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1 Introduction

Technology and deregulation have paved the way for financial market fragmentation, in two

different dimensions. Along a “cross-sectional” dimension, competition among trading plat-

forms has led to the fragmentation in the supply of trading services.1 Along a “time-series”

dimension, the increased automation of the trading process has induced the fragmentation of

liquidity supply, in that some liquidity providers’ market participation is limited (Duffie (2010)

and SEC (2010)), endogenous (Anand and Venkataraman (2015)), or impaired by the existence

of limits to the access of reliable and timely market information (Ding, Hanna, and Hender-

shott (2014)).2 Fragmentation and recurrent “flash crash” episodes have increased regulatory

concerns about the potential for market fragility.3

Is fragmentation detrimental for market quality? How does it impact the welfare of market

participants? Under what conditions can it induce “flash crash” episodes? Are these episodes

an upshot of excessive competition among exchanges, or are they due to “excessive” liquidity

provision fragmentation?

We analyze the equilibrium and welfare implications of fragmentation. In our baseline

model two classes of risk-averse dealers provide liquidity to two cohorts of risk-averse, short-

term traders who receive an endowment shock, in a two-period market. In the first round

of trade both dealers’ types absorb the (market) orders of the first traders’ cohort. In the

second trading round, only one class of dealers, named ‘full,’ is able to participate. Full dealers,

like stylized High Frequency Traders (HFT), are continuously in the market and can therefore

accommodate the reverting orders of the first traders’ cohort, as well as those of the incoming

second cohort who observe an imperfect signal about the first period order imbalance. We then

embed the baseline model in a simple platform competition setup in which exchanges compete

in the supply of trading services (co-location capacity). In this framework we endogenize

the decision of a dealer to acquire the technology to be continuously in the market, and the

1This, in turn, has spurred the fragmentation of trading volume across different venues. In the US, equity
trading occurs in 11 exchanges and more than 50 ATS (Alternative Trading Systems, which include crossing-
networks and dark pools). As a consequence, traditional markets, such as the NYSE, have lost market share to
new entrants. For example, the fraction of NYSE-listed stocks actually traded at the NYSE went from about
80% in 2004 to something close to 20% in 2009 (see O’Hara (2015), Pagnotta and Philippon (2015), and SEC
(2013)). Fragmentation affects equity trading across the world. In Europe, the fraction of total turnover on the
Stoxx Europe 600 Index stocks traded in Regulated Markets (the incumbents) went from about 64% in 2008 to
45% in February 2011. The lost market share was absorbed by the Multilateral Trading Facilities (MTFs, the
entrants introduced by the MiFID in 2007, equivalent to ECNs in the US), whose market share went from close
to 0 in 2008 to about 18% in 2011 (see Fioravanti and Gentile (2011)). According to FIDESSA, incumbents’
market share in EU countries ranges from 51% to 77%, while the total market share of then 2nd and 3rd closest
competitors (most of the time both MTFs) ranges from 17% to 38%.

2Ding, Hanna, and Hendershott (2014) argue that in the U.S. “. . . not all market participants have equal
access to trade and quote information. Both physical proximity to the exchange and the technology of the
trading system contribute to the latency.”

3The list of events where markets suddenly crash and recover is by now quite extensive. Starting with
the May 6, 2010 U.S. “flash-crash” where U.S. equity indices dropped by 5-6% and recovered within half an
hour; moving to the October 15, 2014 Treasury Bond crash, where the yield on the benchmark 10-year U.S.
government bond, dipped 33 basis points to 1.86% and reversed to 2.13% by the end of the trading day; to end
with the August 25, 2015 ETF market freeze, during which more than a fifth of all U.S.-listed exchange traded
funds and products were forced to stop trading. More evidence of flash events is provided by NANEX.
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number of exchanges supplying trading services. Thus, our setup captures the two features

of fragmentation discussed above and enables us to pin down the structure of two industries:

HFT and trading services.

A central finding of our analysis is that dealers’ limited market participation favors the

propagation of endowment shocks across time. This is because when first period traders load

their positions, part of their orders are absorbed by standard dealers. These agents, however,

are not in the market in the second period, when first period traders unwind. As a consequence,

an order imbalance (induced by first period traders’ unwinding orders and) affecting the second

period price, arises. As standard dealers are unable to rebalance in the second period, they

require a larger price concession to absorb traders’ orders. This implies that as liquidity dries

up, standard dealers absorb more of the imbalance, magnifying the propagation effect.

We first study a benchmark market in which second period traders have access to a perfect

signal on the first period imbalance. This situation is likely to arise at low trading frequencies

(e.g., intradaily), or in a transparent setup where all market participants have access to the same

type of feed, even at high frequencies. In this case we show that in the unique equilibrium of the

market, maximizing the mass of full dealers always has a beneficial effect on market liquidity and

total welfare. Furthermore, an increase in the number of competing exchanges implements this

outcome. When exchanges bear a fixed set up cost, however, our preliminary results show that,

with transparent markets, provision of co-location services is insufficient despite the fact that a

regime of platform free entry improves over a monopoly exchange solution and yields excessive

entry when platforms compete à la Cournot in co-location capacity. If the regulator can control

the platform fee, then entry is allowed basically as in the market; if it can control entry, then

the latter is restricted. In both cases the provision of co-location services is increased.

In contrast, when the market is opaque—for example because access to imbalance informa-

tion is impaired—a self-sustaining loop leading to multiple equilibria can arise. To see this, note

that due to propagation, second period traders speculate against the imbalance generated by

their first period peers the more, the stronger is such propagation. Suppose now that liquidity

evaporates in the first period market. As a consequence, standard dealers intermediate more of

the outstanding imbalance, magnifying the propagation of the first period endowment shock,

and leading second period traders to trade more aggressively against it. However, as informa-

tion on the first period imbalance is noisy, these trades increase the first period uncertainty

about the second period price. This can lead first period traders to consume more liquidity (as

holding exposure to the asset becomes riskier), and liquidity suppliers to charge more to absorb

the order imbalance (as their inventory of the risky asset increases), eventually reinforcing the

initial shock to market liquidity.

Multiplicity induces three levels of liquidity, and tends to occur when second period traders

trade aggressively against the propagated imbalance, with a signal of intermediate precision.

This is because in this case such trades have a powerful uncertainty creation effect on the second

period price, which magnifies the reaction of first period traders.

The presence of multiple equilibria highlights that market liquidity can be fragile in our
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setup. We show this using two numerical examples. In the first one we study the consequence

of a shock that disconnects a small mass of full dealers from the market (a technological ‘glitch’).

In our second example, we analyze the effect of a positive shock to the volatility of first period

traders’ demand, which captures an increase in the likelihood that a large, liquidity-consuming

order hits the market. Both our examples show that the effects of these shocks can move the

market from the high to the low liquidity equilibrium, generating large liquidity withdrawals.

We then focus on the case in which the market is strongly opaque, in that second period

traders’ imbalance information is so noisy to become useless. In this case, second period

traders refrain from speculating on the propagated imbalance, and equilibrium uniqueness

is reestablished. This equilibrium has a number of interesting properties. First, it features a

higher liquidity level than the one that obtains with transparency. Next, along this equilibrium,

liquidity can decrease in the mass of full dealers. Finally, total welfare may not necessarily be

maximized when only full dealers’ are in the market.

To understand the first two results, note that in our setup liquidity measures the risk

compensation that dealers demand to hold the asset inventory. In turn, such inventory depends

on the interaction between full dealers ‘speculative’ trades and the hedging needs of first period

traders. Indeed, as the first period endowment shock has a predictable impact on the second

period price, full dealers devote part of their activity to speculate on it. This partially offsets

traders’ orders, lowering dealers’ inventory, and improving liquidity. However, first period

trading decisions depend on the anticipated volatility of the second period price, which is also

affected by second period trades.

When the market is transparent, second period traders face little price uncertainty, and

hedge more aggressively their endowment shock.4 This increases the second period price volatil-

ity, inducing first period traders to hedge more, and full dealers to speculate less, ultimately

having a negative impact on market liquidity. In contrast, when the market is opaque, second

period traders face higher price uncertainty, which leads them to scale down their hedging, and

having a beneficial effect on price volatility, which improves the liquidity of the market.

Consider now the effect of an increase in the mass of full dealers in an opaque market. In

such a market, as argued above, first period traders face little price uncertainty, and owing

to the propagation effect can predict the second period price. This implies that they find

it profitable to hold a larger part of their endowment, to benefit from the potential capital

gain. As the mass of full dealers increases, however, less of the first period endowment shock

propagates to the second period, which impairs first period traders forecast. As a consequence,

these traders can start holding a smaller fraction of their endowment, consuming more liquidity.

Finally, increased full dealer participation can have a negative effect on first period traders’

welfare. Indeed, as argued above, because of the propagation effect these traders enjoy a capital

gain that has a positive impact on their utility. When the mass of full dealers increases, less of

the first period shock propagates to the second period, which lowers the capital gains component

of these traders’ utility. When the market is strongly opaque, we find that this effect can be so

4As their signal is perfect, they can exactly anticipate the price at which their order is executed.
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strong to make aggregate welfare higher with a limited presence of full dealers. In such cases,

increasing full dealers’ market participation may not only impair liquidity, but also reduce total

welfare.

The rest of the paper is organized as follows. In the next section we review the literature

related to the paper. We introduce the model, and show that with limited market participation,

endowment shocks propagate across trading dates. Next, we analyze the benchmark with a

transparent market, which yields the result that an increase in trading platform competition is

both liquidity and welfare improving. We then illustrate how the presence of an informational

friction can generate a loop responsible for equilibrium multiplicity and for liquidity fragility.

Finally, we turn the attention to the strongly opaque market case, and show that most of the

conclusions obtained in the transparent market benchmark may not necessarily hold.

2 Related literature

This paper is related to four strands of the literature. First, equilibrium multiplicity, liquid-

ity complementarities, and liquidity fragilities are known to obtain in economies where asset

prices are driven by fundamentals information and noise trading (see, e.g., Cespa and Fou-

cault (2014), Cespa and Vives (2015), Goldstein, Li, and Yang (2014), and Goldstein and Yang

(2014)). In this setup, in contrast, asset prices are exclusively driven by endowment shocks.

However, the demand of all the traders is responsive to the volatility of the price at which these

agents unwind their positions. In turn, such volatility depends on traders’ demand. As we

argued above, this two-sided loop—which in a noise traders’ economy cannot possibly arise—is

partly responsible for the multiplicity result. Other authors obtain multiple equilibria in se-

tups where order flows are driven by only one type of information (see, e.g., Spiegel (1998)).

However, multiplicity there arises from the bootstrap nature of expectations in the steady-state

equilibrium of an overlapping generations (OLG) model in which investors live for two periods.

Our setup, in contrast, considers an economy with a finite number of trading rounds.

Second, this paper is also related to the literature that assesses the impact of high frequency

trading on market performance. The HFT literature has concentrated on modeling risk neutral

agents (e.g., Hoffmann (2014), and Du and Zhu (2014)), and typically does not explicitly

address welfare (see, e.g. Foucault, Hombert, and Rosu (2015), Baruch and Glosten (2013),

Menkveld and Zoican (2015), Bongaerts and Van Achter (2015), and Aı̈t-Sahalia and Saglam

(2013); see O’Hara (2015) for a survey). In a calibrated model, Jovanovic and Menkveld

(2015) find that HFT improves liquidity provision and even welfare. Budish, Cramton, and

Shim (2014) in contrast, argue that HFT thrives in the continuous limit order book, which is

however a flawed market structure, that generates a socially wasteful arms’ race to respond

fuller to (symmetrically observed) public signals. The authors advocate a switch to frequent

batch auctions instead of a continuous market. Biais, Foucault, and Moinas (2015) study the

welfare implications of investment in the acquisition of HFT technology. In their model HFTs

have a superior ability to match orders, and possess superior information compared to human
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(slow) traders. They find excessive incentives to invest in HFT technology, which, in view of

the negative externality generated by HFT, can be welfare reducing. Pagnotta and Philippon

(2015) find that competition among exchanges increases investor participation but may lead to

excessive fragmentation and entry in trading venues.

