A Robust Redesign of High School Match

Sam Hwang¹

August 20, 2015

¹University of British Columbia

Introduction

- Parents report rankings of schools to get their children assigned to schools
- Assignment policy often not incentive compatible
- Debate: should we switch to incentive compatible policy?
 - 1. Estimate the distribution of parents' cardinal utilities for schools
 - 2. Simulate the benefit (efficiency) / cost (inequity) of the policy
- Contribution: relax the assumption about how strategic/unstrategic parents may be

Incentive-incompatible Boston Mechanism (BM) and Deferred Acceptance (DA)

- Algorithm
 - Round 1. Assign as many students as possible to their first choices
 - Round k. Assign as many remaining students as possible to their k^{th} choices
- Why not IC?
 - By the end of Rd. 1, all the good schools will be already filled up.
 - You want to be assigned to some school in round 1
 - Avoid 1st-ranking low-probability schools; 1st-rank high-probability, good-enough schools
- I-C alternative: DA

Benefit and Cost of BM

- BM is more efficient than DA when everyone plays equilibrium / has same ordinal preferences
 - ► Experimetal evidence suggests that 14 to 40% report truthfully
 - Students might have different ordinal preferences
- Truthfully reporting students may be penalized under BM under complete information about other's preferences/lottery number
 - Students are not likely to have complete information
- Is the BM more efficient than DA with heterogeneity in strategic sophistication/ordinal preferences and by how much?
 - Yes, by 0.6 to 3.2 min. of per-capita daily commuting
- Is naivété in BM penalized without complete information?
 - Yes, more likely to be assigned to lesser favorite schools

Literature Review

- 1. Structural Estimation: Hastings et al. (2009), He (2012), Agarwal and Somaini (2014), Calsamiglia et al. (2014)
 - Strong behavioral assumptions: correctly predict assignment probabilities, fully optimize
- Theory: Ergin and Sönmez (2006), Kojima (2008), Miralles (2008), Pathak and Sönmez (2008), Haeringer and Klijn (2009), Abdulkadiroğlu et al. (2011), Troyan (2012), Akyol (2013)
- Experiment: Chen and Sönmez (2006), Pais and Pintér (2008), Calsamiglia et al. (2010)
- 4. Similar in spirit: Haile and Tamer (2003), Hortaçsu and McAdams (2010)
- 5. Partially identified model: Romano et al. (2014)

Model

- Measure 1 of students, i
- ► S: a set of finite number of schools, s

•
$$S = \{1, 2, 3\}$$

q_s: capacity of s

•
$$q_1 = 0.3, q_2 = 0.4, q_3 = 0.5$$

▶ $R = \{r_1, r_2, ..., r_m\}$: set of all rankings parents can report, r

•
$$R = \{(1,2,3), (1,3,2), (2,1,3), \ldots\}$$

 B: a set of beliefs about the distribution of rankings reported by parents

$$b = (0.1, 0.15, 0.2, \ldots)$$

The Boston Mechanism

- Equal priority, lottery is drawn from Unif[0,1], lower number is better
- A cut-off for a school in a round: highest (worst) lottery number that guarantees assignment to a school in the round
- Example 1: $q_s = 0.3$, measure of applicants in round 1 = 0.2

▶ Cut-off: 1

• Example 2: $q_s = 0.3$, measure of applicants in round 1 = 0.6

• Cut-off:
$$\frac{0.3}{0.6} = 0.5$$

Cut-off Plot

- \blacktriangleright Critical rounds: the round at which cut-off $\in (0,1)$
- Critical cutoffs: cut-offs at critical rounds

Cut-off Table

	Round 1	Round 2	Round 3	Round 4	Round 5	
School 1	1	1	0.5	0	0	
School 2	0.3	0	0	0	0	
School 9	1	0.2	0	0	0	
School 10	1	1	1	1	0.4	

 Previous literature assumes that strategic parents correctly predict the cut-off table

Calculation of Assignment Probabilities

Model of Parents' Decision Process

1. i's vNM utility for school s: $u_{is} = u(x_{is}, \epsilon_{is}; \theta)$

- Observable on school-student pair x_{is}
- Unobservable ϵ_{is}
- 2. Belief about the distribution of ranking reported by all parents $b_i \in B$
- 3. A reporting strategy σ_i maps utility and belief to a probability distribution over R

• $\sigma_i^r(\mathbf{u}_i, b_i) > 0$: σ_i "recommends" r to i

4. Draws $(x_{is}, \epsilon_{is}, b_i, \sigma_i)$ from μ

Reporting Strategies

Proposition

- Truth-telling strategy, fully-optimizing strategy
- Simple strategy: never recommends rankings that violate the simple rule
 - Simple rule: do not rank a school if you do not prefer it to higher-probability schools

12/24

Truth-telling/fully-optimizing strategies are simple strategies

NO!

