Measuring Job-Finding Rates and Matching Efficiency with Heterogeneous Job-seekers *

Robert E. Hall
Hoover Institution and Department of Economics, Stanford University
National Bureau of Economic Research

Sam Schulhofer-Wohl
Federal Reserve Bank of Minneapolis

December 9, 2015

Abstract

Matching efficiency is the productivity of the process for matching job-seekers to available jobs. Job-finding is the output; vacant jobs and active job-seekers are the inputs. Measurement of matching efficiency follows the same principles as measuring an index of productivity of production. We develop a framework for measuring matching productivity when the population of job-seekers is heterogeneous. The efficiency index for each type of job-seeker is the monthly job-finding rate for the type adjusted for the overall tightness of the labor market. We find that overall matching efficiency declined smoothly over the period from 2001 through 2013. The decline accelerated a little following the crisis in 2008. Measures of matching efficiency that neglect heterogeneity among the unemployed and also neglect job-seekers other than the unemployed suggest a large 28 percent decline in efficiency between 2007 and 2009. We demonstrate that most of this apparent decline results from changes in the composition of job-seekers rather than any true movement in efficiency. We also develop a new approach to measuring matching rates that avoids counting short-duration jobs as job-seeking successes.

JEL E24, J63

*The Hoover Institution supported Hall’s research. The research is also part of the NBER’s Economic Fluctuations and Growth Program. We thank Suyoun Han for excellent research assistance and Christopher Nekarda for sharing his Stata code for longitudinal matching of observations in the Current Population Survey. We have benefited from comments from numerous conference and seminar participants, especially Steve Davis. The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. Emails: rehall@stanford.edu and wohls@minneapolisfed.org
Matching efficiency is a key concept in understanding turnover in the labor market. In particular, turnover models imply that a decline in matching efficiency causes a rise in unemployment. High unemployment from late 2008 until 2013 generated concern that the U.S. economy’s normal unemployment rate rose from the turmoil of the financial crisis. We show that disaggregated measures of matching efficiency did not have large declines after the crisis. Rather, the composition of unemployment shifted dramatically toward groups with chronically lower matching efficiency.

The idea has proven useful that matching is a productive process that combines the efforts of job-seekers and of recruiting employers. The matching function—a central feature of the Diamond-Mortensen-Pissarides model of unemployment—is a production function with the number of job-seekers and the number of positions open for recruiting taken as inputs and the flow of newly matched worker-employer pairs as the output. In our framework, matching efficiency is a set of multiplicative shifters of the job-seeking population, analogous to factor-augmenting productivity indexes in production theory.

The term mismatch often appears in discussions of high unemployment. Shocks that cause widespread job loss and leave many workers unmatched with employers will generate mismatch. The role of the matching function is to cure mismatch by using resources—job-seekers’ time and employers’ recruiting expenditures. Thus mismatch is organic to labor-market models built on matching functions. The presence of high levels of unemployment is not necessarily a sign of a decline in matching efficiency. In the DMP model, unemployment will rise if job-creation incentives fall, as occurs with a decline in productivity, a decline in the marginal revenue product of labor, or an increase in discount rates. This rise in unemployment will take place even with fixed matching efficiency. If a shock does result in a decline in matching efficiency, the rise in unemployment is even greater.

The appropriate way to proceed is to measure matching efficiency using standard ideas from production theory. If measured efficiency declines, a rising incidence of mismatch is one of a number of potential sources. Proper measurement of matching efficiency is a crucial starting point for understanding the sources of high unemployment.

One of the key points of this paper is that the majority of job-seekers are not counted as unemployed, but rather as out of the labor force or employed. Most analysis of the U.S. labor market in the matching-function framework has taken unemployment as the measure of job-seeking in the population. In the Current Population Survey (CPS) in 2007, the
distribution of hires into new jobs was 16 percent from unemployment, 33 percent from people who were out of the labor force in the previous month, and 50 percent from workers in previous jobs who took new jobs without intervening unemployment or time out of the labor force. Job-to-job hiring has long been an important part of DMP modeling, but not in the measurement of matching efficiency. The remarkably large flow into jobs of people who were not previously counted as active searchers in the CPS has received less attention. An important exception is Veracierto (2011), a paper that we build on.

Barnichon and Figura (2015b) preceded us in measuring matching efficiency with heterogeneous job-seekers. They were the pioneers in studying matching with heterogeneity among the unemployed. We consider the remaining groups responsible for the great majority of job-finding success—we distinguish two categories of people recorded as out of the labor force, one with low job-finding propensities and another with higher propensities, following Barnichon and Figura (2015a). Most importantly, we include job-seekers who are currently employed, who are hoping for a job-to-job transition. Another important difference between our approach and theirs is our focus on measuring job-seeking success over longer spans of time, up to the maximum possible in the CPS of 15 months. We also introduce a new class of matching functions, suited to dealing with multiple categories of job-seekers, that generalizes the standard Cobb-Douglas matching function in allowing different elasticities of job-seeking success with respect to labor-market tightness for different categories of job-seekers.

Our main finding is that matching efficiency measured consistently with our theory fell smoothly at low rates over our sample period starting in 2001. The crisis starting in 2008 did not result in a sudden drop in matching efficiency, though we do find a more rapid downward trend in efficiency during and after the crisis if we do not apply our method for limiting the role of very short jobs. When we do apply that method, we find that the downward trend in efficiency was no greater than would have been expected from the earlier modest downward trend. Proper treatment of heterogeneity to include job-seekers who are not counted as unemployed, and to distinguish unemployed job-seekers by reason for unemployment and duration of unemployment to date, reverses the finding of a collapse of matching efficiency during and after the crisis.

With the exception of Krueger, Cramer and Cho (2014), research on labor turnover has tended to focus on month-to-month changes in labor-market status—Blanchard and Diamond (1990) is a leading example. Because the separation rate from brand-new jobs is
extremely high, the probability of employment a few months later conditional on unemployment in a given month is not as high as one might expect from the monthly job-finding rate. For example, the monthly job-finding rate for workers who recently suffered the loss of a permanent job was 34 percent in 2007. But measured over a three-month span, only 47 percent of those workers held jobs at the end of the span. With average separation rates, 66 percent would have been holding jobs after two more chances of landing jobs with a probability of 34 percent. And 15 months later, with 12 additional chances at a 34 percent success rate, only 62 percent were holding jobs, against 85 percent with normal rates of losing or leaving jobs. Accordingly, we study job-finding rates over the full 15-month history of each worker in the CPS. We find that there has been an upward trend in matching efficiency measured by the longer-span measures of matching success (12 through 15 months after the conditioning date) compared with the shorter-span measures (one to three months after that date).

This paper measures matching efficiency. It does not attempt to explain why matching efficiency changes over time, in response to its economic determinants. A large literature, surveyed recently in Elsby, Michaels and Ratner (2015), builds models of search intensity. Variations in intensity is potentially an important determinant of what we measure. Hornstein and Kudlyak (2015) study matching efficiency with an explicit treatment of endogenous search intensity. We focus entirely on job-seeking success. To explain movements of unemployment, our results on exit from unemployment into jobs would need to be combined with results on exit rates from unemployment to non-market activities and results on entry rates to unemployment from employment and non-market activities. Our emphasis on changes in labor-market status over spans of time greater than a single month would apply to those areas of research as well as to job-seeking success.

We take a close look at the job-finding productivity of different types of job-seekers, but treat vacancies as homogeneous. In principle, vacancies should be disaggregated to recognize their heterogeneity and likely variations in worker-finding productivity. Davis, Faberman and Haltiwanger (2013) is an important recent study of that heterogeneity. Research along this line is complementary to our work on job-seekers’ heterogeneity.

The appendix describes some of the many earlier papers on the topic of this paper.
1 Matching Functions with Heterogeneous Job-seekers

A matching function is a function \(m(P,V) \), increasing and weakly concave in a vector of types of job-seekers \(P \) and the number of vacancies \(V \). \(H = m(P,V) \) is the flow of new hires emerging from the matching process. Job-seekers of type \(i \) have an increasing job-seeking success hazard \(\phi_i(T) \). Here \(T = V/H \), the ratio of vacancies to hires, which is the average duration of a vacancy. \(T \) measures the tightness of the labor market.

Assumption. Common pools of vacancies and competing job-seekers:

All types of job-seekers have success rates that depend on the same scalar measure of tightness, \(T \).

The flow of new hires is

\[
H = \sum_i \phi_i(V/H) P_i. \tag{1}
\]

The unique solution to this equation defines the matching function \(H = m(P,V) \). It has constant returns to scale.

The matching efficiency of type \(i \) job-seekers at a reference level of tightness \(\bar{T} \) is

\[
\mu_i = \phi_i(\bar{T}). \tag{2}
\]

Notice that we do not break down matching efficiency into components of search effort and job-finding success per unit of search effort, because we do not measure search effort directly. Our approach to estimation does make adjustments for differences in search effort associated with observed personal characteristics, as we will explain shortly. We do not consider the distinction between a contact of a job-seeker and employer and the creation of a job match. The probability that a contact results in a hire is one of the factors determining the job-finding rates that we measure. We refer to \(\mu_i \) as efficiency, but it should be kept in mind that a decline in our measure of efficiency may arise from a decline in the search propensity of a type rather than a decline in the efficiency of the search of those choosing to search.

An index of aggregate matching efficiency at a reference set of population shares \(s_i \) is

\[
\mu = \sum_i s_i \phi_i(\bar{T}). \tag{3}
\]

We assume that

\[
\phi_i(T) = \gamma_i T^{\eta_i}, \tag{4}
\]
so

\[\mu_i = \gamma_i T^\eta_i. \] (5)

For comparison with other estimates of labor-market matching functions, we note that the elasticity of the matching flow rate with respect to \(V \) is

\[\frac{\sum_i \gamma_i \eta_i T^\eta_i s_i}{\sum_i \gamma_i (1 + \eta_i) T^\eta_i s_i}. \] (6)

Here \(s_i \) is the share of the population in status \(i \). In the standard case of only one kind of job-seeker, the elasticity is \(\eta/(1+\eta) \), a constant, and the matching function is Cobb-Douglas.

