
Explaining the Boom-Bust Cycle in the U.S. Housing Market:
A Reverse-Engineering Approach∗

Paolo Gelain†

Norges Bank
Kevin J. Lansing‡

FRB San Francisco
Gisle J. Natvik§

BI Norwegian Business School

November 16, 2015

Abstract
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data. Counterfactual simulations show that shifting lending standards (as measured by
a loan-to-equity limit) were an important driver of the episode while movements in the
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1 Introduction

Starting in the mid-1990s, the U.S. economy experienced correlated booms and busts in house-

hold real estate value, household mortgage debt, and personal consumption expenditures (all

measured relative to personal disposable income), as shown in Figure 1. The ratio of housing

value to income peaked in 2005.Q4. The ratio of mortgage debt to income peaked 8 quarters

later in 2007.Q4– coinciding with the start of the Great Recession. Throughout this period,

the ratio of imputed housing rent to disposable income declined steadily.1 Given that rents are

a measure of the “dividend”or service flow from housing, the quiet behavior of rents during

the boom lends support to non-fundamental explanations of the episode. Our aim is to develop

a transparent quantitative model that can account for the patterns observed in Figure 1. In

so doing, we assess the plausibility of the driving forces that are needed to make the model fit

the data.

A wide variety of empirical evidence links the U.S. housing boom to relaxed lending stan-

dards.2 The report of the U.S. Financial Crisis Inquiry Commission (2011) emphasizes the

effects of a self-reinforcing feedback loop in which an influx of new homebuyers with access

to easy mortgage credit helped fuel an excessive run-up in house prices. The run-up, in turn,

encouraged lenders to ease credit further on the assumption that house prices would con-

tinue to rise. As house prices rose, the lending industry marketed a range of exotic mortgage

products, e.g., loans requiring no down payment or documentation of income, monthly pay-

ments for interest-only or less, and adjustable rate mortgages with low introductory ‘teaser’

rates that reset higher over time. Within the United States, house prices rose faster in areas

where subprime and exotic mortgages were more prevalent (Mian and Sufi 2009, Pavlov and

Wachter 2011, Berkovec, Chang, and McManus 2012). In a given area, past house price ap-

preciation had a significant positive influence on subsequent loan approval rates in the same

area (Dell’Ariccia, Igan, and Laeven 2012, Goetzmann, Peng, and Yen 2012).

In the aftermath of the 2001 recession, the Federal Reserve reduced the federal funds rate

to just 1% and held it there for over 12 months during 2003 and 2004. While some studies

find evidence that low interest rates were an important contributor to the run-up in house

prices (Taylor 2007, McDonald and Stokes 2011) others argue that low interest rates were

not a major factor (Dokko, et al. 2011, Glaeser, Gottlieb, and Gyourko 2013). Aside from

the possible effect on house prices, there is clear evidence that low mortgage interest rates

during this period set off a refinancing boom, allowing consumers to tap the equity in their

homes to pay for all kinds of goods and services. According to data compiled by Greenspan and

1Data on household real estate value and household mortgage debt are from the Federal Reserve’s Flow of
Funds Accounts. Data on personal disposable income and personal consumption expenditures are from the
Federal Reserve Bank of St. Louis’FRED data base. Data on imputed rents from owner-occupied housing are
from www.lincolninst.edu, as documented in Davis, Lehnert, and Martin (2008).

2See, for example, Demyanyk and Van Hemert (2011), Duca, Muellbauer, and Murphy (2010, 2011), and
Dokko, et al. (2011).
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Kennedy (2008), free cash generated by home equity extraction contributed an average of $136

billion per year in personal consumption expenditures from 2001 to 2006– more than triple the

average yearly contribution of $44 billion from 1996 to 2000 (p. 131). Kermani (2012) finds

that U.S. counties that experienced the largest increases in house prices from 2000 to 2006

also tended to experience the largest increases in auto sales over the same period. The same

counties tended to suffer the largest declines in auto sales from 2006 to 2009 when house prices

were falling.3 Similarly, Mian and Sufi (2014) identify a significant effect on auto spending

that operates through home equity borrowing during the period 2002 to 2006. Laibson and

Mollerstrom (2010) argue that the U.S. consumption boom from 1996 to 2006 was driven

mainly by bubbly movements in house prices, not lower real interest rates.

In this paper, we use four different versions of a simple quantitative asset pricing model

to “reverse-engineer”the sequences of stochastic shocks that are needed to match the boom-

bust patterns observed in Figure 1. The four model specifications differ according to the way

that household expectations are formed (rational versus moving average forecast rules) or the

maturity of the mortgage contract (one-period versus long-term). Conditional on the observed

paths for U.S. disposable income growth and the mortgage interest rate, we back-out sequences

for: (1) a shock to housing preferences, and (2) a shock to lending standards (as measured

by a loan-to-equity limit) so as to exactly replicate the boom-bust patterns in household real

estate value and mortgage debt over the period 1995.Q1 to 2012.Q4, as plotted in the top

panels of Figure 1. We also examine the model predictions for the evolution of other variables,

such as the rent-income ratio, the consumption-income ratio, and consumption growth during

three phases of the episode, i.e., the boom, the Great Recession, and the recovery.

Under rational expectations, we show that the model requires large and persistent housing

preference shocks to account for the boom-bust cycle in U.S. housing value from 1995 to 2012.

According to the model, an increase in housing preference will increase the housing service flow,

as measured by the imputed rent from owner-occupied housing. Consequently, the rational

expectations model predicts a similar boom-bust cycle in the ratio of housing rent to income.

But this did not happen in the data.

As an alternative to rational expectations, we consider a setup where households employ

simple moving average forecast rules, i.e., adaptive expectations. This type of forecast rule is

consistent with a wide variety of survey evidence that directly measures agents’expectations

(Coibion and Gorodnichencko 2015, Williams 2013). We show that the moving average model

can match the boom-bust cycle in U.S. housing value with much smaller movements in the

housing preference shock. This is because the household’s forecast rule embeds a unit root

which serves to magnify asset price volatility in response to shocks.4 Consequently, the moving

3A similar pattern can be found in cross-country data on house prices and consumption. See Glick and
Lansing (2010) and International Monetary Fund (2012).

4This mechanism for magnifying the volatility of house prices is also employed by Gelain, Lansing, and
Mendicino (2013) and Gelain and Lansing (2014).
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average model does a much better job of matching the quiet behavior of the U.S. rent-income

ratio plotted in the lower left panel of Figure 1. More generally, the moving average model

captures the idea that much of the run-up in U.S. house prices and credit during the boom years

appears to be linked to an influx of unsophisticated homebuyers. Given their inexperience,

these buyers would be more likely to employ simple backward-looking forecast rules for future

house prices, income, lending standards, etc. One can also make the case that many U.S.

lenders behaved similarly by approving subprime and exotic mortgage loans that could only

be repaid if housing values continued to trend upward.5

Mortgage debt in the model is governed by a standard collateral constraint that depends

on the market value of the housing stock. With one-period mortgage contracts, the entire

stock of outstanding debt is refinanced each period, causing the stock of debt to move in

tandem with housing value. All else equal, the one-period debt model would therefore predict

a rapid deleveraging from 2006 onwards when U.S. housing values were falling rapidly. In the

data, however, the deleveraging proceeded gradually, as debt declined at a much slower pace

than housing value, as shown in Figure 1. To avoid the counterfactual prediction of a rapid

deleveraging, the one-period debt model requires a post-2007 relaxation of lending standards

(a larger loan-to-equity limit) to simultaneously match the patterns of housing value and

mortgage debt in the data. This prediction conflicts with evidence from the Federal Reserve’s

Senior Loan Offi cer Opinion Survey on Bank Lending Practices (SLOOS) which shows that

banks started to tighten lending standards before the onset of the Great Recession and often

continued to tighten standards even after the recession ended.

Following Kydland, Rupert, and Šustek (2012), we model long-term mortgage debt by

approximating the amortization schedule of a conventional 30-year mortgage loan. Such a

loan has the feature that the borrower’s early payments consist mainly of interest while later

payments consist mainly of principal. With long-term mortgages, the borrowing constraint

applies only to new loans, not to the entire stock of outstanding mortgage debt. In any

given period, the household’s new loan cannot exceed a fraction of accumulated home equity.

When the borrowing constraint is binding, a sustained period of progressively relaxed lending

standards leads to an increase in the flow of new loans which, in turn, contributes to a buildup

in household leverage. A rapid decline in housing value leads to a rapid decline in the flow of

new loans, but the stock of outstanding mortgage debt declines slowly, as in the data. Using

impulse response functions, we show that models with long-term mortgage debt exhibit the

feature that housing value peaks earlier than the mortgage debt, consistent with the data

plotted in Figure 1. Now when we undertake the reverse-engineering exercise, we identify a

relaxation of lending standards during the boom years of 2001 to 2005 followed by a period

5According to the report of the U.S. Financial Crisis Inquiry Commission (2011), p. 70, new subprime
mortgage originations went from $100 billion in the year 2000 to around $650 billion at the peak in 2006. In
that year, subprime mortgages represented 23.5% of all new mortgages originated. On p. 165, the report states
“Overall, by 2006, no-doc or low-doc loans made up 27% of all mortgages originated.”
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of progressively tightening lending standards, consistent with the SLOOS data. The reverse-

engineered shifts in lending standards produce the necessary flow of new loans to allow the

model to match the path of the debt-income ratio in the data.