Third, the paper relates to the literature that measures the economic impact of limited

market participation. Heston, Korajczyk, and Sadka (2010) and Bogousslavsky (2014) find

that some liquidity providers’ limited market participation can have implications for return

predictability. Chien, Cole, and Lustig (2012) focus instead on the time-series properties of risk

premium volatility. Finally, Hendershott, Li, Menkveld, and Seasholes (2014) concentrate on

the effect of limited market participation for price departures from semi-strong efficiency.

Fourth, by highlighting the first order asset pricing impact of uninformed traders’ imbalance

predictability, this paper shares features of our previous work (Cespa and Vives (2012)). In

that setup, however, predictability obtained because of the assumed statistical properties of

noise traders’ demands, whereas in this paper it arises endogenously, because of a participa-

tion friction. A growing literature investigates the asset pricing implications of noise trading

predictability. Collin-Dufresne and Vos (2015) argue that informed traders time their entry to

the presence of noise traders in the market. This, in turn, implies that standard measures of

liquidity (e.g., Kyle’s lambda), may fail to pick up the presence of such traders. Peress and

Schmidt (2015) estimate the statistical properties of a noise trading process, finding support

for the presence of serial correlation in demand shocks.

3 The model

A single risky asset with liquidation value v ∼ N(0, τ−1v ), and a risk-less asset with unit return

are exchanged in a market during two trading rounds. Three classes of traders are in the

market. First, a continuum of competitive, risk-averse, High Frequency Traders (which we

refer to as “Full Dealers” and denote by FD) in the interval (0, µ), are active at both dates.

Second, competitive, risk-averse dealers (D) in the interval [µ, 1], are active only in the first

period. Finally, a unit mass of short-term traders enters the market at date 1. At date 2, these

traders unwind their position, and are replaced by a new cohort of short-term traders (of unit

mass). The asset is liquidated at date 3.

We now illustrate the preferences and orders of the different players.

3.1 Liquidity providers

A FD has CARA preferences (we denote by γ his risk-tolerance coefficient) and submits price-

contingent orders xFDt , t = 1, 2, to maximize the expected utility of his final wealth: W FD =

(v− p2)xFD2 + (p2− p1)xFD1 .5 A Dealer also has CARA preferences with risk-tolerance γ, but is

in the market only in the first period. He thus submits a price-contingent order xD1 to maximize

5We assume, without loss of generality with CARA preferences, that the non-random endowment of FDs
and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.
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the expected utility of his wealth WD = (v − p1)xD1 . The inability of D to trade in the second

period is a way to capture limited market participation in our model. This friction could be

due to technological reasons (as, e.g. in the case of standard dealers with impaired access to a

technology that allows trading at high frequencies).

3.2 Short-term traders

In the first period a unit mass of short-term traders is in the market. A short-term trader

receives a random endowment of the risky asset u1 and posts a market order xL1 anticipating

that it will unwind its holdings in the following period, and leave the market. We assume

u1 ∼ N(0, τ−1u1 ), and Cov[u1, v] = 0. First period traders have identical CARA preferences

(we denote by γL1 the common risk-tolerance coefficient). Formally, a trader maximizes the

expected utility of his “short-term” profit πL1 = u1p2 + (p2 − p1)xL1 :

E
[
− exp{−πL1 /γL1 }|ΩL

1

]
,

where ΩL
1 denotes his information set. In period 2, first period traders are replaced by a

new (unit) mass of traders receiving a random endowment of the risky asset u2 ∼ N(0, τ−1u2 ),

where Cov[u2, v] = Cov[u2, u1] = 0. A second period trader has CARA utility function with

risk-tolerance γL2 , and submits a market order to maximize the expected utility of his profit

πL2 = u2v + (v − p2)xL2 :

E
[
− exp{−πL2 /γL2 }|ΩL

2

]
,

where ΩL
2 denotes his information set.6

3.3 Information sets

We now describe the information sets of the different market participants. At equilibrium, we

conjecture that a period 1 trader submits an order xL1 = bL1 u1, where bL1 denotes the first period

“hedging” aggressiveness, to be determined in equilibrium, while a FD and a dealer respectively

post a limit order xFD1 = ϕFD1 (p1), x
D
1 = ϕD1 (p1) where ϕFD1 (·), ϕD1 (·) are linear functions of

p1. In the second period, we assume that a FD submits a limit order xFD2 = ϕ2(p1, p2), where

ϕ2(·) is a linear function of prices. A second period trader observes a signal of the first period

endowment shock su1 = u1 +η, with η ∼ N(0, τ−1η ), and independent from all the other random

variables in the model, and submits a market order xL2 = bL21u2+bL22su1 , where bL21 and bL22 denote

respectively the second period hedging and speculative aggressiveness. With these assumptions,

we obtain

Lemma 1. At equilibrium, p1 is observationally equivalent to u1, and the sequence {p1, p2} is

observationally equivalent to {u1, xL2 }.
6Our results are robust to the case in which the first period market is populated by a mass β of short-term

traders, that unwind at date 2, and a mass (1− β) of long-term ones that hold their position until liquidation.
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A first period trader observes the endowment shock u1. Therefore, his information set

coincides with the one of Ds and FDs: ΩL
1 = ΩFD

1 = ΩD
1 = {u1}. A second period trader

receives an endowment shock u2, and can observe a signal su1 . Thus, his information set is

ΩL
2 = {u2, su1}. Finally, a FD in period 2 observes the sequence of prices: ΩFD

2 = {p1, p2} from

which he retrieves {u1, xL2 }.
This model captures the time dimension of fragmentation we discussed in the introduction.

Indeed, liquidity provision is fragmented because (i) only one class of dealers is able to par-

ticipate in the second period and (ii) some traders (the second cohort of short-term traders)

have access to opaque information on the first period price. This assumption is consistent

with the evidence that exchanges sell fuller access to their matching engine, as well as direct

feeds of their market information at a premium (see, e.g., O’Hara (2015)).7 To account for the

time-series dimension of fragmentation, we assume that before the first trading round (date 0),

N exchanges compete in the supply of co-location services to FDs. At the same date, dealers

decide whether to acquire the technology to be continuously in the market (we defer the details

of this part of the model to Section 4.1). Figure 1 displays the timeline of the model.

The timeline

0

≠ N exchanges com-
pete in the supply of co-
location capacities.
≠ Dealers decide to ac-
quire FD technology.

1

≠ Short-term traders
receive u1 and submit
market order xL1 .
≠ FDs submit limit
order µxFD1 .
≠ Dealers submit limit
order (1 ≠ µ)xD1 .

2

≠ 1st period short-term
traders liquidate their
positions.
≠ New cohort of short-
term traders receives
u2, observes su1 , and
submits market order
xL2 .
≠ FDs submit limit
order µxFD2 .

3

≠ Asset liquidates.

Figure 1: The timeline.

7This assumption is also similar to Foucault, Hombert, and Rosu (2015) who posit that HFTs receive market
information slightly ahead of the rest of the market Ding, Hanna, and Hendershott (2014) compare the NBBO
(National Best Bid and Offer, which is the price feed computed by the Security Industry Processors in the US)
to the fuller feeds market participants obtain via a direct access to different trading platforms. Their findings
point to sizeable price differences that can yield substantial profits to HFTs. Latency in the reporting of market
data can also be profitably exploited for securities with centralized trading, see “High-speed traders exploit
loophole,” Wall Street Journal, May 1, 2013.
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3.4 Limited market participation and the propagation of endow-

ment shocks

Due to limited market participation, the first period endowment shock propagates to the second

trading round, thereby affecting p2. To see this, consider the first period market clearing

equation

µxFD1 + (1− µ)xD1 + xL1 = 0. (1)

At equilibrium the orders of first period traders are absorbed by both FDs and Ds. Thus,

when µ < 1, FDs’ aggregate position falls short of xL1 : µxFD1 + xL1 6= 0. As a consequence, the

inventory FDs carry over from the first period is insufficient to absorb the reverting orders that

first period traders post in period 2. This creates an order imbalance driven by the first period

endowment shock u1 that adds to the one originating from second period trades, and affects

the second period price. Formally, from the second period market clearing equation we have

µ(xFD2 − xFD1 ) + (xL2 − xL1 ) = 0.

Substituting (1) in the latter and rearranging yields:

µxFD2 + xL2 + (1− µ)xD1 = 0. (2)

According to Lemma 1, at equilibrium xD1 depends on u1. Thus, when µ < 1, p2 also reflects

the first period endowment shock.

3.5 Strategies

We now discuss the strategies of the different market participants. In the second period, FDs

act like in a static market:

XFD
2 (p1, p2) = −γτ vp2.

Therefore, they speculate on the asset payoff (recall that E[v] = 0), and supply liquidity,

demanding a compensation that is inversely related to the risk they bear. In the first period,

as we show in the appendix, we have

XFD
1 (p1) = γ

E[p2 − p1|u1]
Var[p2|u1]︸ ︷︷ ︸

Speculation

− γ

Var[v]
p1︸ ︷︷ ︸

Market making

. (3)

The above expression implies that FDs speculate on short term returns, and accommodate the

residual order imbalance, demanding a compensation that is inversely related to the overall

risk they bear. A traditional dealer in the first period trades according to XD
1 (p1) = −γτ vp1.
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Importantly, the slope of FDs demand function is smaller than the one of traditional dealers:

1

γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1
<

Var[v]

γ
. (4)

This is because FDs can rebalance their position at interim, and thus manage more efficiently

their asset inventory.8

Consider now short-term traders. In the appendix we show that a second period trader

trades according to

XL
2 (u2, su1) = γL2

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]︸ ︷︷ ︸

Speculation

− Cov[v − p2, v|ΩL
2 ]

Var[v − p2|ΩL
2 ]

u2︸ ︷︷ ︸
Hedging

(5)

=
γL2 Cov[v − p2, u2]

Var[v − p2|ΩL
2 ]Var[u2]

u2︸ ︷︷ ︸
Speculation on u2

+
γL2 Cov[v − p2, su1 |u2]

Var[v − p2|ΩL
2 ]Var[su1|u2]

su1︸ ︷︷ ︸
Speculation on u1

− Cov[v − p2, v|ΩL
2 ]

Var[v − p2|ΩL
2 ]

u2︸ ︷︷ ︸
Hedging

.

Thus, a trader’s strategy has a speculative and a hedging component. According to the first

line in (5), a trader speculates on value change the more, the less liquid is the market (see the

first term on the r.h.s. in (5)), while lowering his exposure to the asset risk the more, the higher

is the covariance between the return on his position (i.e. v− p2) and the final liquidation value

(v), given his information. In this way he reduces the risk that his speculative strategy goes

sour precisely when the value of his endowment collapses. Expanding the expectation operator

at the numerator of (5) shows that there are two sources of speculation. Other things equal,

given u2 a trader retains part of his asset exposure to the extent that this is positively correlated

with the capital gain v − p2, to profit from the latter. Additionally, he uses his information on

u1 to speculate on the reverting orders of first period traders. First period traders’ strategies

are similar to (5):

XL
1 (u1) = γL1

E[p2 − p1|u1]
Var[p2|u1]

− Cov[p2 − p1, p2|u1]
Var[p2|u1]

u1. (6)

First period traders can partially anticipate the second period price, and thus speculate on it,

e.g. by holding part of their endowment when u1 > 0 (see the numerator of the first term on

the right hand side of (6)). At the same time, due to the impact of second period traders’

demand on p2, first period traders face uncertainty on the liquidation price, which is reflected

in the conditional variance at the denominator of their strategies (6).

8Thus, the price change needed by FDs to accommodate an increase in the aggregate demand for the asset
is smaller than the one demanded by traditional dealers.
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4 A benchmark with a transparent market

We start our analysis of the equilibrium, by assuming that second period traders have a perfect

signal on the first period endowment shock: τ η → ∞. This captures a scenario in which

information on the first period imbalance is public, as is the case in a low frequency trade

environment (e.g., intradaily). Alternatively, it represents an ideal setup in which second period

traders have access to the same information as FDs.