1.1 Combining data from different sources

We use data from two independent surveys of the U.S. labor market, the CPS and the Job Openings and Labor Turnover Survey (JOLTS). We view them as covering labor markets that are mostly overlapping but not entirely the same. We assume that they both draw from a single U.S. labor market, in the sense that a single factor, \(T \), indexes tightness throughout the overall labor market.

From JOLTS, we measure vacancies \(V \) and hires \(H^J \). The ratio, \(T = V/H^J \), is market tightness. No information about job-finding rates or matching efficiency is present in JOLTS. The CPS has no information about vacancies in the CPS labor market, so it cannot identify tightness. This fact would remain true if we used the more standard measure of tightness as the vacancy/job-seeker ratio, usually called \(\theta \). Our procedure uses the variable \(T \) from JOLTS as a measure that describes the CPS labor market as well as the JOLTS labor market. Under that assumption, CPS data on job-finding rates identify matching efficiency and the elasticities of the job-finding functions \(\eta_i \).

Under our maintained assumption that tightness is the same in the JOLTS and CPS markets, we can measure all of the objects of interest in this paper. We do not have data to test this maintained assumption.

2 Job-Finding Rates

2.1 Time span for measuring job-finding success

The standard concept of a job-finding rate is the probability that a job-seeker will find a job in a given month. We include rates based on that definition, but we also generalize it
Table 1: Example of CPS Survey Months, a Span, and an Unemployment Spell

to study longer time spans, up to the longest found in the CPS. That span is 15 months, comparing the month the person entered the survey to the last month the person was in the survey.

We use the term span to mean the number of months between one observation on a person’s labor-market status and a subsequent observation. For example, the CPS might determine that a person was unemployed in March 2009 on account of the earlier loss of a permanent job and unemployed as well in April 2010. The span in our sense would then be 13 months. It is important to understand that span is different from, for example, the duration of unemployment. In this example, the person might have been unemployed since November 2008 and thus had a duration of unemployment of four months as of March 2009 and 17 months as of April 2010. The beginning of a span is not necessarily in the month the person entered the CPS. In the example, the person could have entered the CPS in February 2009, so that the span began in the second month of the person’s period in the CPS and ended in the 15th month in the CPS. Table I shows the relation between the span, the CPS months, and the months of the spell of unemployment, in this example.

A spell of unemployment may well be contained within a span. We observe people unemployed when they enter the CPS, employed briefly, then unemployed, and then employed late in the span. Turnover within spans has a central role in our empirical analysis.
Over the spans, we focus on the experiences of people who were in a given labor-market status, such as looking for work after having recently quit a job. We define these statuses precisely in the next section. We then examine the probability that such a person would be employed, say, 12 months later. Longer spans matter for measuring job-finding success because many job-seekers find brief jobs, lasting only a few weeks or a month or two. A job lasting a month counts as much as a job lasting years if the measure of success uses a one-month span. Longer spans give higher weight to longer-lasting jobs.

To see this, consider a simple model of labor-market turnover. There are two kinds of jobs, short and long. Job-seekers have a 30 percent monthly probability of taking a short job and a 10 percent probability of taking a long job. The monthly probability that a short job will end is 40 percent, and the probability that a long job will end is two percent. The mix of jobs held by workers one month after a time when they are looking for work but not working is three-fourths short and one-fourth long (the distribution across workers conditional on not working in the previous month and working this month). That fraction switches to one-third short and two-thirds long with a 12-month span, as can be calculated from the 12th power of the transition matrix of the Markov process defined by the transition probabilities.

2.2 Specification of the job-finding function

In the formalization of our setup, the job-finding rate $f_{i,t,\tau,x}$ is the probability that a worker in status i in month t, with personal characteristics x, is employed in month $t+\tau$. We let this probability depend on a large vector of observed worker characteristics. The CPS sample is too small to estimate the probabilities nonparametrically, conditional on each possible combination of characteristics. Instead, we specify the probabilities as logit functions of the vector x, with time effects captured by time dummies. We allow different coefficients on the time dummies and worker characteristics for each origin status i and each time span τ. Thus, we assume

$$f_{i,t,\tau,x} = \frac{\exp (\kappa_{i,t,\tau} + x' \beta_{i,\tau})}{1 + \exp (\kappa_{i,t,\tau} + x' \beta_{i,\tau})},$$

(7)

where $\kappa_{i,t,\tau}$ is the time effect at date t for workers in status i and a span of τ months. For job-to-job transitions, we define job-seeking success as being in a different job at the end of the span from the job at the beginning. With a one-month span, this definition is the same as the standard job-to-job rate. We can measure job-seeking success in the job-to-job case
only over spans up to three months because the CPS does not keep track of respondents’ employers during the eight-month gap between waves of interviews.

In a small number of cases where all respondents who started in status \(i \) in month \(t \) were employed at \(t + \tau \) or where none of them were, we take the predicted job-finding rate to be 1 or 0.

A substantial literature describes reporting errors in the CPS and similar longitudinal surveys. Random errors in assigning workers to labor-market statuses result in overstatements of month-to-month transition rates. Correction of some of these errors is possible because of redundancies in the data, but most escape detection except through re-interviews. A number of proposals have appeared in the literature to make corrections in population fractions based on heuristics, such as Abowd and Zellner (1985) and Poterba and Summers (1986). More recently, formal models of identified classification errors have appeared in the econometrics literature, such as Feng and Hu (2013). We do not find either of these approaches compelling. We do not think that any realistic model with classification errors is identified by longitudinal data alone. We believe that our approach based on studying longer-span conditional probabilities of employment solves at least part of the problem, in that transitory misclassification in the destination status will be unimportant for our longer-span measures. We do retain conditioning on a single-month measure of the origin status, which results in some blurring of our results.

3 Data

We use data from the monthly CPS for November 1999 through March 2015. These data permit the calculation of job-finding rates for individuals who started their searches in the years 2001 through 2013.

Because the CPS interviews households for 4 consecutive months, skips the next 8 months, then interviews again for 4 months, each person covered for every scheduled interview contributes 6 observations spanning single months, 4 spanning 2 months, 4 spanning 12 months, and one spanning 15 months, to give a few examples. In principle, we can study job-seeking spans of 1, 2, 3, 9, 10, 11, 12, 13, 14, and 15 months. For simplicity, we omit the 9-, 10- and 11-month spans and focus on the short spans from 1 through 3 months and the long spans from 12 through 15 months.
The CPS divides the civilian noninstitutional population, ages 16 and older, into people
who are employed, unemployed, and not in the labor force. Employed people are those who
worked for pay or profit during the reference week, were temporarily absent from work for
reasons such as vacation, illness, weather, or industrial dispute, or did at least 15 hours
of unpaid work in a family-owned business. People who are not employed are classified as
unemployed if they are currently available for work and either have actively looked for work
during the previous four weeks or expect to be recalled from a temporary layoff. All other
people who are not employed are classified as not in the labor force. We further divide the
unemployed people according to the reasons they became unemployed and the length of time
since that happened. We also divide those out of the labor force into two categories. One is
those who answer “no” to the question, “Do you want a job now, either full or part-time?” or
who answer “yes” but then indicate they are not currently available. The other category is
those who want a job and are available. Barnichon and Figura (2015a) found large differences
in job-finding rates of people classified as out of the labor force between those wanting work
and those not wanting work.

We derive a total of 16 labor-market statuses. The first three are:

- **Out of labor force**: people who did not satisfy the CPS definition of either employed
 or unemployed and who did not want work or were not available to work

- **Want work**: people who did not satisfy the CPS definition of either employed or
 unemployed and who wanted work and were available to work

- **Working**: employed people.

The next set of statuses is for people who have been unemployed for three weeks or less:

- **Recently laid off**: unemployed people who have been on furlough for three weeks or
 less from an earlier job, with the possibility of recall.

- **Recently lost permanent job**: people who lost jobs within the previous three weeks, not
 on layoff or separated from a temporary job, who were working or left military service
 immediately before they began looking for work.

- **Temp job recently ended**: unemployed people, not on layoff, whose last jobs were
 explicitly temporary and ended within the past three weeks or less.
• **Recently quit**: unemployed people who quit their last jobs within the past three weeks.

• **Recently entered**: unemployed people who have never worked and who started looking for work within the past three weeks.

• **Recently re-entered**: unemployed people, who started looking for work within the past three weeks, who were not working or in military service immediately before they began looking for work, but who have worked at some time in the past.

The following categories parallel those above, with duration of unemployment to date of 4 to 26 weeks:

• **On layoff for months**

• **Lost permanent job months ago**

• **Temp job ended months ago**

• **Quit months ago**

• **Entered months ago**

• **Re-entered months ago**

The last category is

• **Long-term unemployed**: those unemployed to date more than 26 weeks.

We do not separate the long-term unemployed by reason for unemployment because, at most times, the number of long-term-unemployed respondents in the CPS is too small to estimate probabilities reliably if we further disaggregate those respondents by reason for unemployment.

We match respondents across months using the method of Nekarda (2009). Nekarda’s approach considers the full set of eight monthly observations that potentially come from the same person and assigns to each observation a probability of actually coming from the same person, based on the recorded information on the person’s race, sex, and age. This probability, combined with the survey weights, is used to weight the observed transitions when we compute job-finding rates. Relative to methods such as that of Madrian and Lefgren (2000), which label respondents as matched or not across each consecutive pair of
months, Nekarda’s method is more suitable for measuring job-finding rates across long time
spans because errors in recording race, sex, and age during intervening months are less likely
to break the match.

We remove high-frequency, likely spurious transitions between unemployment and non-
participation following Elsby, Hobijn and Şahin (2013). Specifically, if a respondent is out of
the labor force, unemployed, and out of the labor force again in three consecutive months, we
recode the middle month to want work, if the respondent wanted to work in either the first
or third month; if not, we recode to out of the labor force. If the respondent is unemployed
in the first and third months and out of the labor force in the middle month, we recode the
middle month to unemployed with the same reason for unemployment as the first month.
Among respondents who remain unemployed, we remove spurious changes in the reason
for unemployment by requiring that the reason remain the same as that given in the first
interview of the unemployment spell, except that we allow transitions between temporary
layoff status and permanent job loss after one month of unemployment because a worker
could be temporarily laid off and later learn that the job loss had become permanent. We do
not allow transitions between temporary layoff and permanent job loss once unemployment
duration exceeds one month because too few such transitions are in the raw data to allow
us to estimate the logit model if we allow them.