Given the reverse-engineered paths for the stochastic shocks, all models deliver identical

paths for the consumption-income ratio and consumption growth. According to the simple

household budget constraint, the consumption-income ratio is driven by movements in the

debt-income ratio and the mortgage interest rate which, by construction, are the same across

models for the reverse-engineering exercise. We show that a smoothed version of the model

consumption-income ratio roughly resembles the hump-shaped pattern observed in the U.S.

data from 1995 to 2012. Consequently, all models deliver rapid consumption growth during

the boom phase from 1995.Q1 to 2007.Q4, negative consumption growth during the Great

Recession from 2007.Q4 to 2009.Q2, and sluggish consumption growth during the recovery

from 2009.Q2 to 2012.Q4 when households are deleveraging.

A virtue of our reverse-engineering approach is that we can construct counterfactual sce-

narios by shutting off a particular shock sequence and then examining the evolution of model

variables versus those in the U.S. data. For example, shutting off the reverse-engineered hous-

ing preference shock in the rational expectations model serves to completely eliminate the

boom-bust cycle in housing value. In contrast, the moving average model continues to gener-

ate a boom-bust cycle, albeit smaller in magnitude, due to the asset price response to the other

identified shocks. This result illustrates the ability of the moving average model to generate

an income- and credit-fueled boom in housing value.

When we shut off the reverse-engineered lending standard shock, the models with long-

term mortgage debt exhibit no significant run-up in debt, regardless of the expectation regime.

This result indicates that shifting lending standards were an important driver of the boom-bust

episode. Put another way, the amplitude of the boom-bust episode could have been mitigated

if mortgage regulators had been more vigilant in enforcing prudent lending standards.

When we shut off the income growth shock, there is little noticeable effect in the rational

expectations models. In contrast, the moving average models now exhibit a delayed boom-bust

episode relative to the data. This is due to the absence of the persistently positive income

growth shocks that occurred during the late 1990s. According to the moving average models,

movements in income growth did play a role in the magnitude and timing of the episode.

When we shut off the mortgage interest rate shock, all of the models continue to exhibit

significant boom-bust cycles in both housing value and debt. This is because the magnitude

of the mortgage interest rate drop in the data is simply too small to have much impact on the

trajectories of housing value and debt. All of the models imply that movements in the U.S.

mortgage interest rate were not a major driver of the episode.

Overall, we find that the moving average model with long-term mortgage debt does best

in plausibly matching the patterns in Figure 1. This version lends support to the view that
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the U.S. housing boom was a classic credit-fueled bubble involving over-optimistic projections

about future housing values, relaxed lending standards, and ineffective mortgage regulation.

1.1 Related Literature

A common feature of all bubbles is the emergence of seemingly-plausible fundamental argu-

ments that seek to justify the dramatic rise in asset prices. During the boom years of the U.S.

housing market, many economists and policymakers argued that a housing bubble did not

exist and that numerous fundamental factors were driving the run-ups in housing values and

mortgage debt.6 Commenting on the rapid growth in subprime mortgage lending, Fed Chair-

man Alan Greenspan (2005) offered the view that the lending industry had been dramatically

transformed by advances in information technology: “Where once more-marginal applicants

would simply have been denied credit, lenders are now able to quite effi ciently judge the risk

posed by individual applicants and to price that risk appropriately.”In a July 1, 2005 interview

on the CNBC network, Ben Bernanke, then Chairman of the President’s Council of Economic

Advisers, asserted that fundamental factors such as strong growth in jobs and incomes, low

mortgage rates, demographics, and restricted supply were supporting U.S. house prices. In

the same interview, Bernanke stated his view that a substantial nationwide decline in house

prices was “a pretty unlikely possibility.”

Numerous recent studies have employed quantitative theoretical models to try to replicate

various aspects of the boom-bust cycle in the U.S. housing market. Most of these studies

preempt bubble explanations by assuming that all agents are fully rational. For example,

taking the observed paths of U.S. house prices, aggregate income, and interest rates as given,

Chen, Michaux, and Roussanov (2013) show that a model with rational expectations and long-

term (interest-only) mortgages can approximate the observed patterns in U.S. household debt

and consumption. Their quantitative exercise is similar in spirit to ours with the important

exception that they do not attempt to explain movements in U.S. house prices.

Standard dynamic stochastic general-equilibrium (DSGE) models with fully-rational ex-

pectations have diffi culty producing large swings in housing values that resemble the patterns

observed in the U.S. and other countries. Indeed, it is common for such models to employ

extremely large and persistent exogenous shocks to rational agents’preferences for housing

in an effort to bridge the gap between the model and the data.7 We obtain a similar result

here when we impose rational expectations. But, as noted above, large housing preference

shocks are not a plausible explanation for the boom-bust episode because these shocks gen-

erate extremely large movements in the imputed housing rent, which are counterfactual. We

show that households’use of moving average forecast rules serves to shrink substantially the

required magnitude of the housing preference shocks that are needed to match the data.

6See, for example, McCarthy and Peach (2004) and Himmelberg, Mayer, and Sinai (2005).
7See for example, Iacoviello and Neri (2010) and Justiniano, Primiceri, and Tambalotti (2015a), among

others.
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Justiniano, Primiceri, and Tambalotti (2015b) develop a stylized model that distinguishes

between a credit supply constraint and the more conventional borrowing constraint. They

argue that the U.S. housing boom is best explained as a relaxation of the credit supply con-

straint, as this reduces mortgage interest rates and thereby can generate a sizeable increase in

the steady-state house price. In their quantitative exercises, they compare sequences of steady

states, where each movement in the credit supply limit “is unanticipated by the agents” (p.

25). Hence, their proposed explanation can be interpreted as departing from rational expec-

tations, as done here. In contrast to their approach, our simulations account for the model’s

out-of-steady-state transition dynamics. We find that the observed decline in the U.S. real

mortgage interest was not a major contributor to the run-up in U.S. housing value– consistent

with the empirical findings of Dokko, et al. (2011) and Glaeser, Gottlieb, and Gyourko (2013).

In this regard, it’s worth noting that U.S. real mortgage interest rates continued to decline

for several years after 2007 while housing values also continued to fall. Our model ascribes a

key role to relaxed borrowing constraints, consistent with the empirical evidence on the rapid

growth of subprime mortgage lending during the boom years.

Boz and Mendoza (2014) show that a model with Bayesian learning about a regime shifting

loan-to-value limit can produce a pronounced run-up in credit and land prices followed by a

sharp and sudden drop. The one-period debt contract in their model causes credit and the

land price to move in tandem on the downside– a feature that is not consistent with the

gradual deleveraging observed in the data. Nevertheless, the Bayesian updating mechanism in

their model shares some of the flavor of the moving average forecast rules in our model. Using

a model that abstracts from shifts in lending standards, Adam, Kuang, and Marcet (2012)

show that the introduction of constant-gain learning can help account for recent cross-country

patterns in house prices and current account dynamics. Constant-gain learning algorithms

are similar in many respects to moving average forecast rules; both formulations assume that

agents apply exponentially-declining weights to past data when constructing forecasts of future

variables.

In a review of the literature on housing bubbles, Glaeser and Nathanson (2014) conclude:

“It seems silly now to believe that housing price changes are orderly and driven entirely by

obvious changes in fundamentals operating through a standard model”(p. 40). Moving average

forecast rules depart from the “standard model”of rational expectations but nevertheless are

consistent with a wide variety of survey evidence. In a study of data from the Michigan Survey

of Consumers, Piazzesi and Schneider (2009) report that “starting in 2004, more and more

households became optimistic after having watched house prices increase for several years”

(p. 407). Along these lines, Burnside, Eichenbaum, and Rebelo (2015) develop a model where

agents’optimistic beliefs about future house prices can spread like an infectious disease. In a

review of the time series evidence on housing investor expectations from 2002 to 2008, Case,

Shiller, and Thompson (2012) find that “1-year expectations [of future house prices changes]
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are fairly well described as attenuated versions of lagged actual 1-year price changes”(p. 282).