In this case, we obtain the following result:

Proposition 1. When the market is transparent there exists a unique equilibrium in linear

strategies, where

p2 = λ2(b
L
21u2 + bL22su1) + λ2(1− µ)γτ vΛ

∗
1u1 (7a)

p1 = −Λ∗1u1, (7b)

λ2 = 1/(µγτ v) > 0, and

Λ∗1 =
1

γτ v

(
1− (µγ + γL1 )(1 + bL1 )

γL1

)
(8a)

bL1 = γL1 (γL2 + γ)(γL2 + µγ)Λ∗1τu2τ
2
v − 1 ∈

(
−1,− µγ

γL1 + µγ

)
(8b)

bL21 = − µγ

µγ + γL2
(8c)

bL22 =
γL2 b

L
21(1− µ)Λ∗1τ v

µ
. (8d)

The coefficient Λ∗1, i.e. the negative of the price impact of the first period endowment shock,

is our measure of liquidity:

Λ∗1 = −∂p1
∂u1

. (9)

According to (8b) and (8c), first and second period traders only hedge a fraction of their

endowment, thus keeping exposure to benefit from the potential capital gains. According

to (8d) second period traders also speculate on the propagated order imbalance by putting a

negative weight on their signal (bL22 < 0), which is increasing in Λ∗1. Indeed, if su1 > 0 the first

period endowment is likely to be positive (u1 > 0), which leads first period traders to shed part

of it. Due to reversion, this creates a positive imbalance at date 2, which prompts second period

traders to short the asset. A less liquid first period market makes it more profitable for Ds to

absorb u1, which strengthens the linear dependence between p2, and u1. Indeed, using (7a) we

have

Cov[p2, u1] =
(1− µ)λ2τ vΛ

∗
1

τu1

(
γL2 b

L
21

µ
+ γ

)
. (10)

Thus, as Λ∗1 increases, second period traders have more speculative opportunities and step up

bL22.

Importantly, and differently from a noise traders’ setup, dealers’ inventory and market liq-

11



uidity depend on the trading decisions of FDs and first period traders. To see this, consider (8a).

In view of (6) and (8b), at equilibrium first period traders hold a fraction

1 + bL1 = γL1
Cov[p2, u1]τu1 + Λ∗1

Var[p2|u1]
= γL1 (γL2 + γ)(γL2 + µγ)Λ∗1τu2τ

2
v, (11)

of their endowment shock. At the same time, using (7a), one can verify that FDs aggregate

speculative position per unit of endowment shock is given by

µγ
E[p2 − p1|u1]
Var[p2|p1]u1

= µγ
1 + bL1
γL1

. (12)

Thus, the sum of (11) and (12):

1 + bL1 + µγ
1 + bL1
γL1

=
(µγ + γL1 )(1 + bL1 )

γL1
,

represents the fraction of the endowment shock that is not absorbed by liquidity suppliers,

while its complement to one is dealers’ inventory (per unit of endowment shock). Therefore,

liquidity in this setup measures the compensation (per unit of endowment shock) that dealers

demand to hold an inventory

1− (µγ + γL1 )(1 + bL1 )

γL1
,

of the asset, and bear the payoff risk to which they are exposed.9

Using (8a) we can analyze the effect of an increase in the mass of full dealers on Λ∗1. For

given bL1 , this has a positive effect on liquidity, since, according to (12), the aggregate speculative

position of FDs increases, lowering dealers’ inventory. However, from (11), a larger µ has two

contrasting effects on bL1 : on the one hand, as one can compute using (7a) and (7b),

Var[p2|p1] =
(λ2b

L
21)

2

τu2
=

1

(µγ + γL2 )2τ 2vτu2
, (13)

which is decreasing in µ. Therefore, a larger µ lowers first period traders’ uncertainty about

p2, and makes them hold a larger portion of u1, lowering dealers’ inventory, and consuming less

liquidity. However, according to (10),

∂Cov[p2, u1]

∂µ
< 0 (14)

and a higher µ lowers the predictability of the second period price, which in turn pushes first

period traders to shed a larger fraction of their endowment, increasing dealers’ inventory, and

9Why is payoff risk relevant? At date 1 FDs can perfectly anticipate the reverting demand of first period
traders they face in the following period. Thus, they know that they are able to unwind their inventory, and
should absorb xL1 at no cost (the risk-free rate is null in the model). However, in the second period a new
generation of traders enters the market. These traders hedge an endowment shock and speculate on the u1-
related price pressure. This exposes FDs to the risk of holding their initial inventory until the liquidation date,
and to additional price volatility, making the first period market liquidity finite.
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consuming more liquidity. When the market is transparent, this latter effect is never strong

enough to offset the former two and differentiating (8a) we obtain:

Corollary 2. In a transparent market ∂Λ∗1/∂µ < 0.

4.1 Welfare and entry

Liquidity is often taken as a proxy for market welfare, and empirical analysis has in many

occasions highlighted the positive effect of HFT on liquidity, informing a benign policy view of

HFT. However, a proper welfare analysis has to account for traders’ utilities, which we compute

in the next result:

Corollary 3. In a transparent market the expected utilities of FDs and Ds are given by

EUFD = −
(

1 +
1

(γµ+ γL2 )2τu2τ v

)−1/2(
1 +

Λ2
1τ v
τu1

(
1 + (γ + γL2 )2τu2τ v

))−1/2
(15a)

EUD = −
(

1 +
Λ2

1τ v
τu1

)−1/2
, (15b)

where EUFD > EUD. The expected utilities of first and second period traders are given by

EUL
1 = −

(
1 +

Var[p2|u1]
(γL1 )2τu1

(
(bL1 )2 − 1

)
+

2γ(1− µ)Λ1

γL1 τu1(µγ + γL2 )

)−1/2
(16a)

EUL
2 = −

((
(γL2 )2τu2τ v − 1

)
× (16b)(

1

(γL2 )2τu2τ v
+

γ2(1− µ)2Λ2
1

(γL2 )2(µγ + γL2 )2τu1τu2

)
+

µ2γ2

(γL2 )2(µγ + γL2 )2τu2τ v

)−1/2
.

A sufficient condition for (16a) and (16b) to be well defined is

(γL2 )2 > max

{
1

(γL1 )2τ 2vτu1τu2
,

1

τ vτu2

}
. (17)

According to (15a) and (15b), a larger mass of FDs lowers the utility of liquidity suppliers.

This is because as µ increases, liquidity improves and a lower fraction of the endowment shock

propagates to the second period, eroding FDs’ profits from short-term speculation. Consider

now first period traders. According to (16a), an increase in µ has two contrasting effects

on EUL
1 . On the one hand as it lowers Var[p2|p1] (see (13)), first period traders face lower

uncertainty on p2, which works to make them better off (recall that (bL1 )2 < 1). On the other

hand, as a larger µ reduces the predictability of p2, it diminishes the capital gain these traders

make on the fraction of u1 they hold, lowering their utility. Finally, consider the utility of second

period traders. When (17) holds, an increase in the mass of FDs has a direct negative effect on

EUL
2 (see the first term in the parenthesis under the square root in (16b)). Indeed, second period

13



traders have perfect information on u1 and can speculate on the propagated order imbalance.

As µ increases, propagation wanes, which lowers traders’ speculative profits. However, a larger

µ improves risk-sharing, boosting the fraction of u2 that second period traders hedge (see (8c)).

This, in turn, has a positive effect on EUL
2 (see the second term in the parenthesis under the

square root in (16b)).

Overall, an increase in the mass of FDs worsens dealers’ welfare while having a mixed effect

on the welfare of first and second period traders. To compute the aggregate welfare effect,

we express expected utilities in terms of certainty equivalents (a monotone transformation of

expected utilities):

CEFD ≡ −γ ln(−EUFD), CED ≡ −γ ln(−EUD), CEL
t ≡ −γLt ln(−EUL

t ), t ∈ {1, 2},

and define the following total welfare function:

TW (µ) ≡ µCEFD + (1− µ)CED + CEL
1 + CEL

2 . (18)

A formal analysis of the impact of µ on TW (µ) is complicated by the number of different effects

this has on market participants’ welfare. Thus, we resort to numerical simulations, obtaining

the following result:10

Numerical Result 1. In a transparent market, µ = 1 maximizes TW (µ).

Thus, when the market is only populated by FDs, a policy of maximizing liquidity is also

welfare maximizing.

One way to implement an equilibrium with maximal liquidity is to augment the supply of

trading services, facilitating the entry of different exchange platforms. This is the approach

adopted both in the US and EU, where spurred by regulatory changes the number of trading

venues has dramatically increased in the past fifteen years (O’Hara and Ye (2011)). For given

supply of trading services, however, the supply of liquidity depends on the ability of market

participants to absorb demand shocks, which in our setup is related to the decision to acquire

the needed technology to provide liquidity at higher trading frequency. In turn, such decision

depends on the FDs technology’s comparative advantage. We now proceed to endogenize a

dealer’s decision to become a FD by purchasing co-location services, assuming that there is a

set of competing exchanges offering such services.

We start from the demand for FD technology. According to Corollary 3, CEFD > CED.

10Numerical simulations were run with the following set of parameters: γ, γL1 ∈ {0.1, 0.5, 0.9}, τu1 , τu2 , τv ∈
{1, 5, 9}, c ∈ {0.01, 0.05}, γL2 ∈ {0.21, 0.51, 0.81}.
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Thus, we can define the value of becoming a FD as follows:

φ(µ) ≡ CEFD − CED (19)

=
γ

2
ln

(
1 +

1

(γµ+ γL2 )2τu2τ v

)(
1 +

(Λ∗1)
2τ v

τu1

(
1 + (γ + γL2 )2τu2τ v

))
(

1 +
(Λ∗1)

2τ v
τu1

) .

The function φ(µ) can be interpreted as the inverse demand function of a dealer for FD tech-

nology. It can be verified that in a transparent market, the inverse demand for co-location

services is decreasing in µ:

Corollary 4. In a transparent market, φ′(µ) < 0.

On the supply side, suppose that there are i = 1, 2, . . . , N exchanges competing to offer

co-location services in the second period market, and assume that each exchange i bears a

marginal cost c > 0 to produce co-location capacity µi and a fixed set up cost f > 0. Finally,

suppose that there is a best price rule ensuring that the second period price is identical across

all the competing trading platforms. In this setup, the total co-location capacity is given by

N∑
i=1

µi = µ, (20)

and corresponds to the mass of FDs in the market. An exchange i’s profit is then given by

π(µi;µj) = (φ(µ)− c)µi − f, j 6= i. (21)

We assume that exchanges compete à la Cournot to offer co-location capacities, and study the

symmetric equilibrium of this game.

Define a symmetric equilibrium in co-location capacities as the set of µCi , i = 1, 2, . . . , N ,

such that (i) µC1 = µC2 = · · · = µCN and (ii) each µCi maximizes (21), for given capacity choice

of other exchanges µCj , j 6= i:

µCi ∈ arg max
µi

π(µi;µj). (22)

Due to symmetry, µCi = µC/N , where µC satisfies the first order condition

∂φ(µC)

∂µi

µC

N
+ φ(µC)− c = 0, (23)

and the second order condition φ′′(µC) ≤ 0. Equation (23) implicitly defines the supply curve

for co-location services. To analyze entry in this setup, we once again resort to numerical

simulations and obtain the following result:11

Numerical Result 2. In a transparent market, when exchanges compete in co-location capac-

ities, a symmetric Cournot equilibrium µC(c):

11We extend our numerical simulations, letting N = 1, 2, . . . , 100.
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1. Generically exists.

2. µC(c) is decreasing in c.

3. µC(c) tends to 1 for c sufficiently small and a sufficiently large and finite N .

