound in clinical trials for patients with long expected survival times if

they receive permission to use a surrogate endpoint in place of survival as an endpoint; in this case, the relationship
between patient survival and clinical trial length would be biased towards zero. If we estimate this relationship in our

data, we do estimate a statistically significant relationship; however, the magnitude is implausibly small, consistent
with our prior that this relationship would be biased towards zero (a ten percentage point increase in the five-year
survival rate is associated with a 1.5 percent increase in average clinical trial length - an increase on the order of one

month).
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die in the treatment group, where R is constrained such that R(1 − µ) is bounded by 0
and 1.

Intuitively, µ and k come in pairs - not all µ and k will generate sufficient statistical power
conditional on a given technology (R). Here, we take the two (µ, k) pairs from the examples
in the introduction of Budish, Roin and Williams (2015) given that by construction these
are feasible pairs (given that the trials were completed), that we know these trials looked
at survival outcomes (rather than some alternative surrogate endpoints), and that these
examples span different ends of the spectrum of available technologies. We assume a
technology of R = 0.8, which translates to a 20 percent improvement in the five-year
survival rate; this choice of R is arbitrary but we explore robustness to alternative values
of R below. Given the assumed value of R, the two examples in the introduction of Budish,
Roin and Williams (2015) can be written as:

1) Metastatic prostate cancer: 5-year survival rate of 20 percent (µ = 0.2)

• Follow-up time of 12.8 months ((12.8/12)/5 implies k = 0.213 units in 5-year
increments)

• Total trial length of 3 years (3/5 implies k = 0.6 in 5-year increments)

2) Localized prostate cancer: 5-year survival rate of 80 percent (µ = 0.8)

• Follow-up time of 9.1 years (9.1/5 implies k = 1.82 units in 5-year increments)

• Total trial length of 18 years (18/5 implies k = 3.6 units in 5-year increments)

Plugging in these values for µ, k, and R into the above formula for ∂k
∂µ

gives estimates

of 2.234 for metastatic prostate cancer, and 0.766 for localized prostate cancer. Those
estimates are in units of 5-year increments, and multiplying them by 5 to translate them
into a 1-year unit gives 11.170 and 3.827. In words, a change from 0 to 1 in the 5-year
survival rate translates to between a 3.827-11.170 year increase in patient follow-up time.
Therefore, we use this 3.827-11.170 range as our estimate of ∂(commercialization lag)

∂(5-year survival rate)
.

Our estimate from Table 2 Column (1) in Budish, Roin and Williams (2015) implies
that a change from 0 to 1 in the 5-year survival rate translates into an 86.9% reduc-
tion in R&D investment. Dividing this estimate of ∂(R&D investment)

∂(5-year survival rate)
by our estimates of

∂(commercialization lag)

∂(5-year survival rate)
(following the formula on the previous page) implies an estimated semi-

elasticity of R&D investment with respect to a one-year change in commercialization lag of
between 7.779% (based on metastatic prostate cancer; 86.9/11.170 = 7.779) and 22.707%
(based on localized prostate cancer; 86.9/3.827 = 22.707).

Alternatively, we can do the same calculation using total trial length (3 and 18 years)
rather than follow-up times (12.8 months and 9.1 years). Reassuringly, we obtain nearly
identical estimates: 7.993% (based on metastatic prostate cancer; 86.9/10.872 = 7.993)
and 23.416% (based on localized prostate cancer; 86.9/3.711 = 23.416).

We can investigate sensitivity of our estimates to different assumed values of R, the
quality of the technology. A ‘reasonable’ range of R might be between 0.15-0.95, in which
case our estimated elasticities fall between 6-54%.7

The above back-of-the-envelope calculation requires several assumptions, but gives some
sense of magnitudes. A more important and substantive assumption is needed to con-
clude that our estimate of ∂(R&D investment)

∂(commercialization lag)
provides a valid estimate of ∂(R&D investment)

∂(patent term)
.

7Our metastatic prostate cancer example - where the treatment resulted in a gain of 3.9 months on average -

corresponds to R = 0.961, which implies elasticity estimates between 6-20%. On the other extreme Gleevec, often
referenced as a “miracle” drug, is estimated to have increased the five-year survival rate from 30% to 89% - implying

R = 0.157, and elasticity estimates between 17-54%.
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Specifically, these two estimates are equivalent only if a one year reduction in commercial-
ization lag matters only through inducing a one year increase in effective patent life, and
not through other channels. This would not be the case if, for example, cost differences
between short and long clinical trials are large enough to be a quantitatively important
driver of R&D investment decisions.