Similarly, Greenwood and Shleifer (2014) show that measures of investor expectations about

future stock returns are strongly correlated with past stock returns. Jurgilas and Lansing

(2013) show that the balance of households in Norway and Sweden expecting a house price

increase over the next year is strongly correlated with nominal house price growth over the

preceding year. Ling, Ooi, and Te (2015) find that past real house price changes help to predict

future real house price changes even after taking into account measures of buyer, builder, and

lender sentiment plus every conceivable fundamental variable that the theory says should

matter. Their results can be interpreted as evidence that U.S. housing market participants

employ some type of backward-looking, extrapolative, or moving-average forecast rule.

Garriga, Manuelli, and Peralta-Alva (2014) develop a model of house price swings that

shares some common features with ours, i.e., long-term mortgage debt and shocks to the

mortgage interest rate and lending standards. Under perfect foresight, their model cannot

explain the U.S. house price boom-bust episode. In contrast, a version with “shocks to expec-

tations”does a much better job of fitting the data. Gete (2014) shows that introducing the

Case-Shiller-Thompson survey expectations into a standard DSGE model can help account

for movements in U.S. house prices over the period 1994 to 2012.

2 Model

Housing services are priced using a version of the frictionless pure exchange model of Lucas

(1978). The representative household’s problem is to choose sequences of ct and ht to maximize

Ê0

∞∑
t=0

βtct h
θt
t , (1)

subject to the following equations

θt = θ exp (ut) (2)

ut = ρuut−1 + εu,t εu,t ∼ N
(
0, σ2u

)
, (3)

ct + ptht + (rt + δt) bt = yt + ptht−1 + `t, (4)

bt+1 = (1− δt) bt + `t, (5)

xt ≡ log (yt /yt−1) = x+ ρx (xt−1 − x) + εx,t εx,t ∼ N
(
0, σ2x

)
, (6)

Rt ≡ 1 + rt = R exp (τ t) , (7)

τ t = ρττ t−1 + ετ ,t ετ ,t ∼ N
(
0, σ2τ

)
, (8)

where ct is real household consumption expenditures, ht is the housing service flow, yt is real

disposable income, β is the subjective time discount factor, and θt ≥ 0measures the strength of

the agent’s housing preference which is subject to a persistent exogenous shock ut. The symbol

Êt represents the household’s subjective expectation, conditional on information available at
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time t, as explained more fully below. Under rational expectations, Êt corresponds to the

mathematical expectation operator Et evaluated using the objective distribution of shocks,

which are assumed known to the rational household. The symbol pt is the price of housing

services in consumption units. The law of motion for the stock of household debt is given by

equation (5), where `t is new borrowing during the period, and δt ∈ (0, 1] is the amortization

rate, i.e., the fraction of outstanding mortgage debt that is repaid during the period. Real

disposable income growth xt follows an exogenous AR(1) process given by equation (6). The

gross quarterly real mortgage interest rate Rt ≡ 1 + rt is subject to a persistent exogenous

shock τ t.

Following Kydland, Rupert, and Šustek (2012), we model the mortgage amortization rate

using the following law of motion

δt+1 =

(
1− `t

bt+1

)
δαt +

`t
bt+1

(1− α)κ , (9)

where α ∈ [0, 1) and κ ≥ 0 are parameters and the ratio `t/bt+1 measures the size of the new

loan relative to the end-of-period stock of mortgage debt. When α = 0, we have δt+1 = 1 for

all t from (9) and `t = bt+1 from (4), such that we recover a one-period mortgage contract

where all outstanding debt is repaid each period. When α > 0, the above law of motion

captures the realistic feature that the amortization rate is low during the early years of a

mortgage (i.e., when `t/bt+1 ' 1) such that mortgage payments consist mainly of interest.

The amortization rate rises in later years as more principal is repaid. Kydland, Rupert, and

Šustek (2012) show that appropriate settings for the parameters α and κ can approximately

match the amortization schedule of a 30-year conventional mortgage.

We assume that households face the following constraint on the amount of new borrowing

each period

`t ≤ mt

[
Êt pt+1ht − bt+1

]
, (10)

mt = m exp (vt) , (11)

vt = ρvvt−1 + εv,t εv,t ∼ N
(
0, σ2v

)
, (12)

where mt is a lending standard variable that is subject to a persistent exogenous shock vt.

Equation (10) says that the size of the new loan `t cannot exceed a fraction mt of expected

home equity, i.e., next period’s expected housing value Êt pt+1ht minus next period’s mortgage

debt bt+1. We interpret an increase in mt to represent a relaxation of lending standards while

a decrease in mt is a tightening of standards.8 For simplicity, we assume that the lender’s

subjective forecast Êt pt+1ht coincides with the household’s subjective forecast.

8Along these lines, Duca Muellbauer, and Murphy (2011) find that movements in the LTV ratio of U.S.
first-time homebuyers help to explain movements in the ratio of U.S. house prices to rents, particulary in the
years after 2000.
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The representative household’s optimization problem be formulated as

max
ct, ht, bt+1, δt+1

Ê0

∞∑
t=0

βt£t, (13)

where the current-period Lagrangian £t is given by

£t = cth
θt
t + λt [yt + pt (ht−1 − ht) + bt+1 −Rtbt − ct]

+ µt

[
mt

1 +mt
Et pt+1ht +

(1− δt)
1 +mt

bt − bt+1

]
+ ηt {δt+1bt+1 − bt (1− δt) [δαt − (1− α)κ] − (1− α)κ bt+1} , (14)

where λt, µt, and ηt are the Lagrange multipliers on the budget constraint (4), the borrowing

constraint (10), and the law of motion for the endogenous amortization rate (9), respectively.

In each constraint, we have used equation (5) to eliminate the new loan amount `t.

The household’s first-order conditions with respect to ct, ht, bt+1, and δt+1 are given by

λt = hθtt , (15)

λtpt = θtcth
θt−1
t + µt

mt

1 +mt
Êt pt+1 + βÊtλt+1pt+1, (16)

µt = λt − βÊtλt+1Rt+1 + β (1− δt+1) Êt
µt+1

1 +mt+1

+ ηt [δt+1 − (1− α)κ] − β (1− δt+1)
[
δαt+1 − (1− α)κ

]︸ ︷︷ ︸
≡ f(δt+1)

Êt ηt+1 (17)

ηt = β
[
αδα−1t+1 (1− δt+1)− δαt+1 + (1− α)κ

]︸ ︷︷ ︸
≡ g(δt+1)

Êt ηt+1 + βÊt
µt+1

1 +mt+1
, (18)

where we make use of the fact that δt+1 is known at time t because bt+1 is known at time

t. In equation (18), we have simplified things by dividing both sides by bt+1. After dividing

both sides of equation (16) by λt, we can see that the “dividend”or imputed rent from owner-

occupied housing consists of two parts: (1) a utility flow that is influenced by the stochastic

preference variable θt, and (2) the marginal collateral value of the house in the case when the

borrowing constraint is binding, i.e., when µt > 0.9

Equation (17) shows that when mortgage debt extends beyond one period (δt+1 < 1), the

household takes into account the expected lending standard variable mt+1 when deciding how

much to borrow in the current period. This is an element of shock propagation that is unique

9We confirm that the borrowing constraint is binding at the ergodic mean values of the state variables. As
is common in the literature, we solve the model assuming that the borrowing constraint is always binding in a
neighborhood around the ergodic mean.
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to an environment with long-term mortgage debt. With one-period debt (δt+1 = 1, α = 0),

equation (17) simplifies to µt = λt − βÊtλt+1Rt+1.10

Assuming that housing exists in unit net supply, we have ht = 1 such that λt = 1 for all t.

Imposing λt = 1 in the above equations and dividing both sides of the applicable equilibrium

conditions by current period income yt to obtain expressions in stationary variables yields:

pt
yt

= θt
ct
yt

+

[
µt

mt

1 +mt
+ β

]
Êt

pt+1
yt

, (19)

µt = 1 − β ÊtRt+1 + β (1− δt+1) Êt
µt+1

1 +mt+1

+ ηt [δt+1 − (1− α)κ] − β f (δt+1) Êt ηt+1, (20)

ηt = β g (δt+1) Êt ηt+1 + β Êt
µt+1

1 +mt+1
, (21)

ct
yt

= 1 +
bt+1
yt
− Rt

bt
yt−1

exp (−xt) , (22)

bt+1
yt

=
mt

1 +mt
Êt

pt+1
yt+1

exp (xt+1) +
(1− δt)
1 +mt

bt
yt−1

exp (−xt) , (23)

δt+1 =
bt/yt−1
bt+1/yt

exp (−xt) (1− δt) [δαt − (1− α)κ] + (1− α)κ , (24)

where the last three equations are the normalized versions of the budget constraint, the bor-

rowing constraint, and the law of motion for the amortization rate.