Consider now the equilibrium that arises in the Cournot market with free entry. At equi-

librium, the available co-location capacity µC must satisfy the following condition:

(φ(µC)− c)µ
C

N
= f. (24)

We now compare the Cournot solution in (24) with the solution of a social Planner that in-

ternalizes the effects of FDs participation, incurring the co-location cost cµ and the total fixed

cost fN . Define the planner objective as follows:

P(µ,N) ≡ TW (µ)− cµ− fN. (25)

The first best solution to the planner’s problem obtains when the planner is able to choose the

number of competing exchanges N as well as the total co-location capacity µ (since φ′(µ) < 0,

this corresponds to the planner setting the co-location fee):

max
µ,N
P(µ,N). (26)

Suppose instead that the planner can only regulate the co-location fee. In this case, the planner

sets a fee that is high enough to make exchanges break even, and chooses the co-location capacity

µ that maximizes (25) which is compatible with such constraint:

max
0≤µ≤1

P(µ,N) s.t. πi(µi;µj) = f. (27)

Finally, suppose that the planner is unable to affect the way in which exchanges compete, but

can set the number of exchanges entering the intermediation industry. In this case the planner’s

problem becomes

max
N
P(µ,N) s.t. µ = µC , (28)

where µC is the co-location capacity obtained in (24).

Our preliminary simulations indicate that

Numerical Result 3. In a transparent market

1. The co-location capacity that obtains in the Cournot equilibrium with free entry (see (24))

is larger compared to the monopolistic exchange solution.

2. The number of exhanges that solves (28) is never larger than the number of exchanges

that obtains in the Cournot equilibrium with free entry (see (24)).
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3. The co-location capacity that solves (27) is typically larger than the co-location capacity

that obtains in the Cournot equilibrium with free entry (see (24)), except when c is very

small (in which case, the two coincide).

4. For c sufficiently low the first best solution is to set µ = N = 1. When c increases, the

planner sets µ < 1 and N = 1.

Co-location services in our setup are akin to a homogeneous good. Thus, Cournot competing

exchanges will always produce at least as much as a monopolist. The second result is reminiscent

of Mankiw and Whinston (1986) who show that in homogeneous product markets, when an

entrant reduces the output produced by incumbent firms, there is a natural tendency to have

“excessive” entry.12 This is because the entrant, differently from a social planner maximizing

total surplus, does not internalize the negative effect of its decision on its peers. In our setup

a similar effect is at work. Indeed, although the social welfare function also encompasses the

utilities of short term traders and standard dealers, these traders’ welfare only depends on the

total capacity µ (and is thus independent of N), and turns out to be maximal when µ = 1.

Thus, a planner increases liquidity supply, minimizing the negative impact of excessive exchange

entry. The same intuition explains why a planner that can choose both N and µ decides to

impose fee regulation on a monopolistic exchange, as implied by the last result.

Thus, we can summarize our findings so far by saying that in the transparent market

benchmark, a unique equilibrium exists. In this equilibrium (i) liquidity increases in the mass

of FDs, (ii) total welfare is maximized when liquidity is maximal, (iii) the provision of co-

location services is insufficient despite the fact that free entry of platforms is excessive (iv) if

the regulator can control the platform fee, then entry is allowed basically as in the market while

if it can control entry, then the latter is restricted. In both cases the provision of co-location

services is increased.

5 The effect of informational frictions

Suppose now that second period traders’ signal on u1 has a bounded precision (τ η < ∞),

and restrict attention to the case N = 1. This setup characterizes a scenario where some

traders (FDs, in our setup) have access to better market information compared to others (the

second cohort of traders), and given our previous discussion, is likely to hold at a high trading

frequency.

In this case, we obtain the following result:

Proposition 5. When τ η <∞, there exists an equilibrium in linear strategies where

p2 = λ2(b
L
21u2 + bL22su1) + λ2(1− µ)γτ vΛ

∗
1u1 (29a)

p1 = −Λ∗1u1, (29b)

12In our setup, at a symmetric equilibrium a larger N implies a smaller co-location capacity for each exchange,
since µi = µC/N .

17



λ2 = 1/(µγτ v) > 0,

Λ∗1 =
1

γτ v

(
1− (µγ + γL1 )(1 + bL1 )

γL1

)
∈
(

0,
1

γτ v

)
(30a)

bL1 = γL1
Cov[p2, u1]τu1 + Λ∗1

Var[p2|u1]
− 1 ∈

(
− 1,− µγ

γL1 + µγ

)
, (30b)

bL21 = − µγ

γL2 + µγκ
(30c)

bL22 = γL2 b
L
21τ vτ ηCov[p2, u1|ΩL

2 ], (30d)

κ ≡ τ vVar[v−p2|ΩL
2 ], Var[p2|u1] = λ22((b

L
21)

2/τu2 +(bL22)
2/τ η), Var[v−p2|ΩL

2 ] = Var[v]+(λ2(1−
µ)γτ vΛ

∗
1)

2Var[u1|su1 ], and Λ∗1 obtains as a fixed point of the following mapping:

ψ(Λ∗1) = −µγCov[p2, u1]τu1 + bL1 Var[p2|u1]
γ(µ+ τ vVar[p2|u1])

. (31)

Define the asset supply in period 1 as z1 ≡ xL1 . In the second period, given our discussion

in Section 3.4, the asset supply is given by z2 ≡ xL2 + (1− µ)xD1 . The next result characterizes

some important properties of the equilibrium prices, asset supply, and equilibrium coefficients:

Corollary 6. At equilibrium, Cov[p2 − p1, p1] < 0, and Cov[p2, u1] ≥ 0, Cov[p2, u1|ΩL
2 ] ≥ 0,

Cov[z1, z2] ≤ 0, for µ ≤ 1. If µ = 1, Var[v − p2|ΩL
2 ] = Var[v], and Cov[p2, u1] = 0.

To interpret the sign of Cov[z1, z2] and Cov[p2, u1], suppose u1 > 0. Then, due to (30b),

first period traders short the asset, creating a negative imbalance that is absorbed by Ds and

FDs. In period 2, first period traders unwind their position (buying back the asset) and the

inventory held by FDs falls short of their demand (as 0 < µ ≤ 1). This induces a positive

imbalance that is responsible for the negative (positive) correlation between asset supplies (p2

and u1).

Most of the intuitions for the strategies’ coefficients of the transparent market benchmark

extend to the present setup. In particular, first and second period traders hedge only a fraction

of their endowment (see (30b) and (30c)). Differently from the transparent market benchmark,

second period traders now face uncertainty on the price at which their order is executed–besides

that on the liquidation value. This additional source of uncertainty is captured by the coefficient

κ:

κ ≡ τ vVar[v − p2|ΩL
2 ] > 1.

For τ η < ∞, second period traders cannot perfectly anticipate p2, and hedge a lower fraction

of their endowment shock (see (30c)). Other things equal, as µ increases, κ tends to 1, as u1

propagates less to period 2, and second period traders hedge more of their endowment shock.

Finally, because of (30d) a consequence of Corollary 6 is that at equilibrium bL22 < 0, like in

Proposition 1. When τ η → 0, second period traders are uninformed about u1 and

lim
τη→0

bL22 = 0. (32)
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We are now ready to analyze the effect of a shock to first period liquidity on the equilibrium

coefficients:

Corollary 7. At equilibrium,

∂Cov[p2, u1]

∂Λ∗1
> 0,

∂Var[v − p2|ΩL
2 ]

∂Λ∗1
> 0,

∂bL21
∂Λ∗1

> 0. (33)

An increase in Λ∗1 has an ambiguous effect on bL22, Var[p2|u1], and bL1 .

According to (33) as in the transparent market case, a less liquid first period market increases

the linear dependence between p2 and u1. Furthermore, as second period traders do not perfectly

observe u1, this also augments these traders’ uncertainty and, according to (33), lowers their

hedging responsiveness (recall that bL21 < 0).

Importantly, and differently from the transparent market case, an increase in Λ∗1 has two con-

trasting effects on bL22. Indeed, direct computation yields: Cov[p2, u1|ΩL
2 ] = λ2(1−µ)γτ vΛ

∗
1Var[u1|su1 ].

Thus, differentiating bL22 we obtain:

∂bL22
∂Λ∗1

= γL2 τ vτ η

 Cov[p2, u1|ΩL
2 ]
∂bL21
∂Λ∗1︸ ︷︷ ︸

Uncertainty effect (+)

+ bL21
∂Cov[p2, u1|ΩL

2 ]

∂Λ∗1︸ ︷︷ ︸
Speculation effect (−)

 . (34)

On the one hand, like in the transparent market benchmark, an increase in Λ∗1 augments

second period traders’ speculative opportunities, and drives them to trade more against the

u1-led imbalance (the second term in the parenthesis in (34)). On the other hand, a higher Λ∗1

augments second period traders return uncertainty, and makes them speculate less (the first

term in the parenthesis). Consider now the effect of an increase in Λ∗1 on Var[p2|u1]:

∂Var[p2|u1]
∂Λ∗1

= 2λ22

 bL21
τu2

∂bL21
∂Λ∗1︸ ︷︷ ︸

(−)

+
bL22
τ η

∂bL22
∂Λ∗1︸ ︷︷ ︸

(±)

 . (35)

In the transparent market benchmark, an increase in Λ∗1 has no impact on first period traders’

uncertainty over p2 (see (13)). In contrast, according to (33), due to the informational friction,

when Λ∗1 increases, second period traders scale down their hedging activity, which reduces one

source of price impact, and lowers Var[p2|u1]. However, as we argued above, a less liquid first

period market can spur more speculation by second period traders. Thus, according to (35), the

ultimate impact of a shock to Λ∗1 on first period traders’ uncertainty depends on the strength
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of the speculation effect. Finally, an increase in Λ∗1 can also have two contrasting effects on bL1 :

∂bL1
∂Λ∗1

=
γL1

Var[p2|u1]2
× (36)(∂Cov[p2, u1]

∂Λ∗1
τu1 + 1

)
Var[p2|u1]︸ ︷︷ ︸

(+)

− ∂Var[p2|u1]
∂Λ∗1

(Cov[p2, u1]τu1 + Λ1)︸ ︷︷ ︸
(±)

.
For given Var[p2|u1], as first period traders can better predict p2, a larger Λ∗1 leads them to

speculate more, and hedge less. However, when Var[p2|u1] increases in Λ∗1, as this increases

the risk to which first period traders are exposed, a less liquid market can lead them to hedge

more, and speculate less.

As a result of the above effects, strategic complementarities in liquidity supply can arise

and yield multiple equilibria. The intuition is as follows. According to Corollary 7, a less

liquid first period market heightens the time-propagation of the first period shock. This, in

turn, can lead second period traders to speculate more aggressively on the u1-led imbalance

(see (34)), which can increase the uncertainty faced by first period traders on p2 (see (35)).

As a consequence, first period traders can decide to hedge more, and FDs to speculate less

(see (36)).13 This magnifies liquidity suppliers’ inventory, reinforcing the initial liquidity shock.

Indeed, we obtain the following result:

Corollary 8. When 0 < τ η < ∞, there can be up to three equilibria which can be ranked in

terms of first period liquidity.

In Figure 2 we plot the function ψ(Λ1) for a set of parameter values that yields multiple

equilibria. We will refer to the equilibrium where Λ∗1 is low (resp., intermediate, and high) as

the high, (resp., intermediate, and low) liquidity equilibrium.

In Figures 3 and 4, we illustrate the effect of different parameters’ changes on the equilibrium

set.

1. An increase in µ increases the risk bearing capacity of the market, and lowers the second

period imbalance due to u1. This weakens the strength of the loop. A similar effect

obtains when γ or τ v increase (see Figure 3, panel (a), (b), and (c)).

2. An increase in γL1 or in τu1 works instead to lower the supply shock that Ds and FDs absorb

in the first period, and thus the second period imbalance due to u1, again weakening the

loop (see Figure 3, panel (d) and (e)).