Assumptions about Reporting Behavior

1. Everyone correctly predicts the ex-post critical round and the ranking of critical cut-offs

	Rd. 1	Rd. 2	Rd. 3	Rd. 4	Rd. 5		Critical Round	Cut-off ranking
Sch. 1	1	1	0.7	0	0	Sch. 1	3	4
Sch. 2	1	0.3	0	0	0	Sch. 2	2	2
Sch. 3	1	1	1	1	1	Sch. 3	5	5
Sch. 4	1	1	0.4	0	0	Sch. 4	3	3
Sch. 5	0.2	0	0	0	0	Sch. 5	1	1

Cut-off table

Reduced Cut-off table

2. Everyone uses a simple strategy

Identification

	Critical Round	Ranking of cut-offs	Example
School 1	1	1	0.3
School 2	2	2	0.5
School 3	4	4	1
School 4	2	3	0.7

		Ranking of cut-offs			Ranking of cut-offs
1 st	School 1	1	1 ^s	t School 1	1
2 nd	School 2	2	2 ⁿ	^d School 4	3
3 rd	School 3	4	3r	ⁱ School 3	4
r ₁					r ₂

► If
$$u_{i2} < u_{i4}$$
, then $\sigma^{r_1}(\mathbf{u}_i, b_i) = 0$
► If $u_{i2} \ge u_{i4}$, then $\sigma^{r_1}(\mathbf{u}_i, b_i) \in [0, 1]$
► $\sigma^{r_1}(\mathbf{u}_i, b_i) \le \mathbb{1} \{ u_{i2} \ge u_{i4} \}$
► $\int \sigma^{r_1}(\mathbf{u}_i, b_i) d\mu \le \int \mathbb{1} \{ u(x_{i2}, \epsilon_{i2}; \theta) \ge u(x_{i4}, \epsilon_{i4}; \theta) \} d\mu$
Prob. parents submit r_1
► Identified $\theta = \{ \theta' : \text{All moment inequalities hold at } \theta' \}$

Parameters To Be Estimated

•
$$u(x_{is}, \epsilon_{is}; \theta) = x_{is}\beta_i - d_{is} + \epsilon_{is}$$

- Observables x_{is}
 - 1. Quality index, measured by the % of students scoring on or above average at a standardized test
 - 2. 1{science magnet}
 - 3. $1{charter}$
 - 4. 1{private}
 - 5. $1{i \text{ boy } \cap s \text{ boys only}}$
 - 6. $1{i girl \cap s girls only}$
- Distance d_{is}: minutes spent in commuting from i to s
- Assume β_i ∼ N(μ, Σ), ε_{is} ∼ N(0, σ_ε)
- Estimate the confidence region of the true $\mu, \Sigma, \sigma_{\epsilon}$

Computation of Confidence Region

- ► Romano et al. (2014): Test each θ ∈ Θ whether they should be in the confidence region
- Get two point-estimates under the assumptions that
 - 1. everyone is truth-telling
 - 2. everyone plays equilibrium
- Θ : a 28-dimensional interval that contains the two point estimates in its interior
- Draw 4 million points; 9 points pass the test
- Confidence region: smallest 28-dimensional interval that contains the 9 points

95% Confidence Region of the True Parameter

	$\mathbb{E}[\beta_i]$	$Std[\beta_i]$
Quality Index	[12.3, 14.0]	[9.9, 14.2]
Science magnet	[-60.0, -54.1]	[3.3, 17.9]
Charter	[-9.8, -4.7]	[39.3, 44.7]
Private	[3.2, 7.0]	[29.0, 35.5]
Boys-only	[7.0, 9.9]	[15.3, 21.4]
Girls-only	[-2.9, 1.0]	[8.2, 13.3]
ϵ_{is}	0	[0.1, 0.14]

	Science	Charter	Private	Boys	Girls
Quality	[-0.99,-0.6]	[0.4,0.5]	[-0.8,-0.6]	[0.4,0.6]	[-0.3,0.3]
Science	[· · · · · · · · · · · · · · · · · · ·	[-0.5,-0.3]	[0.4,0.7]	[-0.6,-0.2]	[-0.2,0.4]
Charter			[-0.7,-0.5]	[0.6,0.7]	[0.3,0.5]
Private	'			[-0.98,-0.9]	[-0.8,-0.4]
Boys					[0.7,0.9]