2.1 Rational Expectations

Details regarding the rational expectations solution are contained in the appendix. We trans-

form the equilibrium conditions (19) through (24) so that the household’s decision variables

correspond to the three endogenous objects that the household must forecast, namely: (1)

the normalized housing value pn,t ≡ pt/yt−1, (2) a composite variable wt ≡ µt/ (1 +mt) that

depends on the borrowing constraint shadow price µt and the lending standard variable mt,

and (3) the amortization rate shadow price ηt. There are six state variables: (1) the normalized

stock of mortgage debt bn,t ≡ bt/yt−1, (2) the mortgage amortization rate δt, (3) the housing

preference shock ut, (4) the lending standard shock vt, (5) the income growth rate xt, and (6)

the mortgage interest rate shock τ t. The state variables bn,t and δt are endogenous while the

other four state variables are exogenous, as governed by the AR(1) laws of motion (3), (12),

10Given that λt = 1 for all t in equilibrium, the rational expectations model with one-period debt will exhibit
a binding borrowing constraint at the ergodic mean if βR exp

(
σ2τ/2

)
< 1. This condition is satisfied in our

calibration of the model parameters, as described in Section 3.
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(6), and (8). To solve for the household decision rules, we employ a log-linear approximation of

the transformed equilibrium conditions. The approximation point is the ergodic mean rather

than the deterministic steady state.11

2.2 Moving Average Forecast Rules

The rational expectations solution is based on strong assumptions about the representative

household’s information set. Specifically, the rational solution assumes that households know

the stochastic processes for all exogenous shocks. The survey evidence described in Section 1.1

shows that there is strong empirical support for extrapolative or moving average type forecast

rules. For example, U.S. inflation expectations derived from the Survey of Professional Fore-

casters (SPF) systematically underpredict inflation in the sample period prior to 1979 when

inflation was rising and systematically overpredict it thereafter when inflation was falling. The

survey pattern is well-captured by a moving-average of past inflation rates.12 More generally,

a moving average forecast rule can be viewed as boundedly-rational because it economizes on

the costs of collecting and processing information.

Motivated by the empirical evidence, we postulate that the household’s forecast for a given

variable is an exponentially-weighted moving average of past observed values of that same

variable. Constructing such a forecast requires only a minimal amount of computational and

informational resources. From equations (19) through (24), we see that the household must

construct four separate forecasts: (1) Êt pn,t+1 where pn,t+1 ≡ pt+1/yt, (2) Êtwt+1, where

wt+1 ≡ µt+1/ (1 +mt+1) , (3) Êt ηt+1, and (4) ÊtRt+1. The moving average forecast rule for

Êt pn,t+1 is given by

Êt pn,t+1 = Êt−1 pn,t + λ
[
pn,t − Êt−1 pn,t

]
,

= λ
[
pn,t + (1− λ) pn,t−1 + (1− λ)2 pn,t−2 + ...

]
(25)

where the parameter λ ∈ [0, 1] governs the weight assigned to the most recent observation–

analogous to the gain parameter in the adaptive learning literature. When λ = 1, households

employ a simple random walk forecast such that Êt pn,t+1 = pn,t. In this case, households view

all movements in pn,t as permanent. In contrast, when λ = 0, households view all movements

in pn,t as temporary. The forecast rules for Êtwt+1, Êt ηt+1, and ÊtRt+1 are constructed in

the same way. For simplicity, we assume that the household employs the same value of λ for

all forecasts.

Substituting the moving average forecast rules into the transformed first-order conditions

yields a set of nonlinear laws of motion for the three decision variables pn,t, wt, and ηt. Details

are contained in the appendix.

11Lansing (2010) demonstrates the accuracy of this solution method in a standard asset pricing model.
12This result is demonstrated by Lansing (2009) and Gelain, Lansing, and Mendicino (2013).
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3 Parameter Values

Table 1: Model Parameter Values

Parameter
One-period
Mortgage

Long-term
Mortgage Description/Target

α 0 0.9959 Approximate 30-year mortgage schedule.
κ 0 1.0487 Approximate 30-year mortgage schedule.
β 0.9828 0.9828 House price/quarterly rent ' 80.
θ 0.0682 0.0704 Housing value/quarterly income ' 6.3.
m 0.5836 0.0121 Mortgage debt/quarterly income ' 2.3.
x 0.0047 0.0047 Quarterly income growth rate in 1995.Q1.
R 1.0123 1.0123 Gross quarterly real mortgage rate in 1995.Q1.
λ 0.9 0.9 Forecasts for pn,t+1 and Rt+1 in U.S. data.

Table 2: Parameters for Stochastic Shocks

Parameter RE Model MA Model
1995.Q1 - 2012.Q4

Target
ρu 0.95 0.95 AR(1) housing value/income.
σu 0.332 0.042 Std. dev. housing value/income.
ρv 0.95 0.95 AR(1) mortgage debt/income.
σv 0.120 0.119 Std. dev. mortgage debt/income.
ρx −0.23 −0.23 AR(1) income growth rate.
σx 0.0082 0.0082 Std. dev. income growth rate.
ρτ 0.95 0.95 AR(1) mortgage interest rate.
στ 0.00078 0.00078 Std. dev. mortgage interest rate.

Notes: RE = rational expectations. MA = moving average forecast rules.

Tables 1 and 2 show the values of the model parameters that we employ in the simulations.

The parameters in Table 1 are the same for both expectation regimes but in some cases differ

across mortgage specifications. From Figure 1, we see that the ratios from U.S. data are all

close to their long-run means in the mid-1990s. Anticipating the reverse-engineering exercise,

we choose the values of β, θ, and m simultaneously so that the ergodic-means of three model-

implied ratios are close to their U.S. data counterparts at 1995.Q1. The three ratios are: (1)

house price-rent, (2) housing value-income, and (3) mortgage debt-income. By construction,

we also match the debt-to-value ratio at 1995.Q1. Data on U.S. house prices and imputed rents

from owner-occupied housing are from the Lincoln Land Institute.13 Data on U.S. residential

real estate values and household mortgage debt are from the Federal Reserve Flow of Funds.

Data on personal disposable income and population are from the Federal Reserve Bank of St.

Louis’FRED database. The values of x and R correspond to the 1995.Q1 inputs to the reverse

engineering excercise.

13See www.lincolninst.edu. For prices, we use the data series that includes the Case-Shiller-Weiss measure
from the year 2000 onwards, as documented in Davis, Lehnert, and Martin (2008).
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Following Kydland, Rupert, and Šustek (2012), the values of α and κ are chosen so that the

amortization schedule for the model’s long-term mortgage roughly approximates the amortiza-

tion schedule of a conventional 30-year mortgage. With long-term mortgage debt, we require

a lending standard parameter of m = 0.0124 to match the ratios in the data whereas the

one-period debt model requires m = 0.5836. In the models with long-term mortgage debt, the

loan-to-value ratio differs from the debt-to-value ratio whereas these two ratios coincide in the

models with one-period debt.

Starting from the normalized collateral constraint (23), it is straightforward to show that

the steady state debt-to-value ratio is given by

b

ph
=

m

[1 +m− (1− δ̃) exp(−x)]
. (26)

where δ̃ is the mean amortization rate and h = 1 in equilibrium. Our calibration procedure

yields δ̃ = 0.0161 with long-term mortgage debt versus δ̃ = 1 with one-period debt. Equation

(26) shows changes in the value of δ̃ must be accompanied by changes in the value of m so

that the model continues to match the target debt-to-value ratio implied by the data.

As shown originally by Muth (1960), a moving-average forecast rule with exponentially-

declining weights on past data will minimize the mean squared forecast error when the forecast

variable evolves as a random walk with permanent and temporary shocks. In this case, the

weight λ on the most recent observation is pinned down by the relative variances of the

permanent and temporary shocks, i.e., the signal-to-noise ratio. Here we use the same value of

λ for each of the four conditional forecasts that appear in the households’s first order conditions

(19) through (24). Of the four variables that the agent must forecast, two are observable in

U.S. data, namely pn,t+1 and Rt+1. The variable pn,t+1 ≡ pt+1/yt is constructed using data

on the housing value-income ratio ptht/yt, as plotted in the top left panel of Figure 1. The

variable Rt+1 is the gross quarterly real mortgage interest rate which we construct from the

data for the period 1971.Q2 to 2012.Q4.14

To get a sense of a reasonable value for λ, Figure 2 plots the root mean squared percentage

forecast error (RMSPFE) for one-quarter ahead forecasts of pn,t+1 and Rt+1 in the data using

a moving average forecast rule of the form (25). For pn,t+1, forecast performance is best

(lowest RMSPFE) when λ ' 1.4 for the boom-bust period and λ ' 1 for the pre-boom

period. For Rt+1, forecast performance is best when λ ' 1 during both periods. Recall that

λ = 1 corresponds to a random walk forecast. When λ > 1, a positive forecast error in the

prior period leads to an upward adjustment in the forecasted growth of the variable in the

next period.15 In the model, values of λ that approach or exceed unity create diffi culties in
14We start with data on the nominal 30-year conventional mortgage interest rate from the Federal Reserve

Bank of St. Louis’FRED database. We then convert the annualized nominal mortgage interest rate into a
quarterly real rate using 4-quarter-ahead expected inflation (converted to a quarterly expected inflation rate)
from the Survey of Professional Forecasters.
15To see this, equation (25) can be rearranged as follows: Êt (pn,t+1 − pn,t) = (λ− 1)

[
pn,t − Êt−1 pn,t

]
.
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calibrating the shock innovations σu and σv, as described below. For the simulations, we

employ λ = 0.9. Figure 2 shows that λ = 0.9 does not sacrifice much in forecast performance

relative to higher values of λ. Hence, our calibration implies that households employ a “near-

optimal”value of λ for the simulations that exactly replicate the U.S. data.