3. An increase in τ η has two contrasting effects on the strength of the loop. For τ η small,

a more precise signal on u1 boosts second period traders’ speculation on the u1-induced

13Because of (12), whenever first period traders consume more liquidity, FDs speculate less, increasing the
inventory held by liquidity suppliers.
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Figure 2: Equilibrium multiplicity. The figure displays the function ψ(Λ1) against the 45-degree
line for τ v = 0.1, τu1 = 2, τu2 = 400, τ η = 10, γ = 0.9, γL1 = 0.2, γL2 = 0.9, and µ = 0.2. At
equilibrium Λ∗1 ∈ {0.31, 0.99, 6.67}.

imbalance, heightening first period traders’ uncertainty on p2, increasing Λ∗1, and strength-

ening the loop. As τ η increases further, Var[p2|u1] starts decreasing (see the expression

in Proposition 5), leading first period traders to hold more of their endowment shock,

increasing the liquidity of the first period market, reducing the size of the u1-led imbal-

ance, and weakening the loop. When τ η → ∞, (i) the impact of second period traders’

speculation on Var[p2|u1] disappears, and (ii) second period traders’ uncertainty no longer

depends on Λ∗1 (see the expression for Var[v − p2|ΩL
2 ] in Proposition 5). This severs the

link between trading decisions at the two dates, yielding a unique equilibrium (as we

know from the analysis of Section 4). Figure 4, Panel (a), illustrates this effect. Note

that as τ η increases, the intermediate and low liquidity equilibria eventually disappear,

but liquidity at the high liquidity equilibrium diminishes (compared with the case with

low signal precision).

To understand the effect of a change in τu2 , consider first the extreme case in which the

second period endowment shock is null (almost surely):

Corollary 9. If τu2 → ∞, there always exists an equilibrium with Λ∗1 = 0. When τ η → ∞,

Λ∗1 = 0 is the unique equilibrium.

When τu2 → ∞, second period traders have no endowment to hedge, and only trade to

speculate on the u1-induced imbalance. In the equilibrium where Λ∗1 = 0, xD1 = 0, so that first

period traders’ orders are absorbed by FDs’ speculative trades, which implies that no imbalance

arises in the second period, and bL22 = 0 (see (30d)).14 When second period traders’ signal on u1

is fully revealing, this equilibrium is unique. For τ η finite, however, first period traders cannot

14A full analytical characterization of this equilibrium is complex. Numerically, it can be seen that first period
liquidity traders hedge the smallest possible fraction of their endowment shock: bL1 → −µγ/(µγ + γL1 ).
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rule out the possibility that second period traders trade on a certain realization of su1 that

gives an incorrect signal about u1 (e.g., su1 > 0, while u1 < 0). This increases the price risk

faced by FDs, increasing their cost of liquidity provision, possibly leading first period traders

to hedge more, and allowing for multiple equilibria. For τu2 < ∞, a lower τu2 magnifies the

risk to which first period traders are exposed, and works to weaken the loop, as first period

traders tend to behave as noise traders. The smaller τu2 becomes, the harder it is to sustain

the equilibrium with high liquidity. When τu2 becomes very small, our simulations show that

only the low liquidity equilibrium survives. Figure 4, Panel (b) illustrates this effect.

Finally, an increase in γL2 has two contrasting effects on the strength of the loop. Other

things equal, according to (30c) and (30d), when second period traders become more risk

tolerant they hedge less of their endowment shock, and speculate more aggressively against the

u1-led imbalance. The first of the above effects works to weaken the loop, because it reduces

the impact of the endowment shock on first period traders’ uncertainty. Conversely, the second

effect strengthens the loop. For γL2 small (large), the first (second) effect prevails, as illustrated

in Figure 4, Panel (c).

5.1 Fragility

Liquidity complementarities imply that liquidity can be “fragile,” in the sense that a small shock

to one of the model’s parameters can lead to a disproportionately large change in liquidity. We

show this with two examples, in which we shock the mass of FDs, and the volatility of first period

traders’ demand. The first example is meant to capture the effect of a technological ‘glitch’ that

disconnects a fraction full dealers, replacing them with standard dealers. The second example

captures instead the effect of an increase in the likelihood that a large, liquidity-consuming

order hits the first period market.

Consider again Panel (a) in Figure 3, and suppose that initially the market is at the high

liquidity equilibrium, where Λ∗1 = 0.35, as shown in Figure 5, Panel (a). Suppose now that the

proportion of FDs is shocked, and that it moves to µ = 0.18 (a 10% decrease). In this new

situation, a unique equilibrium arises, with Λ∗1 = 4.35, which corresponds to a 12-fold liquidity

decrease.

Consider now Panel (e) in Figure 3, and again assume that the market is at the high liquidity

equilibrium (as shown if Figure 5, Panel (b)). Suppose now that we introduce a 30% shock to

the volatility of first period traders’ endowment (bringing τu1 to 1.4). In this new situation there

is a unique equilibrium, where Λ∗1 = 4.27 which corresponds to a liquidity dry-up comparable

to the one of the previous example.

Summarizing: this section highlights the role of informational frictions in generating strate-

gic complementarities in liquidity supply. Second period traders, endowed with a noisy signal

on the first period endowment shock, speculate against the propagated order imbalance, gen-

erating additional volatility. This can feed back on first period traders’ strategies, inducing

short-term traders to consume more liquidity and FDs to retreat from speculation, thereby
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magnifying the inventory held by liquidity suppliers, and further lowering market liquidity.

This can trigger a self-sustaining loop, inducing multiple equilibria and liquidity fragility.

6 A strongly opaque market

In this section we consider the case in which the market is “strongly” opaque in that second

period traders’ signal is uninformative: τ η → 0. In this case, second period traders do not

speculate on the propagated imbalance (see (32)), and uniqueness is restored:

Corollary 10. When the market is strongly opaque, there exists a unique equilibrium in linear

strategies.

Importantly, a strongly opaque market is more liquid than its transparent counterpart:

Corollary 11. The strongly opaque market is more liquid than the fully transparent one:

Λ∗1|τη→0 < Λ∗1|τη→∞. (37)

According to (30c), due to execution risk second period traders hedge less of their shock

when their signal is uninformative (in which case κ > 1) than when it is perfect (in which

case, instead, κ = 1). At the same time, when τ η → 0, bL22 → 0, implying that first period

traders’ uncertainty only depends on second period hedging aggressiveness. But the same is

true also when τ η → ∞, since in this case the impact of second period speculation can be

fully anticipated in the first period. As a consequence, when τ η → 0 first period traders face

lower uncertainty than when τ η →∞. Thus, in the latter case first period traders hedge more,

and FDs speculate less, lowering market liquidity. Hence, market transparency, alone, won’t

necessarily enhance market liquidity.

Consider now the effect of an increase in the mass of FDs on liquidity. As we argued in

Section 4, an increase in µ triggers two potentially contrasting effects:

∂Λ∗1
∂µ

= − 1

γτ v

γ(1 + bL1 )

γL1︸ ︷︷ ︸
(+)

+
µγ

γL1

∂bL1
∂µ︸︷︷︸
(±)

+
∂bL1
∂µ︸︷︷︸
(±)

 .

First, for given bL1 , FDs speculate more aggressively against the orders of first period short-

term traders, which works to make the market more liquid; second, an increase in the mass

of FDs can lower the impact of second period traders’ orders, thereby lowering Var[p2|p1] and

leading first period traders to hold more of their endowment;15 at the same time, however, it

can lower the propagation of u1 to the second period, lowering the predictability of p2, and

inducing traders to shed more of their endowment. In a transparent market, we know that this

15The volatility reduction can happen for two different reasons. As µ increases, (i) less of the first period
endowment shock propagates to the second period, and (ii) more FDs absorb second period liquidity traders’
orders, enhancing risk sharing.
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latter effect is never strong enough to overcome the previous two, and liquidity increases in the

mass of FDs (see Corollary 2). In contrast, when the market is strongly opaque, we obtain the

following result:

Corollary 12. When τ η → 0, Λ∗1(µ) can be increasing in µ.

When the signal on u1 is uninformative, second period traders face high execution risk, which

tames their hedging aggressiveness (see (30c)), and lowers first period traders’ uncertainty. In

this situation, the uncertainty reduction effect of µ on bL1 can be dwarfed by the one due

to reduced predictability. As a consequence, when µ increases, first period traders can start

to hedge more, swamping the increase in FDs’ speculative trades, and for low values of µ,

impairing liquidity. When the distribution of the asset payoff has little dispersion, as µ grows

large, the effect of FDs speculative trades tends to prevail, implying that Λ∗1 can be hump-

shaped. However, when τ v is sufficiently small, the effect of execution risk on second period

liquidity traders’ hedging aggressiveness is stronger, and Λ∗1 can be increasing in µ, for all

µ ∈ (0, 1). This implies that when information on prices and/or order imbalances is opaque, an

increase in the mass of HFTs (promoting full participation), can lower market liquidity. This

finding is consistent with Boehmer, Fong, and Wu (2015) who provide international evidence

on the impact of an increase in algorithmic trading on market quality. An important findings

is that while on average greater algorithmic trading intensity is associated with more liquidity,

the same is not true for small market cap firms. For these firms, when algorithmic trading

increases, liquidity declines.16 Figure 6 provides a graphical illustration of Corollary 12.

Finally, the following result provides sufficient conditions for first or second period traders

to behave like noise traders:

Corollary 13. When

1. τ η →∞, and γL2 → 0, bL21 → −1, bL22 = 0, and

Λ∗1 =
1

γτ v(1 + (γL1 + γµ)γµτu2τ v)
. (38)

2. τu2 → 0, Λ∗1 = 1/γτ v, and bL1 = −1.

When markets are informationally integrated, second period traders face no execution risk

on their orders (κ = 1). Hence, when they become infinitely risk averse they rather hedge all of

their endowment, behaving like noise traders. When τu2 → 0, second period traders’ hedging

activity is so aggressive that first period traders’ uncertainty diverges (limτu2→0 Var[p2|u1] =∞).

As a result, the risk of speculating on short term returns is so large that both FDs and first

period traders refrain from it. Hence, bL1 = −1, and equilibrium liquidity reaches its minimum.

Importantly,

Λ∗1
∣∣
τu2→0

> Λ∗1
∣∣ τη→∞
γL2 →0

.

16See also Breckenfelder (2014) for other evidence on the negative impact of an increase in HFT competition
on market liquidity for a sample of stocks traded on the Stockholm Stock Exchange.
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This is because when the second period endowment shock explodes, as argued above, the risk of

first period speculation is so large that all first period trades are absorbed by liquidity providers.

Conversely, when the conditions leading second period traders to behave like noise traders are

in place, Var[p2|u1] <∞, which makes speculation possible in the first period.

6.1 Welfare

We now turn to the welfare analysis, providing general expressions for the expected utilities of

market participants:

Proposition 14. At a linear equilibrium the unconditional expected utilities of market partic-

ipants are given by

EUD = −
(

1 +
Var[p1]

Var[v]

)−1/2
(39a)

EUFD = −
(

1 +
Var[p2|p1]

Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]
Var[p2|p1]

)−1/2
, (39b)

respectively for Ds and FDs, where EUFD > EUD, and

EUL
1 = −

(
1 +

Var[xL1 ]Var[p2|u1]
(γL1 )2

+
2Cov[p2, u1]

γL1
− Var[u1]Var[p2|u1]

(γL1 )2

)−1/2
, (40a)

for first period traders,

EUL
2 = −

(
1 +

Var[xL2 ]Var[v − p2|ΩL
2 ]

(γL2 )2
− Var[u2]Var[v]

(γL2 )2
+ (40b)(

ρ2xL2 ,u2
− 1
) Var[v]Var[u2]Var[xL2 ]Var[v − p2|ΩL

2 ]

(γL2 )4

)−1/2
,

where ρ2
xL2 ,u2

≡ (bL21)
2/Var[xL2 ]τu2, for second period traders.

Expression (39a) shows that dealers derive utility from liquidity provision to first period

traders: the less liquid is the first period market, the higher is their welfare.17

From (39b) we can instead see that FDs derive utility from three trading activities: (i)

liquidity supply to first traders like traditional dealers, (ii) speculation on short term returns,

and (iii) liquidity supply to second period traders. A change in the conditional volatility of

returns has two contrasting effects on FDs’ utility: the higher is Var[p2|p1], the larger are

the potential returns from second period liquidity provision (as this implies a larger liquidity

demand in the future), but also the higher is the risk of speculating on short-term price changes

(the short term return variance unexplained by p1).
18

17More in detail, Var[p1], and Var[v] are respectively the variance of the profit from liquidity provision that is
explained and unexplained by p1 (that is Var[E[v − p1|p1]] = Var[p1], and Var[v] = Var[v − p1|p1]). Therefore,
the higher is Var[p1] (Var[v]) the more (less) accurately dealers can anticipate their profit — namely (v − p1)
— from the knowledge of p1.