The CPS allows workers who enter unemployment to report a positive initial duration.
Elsby, Hobijn, Şahin and Valletta (2011) show that inflows to high-duration unemployment
are essential to understanding labor market flows during the Great Recession. We therefore
accept those observations. This procedure implies that unemployment duration should not
be interpreted literally as duration of the current spell, but rather as an indicator of the time
that has elapsed since the individual has held a job more durable than an interim job.

The variables describing personal characteristics, denoted $x_{k,t}$, are dummy variables for

- female
- married
- six age groups—16–24, 25–34, 35–44, 45–54, 55–64, and 65-plus
- four education groups—less than high school, high school graduate, some college but
less than a bachelor’s degree, and bachelor’s or higher degree
• five unemployment duration groups, for the equations describing job-finding conditioned on unemployment of 4 to 26 weeks—categories are 4–8 weeks, 9–13 weeks, 14–17 weeks, 18–21 weeks, and 22–26 weeks

We compute approximate bootstrap standard errors for our estimates. We recompute all of the estimates in 100 bootstrap samples, which we construct as follows: Define a state-month as the set of all households in a given state of the U.S. whose first interview fell in a given month. We create the bootstrap samples by resampling households with replacement within each state-month. Each resampling follows the individual through all subsequent appearances in the CPS. This procedure accounts for the stratification of the CPS sample by state. It amounts to a block-bootstrap design and thus accounts for the correlations across members and over time within each household. It also accounts for our use of overlapping transitions—for example, our estimates of the two-month job-finding rate uses transitions from the first to third month and from the second to the fourth month for the same person. Following Rao, Wu and Yue (1992), we resample \(n_h - 1 \) households from a state-month with \(n_h \) households in the original sample so that the bootstrap is unbiased.

We use Kolenikov’s (2010) Stata program to construct the bootstrap samples. Because we do not have access to some of the underlying data that the Census Bureau uses to construct poststratified survey weights in the CPS, our bootstrap samples cannot account for the impact of the poststratification procedure. This omission is likely to inflate our bootstrap standard errors because the poststratification procedure reduces variance by holding constant the distributions of some demographic variables.

The rare event of a sample size of zero within a status-month-span cell occurred once in the CPS data. No individuals who are new entrants to the labor force in February 2008 were present for a full 15-month time span. As a result, we cannot estimate the time effect in \(\kappa_{i,t,\tau} \) in equation (7) for that initial status, date, and time span. Instead, we impute the 15-month job-finding rates for new entrants in February 2008 based on the job-finding rates in adjacent months and years. Specifically, we impute

\[
\hat{f}_{i,\text{Feb 2008,15}} = \frac{1}{2} \left(\frac{f_{i,\text{Feb 2007,15}}}{f_{i,\text{Jan 2007,15}} + f_{i,\text{Mar 2007,15}}} + \frac{f_{i,\text{Feb 2009,15}}}{f_{i,\text{Jan 2009,15}} + f_{i,\text{Mar 2009,15}}} \right) \left(f_{i,\text{Jan 2008,15}} + f_{i,\text{Mar 2008,15}} \right), \quad (8)
\]

where \(i = \text{recently entered labor force} \). We apply a similar procedure in the bootstrapped job-finding rates when a particular bootstrap sample has no observations for a given initial status, date, and time span.
3.1 Attrition in the CPS sample

Some respondents drop out of the CPS survey during the 16 months they are assigned to the survey. Following standard principles of attrition adjustment, we offset the potential bias caused by higher weighting of the respondents who are less likely to drop out. For each date t and span τ, we estimate a fractional-logit model for the probability that an individual observed at t is also observed at $t + \tau$, as a function of the same variables that are on the right-hand side of our logit for job-finding rates. Let $\hat{p}_{i,t,\tau}$ be the predicted probabilities of remaining in the sample from this model for individual i observed at t, over a span of τ months. To estimate the job-finding rates over a span of τ months from the logit equation, we weight each observation by $1/\hat{p}_{i,t,\tau}$ times the product of Nekarda’s linking weight and the survey weight. Thus observations with a lower probability of remaining in the sample are given higher weight. We re-estimate the weights for each bootstrap sample. We use a fractional logit model (Papke and Wooldridge (1996)) because remaining in the sample is not a binary event with Nekarda’s weights and so cannot be the dependent variable in a conventional logit model.

Reweighting to account for attrition did not change the estimated job-finding rates appreciably. This finding is unsurprising because the variables in the attrition model are also controls in the model for job-finding rates. In essence, the attrition weights account only for potential misspecification of the functional form of the job-finding rate equation.

4 Estimated Job-Finding Rates

Our estimation yields a great mass of logit coefficients, available from the online backup for the paper. In this section, we display and interpret the results in terms of calculated job-finding rates adjusted for changing composition of the labor force. We make the adjustment by choosing a base period, January 2005 to December 2007. We calculate the distribution of personal characteristics x across all respondents in the base period. Then, for each month from 2001 through 2013, we calculate the fitted job-finding probabilities from the logits separately for each possible vector of personal characteristics. Finally, we compute the average probabilities across the distribution of personal characteristics measured in the base period.
Figure 1: Estimated Job-Finding Probabilities for Losers of Permanent Jobs

Figure 1 shows the mix-adjusted estimated job-finding probabilities for one important initial status, recently lost permanent job. The lowest curve is the probability that a person who lost a permanent job in the past three weeks and has been searching since then, will be employed one month later. The probability runs around 30 percent. It fell in the recession of 2001, rose to a peak in 2005, fell again in the Great Recession, and rose only a bit in the recovery through 2013. The probability has a noticeable downward trend.

The next curve up is the probability that a person will be re-employed after two months. The curve is close to parallel with the one-month curve, and only slightly above the one-month curve. In 2007, the one-month probability was 34 percent and the two-month probability was 43 percent. If the monthly job-finding rate was truly 34 percent and if there was no chance of losing a job in the second month that had been found in the first month, the probability of being employed in the second month would be \(0.34 + (1 - 0.34) \times 0.34 = 0.56\), far above the actual value.

As far as we know, Krueger et al. (2014) were the first investigators to note this anomaly. They studied long-term unemployment. They concluded, “...the long-term unemployed face difficulty regaining full-time, steady work over the longest period we can observe in CPS data. It appears that reemployment does not fully reset the clock for the long-term unemployed.” Our results show that the same proposition applies to every type of unemployment.
The remaining curves in Figure 1 lie even closer to each other, so the anomaly is even more acute for longer spans. One reason that the multi-month probabilities are so far below their hypothetical levels may be misclassification in the CPS. Errors could take two forms. One is classifying people as unemployed when they are actually employed. Though this type of error would exaggerate one-month employment probabilities, on the assumption that the error would have a probability of correction in the next month, the exaggeration would apply to longer spans as well. For example, suppose that these misclassifications are corrected in the succeeding month and suppose that the jobs have close to zero separation rates. Then, following a misclassification, a long series of observations of employment would occur. There would be an equal upward bias for all of the employment probabilities. So misclassification of the initial status of respondents is not a likely explanation for the anomaly.

The second type of error misclassifies job-seekers as employed when they are actually still unemployed, in months after the initial conditioning month. If such errors are prevalent and transitory, the anomaly would be explained. High measured job-finding rates based on month-to-month changes would be an illusion of phantasmal jobs, so brief that they would not show up in the longer-span probabilities.

The other explanation is that the brief jobs recorded in the CPS are true jobs, but truly brief. Hall (1995) proposed that brief interim jobs were part of the experience of the unemployed. Hyatt and Spletzer (2013) provide evidence from a variety of sources on the incidence of short-duration jobs.

Table 2 summarizes our findings for employment probabilities conditional on originating in each of the job-seeking statuses. The left panel shows the probabilities averaged over the early three months following the conditioning month and the right panel over the later four months. The third column in each panel shows the ratio of the employment probability in 2013 to the probability in 2003—these ratios are good measures of the trend because the business cycle was in a similar phase in the two years. In almost all originating statuses, the trend is downward in the probabilities measured up to 3 months after the conditioning month; the one exception is the originating status recently laid off, for which the trend is flat. By contrast, the probabilities measured 12 to 15 months after the conditioning month, in the right-hand panel, generally have smaller downward trends and in some cases upward trends. Success rates in finding jobs quickly have declined over time, while success rates for finding and keeping jobs over longer periods have been roughly stable. As we noted earlier, longer-
span employment probabilities are better at capturing success in finding longer-duration jobs.

The employment probabilities in Table 2 vary over a wide range across the conditioning statuses. Not including the employed, for whom we look at the probability of changing jobs, the lowest job-finding rate is for people starting in the status out of the labor force. In 2013, their short-span subsequent employment probability was 4.5 percent and their long-span rate was 9.9 percent. Most people classified as out of the labor force remain in non-market activities from one year to the next. The CPS inquires about job-seeking interest among these people, and subsequent employment probabilities are higher among those indicating interest, but we do not pursue that topic in this paper. It would be important for any attempt to place the measurement of unemployment on the footing proposed in Flinn and Heckman (1983).

The long-term unemployed had short-span re-employment success rates of only 16 percent in 2013. Over the longer span of 12 to 15 months after the conditioning month (which is itself at least 6 months after the job loss), 40 percent of this group was employed. Though these figures make it clear that workers who fail to find jobs after six months of unemployment are not very likely to find jobs after another year of search, that proposition was true in all earlier years as well, including 2003, a year of somewhat lower overall unemployment than 2013.

Entrants and re-entrants tend to have lower employment probabilities than other categories of unemployment apart from long-term unemployment. Those who lost permanent jobs, either recently or months ago, have quite low short-span success rates but longer-span rates comparable to other categories of unemployed job-seekers.