Table 2 shows the parameter values that govern the persistence and volatility of the four

stochastic shocks. The parameter values for the housing preference shock ut and the lending

standard shock vt depend on the expectation regime. We calibrate these shocks so that the

rational expectations (RE) model and the moving average (MA) model can both match the

standard deviations of the U.S. real estate value and mortgage debt ratios over the period

1995.Q1 to 2012.Q4. Analytical moment formulas derived from the log-linear solutions of both

models are used in the calibration procedure. The calibration is done for the case of long-term

mortgage debt, but we use the same set of shock parameters in the case of one-period debt.

From Table 2, we see that the RE model requires a highly volatile housing preference shock

with σu = 0.332 versus σu = 0.042 in the MA model. For the lending standard shock, the RE

model requires σv = 0.120 versus σv = 0.119 in the MA model.

The stochastic process for income growth xt is estimated using data on the quarterly growth

rate of U.S. real per capita disposable income. The parameter values for the mortgage interest

rate shock τ t are estimated using data on the 30-year conventional mortgage interest rate after

conversion to a quarterly real rate as described above. The sample period for estimating the

shock parameters is 1995.Q1 to 2012.Q4.

4 Quantitative Results

4.1 Simulations with Model-Specific Shocks

Figure 3 (RE model) and Figure 4 (MA model) show simulation results using the parameter

values in Tables 1 and 2. The four panels in each figure are the model-generated versions of

the corresponding U.S. data ratios plotted earlier in Figure 1.

Our calibration procedure ensures that the RE model and the MA model both exhibit

realistic volatilities for the housing value-income ratio ptht/yt and the mortgage debt-income

ratio bt/yt. Consequently, the top panels of Figure 3 look similar to the top panels of Figure 4.

A crucial distinction between the two models can be seen by comparing the bottom left panels

of Figures 3 and 4. The RE model predicts a substantially more volatile rent-income ratio than

the MA model. This is because the RE model’s housing preference shock has σu = 0.332 which

is about eight times larger than the corresponding value σu = 0.042 in the MA model. The

volatility of the housing preference shock directly influences the volatility of the rent-income

ratio which is given by
Rentt
yt

= θt
ct
yt

+ µt
mt

1 +mt
Êt

pt+1
yt

, (27)

where θt = θ exp (ut) is the stochastic housing preference variable. The first term on the right
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side of (27) is the housing service flow while the second term is the marginal collateral value

of the house. In the simulations, the volatility of the rent-income ratio is determined mainly

by movements in the housing service flow.

With long-term mortgage debt, the coeffi cient of variation for the rent-income ratio in the

RE model is 0.66 versus 0.12 in the MA model. For comparison, the coeffi cient of variation

for the rent-income ratio in U.S. data is 0.10 over the period 1960.Q1 to 2012.Q4. For the

more-recent period of 1995.Q1 to 2012.Q4, the coeffi cient of variation is even lower at 0.02.

The extremely low volatility of the rent-income ratio in the data argues against fundamental

demand shocks as a key driver of the boom-bust episode. A virtue of the MA model is its

ability to generate realistic volatility in the housing value-income ratio without the need for

large housing demand shocks.

The right-side panels in Figures 3 and 4 show that the long-term mortgage specification

delivers smoother behavior in the debt-income ratio bt/yt and the consumption-income ratio

ct/yt relative to the one-period mortgage version of the same model. With long-term mortgage

debt, shocks can have a large impact on the size of the new loan but the impact on the stock

of outstanding debt is much smaller. This is because the new loan represents only a small

fraction of the end-of-period stock of debt. In contrast, the new loan and the end-of-period

stock of debt are equal with one-period mortgage debt, causing the debt-income ratio to be

more responsive to shocks.16

The normalized version of the household’s budget constraint (22) shows that movements in

the consumption-income ratio are linked to movements in the debt-income ratio. The smoother

behavior of the debt-income ratio in the models with long-term mortgage debt translates into

smoother behavior for the consumption-income ratio.

4.2 Impulse Response Functions with Common Shocks

Figures 5 and 6 illustrate how a common stochastic shock propagates differently in the four

different model specifications. Figure 5 plots the model responses to a one standard deviation

innovation of the housing preference shock ut. Figure 6 plots the model responses to a one

standard deviation innovation of the lending standard shock vt. The vertical axes measure the

percentage deviation of the variable from the no-shock value. All model specifications now

employ σu = 0.042 (Figure 5) or σv = 0.119 (Figure 6). These are the original calibrated

values from the MA model, as shown in Table 2.

Both figures show that, regardless of the mortgage specification, the MA model exhibits

substantially more volatility in housing value than the RE model. In other words, the MA

model exhibits excess volatility in the asset price in response to fundamental shocks. This

result is not surprising given that the moving average forecast rule (25) embeds a unit root

16 In the context of a monetary DSGE model, Gelain, Lansing, and Natvik (2015) show that a tightening of
monetary policy reduces the debt-income ratio with one-period mortgage debt but increases the debt-income
ratio with long-term mortgage debt.
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assumption. This is most obvious when λ = 1 but is also true when 0 < λ < 1 because the

weights on lagged variables sum to unity. Due to the self-referential nature of the equilibrium

conditions, the households’subjective forecast influences the dynamics of the object that is

being forecasted.17

Given that all shocks are governed by AR(1) laws of motion, a hump-shaped impulse re-

sponse is indicative of an endogenous propagation mechanism in the model. The MA model

with long-term mortgage debt is the only specification to exhibit a hump-shaped response in

both housing value and mortgage debt. The effects of the shocks are temporary but highly

persistent– lasting in excess of 100 quarters (25 years). The RE model with long-term mort-

gage debt can produce a hump-shaped response in debt but not housing value. Notice that

the RE model with one-period mortgage debt does not produce a hump-shaped response in

either housing value or debt. Hence, the dynamics of model variables in this version are driven

entirely by the exogenous AR(1) shocks.

Another notable feature of the impulse response functions is the timing of the peaks in

housing value versus mortgage debt. With one-period debt, both peaks occur at the same

time. With long-term mortgage debt, the peak in housing value occurs well before the peak

in debt. This is qualitatively similar to the pattern observed in Figure 1 for the U.S. data.

4.3 Reverse-Engineering the Shocks to Match the Data

We now undertake the main part of our quantitative analysis: reverse-engineering the se-

quences of stochastic shocks that are needed to exactly replicate the boom-bust patterns in

U.S. household real estate value and mortgage debt over the period 1995.Q1 to 2012.Q4. All

of the model’s state variables are set equal to their ergodic means at 1995.Q1. For each version

of the model, we use the log-linearized versions of the decision rules and laws of motion in

first-difference form to back out sequences for the change in the housing preference shock ∆ut

and the change in the lending standard shock ∆vt to match the change in the U.S. housing

value-income ratio and the change in the U.S. mortgage debt-income ratio. For each period of

the exercise, we have a linear system of two equations and unknowns, namely, ∆ut and ∆vt.

Given the sequences for ∆ut and ∆vt, we construct sequences for ut and vt using the initial

conditions ut = vt = 0 at 1995.Q1. We use the first-difference forms of the log-linear decision

rules and laws of motion to eliminate constant terms in the model which, for some variables,

may not coincide with the corresponding U.S. values in 1995.Q1.18

As inputs to the reverse-engineering exercise, we use U.S. data for the period 1995.Q1

17A simple example with λ = 1 illustrates the point. Suppose that pt = dt + β Êt pt+1, where dt follows
an AR(1) process with persistence γ. Under rational expecations, we have V ar (pt) /V ar (dt) = 1/ (1− γβ)2 .

When Êt pt+1 = pt, we have V ar (pt) /V ar (dt) = 1/ (1− β)2 which implies excess volatility in the model asset
price whenever |γ| < 1.
18For example, the ergodic mean value of ct/yt in the model does not coincide with the U.S. consumption-

income ratio in 1995.Q1. Nevertheless, given a model-implied sequence for ∆ (ct/yt) , we can construct a
comparable model-implied sequence for ct/yt using the 1995.Q1 value in the data as the intital condition.