18At date 1, the short term profit of a FD is (p2−p1). The variance of this profit that is explained (unexplained)
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Expression (40a) shows that first period traders are negatively affected by the uncertainty

over the value of their endowment (due to the effect of Var[u1]Var[p2|u1]) and benefit from trad-

ing (due to the effect of Var[xL1 ]Var[p2|u1]). As −1 < bL1 < 0, (Var[xL1 ]−Var[u1])Var[p2|u1] < 0,

and for given bL1 an increase in return uncertainty lowers first period traders’ welfare. Fur-

thermore, (40a) shows that these traders also benefit from keeping part of their exposure to

the payoff risk, as p2 is positively correlated with their endowment. To see why, suppose that

u1 > 0. Then, traders reduce their exposure to the asset (as bL1 < 0), selling part of their

endowment in the first period, and keeping (1 + bL1 ) of it in their portfolio. In this case, the

higher is p2, the more they earn out of such position. Thus, as in the transparent market case,

traders’ utility contains a capital gains component.

According to (40b) second period traders also benefit from trading and suffer from the uncer-

tainty of their endowment value. As argued in Section 3.5, these traders hedge u2, and speculate

on the u1-led imbalance. Therefore, endowment shock propagation has a positive ‘speculative’

effect on EUL
2 (through Var[xL2 ]). Additionally, it also has a negative ‘risk-exposure’ effect. To

see this, note that the lower is the correlation between these traders’ endowment shock and their

strategy (ρ2
xL2 ,u2

), the lower is their utility. This is because speculating on the u1-led imbalance,

increases these traders’ exposure to payoff-risk, lowering their ex-ante utility. Accordingly, this

effect disappears if τ η → 0, in which case ρ2
xL2 ,u2

→ 1 (their strategy only loads on u2), and they

only hedge endowment risk.

Overall, we can say that (i) traders benefit when they can trade more and suffer from the

uncertainty of their endowment value, (ii) first period traders are adversely affected by short

term price reversion, and (iii) endowment shock propagation has two contrasting effects on

second period traders’ welfare.

To investigate the welfare effect of an increase in µ with a strongly opaque market we use

numerical simulations. Starting from Ds. We know from Corollary 12 that when τ η → 0, Λ∗1

can be hump-shaped in µ. As EUD
1 is a monotone transformation of Λ∗1 (see (39a)), the same

applies to Ds’ welfare. For FDs, our simulations show that their welfare is decreasing in µ.

Figure 8 (panels (a) and (b)) provides a graphical illustration.

Consider short-term traders. When τ η → 0, second period traders do not trade on the

u1-led imbalance (bL22 → 0). This implies that they do not bear any of the welfare effects that

are related to it (e.g., ρ2
xL2 ,u2

→ 1), and benefit from an increase in risk sharing opportunities.

As a consequence, in our simulations, their welfare increases in µ. Lack of information on

u1 also exposes second period traders to execution risk (κ > 1), leading them to hedge less

(compared to the case of transparent markets). This, in turn, implies that first period traders

face low uncertainty on the liquidation price, and the risk of their asset exposure weighs less

in their welfare function, compared to the capital gains component. This explains why an

increase in µ, that lowers the propagation of u1 to p2, has a negative impact on their welfare.

by p1 is Var[E[p2|p1] − p1] (Var[p2 − p1|p1] = Var[p2|p1]). Thus, the higher is Var[E[p2|p1] − p1] (Var[p2|p1]),
the more (less) accurately FDs can anticipate their short term profit based on p1.
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As a consequence, in our simulations, CEL
1 is always decreasing in µ (see panels (c) and (d) in

Figure 8).

Aggregating across market participants’ welfare, highlights two important welfare implica-

tions of opaqueness. First, a more liquid market is not necessarily welfare improving. To see

this, consider Panels (e) and (f) in Figure 8. The parameters values of this figure coincide with

the ones used in Figure 6, which shows that liquidity is maximal with strong limits to market

participation (µ close to zero).19 This yields the following conclusion:

Numerical Result 4. With opaque markets, a maximally liquid market can be welfare de-

creasing.

Second, for a highly dispersed endowment shock to first period traders, the negative effect

of a larger µ on the capital gains component can be so large, that strong limits to market

participation (µ close to–but higher than–zero) become dominant compared to full participation

(µ = 1). This is in stark contrast with the transparent markets case. Figure 9 displays an

example of this situation. Therefore,

Numerical Result 5. With opaque markets, limited market participation can be welfare im-

proving.

Transparent (τ η →∞) Opaque (0 < τ η <∞) Strongly opaque (τ η → 0)

Equilibrium Unique Possible ME∗ Unique

Liquidity Increasing in µ Can be ‘fragile’∗ Hump-shaped/decreasing in µ∗

Welfare Increasing in µ∗ Increasing/decreasing in µ∗

Entry N large/c small implement welfare optimum

∗Numerical result.

Table 1: Summary of results.

7 Concluding remarks

In this paper we study a 2-period model in which two classes of dealers—full and standard—

intermediate short-term traders’ orders, in a context where markets are fragmented due to an

informational and a participation friction. We show that full dealers’ limited market participa-

tion favors the propagation of first period traders’ endowment shock across time. This, in turn,

leads second period traders to speculate against the order imbalance due to their first period

19With strong opaqueness, second period traders do not speculate on the u1-led imbalance and, absent FDs,
no one absorbs the reverting orders of first period traders. As a consequence, if µ→ 0, there is no equilibrium.
Analytically, this can be seen from the fact that limµ→0(limτη→0 ψ(Λ1)) =∞.
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peers, affecting the latter uncertainty, and feeding back on these traders’ liquidity consumption

decision. As a result, a self-fulfilling loop can arise in which multiple levels of liquidity can be

sustained in equilibrium.

Our main findings can be summarized as follows (see Table 1):

• When markets are either strongly opaque or fully transparent there is a unique equi-

librium. Liquidity is increasing in market participation when markets are transparent,

but can be hump-shaped when they are opaque (often with a maximum at the level in

which there is as little market participation as possible). This implies that if markets are

opaque, favoring FDs’ entry doesn’t necessarily enhance liquidity.

• When markets are opaque, multiple equilibria can arise. These equilibria can be ranked

in terms of market liquidity, and we can show that a shock to market participation and/or

to the volatility of the market participants’ endowment shocks can move the market from

the high to the low liquidity equilibrium. Hence, a second implication of our work is that

market fragmentation can make liquidity fragile.

• When markets are transparent, total welfare is maximized when only full dealers are

in the market. Together with the corresponding result for liquidity, this implies that a

policy of improving liquidity when markets are transparent achieves a welfare optimum.

In particular, as in this case increasing platform competition spurs full dealers’ entry, an

increase in the number of trading venues is both a liquidity and a welfare maximizing

policy.

• With strong opaqueness, welfare can be increasing or decreasing in market participation.

Coupling this with the corresponding liquidity results, this offers two further implica-

tions: on the one hand, we can find examples in which maximal liquidity and welfare are

negatively correlated. On the other hand, there are situations in which strong limits to

market participation can be welfare optimal with opaqueness, in contrast with the result

that obtains with transparency.

A number of important issues are left for future work. In particular, understanding the

impact of a change in opaqueness for a given level of market participation, would allow to

give a better grounding to policies aimed at improving the prompt dissemination of market

information (see, e.g., SEC (2010)). Also, assessing the welfare impact of abrupt changes

in liquidity, can shed light on the consequences of market instability episodes for traders’

participation.
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A Appendix

The following is a standard results (see, e.g. Vives (2008), Technical Appendix, pp. 382–383)

that allows us to compute the unconditional expected utility of market participants.

Lemma 2. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z + z′Az, where

c ∈ R, b ∈ Rn, and A is a n×n matrix. If the matrix Σ−1 +2ρA is positive definite, and ρ > 0,

then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

Proof of Lemma 1

Denote by µxFD1 =
∫ µ
0
xFD1 di, (1 − µ)xD1 =

∫ 1

µ
xD1 di, and by xL1 respectively the aggregate

position of FDs, dealers and liquidity traders in the first period. Imposing market clearing

yields:

µxFD1 + (1− µ)xD1 + xL1 = 0 ⇐⇒ µϕFD1 (p1) + (1− µ)ϕD(p1) + bL1 u1 = 0. (A.1)

At equilibrium the coefficients of traders’ strategies are known, which implies that p1 is ob-

servationally equivalent to u1 and that both FDs and dealers can retrieve u1 from the price.

Therefore, the information set of a FD and a dealer in the first period coincide and are given by

ΩFD
1 = ΩD

1 = {u1}. In the second period, denote by µxFD2 =
∫ µ
0
xFD2 di and by xL2 , respectively

the aggregate position of FDs and second period liquidity traders. Impose market clearing:

µ(xFD2 − xFD1 ) + (xL2 − xL1 ) = 0,

and rearrange the first period market clearing condition as follows

(1− µ)xD1 = −
(
µxFD1 + xL1

)
.

Substitute the latter in the second period clearing equation to obtain

µxFD2 + xL2 + (1− µ)xD1 = 0. (A.2)

Once again, at a linear equilibrium the coefficient of traders’ strategies are known, which

implies that the price sequence {p1, p2} is observationally equivalent to {u1, xL2 }. Thus, the

second period information set of a FD is given by ΩFD
2 = {sv, u1, u2}. 2

Proof of Proposition 1

The result comes as a special case of Proposition 5, when τ η →∞.

2
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Proof of Corollary 2

Using (8a) and (8b), the following explicit expression can be obtained for Λ∗1:

Λ∗1 =
1

τ v(γ + (µγ + γL1 )(µγ + γL2 )(γL2 + γ)τu2τ v)
. (A.3)

As one can verify, the above expression is decreasing in µ.

2

Proof of Corollary 3

The result comes as a special case of Proposition 14, when τ η → ∞. More in detail, when

τ η →∞ at equilibrium we have:

bL1 = γL1 (γL2 + γ)(γL2 + µγ)Λ∗1τu2τ
2
v − 1 (A.4a)

bL21 = − µγ

µγ + γL2
(A.4b)

bL22 =
γL2 b

L
21(1− µ)Λ∗1τ v

µ
(A.4c)

Var[p2|u1] =
1

(µγ + γL2 )2τ 2vτu2
, (A.4d)

where Λ∗1 is given by (A.3). Furthermore,

E[p2 − p1|p1] =
(γ + γL2 )Λ∗1
µγ + γL2

u1,

so that

Var [E[p2 − p1|p1]] =

(
(γ + γL2 )Λ∗1
µγ + γL2

)2

τ−1u1 . (A.5)

The first two parts of the corollary come from substituting the expressions in (A.4a)–(A.4d)

and (A.5) in (A.40) and (A.42). Note that since Λ′1(µ) < 0, both EUD and EUFD are decreasing

in µ.

2

Proof of Corollary 4

The result comes as a special case of Proposition 14, when τ η →∞. In detail, differentiating

the argument of the logarithm in (19) yields

− 2

(γL2 + γµ)3τ v(τu1 + τ vΛ2
1(µ))2

×
(
γ(τu1 + τ vΛ1(µ)2)(τu1 + τ v(1 + (γ + γL2 )2τu2τ v)Λ1(µ)2)

τu2

− (γ + γL2 )2(γL2 + γµ)τu1τ
2
v(1 + (γL2 + γµ)2τu2τ v)Λ1(µ)Λ′1(µ)

)
,
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which, given that Λ∗1 is decreasing in µ, is negative.