Table 3 and Table 4 show the estimated employment success rates for the year 2007 by initial status. The probabilities are computed separately for each month of the year and averaged over the 12 months. For each status, the row labeled Actual gives the percent of a random sample of people in that status in a given month who are employed in the later months of the CPS schedule. For example, 4.1 percent of those out of the labor force in a given month are employed in the following month and 11.9 percent 15 months later. The row labeled Benchmark is the projected percentage if the job-finding rate for month 1 applies in all the later months, but there is a monthly probability of 6 percent that any job found ends in a subsequent month and the worker cycles back to the status named at the left. Six
<table>
<thead>
<tr>
<th>Initial status</th>
<th>2003</th>
<th>2013</th>
<th>Ratio</th>
<th>2003</th>
<th>2013</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of labor force</td>
<td>5.7</td>
<td>4.5</td>
<td>0.78</td>
<td>11.8</td>
<td>9.9</td>
<td>0.84</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.1)</td>
<td>(0.0)</td>
<td>(0.01)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Want job</td>
<td>16.9</td>
<td>14.9</td>
<td>0.87</td>
<td>32.3</td>
<td>30.8</td>
<td>0.87</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.4)</td>
<td>(0.3)</td>
<td>(0.01)</td>
<td>(0.8)</td>
<td>(0.7)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Employed</td>
<td>5.2</td>
<td>4.5</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.1)</td>
<td>(0.0)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently laid off</td>
<td>59.8</td>
<td>59.2</td>
<td>1.02</td>
<td>64.7</td>
<td>68.7</td>
<td>0.94</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.3)</td>
<td>(1.4)</td>
<td>(0.07)</td>
<td>(2.0)</td>
<td>(1.7)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Recently lost permanent job</td>
<td>34.6</td>
<td>35.3</td>
<td>0.91</td>
<td>67.9</td>
<td>63.5</td>
<td>0.97</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.4)</td>
<td>(2.0)</td>
<td>(0.07)</td>
<td>(2.2)</td>
<td>(2.4)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Temp job recently ended</td>
<td>44.2</td>
<td>40.3</td>
<td>0.99</td>
<td>62.5</td>
<td>60.5</td>
<td>1.02</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(2.4)</td>
<td>(2.4)</td>
<td>(0.08)</td>
<td>(3.5)</td>
<td>(3.4)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Recently quit a job</td>
<td>42.9</td>
<td>42.6</td>
<td>0.69</td>
<td>64.5</td>
<td>65.9</td>
<td>0.77</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(2.2)</td>
<td>(2.3)</td>
<td>(0.09)</td>
<td>(3.6)</td>
<td>(3.7)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Recently entered LF</td>
<td>30.1</td>
<td>20.8</td>
<td>0.89</td>
<td>51.0</td>
<td>39.5</td>
<td>0.97</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(2.7)</td>
<td>(1.8)</td>
<td>(0.05)</td>
<td>(4.4)</td>
<td>(3.6)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Recently re-entered LF</td>
<td>35.0</td>
<td>31.3</td>
<td>0.89</td>
<td>50.4</td>
<td>48.7</td>
<td>1.04</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.3)</td>
<td>(1.3)</td>
<td>(0.05)</td>
<td>(2.3)</td>
<td>(2.1)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>On layoff for months</td>
<td>46.6</td>
<td>48.9</td>
<td>1.03</td>
<td>57.9</td>
<td>60.2</td>
<td>0.92</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td>(0.05)</td>
<td>(2.3)</td>
<td>(2.4)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Lost permanent job months ago</td>
<td>26.0</td>
<td>26.7</td>
<td>0.96</td>
<td>62.7</td>
<td>57.8</td>
<td>1.00</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.8)</td>
<td>(1.0)</td>
<td>(0.07)</td>
<td>(1.4)</td>
<td>(1.6)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Temp job ended months ago</td>
<td>30.2</td>
<td>28.9</td>
<td>0.91</td>
<td>54.3</td>
<td>54.3</td>
<td>0.97</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td>(0.06)</td>
<td>(2.7)</td>
<td>(2.5)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Quit a job months ago</td>
<td>34.8</td>
<td>31.5</td>
<td>0.72</td>
<td>58.7</td>
<td>57.2</td>
<td>1.01</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.4)</td>
<td>(1.6)</td>
<td>(0.07)</td>
<td>(2.7)</td>
<td>(3.0)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Entered LF months ago</td>
<td>21.6</td>
<td>15.6</td>
<td>0.88</td>
<td>44.3</td>
<td>44.6</td>
<td>0.97</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(1.7)</td>
<td>(1.0)</td>
<td>(0.04)</td>
<td>(3.1)</td>
<td>(2.7)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Re-entered LF months ago</td>
<td>28.1</td>
<td>24.9</td>
<td>0.83</td>
<td>46.8</td>
<td>45.2</td>
<td>0.93</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.9)</td>
<td>(0.9)</td>
<td>(0.04)</td>
<td>(1.6)</td>
<td>(1.6)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Long-term unemployed</td>
<td>19.8</td>
<td>16.4</td>
<td>0.88</td>
<td>43.2</td>
<td>40.4</td>
<td>0.95</td>
</tr>
<tr>
<td>(Standard error)</td>
<td>(0.7)</td>
<td>(0.5)</td>
<td>(0.03)</td>
<td>(1.4)</td>
<td>(1.0)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Table 2: Subsequent Employment Probabilities for Short and Long Spans, 2003 and 2013, with Growth Ratio
Table 3: Subsequent Employment Probabilities by Initial Status, Actual and Benchmark, 2007: Out of Labor Force and Recently Unemployed

<table>
<thead>
<tr>
<th>Initial status</th>
<th>Months later</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of labor force</td>
<td>Actual</td>
<td>4.1</td>
<td>5.6</td>
<td>6.5</td>
<td>10.9</td>
<td>11.2</td>
<td>11.6</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(0.0)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>4.1</td>
<td>7.9</td>
<td>11.2</td>
<td>29.5</td>
<td>30.6</td>
<td>31.7</td>
<td>32.6</td>
</tr>
<tr>
<td>Want work</td>
<td>Actual</td>
<td>14.7</td>
<td>18.9</td>
<td>21.0</td>
<td>30.9</td>
<td>31.3</td>
<td>31.8</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(0.3)</td>
<td>(0.4)</td>
<td>(0.6)</td>
<td>(0.7)</td>
<td>(0.7)</td>
<td>(0.9)</td>
<td>(1.1)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>14.7</td>
<td>26.3</td>
<td>35.6</td>
<td>66.6</td>
<td>67.5</td>
<td>68.2</td>
<td>68.8</td>
</tr>
<tr>
<td>Recently laid off</td>
<td>Actual</td>
<td>56.0</td>
<td>64.9</td>
<td>64.9</td>
<td>62.2</td>
<td>60.2</td>
<td>58.2</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.4)</td>
<td>(1.6)</td>
<td>(2.3)</td>
<td>(1.6)</td>
<td>(2.3)</td>
<td>(2.2)</td>
<td>(2.8)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>56.0</td>
<td>77.3</td>
<td>85.4</td>
<td>90.3</td>
<td>90.3</td>
<td>90.3</td>
<td>90.3</td>
</tr>
<tr>
<td>Recently lost permanent job</td>
<td>Actual</td>
<td>33.7</td>
<td>42.9</td>
<td>46.5</td>
<td>66.2</td>
<td>62.5</td>
<td>59.7</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.7)</td>
<td>(2.1)</td>
<td>(2.7)</td>
<td>(2.2)</td>
<td>(2.5)</td>
<td>(3.0)</td>
<td>(3.8)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>33.7</td>
<td>54.0</td>
<td>66.2</td>
<td>84.7</td>
<td>84.8</td>
<td>84.8</td>
<td>84.8</td>
</tr>
<tr>
<td>Temp job recently ended</td>
<td>Actual</td>
<td>42.1</td>
<td>54.1</td>
<td>49.1</td>
<td>59.9</td>
<td>61.2</td>
<td>66.2</td>
<td>56.9</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(2.0)</td>
<td>(3.2)</td>
<td>(4.5)</td>
<td>(3.4)</td>
<td>(4.1)</td>
<td>(4.9)</td>
<td>(6.6)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>42.1</td>
<td>64.0</td>
<td>75.3</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
</tr>
<tr>
<td>Recently quit a job</td>
<td>Actual</td>
<td>40.3</td>
<td>51.7</td>
<td>58.1</td>
<td>69.1</td>
<td>64.1</td>
<td>67.5</td>
<td>58.8</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.9)</td>
<td>(2.4)</td>
<td>(3.6)</td>
<td>(2.5)</td>
<td>(2.8)</td>
<td>(3.9)</td>
<td>(4.2)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>40.3</td>
<td>62.0</td>
<td>73.6</td>
<td>87.0</td>
<td>87.0</td>
<td>87.0</td>
<td>87.0</td>
</tr>
<tr>
<td>Recently entered LF</td>
<td>Actual</td>
<td>29.3</td>
<td>28.8</td>
<td>25.4</td>
<td>37.4</td>
<td>41.9</td>
<td>37.8</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(2.5)</td>
<td>(3.2)</td>
<td>(3.1)</td>
<td>(4.0)</td>
<td>(4.1)</td>
<td>(5.3)</td>
<td>(7.6)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>29.3</td>
<td>48.2</td>
<td>60.5</td>
<td>82.5</td>
<td>82.7</td>
<td>82.8</td>
<td>82.9</td>
</tr>
<tr>
<td>Recently re-entered LF</td>
<td>Actual</td>
<td>35.5</td>
<td>44.1</td>
<td>43.7</td>
<td>52.4</td>
<td>56.0</td>
<td>56.5</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.3)</td>
<td>(1.7)</td>
<td>(2.3)</td>
<td>(2.3)</td>
<td>(2.3)</td>
<td>(3.1)</td>
<td>(3.6)</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>35.5</td>
<td>56.2</td>
<td>68.4</td>
<td>85.4</td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
</tr>
<tr>
<td>Initial status</td>
<td>Months later</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 12 13 14 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On layoff for months</td>
<td>Actual</td>
<td>42.7 51.3 59.1 49.9 54.5 63.1 63.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.6) (2.1) (3.2) (2.5) (3.0) (3.5) (4.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>42.7 64.6 75.9 87.7 87.7 87.7 87.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost permanent job months ago</td>
<td>Actual</td>
<td>22.9 31.6 37.8 58.8 59.0 56.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(0.7) (1.1) (1.5) (1.8) (2.0) (2.1) (2.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>22.9 39.2 50.8 77.9 78.6 78.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp job ended months ago</td>
<td>Actual</td>
<td>27.2 33.7 37.4 49.9 50.7 51.1 44.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.4) (2.0) (2.7) (2.6) (2.7) (3.1) (4.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>27.2 45.3 57.4 81.3 81.6 81.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit a job months ago</td>
<td>Actual</td>
<td>27.4 35.6 42.6 65.4 65.1 63.0 65.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.2) (1.7) (2.4) (2.6) (2.8) (3.0) (3.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>27.4 45.6 57.8 81.4 81.6 81.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entered LF months ago</td>
<td>Actual</td>
<td>17.1 21.5 28.0 41.1 44.9 41.5 38.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(1.4) (2.1) (2.6) (3.0) (3.5) (3.8) (4.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>17.1 30.3 40.4 70.9 71.6 72.2 72.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-entered LF months ago</td>
<td>Actual</td>
<td>24.2 31.8 35.8 50.0 51.0 51.0 48.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(0.8) (1.1) (1.6) (1.9) (2.1) (2.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>24.2 41.2 53.0 79.1 79.4 79.6 79.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term unemployed</td>
<td>Actual</td>
<td>16.0 22.3 25.9 35.8 37.2 37.6 34.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Standard error)</td>
<td>(0.6) (0.9) (1.3) (1.7) (1.8) (1.9) (2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>16.0 28.4 38.2 69.0 69.8 70.4 70.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Subsequent Employment Probabilities by Initial Status, Actual and Benchmark, 2007: Unemployed for Months and Long-Term
percent per month is the typical job separation rate found in the CPS. For all initial cases and all spans of 2 months or more, the actual employment rate falls short of the benchmark, often by large amounts. For example, for workers starting in the recently laid off status, which has a high one-month job-finding rate of 56.0 percent, the benchmark would have 90.3 percent back at work 15 months later, but in fact, only 61.6 percent are back. The separation rates needed to explain the observed employment probabilities are in the range of 50 or even 70 percent per month.