16



to 2012.Q4 to identify sequences for the change in disposable income growth ∆xt and the

change in the mortgage interest rate shock ∆τ t. The data we use to identify ∆xt and ∆τ t are

plotted in Figure 7, where the trends are computed using the Hodrick-Prescott filter with a

smoothing parameter of 1600. We use the trends to identify∆xt and∆τ t in order to screen out

high frequency movements in the data that would show up as noise in the reverse-engineered

shocks, thus obscuring their economic interpretation. Given the identified sequences for ∆xt

and∆τ t, we construct sequences for the state variables xt−x and τ t using the initial conditions
xt = x = 0.00473 and τ t = 0 such that Rt = R = 1.0123 at 1995.Q1. The time patterns of the

state variables xt − x and τ t mimic the trends in Figure 7.
Figure 8 plots the results of the reverse-engineering exercise. The left panels show the

reverse-engineered shocks in the RE models while the right panels show the corresponding

shocks in the MA models.

Analogous to the model simulations, the RE model requires large movements in the reverse-

engineered housing preference shock to match the data. The time pattern of the housing

preference shock mimics the path of the U.S. housing value-income ratio in Figure 1. This is

true for both mortgage specifications. Hence, the RE model “explains”the boom-bust cycle

in U.S. housing value as a wholly exogenous phenomenon. In contrast, the top right panel of

Figure 8 shows that the MA model requires much smaller movements in the housing preference

shock to match the same data. Again this is true for both mortgage specifications.

Table 3 compares the properties of the reverse-engineered shocks across the four different

model specifications. With long-term mortgage debt, the mean of the housing preference shock

is 0.92 in the RE model versus 0.05 in the MA model. The standard deviation of the housing

preference shock is 0.99 in the RE model versus 0.29 in the MA model.

The bottom panels of Figure 8 show that the reverse-engineered lending standard shock

is highly dependent on the mortgage specification, but is not sensitive to the expectation

regime. With one-period mortgage debt, both the RE and MA models imply a near-zero

lending standard shock during the boom years prior to 2007. This is because the one-period

debt specification requires the stock of debt to move in tandem with housing value. Since

housing value is driven upwards by the other shocks, a lending standard shock is not needed

to explain the run-up in mortgage debt. Things are different, however, during the bust years.

To avoid the counterfactual prediction of a rapid deleveraging as U.S. housing values fell

rapidly, the one-period debt models require a post-2007 relaxation of lending standards (i.e.,

a persistently positive value for the lending standard shock vt) to simultaneously match the

patterns of housing value and mortgage debt in the data.

With long-term mortgage debt, the new loan size moves in tandem with housing value

but the stock of mortgage debt adjusts more slowly than housing value. In order to match

the run-up in U.S. mortgage debt during the boom years, the long-term debt versions of

the RE and MA models both require a substantial relaxation of lending standards during
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the boom years from 2001 to 2005. This pattern is consistent with the empirical evidence

cited in the introduction. Period-by-period fluctuations in stock of mortgage debt in the data

translate into the need for much larger fluctuations in the flow of new loans in the models, thus

accounting for the volatility of the reverse-engineered lending standard shocks. The magnitude

of the lending standard shock vt starts declining well before the peak in mortgage debt that

occurs at 2007.Q4. A declining value of vt implies a tightening of lending standards. After

2007.Q4, both models require a persistently negative value for the lending standard shock

which is indicative of even further tightening of lending standards during the Great Recession

and beyond.

Figure 9 plots two indicators of lending standard tightness from the Federal Reserve’s

Senior Loan Offi cer Opinion Survey on Bank Lending Practices (SLOOS). The indicators are

the net percentage of U.S. domestic banks that are tightening lending standards for either

residential mortgage loans or credit card loans.19 Both series show that banks started to

tighten lending standards before the onset of the Great Recession in 2007.Q4. Moreover, a

substantial percentage of banks continued to tighten standards even after the recession ended in

2009.Q2. Overall, the SLOOS data confirms the plausibility of the reverse-engineered lending

standard shocks in the models with long-term mortgage debt.

Table 3: Properties of Reverse-Engineered Shocks

One-period Mortgage Long-term Mortgage

Shock
1995.Q1-2012.Q4

Statistic RE Model MA Model RE Model MA Model
Housing
Preference

Mean
Std. dev.

0.87
1.05

0.04
0.25

0.92
0.99

0.05
0.29

Lending
Standard

Mean
Std. dev.

0.18
0.27

0.16
0.27

0.24
0.58

0.23
0.57

Notes: RE = rational expectations. MA = moving average forecast rules.

Figures 10 and 11 plot the model-implied paths for two other variables of interest, namely,

the housing rent-income ratio given by equation (27) and the consumption-income ratio given

by equation (22). For the rent-income ratio, we first construct a log-linearized law of motion for

the change in the ratio in terms of the change in the model state variables. We then substitute

in the identified sequences for ∆xt and ∆τ t and the reverse-engineered sequences for ∆ut and

∆vt. As before, the endogenous state variables evolve according to their log-linearized laws of

motion in first-difference form. For the consumption-income ratio, we simply use the exact

nonlinear law of motion (22) in first-difference form.

19The data are available from www.federalreserve.gov/boarddocs/SnLoanSurvey/. Prior to 2007.Q2, the
survey data do not distinguish between prime and subprime mortgages. From 2007.Q2 onwards, we plot the
survey responses for prime mortgages.
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Figure 10 shows that both versions of the RE model predict a counterfactual boom-bust

cycle in the rent-income ratio that is driven by the large movements in the reverse-engineered

housing preference shock. In contrast, the predicted paths for the rent-income ratio in the

MA model are much closer to the data. The endogenous bubble-like dynamics in housing value

generated by the moving average forecast rules allows the MA model to be much less reliant

on exogenous housing preference shocks to match the data. This helps to avoid the prediction

of large movements in housing rents which are not present in the data.

In Figure 11, all model versions deliver identical paths for the consumption-income ratio.

The normalized household budget constraint (22) shows that movements in the consumption-

income ratio are linked mechanically to movements in the debt-income ratio and the mortgage

interest rate which, by construction, are the same across models for this exercise. A smoothed

version of the model-implied path (constructed using the Hodrick-Prescott filter) exhibits a

hump-shaped pattern that roughly resembles the hump-shaped pattern in the data from 1995

to 2012. Hence, abstracting from high-frequency fluctuations, all models predict a boom-bust

cycle in consumption that is positively correlated with the boom-bust cycles in housing value

and mortgage debt.

Table 4: Per Capita Consumption Growth Rates
Time Period U.S. Data All Models

Boom: 1995.Q1 to 2007.Q4 3.58 2.29
Bust: 2007.Q4 to 2009.Q2 −1.83 −4.31
Recovery: 2009.Q2 to 2012.Q4 2.03 0.79

Note: Annualized compound growth rate over the period in %.

Table 4 compares annualized compound growth rates of per capita consumption from U.S.

data to the predicted growth rates from the models for three phases of the simulation, i.e., the

boom from 1995.Q1 to 2007.Q4, the bust coinciding with the Great Recession from 2007.Q4

to 2009.Q2, and the recovery starting in 2009.Q2 and going until the end of our data sample

in 2012.Q4. Since the paths for ct/yt and income growth are the same across models, so

too is consumption growth. In both the data and the models, consumption growth is fastest

during the boom phase when income growth shocks were persistently positive and debt was

rising faster than income. The bust delivers negative consumption growth in all models.

Finally, the recovery is very sluggish, with model-implied consumption growth rates that are

less than 1%. As in the data, the sluggish recovery coincides with a period of household

deleveraging. Relative to the U.S. data, the consumption bust in the model is more severe and

the consumption recovery is much weaker. But of course the model is missing the numerous

automatic stabilizers and policy responses that helped to support U.S. consumer spending as

these events transpired.

Recall that the shocks are not designed to match the path of ct/yt in the U.S. data.

Nevertheless, conditional on matching the observed time paths of U.S. housing value and

mortgage debt, all of the models can account for the broad patterns of U.S. consumption

19



growth during the boom, bust, and recovery phases. It is important to recognize, however,

that each model tells a different story regarding the shocks that presumably caused these

events. We think the story told by the MA model with long-term mortgage debt is the most

plausible.

5 Counterfactual Scenarios

Our final quantitative exercise examines four counterfactual scenarios that are plotted in Fig-

ures 12 through 15. In each case, we turn off one of the four shock sequences that was

constructed in the reverse-engineering exercise. Turning off one shock at a time allows us

to see which shocks are the most important drivers of the boom-bust episode, as interpreted

through the lens of the model.