Simulation Procedure

- 9 parameter estimates in the confidence region
- For each of the 9 parameter estimates, fix the fraction of naive parents at X%
 - 1. Draw 80,000 u_i
 - 2. Randomly choose naive parents from the population
 - 3. Deferred Acceptance: let everyone report truthfully
 - 4. The Boston Mechanism
 - Naive parents: report truthfully
 - Strategic parents: best respond to the rest of the parents
 - 5. Run each mechanism 100 times with different lottery numbers
- Repeat 1 to 5 10 times
- ▶ Vary X from 0 to 100%, 10% increment

Simulation Results: Efficiency

- Measure of efficiency: $\sum_{i \in I} \frac{1}{|I|} (Expected utility)_i$
- Families under the Boston Mechanism are better off by 0.6 to 3.2 minutes on average than under Deferred Acceptance

Simulation Results: Inequity

- Naive families are more likely to be assigned to lower ranked schools
- Strategic families are better off by 16 to 32 minutes in daily commuting time on average

Conclusion

- Can learn enough about preferences without strong assumptions on the behavior
 - Bounds are "tight", i.e. we got the answer we wanted
- Many decisions to make in designing the mechanism
 - Who gets what priority to which school
 - Tie-breaking scheme
 - The size of the matching market
- Bounds might not be tight enough to be informative for these decisions

- Abdulkadiroğlu, Atila; Che, Yeon Koo, and Yasuda, Yosuke. Resolving conflicting preferences in school choice: the boston mechanism reconsidered. *American Economic Review*, 101: 399–410, 2011.
- Agarwal, Nikhil and Somaini, Paulo. Identification and estimation in manipulable assignment mechanisms. Working Paper, 2014.
- Akyol, Ethem. Welfare comparison of school choice mechanisms under incomplete information. Working Paper, 2013.
- Calsamiglia, Caterina; Fu, Chao, and Güell, Maia. Structural estimation of a model of school choices: the boston mechanism vs. its alternatives. Working Paper, 2014.
- Calsamiglia, Caternia; Haeringer, Guillaume, and Klijn, Flip. Constrained school choice: An experimental study. *American Economic Review*, 100(4):1860–1874, 2010.
- Chen, Yan and Sönmez, Tayfun. School choice: An experimental study. *Journal of Economic Theory*, 127:202–231, 2006.
- Ergin, Haluk and Sönmez, Tayfun. Games of school choice under the boston mechanism. *Journal of Public Economics*, 90: 215–237, 2006.

Haeringer, Guillaume and Klijn, Flip. Constrained school choice. Journal of Economic Theory, 144:1921–1947, 2009.

- Haile, Philip A. and Tamer, Elie. Inference with an incomplete model of english auctions. *Journal of Political Economy*, 111(1): 1–51, 2003.
- Hastings, Justine; Kane, Thomas, and Staiger, Douglas. Heterogeneous Preferences and the Efficacy of Public School Choice. Working Paper, 2009.
- He, Yinghua. Gaming the Boston School Choice Mechanism in Beijing. Working Paper, 2012.
- Hortaçsu, Ali and McAdams, David. Mechanism choice and strategic bidding in divisible good auctions: An empirical analysis of the turkish treasury auction market. *Journal of Political Economy*, 188(5):833–865, 2010.
- Kojima, Fuhito. Games of school choice under the boston mechanism with general priority structures. *Social Choice and Welfare*, 31:357–365, 2008.
- Miralles, Antonio. School choice: the case for boston mechanism. Working Paper, 2008.

- Pais, Joana and Pintér, Ágnes. School choice and information: An experimental study on matching mechanisms. *Games and Economic Behavior*, 64:303–328, 2008.
- Pathak, Parag and Sönmez, Tayfun. Leveling the playing field: Sincere and sophisticated players in the boston mechanism. *American Economic Review*, 98(4):1636–1652, 2008.
- Romano, Joseph; Shaikh, Azeem, and Wolf, Michael. A practical two-step method for testing moment inequalities. Forthcoming in Econometrica, 2014.
- Troyan, Peter. Comparing school choice mechanisms by interim and ex-ante welfare. *Games and Economic Behavior*, 75: 936–947, 2012.