4.1 Changes in job-finding rates between 2007 and 2010

Table 5 compares our findings for demographically adjusted job-finding rates from 2007, the last normal year before the crisis, and 2010, the year of maximal adverse effects of the crisis in the labor market. We focus on the shorter-span rates, because we are forced to omit the large flow of job-to-job flows into employment over longer spans because of the structure of the CPS, as we discussed earlier. Recall that the short-span rates are averages over spans of one, two, and three months. Notable changes occurred in the distribution of the population among the 16 statuses: the fraction of the working-age population who were out of the labor force, wanted a job, and were available for work rose from 1.9 percent to 2.4 percent. The fraction working fell from 63.0 percent to 58.5 percent. Among the unemployment statuses, the layoff fractions rose, the quit fractions fell, and the lost permanent job fraction rose substantially. By far the largest growth was in the long-term group, which was half a percent of the population in 2007 and 2.7 percent in 2010.

Job-finding rates, stated as percents of the corresponding population group who found a job, declined more or less in proportion in all statuses, in accord with the property of our model that the same index of labor-market tightness influences job-finding rates for all types of job-seekers.

The column headed Contribution to total rate is the product of the population fraction in the first column and the job-finding rate in the second column. It gives the part of the total rate, shown at the foot of the column, contributed by the people in the status corresponding to the line in the table. For example, in 2007, 32 percent of the population was out of the labor force and not wanting work. The job-finding rate was 5.4 percent. But this group, despite its low job-finding rate, contributed 1.7 percentage points to the total volume of job-finding, 6.3 percent of the working-age population each month. Workers, in the third
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2007</td>
<td>2010</td>
<td></td>
<td>2007</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percent of population</td>
<td>Job-finding rate</td>
<td>Contribution to total rate</td>
<td>Percent of population</td>
<td>Job-finding rate</td>
<td>Contribution to total rate</td>
</tr>
<tr>
<td>Out of labor force</td>
<td>32.2</td>
<td>5.4</td>
<td>1.74</td>
<td>33.0</td>
<td>4.4</td>
<td>1.47</td>
</tr>
<tr>
<td>Want job</td>
<td>1.87</td>
<td>18.2</td>
<td>0.34</td>
<td>2.41</td>
<td>13.8</td>
<td>0.33</td>
</tr>
<tr>
<td>Working</td>
<td>63.0</td>
<td>5.0</td>
<td>3.17</td>
<td>58.5</td>
<td>4.4</td>
<td>2.58</td>
</tr>
<tr>
<td>Recently laid off</td>
<td>0.20</td>
<td>61.9</td>
<td>0.12</td>
<td>0.23</td>
<td>56.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Recently lost permanent job</td>
<td>0.14</td>
<td>41.1</td>
<td>0.06</td>
<td>0.19</td>
<td>30.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Temp job recently ended</td>
<td>0.08</td>
<td>48.4</td>
<td>0.04</td>
<td>0.08</td>
<td>38.8</td>
<td>0.03</td>
</tr>
<tr>
<td>Recently quit</td>
<td>0.09</td>
<td>50.0</td>
<td>0.05</td>
<td>0.06</td>
<td>40.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Recently entered</td>
<td>0.06</td>
<td>27.8</td>
<td>0.02</td>
<td>0.06</td>
<td>18.5</td>
<td>0.01</td>
</tr>
<tr>
<td>Recently re-entered</td>
<td>0.19</td>
<td>41.1</td>
<td>0.08</td>
<td>0.15</td>
<td>29.0</td>
<td>0.04</td>
</tr>
<tr>
<td>On layoff for months</td>
<td>0.22</td>
<td>51.0</td>
<td>0.11</td>
<td>0.32</td>
<td>46.2</td>
<td>0.15</td>
</tr>
<tr>
<td>Lost permanent job months ago</td>
<td>0.46</td>
<td>30.8</td>
<td>0.14</td>
<td>0.99</td>
<td>22.0</td>
<td>0.22</td>
</tr>
<tr>
<td>Temp job ended months ago</td>
<td>0.19</td>
<td>32.8</td>
<td>0.06</td>
<td>0.30</td>
<td>29.7</td>
<td>0.09</td>
</tr>
<tr>
<td>Quit months ago</td>
<td>0.20</td>
<td>35.2</td>
<td>0.07</td>
<td>0.19</td>
<td>29.0</td>
<td>0.05</td>
</tr>
<tr>
<td>Entered months ago</td>
<td>0.13</td>
<td>22.2</td>
<td>0.03</td>
<td>0.25</td>
<td>14.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Re-entered months ago</td>
<td>0.49</td>
<td>30.6</td>
<td>0.15</td>
<td>0.65</td>
<td>23.9</td>
<td>0.15</td>
</tr>
<tr>
<td>Long-term unemployed</td>
<td>0.52</td>
<td>21.4</td>
<td>0.11</td>
<td>2.67</td>
<td>14.5</td>
<td>0.39</td>
</tr>
<tr>
<td>Total</td>
<td>6.29</td>
<td>5.76</td>
<td></td>
<td>6.29</td>
<td>5.76</td>
<td></td>
</tr>
<tr>
<td>Not unemployed</td>
<td>5.25</td>
<td></td>
<td>4.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>1.03</td>
<td></td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Comparison of Job-Finding Rates between 2007 and 2010
line of the table, had the lowest job-finding rate, 5.0 percent, but account for almost half of all job-finding. The subtotals at the bottom of the table show that only 1.0 percentage points of the total of 6.3 percent of the population who found jobs came from the ranks of the unemployed in 2007.

From the peak year of 2007 to the severely depressed year of 2010, the average job-finding rate across the 16 statuses declined from 6.3 percent to 5.8 percent. This decline of 0.5 percentage points decomposes into a component that decreased the average by 1.0 percentage points arising from lower job-finding rates in general, and a component that increased the average by 0.7 percentage points arising from a shift of the population shares toward those with higher normal job-finding rates. The high normal rates occur among the unemployed. The residual, a decline of 0.2 percentage points, arises from interaction effects. The tremendous change in the labor market between 2007 and 2010 left the total job-finding flow almost unchanged, because the population shifted into unemployment, with high job-finding rates, enough to offset the general decline of job-finding rates across all the statuses.

A similar analysis within the unemployment statuses starts from the overall decline of 12.3 percentage points in the monthly job-finding rate among the unemployed. Of this, 7.4 percentage points arise from declines in the rate within each status and 5.1 percentage points from a shift of the composition of unemployment toward statuses—notably loss of permanent job and long-term unemployment—with low job-finding rates. There is also a residual of 0.2 percentage points offsetting these declines, arising from interaction effects. Within the unemployed, the shifting composition lowered job-finding success and added to the effects of lower rates for each status.

A good part of the doubling of the unemployment rate that occurred between 2007 and 2010 is associated with the decline in the job-finding rate; the rest is associated with higher flows into unemployment. In this paper, we do not measure flows into unemployment, so we do not quantify our findings in terms of unemployment rates.
5 Job-Finding Rates and Tightness

5.1 Basic equation for estimation of the elasticity of the job-finding rate with respect to tightness

The estimating equation is

$$\log f_{i,t} = \log \gamma_{i,t} + \eta_i \log T_t,$$

where $f_{i,t}$ is the observed job-finding rate among type-i job-seekers. We make further assumptions about $\gamma_{i,t}$ to identify the type-specific elasticity η_i.