Counterfactual scenario 1 (Figure 12) shuts off the housing preference shock such that

ut = 0 for all t. The RE models now exhibit no significant run-up in housing value. This

result confirms the importance of the housing preference shock in “explaining” the run-up

under rational expectations. In contrast, the MA models still exhibit a sizeable run-up in

housing value, particularly in the version with long term mortgage debt which continues to be

hit by positive income growth shocks and loosening lending standards. The run-up in housing

value now starts earlier than in the data, however. This pattern is driven by the series of

persistently positive income growth shocks during the late 1990s (Figure 7). From the top

right panel of Figure 8, we see that the housing preference shocks in the MA models are

slightly negative from 1995 to 2000– the period of “irrational exuberance” in the NASDAQ

stock market index. One interpretation of these results is that the positive income growth

shocks of the late 1990s helped fuel a run-up in stock prices rather than house prices. Since

there is only one asset price in our model, the only way to delay the rise in housing values until

after 2000 is to postulate the existence of small negative shocks to housing demand during the

late 1990s– a period when investors were paying more attention to the stock market than the

housing market.

Counterfactual scenario 2 (Figure 13) shuts off the lending standard shock such that vt = 0

for all t. The models with one-period mortgage debt now imply a rapid deleveraging that

coincides with the rapid decline in housing value. Recall that the models with one-period

debt require an implausible sequence of looser lending standard shocks after 2007 to match

the gradual deleveraging in the data. Once this shock sequence is turned off, the stock of debt

moves down in tandem with housing value. In contrast, the models with long-term mortgage

debt exhibit much smaller run-ups in mortgage debt when the lending standard shock is turned

off. According to these models, shifting lending standards were an important driver of the

boom-bust episode. The MA model with long-term mortgage debt is the only one to show

smaller boom-bust cycles in both housing value and mortgage debt when the lending standard

shock is turned off.
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Counterfactual scenario 2 can be interpreted as a macroprudential policy experiment; it

shows what would have happened if mortgage regulators had enforced prudent lending stan-

dards during the boom years. According to our preferred model (MA with long-term mortgage

debt), such action by regulators would have helped to restrain the boom on the upside such

that the subsequent bust and the associated economic damage would have been less severe.

Counterfactual scenario 3 (Figure 14) shuts off the income growth shock such that xt = x

for all t. There is little noticeable effect in the RE models showing that the remaining shocks

are doing all the work of fitting the data. In contrast, the MA models now exhibit a brief

and mild decline in housing value until the year 2000. Again, this pattern can be traced to

the slightly negative housing preference shocks during the early part of the simulation. These

are needed when all four shocks are present, as explained above in counterfactual scenario 1.

Otherwise, the positive income growth shocks of the late 1990s would push up housing value

too soon relative to the data (since there is no other asset price in the model). According to

the MA models, movements in income growth did play a role in the magnitude and timing

of the episode. Notice that the MA model with one-period debt now exhibits a much larger

boom-bust cycle in debt. The (implausible) post-2007 loosening of lending standards in this

version of the model accounts for the larger debt movements when we turn off the post-2007

negative income growth shocks. The MA model with long-term mortgage debt exhibits smaller

boom-bust cycle in debt when the income growth shock is turned off.

Counterfactual scenario 4 (Figure 15) shuts off the mortgage interest rate shock such that

τ t = 0 for all t. All model versions continue to exhibit significant boom-bust cycles in both

housing value and debt. This is because the magnitude of the U.S. mortgage interest rate drop

is simply too small to have much impact. Figure 7 shows that the trend value of the quarterly

real mortgage interest rate declined by only 30 basis points from 1995.Q1 until 2005.Q4. After

2005.Q4, the interest rate continued to decline by about 45 basis points. These interest rate

moves are not suffi cient to appreciably alter the trajectories of housing value and debt in the

presence of the other three shocks. According to the models, the decline in the U.S. mortgage

interest rate was not a major driver of the boom-bust episode.20

Our results regarding the mortgage interest rate conflict with the findings of Taylor (2007)

and McDonald and Stokes (2011) who argue that the Fed’s decision to keep interest rates

artificially low during the boom years helped fuel the housing bubble.21 But other studies

find that low interest rates were not a major contributor to the U.S. housing boom. Dokko,

et al. (2011) present evidence that movements in U.S. house prices were much larger than can

explained by the historical relationship between house prices and interest rates. An empirical

20 In experiments with the models, we find that doubling the magnitude of the total mortgage interest rate
drop to about 150 basis points is necessary to obtain a significant effect on the trajectories of housing value
and mortgage debt.
21 In a long-run historical study of many countries, Jordà, Schularick, and Taylor (2015) find that loose

monetary conditions typically contribute to booms in house prices and real estate lending.
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study by Glaeser, Gottlieb, and Gyourko (2013) finds that lower real interest rates can explain

only about 20% of the rise in U.S. house prices from 1996 to 2006. One way to reconcile these

various findings is to postulate that the low interest rate environment at the time fostered

excessive risk-taking behavior by lenders.22 This explanation is consistent with widespread

use of imprudent lending practices during the boom years of the U.S. housing market.

6 Conclusion

Episodes of explosive, bubble-like growth in house prices have occurred in many OECD coun-

tries over the past four decades (Engsted, Hviid, and Pedersen 2014). A recent cross-country

empirical study by Jordà, Schularick, and Taylor (2015) concludes that “Mortgage and house

price booms are predictive of future financial crises, and this effect has also become much more

dramatic since WW2” (p. S17). Our simple quantitative asset pricing model helps to shed

light on the underlying causes of the recent boom-bust cycle in the U.S. housing market. A

clear understanding of these causes is important because it can help in the design of policy

actions to avoid future crises.

The offi cial report of the U.S. Financial Crisis Inquiry Commission (2011) states: “We con-

clude this financial crisis was avoidable. . . Despite the expressed view of many on Wall Street

and in Washington that the crisis could not have been foreseen or avoided, there were warning

signs. The tragedy was that they were ignored or discounted” (p. xvii). The report lists

such red flags as “an explosion in risky subprime lending and securitization, an unsustainable

rise in housing prices, widespread reports of egregious and predatory lending practices, (and)

dramatic increases in household mortgage debt.”

Our preferred model of the boom-bust cycle includes the following elements: (1) households

who employ simple moving-average forecast rules that give rise to excess volatility in asset

prices, (2) long-term mortgage contracts that cause the stock of outstanding household debt

to adjust more slowly than the flow of new loans, and (3) relaxed lending standards during

the run-up that created the conditions for a credit-fueled housing bubble. Our results further

suggest that policy actions by regulators to control the flow of mortgage credit by enforcing

prudent lending standards can limit a housing boom on the upside, such that the subsequent

bust and the resulting economic fallout may be less severe.

22Adrian and Shin (2010) and Jiménez, et al. (2014) present evidence that low interest rate environments
contribute to increased risk-taking by lenders.
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A Appendix: Equilibrium Conditions in Stationary Variables

Starting from the equilibrium conditions (19) through (24), we define the following stationary

variables: pn,t ≡ pt/yt−1, wt ≡ µt/ (1 +mt) , bn,t ≡ bt/yt−1, and cn,t ≡ ct/yt. After substituting
in these definitions, the transformed equilibrium conditions are

pn,t = θ exp (ut + xt) cn,t + [m exp (vt)wt + β] exp (xt) Êt pn,t+1, (A.1)

wt = [1 +m exp (vt)]
−1
{

1− βR Êt exp(τ t+1) + β (1− δt+1) Êtwt+1

+ ηt [δt+1 − (1− α)κ]− β f (δt+1) Êt ηt+1

}
(A.2)

ηt = β g (δt+1) Êt ηt+1 + β Êtwt+1 (A.3)

cn,t = 1 + bn,t+1 − R exp (τ t − xt) bn,t, (A.4)

bn,t+1 = [1 +m exp (vt)]
−1
[
m exp (vt) Êt pn,t+1 + (1− δt) exp (−xt) bn,t

]
, (A.5)

δt+1 =
bn,t
bn,t+1

exp (−xt) (1− δt) [δαt − (1− α)κ] + (1− α)κ , (A.6)

where f (δt+1) ≡ (1− δt+1)
[
δαt+1 − (1− α)κ

]
, g (δt+1) ≡ αδα−1t+1 (1− δt+1) − δαt+1 + (1− α)κ ,

and we have substituted in θt = θ exp (ut) , Rt = R exp (τ t), and mt = m exp (vt) for all t. The

decision variables are pn,t, wt, and ηt. The six state variables are bn,t, δt, ut, vt, xt, and τ t.

B Appendix: Solution with Rational Expectations

An approximate solution to the transformed first-order conditions (A.1) through (A.6) under

rational expectations takes the form of the following (log-linear) decision rules

pn,t
p̃n

'
[
bn,t

b̃n

]s1 [δt
δ̃

]s2
exp [s3ut + s4vt + s5 (xt − x) + s6τ t] , (B.1)

wt
w̃

'
[
bn,t

b̃n

]h1 [δt
δ̃

]h2
exp [h3ut + h4vt + h5 (xt − x) + h6τ t] , (B.2)

ηt
η̃

'
[
bn,t

b̃n

]f1 [δt
δ̃

]f2
exp [f3ut + f4vt + f5 (xt − x) + f6τ t] , (B.3)

where si, hi, and fi for i = 1 through 6 are solution coeffi cients. The ergodic mean ap-

proximation points are p̃n ≡ exp [E log (pn,t)] , w̃ ≡ exp [E log (wt)] , η̃ ≡ exp [E log (ηt)] ,

b̃n ≡ exp [E log (bn,t)] , and δ̃ ≡ exp [E log (δt)] .
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We first use (A.4) through (A.6) to eliminate cn,t, bn,t+1 and δt+1 from (A.1) through (A.3).