2

Proof of Proposition 5

In the second period a new mass of liquidity traders endowed with risk-tolerance coefficient

γL2 > 0 enter the market. A date-2 liquidity trader submits a market order

XL
2 (u2, su1) = bL21u2 + bL22su1 , (A.6)

with u2 ∼ N(0, τ−1u2 ), and su1 = u1 + η, with η ∼ N(0, τ−1η ) and u2, η independent of all the

other random variables in the model. Consider the sequence of market clearing equations

µxFD1 + (1− µ)xD1 + xL1 = 0 (A.7a)

µ(xFD2 − xFD1 ) + (bL21u2 + bL22su1 − xL1 ) = 0. (A.7b)

Rearrange (A.7a) as follows:

(1− µ)xD1 = −
(
µxFD1 + xL1

)
.

Substitute the latter in (A.7b):

µxFD2 + bL21u2 + bL22su1 + (1− µ)xD1 = 0. (A.8)

A FD maximizes the expected utility of his second period wealth:

E

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}
|p1, p2

]
=

= E

[
exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ
(v − p2)xFD2

})
|p1, p2

]
= exp

{
− 1

γ
(p2 − p1)xFD1

}
E

[
− exp

{
− 1

γ
(v − p2)xFD2

}
|p1, p2

]
(A.9)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
E[v − p2|p1, p2]xFD2 − (xFD2 )2

2γ
Var[v − p2|p1, p2]

)})
,

where the last expression in (A.9) is due to CARA and normality. For given xFD1 the above

is a concave function of the second period strategy xFD2 . Solving the FOC, yields that in the

second period a FD’s limit order is given by XFD
2 (p1, p2) = −γτ vp2. Similarly, due to CARA

and normality, in the first period a traditional market maker maximizes

E

[
−exp

{
− 1

γ
(v−p1)xD1

}
|p1
]

= − exp

{
− 1

γ

(
E[v−p1|p1]xD1 −

(xD1 )2

2γ
Var[v−p1|p1]

)}
. (A.10)

Hence, his strategy is given by XD
1 (p1) = −γτ vp1. Substituting these strategies in (A.8) and

33



solving for p2 yields

p2 = λ2
(
bL21u2 + bL22su1

)
− 1− µ

µ
p1, (A.11)

where λ2 = 1/µγτ v. The assumption that first period liquidity traders’ strategies are linear

implies that p1 = −Λ1u1 (see below). As a consequence we can rewrite (A.11) as follows:

p2 = λ2(b
L
21u2 + bL22su1) + λ2(1− µ)γτ vΛ1u1. (A.12)

CARA and normality assumptions imply that the objective function of a second period liquidity

trader is given by

E[− exp{−πL2 /γL2 }|ΩL
2 ] = − exp

{
− 1

γ

(
E[πL2 |ΩL

2 ]− 1

2γ
Var[πL2 |ΩL

2 ]

)}
, (A.13)

where ΩL
2 = {u2, su1}, and πL2 ≡ (v − p2)xL2 + u2v. Maximizing (A.13) with respect to xL2 , the

strategy of a second period liquidity trader is given by

XL
2 (u2, su1) = γL2

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]
− Cov[v − p2, v|ΩL

2 ]

Var[v − p2|ΩL
2 ]

u2. (A.14)

Computing

E[v − p2|ΩL
2 ] = −

(
λ2(b

L
21u2 + bL22su1) +

1− µ
µ

Λ1
τ η

τ η + τu1
su1

)
(A.15a)

Var[v − p2|ΩL
2 ] =

µ2(τu1 + τ η) + ((1− µ)Λ1)
2τ v

µ2(τu1 + τ η)τ v
(A.15b)

Cov[v − p2, v|ΩL
2 ] =

1

τ v
. (A.15c)

Substituting (A.15a), (A.15b), and (A.15c) in (A.14) and identifying coefficients yields

XL
2 (u2, su1) = bL21u2 + bL22su1 ,

where

bL21 = − 1

τ v(γL2λ2 + Var[v − p2|ΩL
2 ])

(A.16a)

bL22 = − γL2 τ ηλ2(1− µ)γτ vΛ1

(τ η + τu1)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])
. (A.16b)

According to (A.14) second period liquidity traders’ strategies react both to endowment and

informational shocks. Thus, there are two measures of the price impact of trades in the second
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period (see (A.12)):

λ21 ≡
∂p2
∂u2

= λ2b
L
21 (A.17a)

λ22 ≡
∂p2
∂su1

= λ2b
L
22. (A.17b)

Expressions (A.17a) and (A.17b) respectively correspond to the price impact of a marginal

increase in the endowment shock and in the realization of the signal about u1 observed by

second period liquidity traders.

Consider now the first period. We start by characterizing the strategy of a FD. Substituting

the optimal strategy in (A.9), rearranging and applying Lemma 2 yields the following expression

for the first period objective function of a FD:

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× (A.18)

exp

{
−1

γ

(
γτ v
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτ vν)2

2γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1)}
,

where

ν ≡ E[p2|u1] =

(
λ2b

L
22 +

1− µ
µ

Λ1

)
u1 (A.19a)

Var[p2|u1] = λ22

(
(bL21)

2

τu2
+

(bL22)
2

τ η

)
. (A.19b)

Maximizing (A.18) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) =

γ

Var[p2|u1]
ν − γ

(
1

Var[p2|u1]
+

1

Var[v]

)
p1. (A.20)

As we argued above, due to CARA and normality, for traditional market makers at date 1 we

have XD
1 (p1) = −γτ vp1. At equilibrium we then have

µ

(
γ

Var[p2|u1]
ν − γ

(
1

Var[p2|u1]
+

1

Var[v]

)
p1

)
+ (−(1− µ)γτ vp1) + bL1 u1 = 0,

implying that p1 is linear in u1: p1 = −Λ1u1, with Λ1 to be determined.

We now turn to the characterization of first period liquidity traders’ strategies. CARA and

normality imply

E[− exp{−πL1 /γL1 }] = − exp

{
− 1

γ

(
E[πL1 |u1]−

1

2γ
Var[πL1 |u1]

)}
, (A.21)

where πL1 ≡ (p2 − p1)x
L
1 + u1p2. Maximizing (A.21) with respect to xL1 , and solving for the
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optimal strategy, yields

XL
1 (u1) = γL1

E[p2 − p1|u1]
Var[p2 − p1|u1]

− Cov[p2 − p1, p2|u1]
Var[p2 − p1|u1]

u1. (A.22)

Computing

p2 − p1 =

(
λ2b

L
22 +

Λ1

µ

)
u1 + λ2

(
bL21u2 + bL22η

)
,

and

E[p2 − p1|u1] =

(
λ2b

L
22 +

Λ1

µ

)
u1 (A.23a)

Cov[p2 − p1, p2|u1] = Var[p2|u1]. (A.23b)

Substituting the above in the strategy of a first period liquidity trader and identifying yields

XL
1 (u1) = bL1 u1, (A.24)

where

bL1 = γL1
µλ2b

L
22 + Λ1

µVar[p2|u1]
− 1. (A.25)

Substituting (A.20), xD1 , and (A.24) in the first period market clearing condition and solving

for the price yields p1 = −Λ1u1, where

Λ1 = ψ(Λ1) ≡ −
(
µγ

(
1

Var[p2|u1]
+

1

Var[v]

)
+ (1− µ)γ

1

Var[v]

)−1
×(

µ
γCov[p2, u1]

Var[p2|u1]Var[u1]
+ bL1

)
. (A.26)

According to (A.25), the equilibrium coefficient of a first period liquidity trader depends on bL21,

and bL22. Therefore, recursive substitution of the equilibrium strategies’ coefficients in (A.26)

shows that Λ1 is pinned down by the solution of the following equation in Λ1:

ψ(Λ1)− Λ1 =
(µγ + γL1 )(Cov[p2, u1]τu1 + Λ1) + Var[p2|u1](γτ vΛ1 − 1)

γ(µ+ τ vVar[p2|u1])
= 0. (A.27)

For µ ∈ (0, 1] the denominator in the above expression is positive, which implies that equilibria

are pinned down by solutions to the quintic at the numerator of (A.27):

f(Λ1) ≡ g1(Λ1) + g2(Λ1) + g3(Λ1) = 0, (A.28)

where

g1(Λ1) ≡ −µ3τ 2u1(1− γτ vΛ1) + Λ1τu2τ
2
v(γ

L
1 + µγ)(γτ vΛ

2
1(1− µ)2 + µτu1(γ

L
2 + µγ))2 (A.29a)

g2(Λ1) ≡ µ3τ 2η(Λ1τ v(γ + (γL1 + γ)(γL1 + µγ)(γL2 + µγ)τu2τ v)− 1), (A.29b)
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and

g3(Λ1) ≡ τ η
(
− 2µ3τu1 − (γL2 )2Λ2

1(1− µ)2µτu2τ
2
v + γΛ3

1(1− µ)2µτu2τ
3
v×

(γL2 (γL1 + γL2 ) + (2γγL1 + (γ + γL1 )γL2 )µ+ µ2γ(γL2 + 2γ))+ (A.29c)

+ µ2Λ1τu1τ v(2µγ + (γL1 + µγ)(γL2 + µγ)(γL2 + 2µγ + µγL2 )τu2τ v)
)
.

Using (29a) we can compute Cov[p2, u1]:

Cov[p2, u1] =
(1− µ)Λ1(τu1γ

L
2λ2 + (τu1 + τ η)Var[v − p2|ΩL

2 ])

µτu1(τu1 + τ η)(γL2λ2 + Var[v − p2|ΩL
2 ])

, (A.30)

which is positive if and only if Λ1 > 0. Consider (A.27) and suppose that at equilibrium Λ∗1 < 0.

From (A.30), Cov[p2, u1] < 0. Due to (A.27) this implies f(Λ∗1) < 0, which is impossible. Thus,

at equilibrium, Λ∗1 > 0, and Cov[p2, u1] ≥ 0. Similarly,

Cov[p2, u1|ΩL
2 ] = λ2(1− µ)γτ vΛ1Var[u1|su1 ] ≥ 0.

To sign the strategy coefficient of a first period liquidity trader, we use (A.25):

bL1 = γL1
Cov[p2, u1]τu1 + Λ1

Var[p2|u1]
− 1. (A.31)

From (A.31) we obtain

Var[p2|u1]
γL1

(1 + bL1 ) = Cov[p2, u1]τu1 + Λ1,

which substituted in (A.27) yields

f(Λ1) =
Var[p2|u1]

γL1

(
(µγ + γL1 )(1 + bL1 ) + γL1 (γτ vΛ1 − 1)

)
= 0. (A.32)

Solving the above for Λ1 yields:

Λ∗1 =
1

γτ v

(
1− (1 + bL1 )(µγ + γL1 )

γL1

)
(A.33a)

=
1

γL1 γτ v
(−µγ − bL1 (µγ + γL1 )). (A.33b)

Since Λ∗1 > 0, the last expression in (A.33a) implies that at equilibrium bL1 < 0. Furthermore,

using (A.31), 1 + bL1 > 0, which proves our result.

If we let τ η → 0, (A.28) reads as follows:

f(Λ1) =− µ3τ 2u1(1− γτ vΛ1)+ (A.34)

Λ1(γ
L
1 + µγ)τu2τ

2
v(γτ vΛ

2
1(1− µ)2 + µτu1(γ

L
2 + µγ))2 = 0.
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By inspection, f(0) < 0, f(1/γτ v) > 0, and f ′(Λ1) > 0, which implies that in this case there

exists a unique positive root.

Taking the limit for τ η →∞ in ψ(Λ1) yields:

lim
τη→∞

ψ(Λ1) =
1− Λ1(γ

L
2 + µγ)(γL1 (γ + γL2 ) + µγ2(1− µ))τu2τ

2
v

γτ v(1 + µ(γL2 + µγ)2τu2τ v)
. (A.35)

Identifying Λ1:

f(Λ1) = Λ1(τ v(γ + (γ + γL2 )(γL1 + µγ)(γL2 + γµ)τu2τ v)− 1 = 0,

and a unique solution with

Λ∗1|τη→∞ ≡
1

τ v(γ + (µγ + γL1 )(µγ + γL2 )(γL2 + γ)τu2τ v)
, (A.36)

obtains. Note that liquidity is in this case increasing in µ. Also, according to (A.35) we have

ψ′(Λ∗1) < 0.