Equation (9) leads to the following model of the measured log job-finding rate over a τ-month span for initial status i:

$$\log f_{i,t,\tau} = \log \gamma_{i,t,\tau} + \eta_{\tau,i} \log T_t + \epsilon_{i,t,\tau},$$

where $\epsilon_{i,t,\tau}$ is a measurement error. Here $\eta_{\tau,i}$ is the elasticity of job-finding with respect to tightness, $T_t = V_t/H^I_t$, which is the duration of vacancies in JOLTS, the ratio of the stock of vacancies to the flow of hires.

We assume that

$$\log \gamma_{i,t,\tau} = \alpha_{i,\tau} + \delta_{i,\tau} t + \omega_{i,\tau} I(t \geq \text{January 2008}) + \psi_{i,s,\tau} + \xi_{i,t,\tau},$$

where t is time measured in months, s is the month of the year, $\delta_{i,\tau} t$ is a linear trend that operates over the whole sample, $\omega_{i,\tau} I(t \geq \text{January 2008}) t$ is an additional trend starting in 2008, and $\psi_{i,\tau,s}$ is a seasonal effect for each month. The model we estimate is thus

$$\log f_{i,t,\tau} = \alpha_{i,\tau} + \delta_{i,\tau} t + \omega_{i,\tau} I(t \geq \text{January 2008}) t + \psi_{i,\tau,s} + \eta_{\tau,i} \log T_t + \epsilon_{i,t,\tau},$$

where

$$\epsilon_{i,t,\tau} = \epsilon_{i,t,\tau}^m + \xi_{i,t,\tau}.$$

Note that this model has a separate equation for each $\{\tau, i\}$ pair—there are no cross-equation restrictions.

5.2 Identification

Our first identifying assumption is

$$\mathbb{E} (\epsilon_{i,t,\tau} | t) = 0,$$
so the month, t, is eligible as an instrumental variable and seasonal dummies are also eligible as instruments. We also assume that $I(t \geq January 2008) t$ is an eligible instrument.

The job-finding rate and labor-market tightness are obviously jointly determined, so a further assumption about the disturbance $\epsilon_{i,t,\tau}$ is required for identification—the disturbance is not plausibly orthogonal to either variable. Our second identifying assumption is that $\epsilon_{i,t,\tau}$ is orthogonal to the log of real GDP. This assumption is likely to hold at least for one major source of correlation between the disturbance and the variables, namely measurement error. We use the monthly estimate of real GDP from Macroeconomic Advisers released in July 2015.

5.3 Further aspects of estimation

We average the three short spans (one, two, and three months after the conditioning status) to form the job-finding rate for the first span category, called short, and the four longer spans (12 through 15 months) to form the second job-finding rate category, called long. For the short job-finding rate, we can include in our data the job-changing rate for those starting in the employed status. For the long job-finding rate, we cannot calculate the job-changing rate; thus, for comparability between the short and long equations, we also estimate the short equation without including the job-changing rate. We estimate equation (12) with the instrumental variables noted above, using monthly data on job-finding rates.

We do not take into account any correlation of the disturbances across the statuses. Thus our estimates are unbiased but not minimum variance, if correlation is present. Because we use a bootstrap strategy to calculate standard errors that preserves the correlation, those standard errors take account of the correlation. The correlation is positive in almost all cases, but relatively mild—over the full sample, the average absolute values of the off-diagonal elements of the correlation matrices are 0.13 for short spans both with and without job-to-job, and 0.10 for long spans. We do not believe that a three-stage least squares estimation procedure would be appropriate, given the large number of estimated coefficients relative to the number of data points. For each status, we have $12 \times 7 = 84$ observations when we use only pre-crisis data, and we estimate a constant, 11 values of the seasonal effects, a time trend coefficient, and an elasticity with respect to tightness. Over the full sample, we have $12 \times 13 = 156$ observations for each status.
The residuals from equation (12) form an index of detrended matching efficiency:

\[\epsilon_{i,t,\tau} = \log f_{i,t,\tau} - [\alpha_{i,\tau} + \delta_{i,\tau} t + \omega_{i,\tau} (t \geq \text{January 2008}) t + \psi_{i,\tau,s} + \eta_{\tau,i} \log T] , \]

(15)
as the observed job-finding rate measured around its status- and span-specific constant level and trend, and adjusted for changes in labor-market tightness. These residuals also include measurement error in job-finding rates, but such measurement errors should average to zero over time. In particular, our presentation of the results focuses mainly on annual averages, so much of the measurement error should average out over the course of each year.

We use the estimates of job-finding rates adjusted for the changing characteristics of the population, as discussed earlier, as the left-hand variable of equation (12). Although, in principle, it would be possible to combine the two estimation stages, we doubt its practicality and have no reason to believe it would affect our conclusions. Our bootstrap standard errors take both stages into account.

5.4 Measuring tightness, T

Figure 2 shows the number of new hires from the CPS and from JOLTS. The CPS and JOLTS figures vary similarly over time, but the level of hires is substantially higher in the CPS. The reasons for the discrepancy may include: (1) JOLTS does not include hires at new establishments or self-employment, as Davis, Faberman, Haltiwanger and Rucker (2010) discuss, and (2) the CPS may capture more of the hiring into jobs that last only days or a few weeks. Hires track the business cycle, but with fairly low amplitude. The decline in hiring reported in JOLTS from 2008 to 2009 was about twice as large in percentage terms as the decline in the CPS.

Figure 3 shows the number of job openings (vacancies) from JOLTS. This series traces the business cycle with high amplitude—vacancies are high in tight market around peaks and low in slack markets around business-cycle troughs.

Figure 4 shows the average duration of vacancies, T, using the JOLTS measures of hires and vacancies. Because vacancies vary more in proportional terms than do hires, the vacancy/hires ratio is quite procyclical. Earlier we discussed the relationship between the JOLTS and CPS measures and why we construct tightness from JOLTS—the CPS survey covers a larger and somewhat different universe of jobs than does JOLTS and we lack vacancy data corresponding to the CPS.
Figure 2: Number of Monthly Hires, in Thousands, from JOLTS and the CPS

Figure 3: Number of Job Openings, in Thousands, from JOLTS
Figure 4: Average Duration of Vacancies, Calculated from JOLTS

We average the monthly data on tightness over the months covered by the spans—for short spans, we use the average of current and two future values of T_t and for long spans, the average of the current and 14 future values. We average the GDP instrument in the same way as tightness.

5.5 Estimates

Table 6 shows estimates of the elasticity of the job-finding rate with respect to tightness based on equation (12), using data for the JOLTS period, 2001 through 2013. The left panel refers to short spans and the right panel to long spans. In each panel, the left column is the estimated elasticity, with standard error below. The middle column shows the trend for the entire period, in percent per year. The right column shows the extra trend starting in 2008.

All of the elasticities of the job-finding rate with respect to tightness are positive and most have small bootstrap standard errors. The elasticities have substantial heterogeneity—the evidence against equal elasticities (the case of a Cobb-Douglas overall matching function) is quite strong. For both short and long spans, the recently lost permanent job and lost permanent job months ago initial statuses have the highest elasticities of job-finding with respect to tightness. For the unemployed statuses for recent entry to unemployment, such as recently laid off, the elasticities tend to be higher for long spans than for short spans.
<table>
<thead>
<tr>
<th>Initial status</th>
<th>Elasticity with respect to vacancy duration</th>
<th>Trend in efficiency, 2001-2013, percent per year</th>
<th>Additional trend in efficiency, 2008-2013, percent per year</th>
<th>Elasticity with respect to vacancy duration</th>
<th>Trend in efficiency, 2001-2013, percent per year</th>
<th>Additional trend in efficiency, 2008-2013, percent per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of labor force</td>
<td>0.58 (-0.05)</td>
<td>-2.58 (-0.20)</td>
<td>-2.04 (-0.37)</td>
<td>0.69 (-0.06)</td>
<td>-2.70 (-0.23)</td>
<td>-1.20 (-0.42)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Want job</td>
<td>0.78 (0.08)</td>
<td>-2.46 (0.33)</td>
<td>-2.05 (0.60)</td>
<td>0.92 (0.09)</td>
<td>-2.99 (0.39)</td>
<td>0.44 (0.69)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.50 (0.03)</td>
<td>-2.84 (0.14)</td>
<td>0.08 (0.28)</td>
<td>0.55 (0.12)</td>
<td>-2.20 (0.47)</td>
<td>3.24 (0.92)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently laid off</td>
<td>0.36 (0.09)</td>
<td>0.04 (0.34)</td>
<td>-1.33 (0.71)</td>
<td>0.55 (0.12)</td>
<td>-2.20 (0.47)</td>
<td>1.06 (1.25)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently lost permanent job</td>
<td>1.27 (0.18)</td>
<td>-1.19 (0.61)</td>
<td>-2.67 (1.33)</td>
<td>1.04 (0.17)</td>
<td>-3.20 (0.68)</td>
<td>1.06 (1.25)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp job recently ended</td>
<td>0.43 (0.20)</td>
<td>-0.85 (0.71)</td>
<td>-1.81 (1.55)</td>
<td>0.92 (0.27)</td>
<td>-3.67 (1.08)</td>
<td>2.44 (1.99)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently quit a job</td>
<td>0.38 (0.19)</td>
<td>-0.46 (0.68)</td>
<td>-3.50 (1.40)</td>
<td>0.66 (0.27)</td>
<td>-2.34 (0.95)</td>
<td>1.88 (1.82)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently entered LF</td>
<td>0.88 (0.47)</td>
<td>-3.11 (1.79)</td>
<td>-4.93 (3.35)</td>
<td>0.69 (0.63)</td>
<td>-5.55 (2.37)</td>
<td>-1.45 (4.34)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recently re-entered LF</td>
<td>0.87 (0.15)</td>
<td>-2.52 (0.62)</td>
<td>-2.05 (1.21)</td>
<td>0.75 (0.19)</td>
<td>-1.64 (0.70)</td>
<td>-0.85 (1.36)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On layoff for months</td>
<td>0.63 (0.12)</td>
<td>-0.60 (0.55)</td>
<td>-1.30 (1.14)</td>
<td>0.61 (0.14)</td>
<td>-2.41 (0.56)</td>
<td>2.45 (1.20)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost permanent job months ago</td>
<td>1.61 (0.11)</td>
<td>-2.34 (0.49)</td>
<td>-2.40 (1.16)</td>
<td>1.10 (0.12)</td>
<td>-4.66 (0.45)</td>
<td>3.22 (0.82)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp job ended months ago</td>
<td>0.98 (0.18)</td>
<td>-1.74 (0.72)</td>
<td>-1.65 (1.42)</td>
<td>0.60 (0.20)</td>
<td>-3.13 (0.86)</td>
<td>2.65 (1.67)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit a job months ago</td>
<td>1.02 (0.18)</td>
<td>-2.65 (0.69)</td>
<td>-0.57 (1.44)</td>
<td>1.13 (0.20)</td>
<td>-2.32 (0.83)</td>
<td>-1.59 (1.51)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entered LF months ago</td>
<td>1.58 (0.27)</td>
<td>-3.53 (1.41)</td>
<td>-3.49 (2.53)</td>
<td>0.90 (0.32)</td>
<td>-2.36 (1.66)</td>
<td>2.25 (2.91)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-entered LF months ago</td>
<td>1.06 (0.13)</td>
<td>-2.55 (0.47)</td>
<td>-1.99 (1.00)</td>
<td>0.70 (0.13)</td>
<td>-2.43 (0.45)</td>
<td>-0.13 (0.94)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term unemployed</td>
<td>1.58 (0.12)</td>
<td>-4.05 (0.63)</td>
<td>-2.45 (1.14)</td>
<td>0.92 (0.14)</td>
<td>-3.97 (0.64)</td>
<td>2.89 (1.26)</td>
</tr>
<tr>
<td>(Standard error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Elasticity and Trend Estimates
This finding supports the hypothesis that measuring job-seeking success over longer spans helps deal with spurious turnover arising from interim jobs and misclassification in the CPS that infects short-span job-finding rates differentially. In general, the statuses with high elasticities are the ones that suffer the largest reductions in job-finding rates in recessions. The composition of job-seekers shifts toward losers of permanent jobs, labor-force entrants, re-entrants, and the long-term unemployed, and away from those who were recently laid off (and have a good probability of recall), reached the end of a temporary job, and quit an earlier job. The shift occurs because the exit rate from unemployment falls much more for the high-elasticity statuses.

The composition of job-seekers changes in recessions for two reasons. First, the mix of reasons why people leave jobs can change. Second, our method reveals a dynamic effect that occurs because recessions do not affect all job-seekers equally. We find that job-finding rates are much more responsive to labor market tightness for some categories of job-seekers, such as losers of permanent jobs, than for other categories, such as people who were recently laid off. When a recession hits and tightness falls, the categories with higher elasticities experience larger reductions in job-finding rates. As a result, these categories grow to make up a larger share of the pool of job-seekers. We show that accounting for these compositional changes is fundamental to proper measurement of matching efficiency.

With the sole exception of the short-span recently laid off, job-finding rates adjusted for changes in labor-market tightness—interpreted as indexes of matching efficiency—trended downward over the period from 2001 through 2003. The downward trend is particularly steep for those who were unemployed already for months and the long-term unemployed (more than six months). The downward trend in short-span matching efficiencies worsened in 2008 and later. It is too soon to determine if this was a transitory effect of the recession or a sharpening of the earlier downward trend. On the other hand, in many initial-status categories, the earlier downward trend in efficiency for long spans reversed partially or even fully in the period starting in 2008.

A downward trend in matching efficiency, by itself, would raise unemployment, according to standard models. But there is no upward trend in unemployment in the U.S., because entry rates to unemployment are on an offsetting downward trend.

The average across the short-span elasticities is 0.907, with bootstrap standard error 0.048. The corresponding elasticity of the matching function with respect to vacancies, if
all the elasticities had this value, from equation (6), is 0.476, and the elasticity with respect
to equal proportional increases in all statuses, is one minus this amount, 0.524. Both have
bootstrap standard errors of 0.013. For the short-span equations, the matching elasticity
estimate is in line with the estimates surveyed in Petrongolo and Pissarides (2001). We are
not aware of any previous research on the longer-span matching-function elasticity.

6 Matching Efficiency

We calculate indexes of matching efficiency for each of the 16 labor-market statuses. Because
we hold the distribution of individuals’ characteristics constant in calculating the job-finding
rates on the left-hand side of equation (12), the movements in these indexes are insulated
from changes in the distribution of characteristics. Figure 5 shows the resulting detrended
indexes for 9 of the more important statuses. These are the exponentials of the values
described in equation (15) and are indexes normalized to one in 2007. The trends are shown
in Table 6 and allow for different trends, generally downward, in matching efficiency in the
pre-crisis period 2001 through 2007 and in the following period, 2008 through 2013.
Figure 5: Detrended Matching Efficiency for Nine Statuses (Short Spans in Blue and Long Spans in Orange)
The pattern of annual matching efficiency for the initial status *lost permanent job months ago* is representative in terms of its movement over time, and more precisely estimated because large numbers of job-seekers fell into this category. In that category, both measures of detrended efficiency rose during the recovery from the 2001 recession, and fell as the economy reached its peak in 2007. After 2008, matching efficiency as measured over short spans remained fairly high, while efficiency over long spans fell, though neither change was very large. We noted earlier that the measure over long spans gives more weights to longer-lasting new jobs, so the finding of lower efficiency for that measure suggests a weakness in labor-market performance that is not apparent in the conventional approach based on one-month spans. In the closely watched category *long-term unemployed*, a noticeable increase in matching efficiency began in 2008 and peaked in 2010, the year of maximal unemployment. By contrast, in the category *quit months ago*, matching efficiency by both measures was quite constant (after detrending) in 2008 and later. The overall impression from the 9 categories shown in Figure 5 and confirmed for the remaining 7 categories not shown, is that movements in matching efficiency around its downward trend are generally small. In particular, despite the huge increase in unemployment after 2007, there is little sign of any corresponding movement of matching efficiency. To put it differently, the tightness measure is able to take account of changes in the labor market when estimation occurs over the relatively mild recession of 2001 and the deep recession that started at the end of 2007.

Figure 6 shows the indexes without subtraction of the trend terms in equation (12). Notice that the trends are downward over time for all of the initial statuses shown, corresponding to the ratios of 2012 job-finding rates to 2001 rates in Table 2 that are almost all below one. In most of the categories, the downward trend in efficiency after 2008 is less than in the earlier period, for the long-span measure.
Figure 6: Matching Efficiency for Nine Statuses, Including Trend (Short Spans in Blue and Long Spans in Orange)
The left side of Figure 7 shows indexes of aggregate matching efficiency including removal of trends. The indexes uses weights calculated as the shares of the components in the population in the three years preceding the crisis, 2005 through 2007. Because the job-finding rates underlying the indexes hold constant the distribution of worker characteristics conditional on labor-market status, the aggregate indexes holds constant the joint distribution of worker characteristics and labor-market status. The movements in matching efficiency measured by the aggregate index result from changes in the efficiency of particular types of workers, not in the distribution of job-seekers among the initial statuses. The index for short spans includes job-to-job movers while the one for long spans includes only the unemployed and people not in the labor force. The indexes show that detrended matching efficiency for short spans is slightly cyclical, rising soon after the onset of recessions and then falling during recoveries. With adjustment for trend, short-span efficiency was essentially the same in 2013 as in 2007 and 2001. Long-span efficiency moves much the same way as short-span.

The right side of Figure 7 shows the same data without adjustment for trend. Matching efficiency at both short and long spans has trended downward since 2001.

We also constructed Divisia-style indexes with time-varying weights. The difference between these indexes and our fixed-weight indexes was tiny—at a monthly frequency, the largest difference between the two types of indexes, in the case of the short-span index that included job-to-job flows, was 1.2 percent.
6.1 Measuring matching efficiency when there is only one type of job-seeker

Suppose that there is only one type of job-seeker, an unemployed person, without regard to the type of unemployment. We explore this approach because much of the literature on the matching function takes the count of unemployed job-seekers as the single job-seeking input to the function.

The relation among the job-finding rate f_t, matching efficiency, γ_t, and tightness, T_t, is

$$\log f_t = \log \gamma_t + \eta \log T_t.$$ \hspace{1cm} (16)

The job-finding rate is the ratio of hires in the CPS, H_t^C, to the number of unemployed people, U_t. Thus single-type matching efficiency is

$$\gamma_t = \frac{H_t^C}{U_t T_\eta}.$$ \hspace{1cm} (17)

This equation fits quite well with an elasticity of $\eta = 0.9$—the overall job-finding rate for unemployed people moves with the business cycle, as measured by T_t.

But this approach is fundamentally misleading relative to one that includes all types of job-seekers and that recognizes heterogeneity among the types. The single-type equation finds large movements in γ_t that arise from changes in the composition of the unemployed and not from shifts in matching efficiency for individual types. Figure 8 compares our measure of matching efficiency to the measure that uses unemployment as the sole measure of job-seeking volume.

The single-type measure considerably overstates the decline in matching efficiency between 2007 and 2010, the period when unemployment doubled. It infers a collapse of efficiency from its measure of the job-finding rate, H_t^C / U_t. But this measure overstates the decline in the rate because its numerator is the flow from all types of job-seeking, whereas the denominator is only unemployment, which accounts for less than a quarter of job-seeking success. Naturally, the bulge of unemployment after the crisis drove the ratio down and created the illusion of collapse, when in fact matching efficiency declined by a small amount, a bit less than its normal long-run downward trend amount. Notice that the same distortion operated in the recession of 2001 and its aftermath, though not as dramatically.
7 Concluding Remarks

Many authors have demonstrated a decline in labor-market matching efficiency during the Great Recession and ensuing slump. With the exception of Veracierto’s pioneering work, research has made the assumption that the measure of job-seeking volume is the stock of unemployed workers. But the Current Population Survey shows that less than a quarter of newly filled jobs involves hires of the unemployed. The remaining three-quarters have been out of the labor market or are making job-to-job transitions. We develop a consistent approach to aggregation over heterogeneous categories of job-seekers, with a separate measure of matching efficiency for each category and a related measure of aggregate matching efficiency.