2

Proof of Corollary 6

The proof of Proposition 5 has already established that at equilibrium Cov[p2, u1] ≥ 0, and

Cov[p2, u1|ΩL
2 ] ≥ 0, for µ ≤ 1. Using the definition of z1 and z2 and computing the covariance

yields:

Cov[z1, z2] =
bL1 (bL22 + (1− µ)γτ vΛ1)

τu1
,

and the sign of the above expression depends on the sign of the second factor at its numerator.

From the expression for bL22 we have

bL22 + (1− µ)γτ vΛ1 = (1− µ)γτ vΛ1

(
1− γL2λ2τ η

(τ η + τu1)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])

)
> 0,

which implies that Cov[z1, z2] ≤ 0, for µ ≤ 1. Finally, the expression for Var[v − p2|ΩL
2 ] in

Proposition 5 implies that for µ = 1, Var[v − p2|ΩL
2 ] = 1/τ v.

2

Proof of Corollary 7

From Proposition 5 it is immediate that Var[v − p2|ΩL
2 ] is increasing in Λ1. Differentiating

Cov[p2, u1] yields

∂Cov[p2, u1]

∂Λ1

=
1− µ

µ(τu1 + τ η)
+

(1− µ)τ η(Var[v − p2|ΩL
2 ](γL2λ2 + Var[v − p2|ΩL

2 ]) + γL2λ2Λ1Var[v − p2|ΩL
2 ])

µτu1(τu1 + τ η)(γL2λ2 + Var[v − p2|ΩL
2 ])2

≥ 0,
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for µ ≤ 1. Finally,

Cov[p2 − p1, p1] = − Λ2
1

µτu1

(
γL2λ2(µτ η + τu1) + Var[v − p2|ΩL

2 ](τ η + τu1)

(τ η + τu1)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])

)
< 0.

2

Proof of Corollary 8

Collecting the terms in Λ1 in the quintic equation (A.28) yields

f(Λ1) = γ2(1− µ)4Λ5
1(γ

L
1 + µγ)τu2τ

4
v

+ µγ(1− µ)2τu2τ
3
vΛ

3
1

(
((µγ + γL1 )(2µγ + γL2 (1 + µ)) + (γL2 )2)τ η + 2τu1(µγ + γL1 )(µγ + γL2 )

)
− (γL2 )2(1− µ)2µτ ητu2τ

2
vΛ

2
1 (A.37)

+ µ2(τ η + τu1)τ vΛ1

(
µγ(τ η + τu1) + (µγ + γL1 )(µγ + γL2 )(µγ(τ η + τu1) + γL2 (µτ η + τu1))τu2τ v

)
− µ3(τ η + τu1)

2 = 0.

The above expression shows that there are three sign changes in the sequence formed by the

quintic coefficients. Therefore, by Descartes’ rule of sign, there are up to three positive roots

of the equation f(Λ1) = 0.

2

Proof of Corollary 9

If we let τu2 →∞, the quintic that solves the equilibrium becomes

f(Λ1) = Λ1

(
γ2τ 2vΛ

4
1(1− µ)4(γL1 + µγ)− (γL2 )2(1− µ)2µτ ηΛ1 +

µ2(γL1 + µγ)(γL2 + µγ)(τu1 + τ η)(µγ(τu1 + τ η) + γL2 (τu1 + µτ η)) +

µγτ v(1− µ)2Λ2
1((γ

L
2 )2τ η + 2µγ(γL1 + µγ)(τu1 + τ η) + γL2 (γL1 + µγ)(τ η(1 + µ) + 2τu1))

)
= 0.

The above equation always has one null root. Inspection of (A.36) shows that in this case,

when τ η →∞, Λ∗1 = 0 is the unique equilibrium.

Proof of Corollary 10

Follows from the proof of Proposition 5 in the case τ η → 0.

2

Proof of Corollary 11
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Evaluating (A.34) at Λ∗1|τη→∞ yields

f(Λ∗1|τη→∞) > 0,

which implies that Λ∗1|τη→0 < Λ∗1|τη→∞.

2

Proof of Corollary 12

Differentiating (31) yields

ψ′(Λ1) = − 1

γ(µ+ τ vVar[p2|θ1])2
×
(
µγτu(µ+ τ vVar[p2|θ1])

∂Cov[p2, θ1]

∂Λ1

(A.38)

+
∂bL1
∂Λ1

Var[p2|θ1](µ+ τ vVar[p2|θ1]) + µ
∂Var[p2|θ1]

∂Λ1

(bL1 − γτuτ vCov[p2, θ1])

)
.

The first term inside the parenthesis in the above expression is positive as Cov[p2, θ1] increases

in Λ1. Consider the remaining two terms:

∂bL1
∂Λ1

=
γL1

(Var[p2|θ1])2

((
∂Cov[p2, θ1]

∂Λ1

τu + 1

)
Var[p2|θ1]− (Cov[p2, θ1]τu + Λ1)

∂Var[p2|θ1]
∂Λ1

)
∂Var[p2|θ1]

∂Λ1

= 2λ2

(
bL21
τu

∂bL21
∂Λ1

+
bL22
τ η

∂bL22
∂Λ1

)
.

At equilibrium bL21 < 0 and, according to (30c) an increase in Λ1 leads second period traders to

hedge less their endowment shock. Also, when τ η = 0, according to (30d), bL21 = 0. Therefore,

in this case an increase in Λ1 lowers Var[p2|θ1]. But then, this implies that bL1 increases in Λ1,

which in turn implies that the remaining two terms in the parenthesis of (A.38) are positive

too. Thus, ψ′(Λ1) < 0.

2

Proof of Proposition 14

We start by obtaining a formula for the unconditional expected utility of Ds and FDs.

Because of CARA and normality, a dealer’s conditional expected utility evaluated at the optimal

strategy is given by

E[U((v − p1)xD1 )|p1] = − exp

{
−(E[v|p1]− p1)2

2Var[v]

}
= − exp

{
−τ vΛ

2
1

2
u21

}
. (A.39)
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Thus, traditional dealers derive utility from the expected, long term capital gain obtained

supplying liquidity to first period hedgers.

EUD ≡ E
[
U
(
(v − p1)xD1

)]
= −

(
1 +

Var[p1]

Var[v]

)−1/2
= −

(
τu1

τu1 + τ vΛ2
1

)1/2

. (A.40)

Turning to FDs. Replacing (A.20) in (A.18) and rearranging yields

E[U((p2 − p1)xHF1 + (v − p2)xHF2 )|θ1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× exp

{
−g(u1)

γ

}
, (A.41)

where

g(u1) =
γ

2

(
(E[p2|p1]− p1)2

Var[p2|p1]
+

(E[v|p1]− p1)2

Var[v]

)
.

Comparing the latter with (A.39) shows that given their second period utility, at date 1 FDs

derive utility from two sources: the “long term” capital gain due to liquidity supply to first

period hedgers and the “short term” capital gain due to the anticipation of p2. Based on the

expression for g(u1) we can see that the argument at the exponential of (A.41) is a quadratic

form of the first period endowment shock. We can therefore apply Lemma 2 and obtain

EUFD ≡ E[U((p2 − p1)xFD1 + (v − p2)xFD2 )] =

= −
(

1 +
Var[p2|p1]

Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]
Var[p2|p1]

)−1/2
, (A.42)

where

Var[E[p2|p1]− p1] =

(
λ2b

L
22 +

Λ1

µ

)2
1

τu1
.

Consider now first period liquidity traders. Evaluating the objective function at optimum and

rearranging yields

− exp

{
− 1

γL1

(
E[πL1 |u1]−

1

2γL1
Var[πHL1 |u1]

)}
= − exp

{
−u

2
1

γL1

(
(bL1 )2 − 1

2γL1 τ v

)}
,

where u1 ∼ N(0, τ−1u1 ). The argument at the exponential is a quadratic form of a normal random

variable. Therefore, applying again Lemma 2 yields

E[− exp{πL1 /γL1 }] = −
(

γL1 τu1
γL1 τu1 + 2CL

)1/2

, (A.43)

where

CL =
((bL1 )2 − 1)Var[p2|u1]

2γL1
+

Cov[p2, u1]

Var[u1]
. (A.44)
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Finally, for second period liquidity traders, substituting the optimal strategy (A.14) in the

objective function (A.13) yields

E
[
− exp

{
−πL2 /γL2

}
|ΩL

2

]
= − exp

{
− 1

γL2

(
Var[v − p2|ΩL

2 ](xL2 )2 − Var[v]u22
2γL2

)}
(A.45)

= − exp

{
− 1

γL2

(
xL2 u2

)( 1

2γL2

(
Var[v − p2|ΩL

2 ] 0

0 −Var[v]

))(
xL2

u2

)}
.

The argument of the exponential is a quadratic form of the normally distributed random vector(
xL2 u2

)
∼ N

((
0 0

)
,Σ
)
,

where

Σ ≡

(
Var[xL2 ] bL21Var[u2]

bL21Var[u2] Var[u2]

)
.

Therefore, we can again apply Lemma 2 to (A.45), obtaining

E
[
E
[
− exp

{
−πL2 /γL2

}
|ΩL

2

]]
= −|I + (2/γL2 )ΣA|−1/2, (A.46)

where

A ≡ 1

2γL2

(
Var[v − p2|ΩL

2 ] 0

0 −Var[v]

)
.

Rearranging (A.46) yields (40b), where we use

ρ2xL2 ,u2
=

(bL21)
2

Var[xL2 ]τu2
.

2
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Figure 3: The effect of a change in parameters’ values on the equilibrium set. The continuous
blue curve represents the function ψ(Λ1) for τ v = 0.1, τu1 = 2, τu2 = 400, τ η = 10, γ = 0.9,
γL1 = 0.2, γL2 = 0.9, and µ = 0.2.
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Figure 4: Comparative statics. The figure displays the effect of a change in the precision
of second period liquidity traders’ signal (Panel (a)), the dispersion of second period liquidity
traders’ endowment shock (Panel (b)), and second period liquidity traders’ risk tolerance (Panel
(c)). The other parameters’ values are as in Figure 2.

44



μ=0.2

μ=0.18

0 1 2 3 4 5
Λ1

1

2

3

4

5
ψ(Λ1 )

Λ1
* =0.35

Λ1
* =4.35

(a)

τu1=2

τu1=1.4

0 1 2 3 4 5
Λ1

1

2

3

4

5
ψ(Λ1 )

Λ1
* =0.35

Λ1
* =4.27

(b)

Figure 5: Liquidity fragility. In panel (a) we illustrate the effect of a decrease in the mass
of FDs, and in panel (b) that of an increase in the volatility of first period liquidity traders’
demand. Other parameters’ values are as in Figure 3.
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Figure 6: The impact of an increase in the mass of FDs on market liquidity. When τ η → 0,
Λ∗1 can be hump-shaped, or always increasing in µ, depending on the dispersion of the payoff
distribution (respectively, Panel (a) and (b)). Parameters’ values: τu1 = τu2 = 3.5, γ = 1,
γL1 = γL2 = .8, and τ v = 2.5 (Panel (a)), τ v = 0.0001 (Panel (b)).
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Figure 7: The impact of an increase in the mass of FDs on traders’ welfare, when τ η → ∞.
Parameters’ values: τu1 = τu2 = 3.5, γ = 1, γL1 = γL2 = .8, and τ v = 2.5.
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Figure 8: The impact of an increase in the mass of FDs on traders’ welfare, with strongly
opaque markets. Parameters’ values: τu1 = τu2 = 3.5, γ = 1, γL1 = γL2 = .8, and τ v = 2.5.
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Figure 9: The impact of an increase in the mass of FDs on liquidity traders’ and total welfare,
when τ η → 0. Parameters’ values: τu1 = 1, τu2 = 3.5, γ = 1, γL1 = γL2 = .8, and τ v = 2.5.
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