A second novel element in our work is to study the effectiveness of job search over spans greater than a month. Longer spans have two advantages: First, they lower the bias from misclassification, which tends to overstate job-finding rates measured as monthly transition rates from job-seeking to employment. Second, they give less weight to transitory interim jobs, which appear to be an important part of the job-seeking process.

Our concept of matching efficiency combines the propensity of the members of a category of potential job-seekers to engage in active search with the per-period effectiveness of those
active searchers. Absent direct measures of search effort, as in Krueger and Mueller (2011), we cannot break the two factors apart.

We confirm that matching efficiency has declined in some categories of unemployment, including permanent job loss, a category that rose substantially as a fraction of total unemployment in the Great Recession. Most of the decline is the continuation of a trend that has existed since 2001 and possibly earlier. Because such a large fraction of hiring occurs out of pools of job-seekers other than the unemployed, one important implication is that the decline in matching efficiency among the unemployed drove up the unemployment rate, but the labor market still generated large volumes of job-finding among groups not counted as unemployed.

Many discussions of the matching process in the labor market are organized around the Beveridge curve, which portrays movements of unemployment and job vacancies. Shifts in matching efficiency are one source of instability in the Beveridge curve. Changes in the inflow rate to unemployment are another. The large changes in the composition of unemployment over the business cycle are major sources of shifts. This paper focuses only on matching efficiency and not on other shifters of the curve, so we do not try to express our findings in terms of the Beveridge curve. Our finding of stability of matching efficiency at the level of different types of job-seekers is consistent with large shifts in the curve arising from those other sources. Because the Beveridge curve concerns unemployment and not the other important sources of job-finding, the Beveridge-curve framework does not provide a comprehensive view of flows into employment.
References

A Related Research

Elsby et al. (2015) survey many topics relevant for this paper, though in a Beveridge-curve framework.

Veracierto (2011) introduced the basic idea of including people other than the unemployed in the calculation of matching efficiency. He makes a compelling case that the movements of aggregate unemployment cannot be understood in the DMP framework—especially with respect to the matching function—without considering the role of individuals who are classified as out of the labor market. These people are neither working nor engaging in the specific job-seeking activities in the four weeks prior to the CPS interview that would place them in the category of unemployment. The striking fact is that, after correcting in the standard way for erroneous transitions, the CPS reveals that the number of people classified as out of the labor force in one month who are employed in the next month is always greater than the number moving from unemployment to employment. In normal times, using the obvious notation, the NE flow is almost double the UE flow.

Veracierto (2011) proposes a simple way around this issue that incorporates those classified as out of the labor force without identifying the individuals with high NE hazards. A brief discussion in Petrongolo and Pissarides (2001), p. 403, anticipates Veracierto’s approach. He uses the ratio of the NE hazard to the UE hazard to weight those classified in N. The resulting figure is interpreted as the effective number of job-seekers in the N category. The total number of job-seekers is the number in U plus the weighted number in N. This figure—interpreted as comprehensive unemployment—is the input to the matching function in a DMP model that takes account of the high incidence of job-seeking in the N category. Veracierto finds (see his figure 36) that matching efficiency was flat before the Great Recession, then declined about 15 percent during the recession.

Our analysis differs from Veracierto’s both in the definition of matching efficiency and in the level of disaggregation. Veracierto assumes that unemployed workers and nonparticipants have equal matching efficiency conditional on a given level of search intensity but that nonparticipants have lower search intensity. By contrast, we do not distinguish between matching efficiency and search intensity for a given type of worker and instead estimate an efficiency parameter for each type that combines matching efficiency and search intensity. In addition, our analysis includes job-to-job transitions and further disaggregates workers by their reason for unemployment and by observable characteristics. Our model thus provides
a unified treatment of the calculation of aggregate matching efficiency when all people in the economy of working age are potentially job-seekers.

Flinn and Heckman (1983) observe that the natural definition of unemployment is that a non-working individual’s transition hazard into employment exceeds a threshold value. By that criterion, it seems likely that a non-trivial fraction of those the CPS classifies as out of the labor force (N) are actually unemployed. But the overall NE hazard in normal times is far lower than the UE hazard—5 percent per month compared to 27 percent, so it is clear that the U category in general satisfies the Flinn-Heckman criterion.

The BLS publishes data on broader definitions of unemployment. It is an interesting question but outside the scope of this paper whether a systematic application of the Flinn-Heckman principle might result in a definition of unemployment that captured the great majority of non-workers with high job-finding hazards while excluding those with low hazards. Such a definition would fit the matching function framework nicely.

Ahn and Hamilton (2015) is an ambitious study of unemployment dynamics with heterogeneous unemployment. It uses the same six-way breakdown of the unemployed by originating event from the CPS that we use, but it does not consider job-seeking by those other than the unemployed. Its framework is entry and exit rates from unemployment. It finds, as we do, that losers of permanent jobs became a larger fraction of entrants to unemployment as a result of the crisis and that their low job-finding rates are important for understanding the persistence of high unemployment.

Kroft, Lange, Notowidigdo and Katz (2014) overlaps with this paper in certain respects. It measures job-finding rates for duration categories among the unemployed and for people who are employed and out of the labor force. It does not break down the unemployed by originating event as we and Ahn-Hamilton do. It does not focus explicitly on matching efficiency. Its scope is broader than ours in its concern for unemployment rates and the corresponding need to study entry rates to unemployment as well as exit rates, including the job-finding rate. Its main focus is on dissecting the huge expansion in long-term unemployment in the immediate post-crisis years.

Ghayad and Dickens (2012) study shifts in the Beveridge curve with a detailed decomposition of unemployment, concentrating on the comparison of the post-crisis period to the 1970s.
In addition to Krueger et al. (2014), Cajner and Ratner (2014) study job-finding among the long-term unemployed over spans of more than a year.

Carrillo-Tudela, Bart Hobijn and Visschers (2015) demonstrate that workers who report active search while on the job have substantially higher job-to-job transition rates than those who are inactive, so a breakdown of the employed by search activity would be desirable in hour framework. But the question about job-seeking among the employed is only asked in an occasional supplement to the CPS and is not part of the regular monthly CPS that we use.

Fujita and Moscarini (2013) study the effect of recalls by unemployed workers’ former employers on transition rates and the matching function. They show that if the matching function describes only matches between job-seekers and new employers—not recalls—then matching efficiency is estimated to have declined much more during the Great Recession. Key to their result is that workers on temporary layoffs are not the only ones who experience recalls; about 20 percent of workers who report that they permanently lost their jobs are nonetheless eventually recalled. In our work, we disaggregate workers by their reason for unemployment but do not attempt to distinguish between matches with new employers and recall by the previous employer. Thus, in our specification, a group that is more likely to be recalled will have a higher matching efficiency.

Barlevy (2011) calculates the decline in matching efficiency from the shift in the Beveridge curve, on the assumptions that the separation rate remains unchanged and that unemployment is at its stochastic equilibrium. This analysis depends only on the unemployment rate, not on the number of nonparticipants, job-to-job transitions, or changes in the composition of the unemployed.

Bachmann and Sinning (2012) measure the effects of compositional changes on labor force transition rates without relating these findings to matching efficiency. They find that changes in composition reduce the cyclicality of inflows to unemployment and raise outflows from unemployment early in recessions but reduce outflows later in recessions.

Some papers discuss the decline in matching efficiency, or, equivalently, the outward shift of the Beveridge curve, as the result of a variety of forces. Some, such as Daly, Hobijn, Şahin and Valletta (2012), frame the subject within the more general issue of a possible increase in the natural rate of unemployment. Only part of their discussion relates to changes in
matching efficiency. The paper identifies two factors that may have reduced match efficiency since the Great Recession: mismatch and more generous unemployment benefits.

Sahin, Song, Topa and Violante (2011) find that mismatch across industries and occupations accounts for at most one-third of the increase in unemployment during the Great Recession, while geographic mismatch is insignificant. Herz and van Rens (2011) likewise find modest effects of mismatch across industries and very small effects of mismatch across states, while Estevão and Tsounta (2011) find substantial skill mismatches but argue that changes in migration rates and dispersion in unemployment across states are evidence of geographic mismatch as well. These studies all measure mismatches by the distribution of unemployed workers and jobs across distinct markets defined by locations, industries, or occupations. Estevão and Smith (2013) measure skill mismatches in a different way, by imputing wages for labor force participants based on their observed characteristics; if mismatch is low and unemployment is mainly due to low quality of unemployed workers, unemployed workers will have relatively low imputed wages, while if mismatch is high, unemployed workers will have relatively high imputed wages. Consistent with the papers that look at mismatch across distinct markets, Estevão and Smith (2013) find evidence of an increase in mismatch during the recession.

A number of papers, including Daly, Hobijn and Valletta (2011), Fujita (2011), Nakajima (2012), and Valletta and Kuang (2010), culminating in Farber and Valletta (2013), find that extended unemployment benefits raised the unemployment rate by an amount ranging from a few tenths of a percentage point to one point. However, Hagedorn, Karahan, Manovskii and Mitman (2013) argue that many of these analyses do not account for the effect of unemployment benefits on firms’ incentive to create jobs and that a research design that accounts for such effects finds a much larger impact from unemployment benefits. Hall (2014) discusses their paper at greater length.

Davis et al. (2013) provide convincing evidence that vacancies are heterogeneous in their rates of finding workers. In the micro data from JOLTS, they show that the job-filling rate for vacancies is dramatically higher in firms that are growing than in firms with constant employment, a contradiction to the hypothesis that only unemployment and vacancies determine hiring rates. They lack any direct measures of the other inputs, but construct an indirect measure from the JOLTS data that eliminates most of the apparent decline in matching efficiency. They do not consider the topic of this paper, the importance of job-seekers
who are not counted as unemployed. Their results fit nicely with ours, in the sense that one reasonable interpretation of the variations in matching efficiency that we measure is exactly the combined effect of the omitted inputs to the matching process that they consider.