We take logarithms of (A.1) through (A.6) and apply a first-order Taylor series approximation

to each equation. The Taylor-series coeffi cients are functions of the ergodic-mean approxima-

tion points p̃n, w̃, η̃, b̃n, and δ̃. The conjectured forms for the solution (B.1) through (B.3) are

iterated ahead one period. From these, we eliminate bn,t+1 and δt+1 using the log-linearized

versions of (A.5) and (A.6) and then eliminate ut+1, vt+1, xt+1, and τ t+1 using the AR(1) laws

of motion (3), (12), (6), and (8), respectively. After collecting terms, we analytically compute

the conditional rational forecasts Et pn,t+1, Etwt+1, Et ηt+1, and Et exp (τ t+1) . In each case,

the forecast computation introduces a new constant term that depends on the innovation vari-

ances σ2u, σ
2
v, σ

2
x, or σ

2
τ .We substitute the conditional rational forecasts into the log-linearized

versions of (A.1) through (A.3). After collecting terms, these equations are now in the form

of the conjectured solution (B.1) through (B.3). The mapping from the actual solution to the

conjectured solution yields a system of 18 equations in the 18 unknown solution coeffi cients

si, hi, and fi for i = 1 through 6.

Finally, we evaluate the original nonlinear equilibrium conditions (A.1), (A.2), (A.3), (A.5)

and (A.6) at the ergodic-mean approximation points to obtain expressions for the constant

terms in the corresponding Taylor-series approximations of the same equations. These rela-

tionships are substituted into the mapping from the actual solution to the conjectured solution.

This mapping (which includes the new constant terms from computation of the rational fore-

casts) yields 5 equations that pin down the 5 approximation points p̃n, w̃, η̃, b̃n, and δ̃.

C Appendix: Solution with Moving Average Forecast Rules

We first use (A.4) through (A.6) to eliminate cn,t, bn,t+1 and δt+1 from (A.1) through (A.3).

The moving average forecast rules take the form Êt qt+1 = λqt + (1− λ) Êt−1 qt, where qt+1 ∈{
pn,t+1, wt+1, ηt+1, Rt+1

}
are the four variables to be forecasted. Substituting the forecast

rules into (A.1) through (A.3) and then solving for pn,t, wt, and ηt yields a set of nonlinear

laws of motion for the three decision variables. The lagged forecasts now appear in these laws

of motion as state variables. For example, the law of motion for pn,t is given by

pn,t =
θt exp (xt)

{
1−

[
1−δt
1+mt

−Rt
]

exp (−xt) bn,t
}

1− λ
[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

+
(1− λ)

[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

1− λ
[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

Êt−1 pn,t (C.1)

which depends in a nonlinear way on wt. Straightforward but tedious algebra yields explicit

(albeit complicated) expressions for pn,t, wt, and ηt in terms of the following ten state variables:

bn,t, δt, ut, vt, xt, τ t, Êt−1 pn,t, Êt−1wt, Êt−1 ηt, and Êt−1Rt.
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For use in the reverse-engineering exercise, we also compute log-linear approximations of

the decision rules and laws of motion in the moving average model. For example, the log-linear

decision rule for pn,t takes the form

pn,t
pn

'
[
bn,t

bn

]a1 [δt
δ

]a2
exp [a3ut + a4vt + a5 (xt − x) + a6τ t]

+

[
Êt−1 pn,t

pn

]a7 [
Êt−1wt
w

]a8 [
Êt−1 ηt
η

]a9 [
Êt−1Rt
R

]a10
,

where ai for i = 1 through 10 are Taylor series coeffi cients. The approximation points are

the deterministic steady-state values bn, δ, pn, w, η, and R. Unlike the rational expectations

solution, computation of the conditional forecasts in the moving average model does not intro-

duce any new constant terms involving σ2u, σ
2
v, σ

2
x, or σ

2
τ . Hence, is not necessary to shift the

approximation points away from the deterministic steady-state values in the moving average

model.
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Figure 1: Starting in the mid-1990s, the U.S. economy experienced correlated booms and busts in household
real estate value, mortgage debt, and personal consumption expenditures, all measured relative to personal

disposable income. In contrast, the housing rent-income ratio declined steadily over the same period. The

housing value-income ratio peaked in 2005.Q4. The mortgage debt-income ratio peaked 8 quarters later in

2007.Q4– coinciding with the start of the Great Recession.
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Figure 2: The figure plots the root mean squared percentage forecast error (RMSPFE) for one-quarter ahead
forecasts of each variable using a moving average forecast rule of the form (25). For the simulations, we employ

λ = 0.9 which is “near-optimal” in terms of minimizing the RMSPFE
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Figure 3: Model simulations with rational expectations. A volatile housing preference shock is needed to

match the standard deviation of the housing value-income ratio in the data, This results in a highly volatile

time series for the housing rent-income ratio, which is counterfactual. Movements in debt and consumption are

much smoother with long-term mortgage debt.
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Figure 4: Model simulations with moving average forecast rules. Only a small housing preference shock is
needed to match the standard deviation of the housing value-income ratio in the data. The rent-income ratio

exhibits low volatility, consistent with the data. Movements in debt and consumption are much smoother with

long-term mortgage debt.
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Figure 5: When all models are subjected to the same housing preference shock, the moving average model
exhibits substantially more volatility in housing value. All else equal, the models with long-term mortgage debt

exhibit more persistent debt dynamics than the models with one-period debt. With long-term mortgage debt,

housing value peaks before debt, as in the data.
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Figure 6: When all models are subjected to the same lending standard shock, the moving average model
exhibits substantially more volatility in housing value. All else equal, the models with long-term mortgage debt

exhibit more persistent debt dynamics than the models with one-period debt. With long-term mortgage debt,

housing value peaks before debt, as in the data.
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Figure 7: Inputs to the reverse-engineering exercise. Smoothed versions of the U.S. quarterly growth rate of
per capita real disposable income and the U.S. quarterly real mortgage interest rate are used to identify the

sequences for xt − x and τ t that appear in the household decision rules as state variables.

35



Figure 8: The left panels show the reverse-engineered shocks in the RE model. The right panels show the

reverse-engineered shocks in the MA model. The MA model with long-term mortgage debt can match the

boom-bust patterns in the data with smaller housing preference shocks and plausible lending standard shocks.
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Figure 9: Two indicators of lending standard tightness from the Federal Reserve’s Senior Loan Offi cer Opinion
Survey (SLOOS). Both series show that banks started to tighten lending standards before the onset of the Great

Recession in 2007.Q4. Moreover, a substantial percentage of banks continued to tighten standards even after

the recession ended in 2009.Q2.
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Figure 10: The large reverse-engineered housing preference shocks in the RE models generate a counterfactural
boom-bust cycle in the rent-income ratio. The much smaller reverse-engineered housing preference shocks in

the MA models generate less movement in the rent-income ratio, which is closer to the pattern observed in the

data.
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Figure 11: By construction of the reverse-engineered shocks, all models imply identical hump-shaped paths
for the consumption-income ratio. A smoothed version of the model-implied path roughly resembles the hump-

shaped pattern observed in the data.
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Figure 12: Counterfactual scenario 1: No housing preference shock. The RE models now exhibit no significant
run-up in housing value. The MA models still exhibits a sizeable run-up in housing value, particularly in the

version with long-term mortgage debt which continues to be hit by positive income growth shocks and loosening

lending standards during the run-up. This result illustrates the ability of our preferred model to generate an

income- and credit-fueled boom in housing value.
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Figure 13: Counterfactual scenario 2: No lending standard shock. Models with one-period mortgage debt
now imply a rapid deleveraging that coincides with the rapid decline in housing value. Models with long-term

mortgage debt now exhibit much smaller run-ups in debt, suggesting that shifting lending standards were an

important driver of the episode. The MA model with long-term mortgage debt is the only one to show smaller

boom-bust cycles in both housing value and debt when the lending standard shock is turned off.
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Figure 14: Counterfactual scenario 3: No income growth shock. There is little noticable effect in the RE
models. In contrast, turning off the positive income growth shocks of the late 1990s causes the MA models

to exhibit a somewhat delayed boom-bust cycle in housing value relative to the data. This result implies that

movements in income growth did contribute to the magnitude and timing of episode. The MA model with

one-period mortgage debt exhibits a larger boom-bust cycle in debt in response to the implausible post-2007

lending standard shocks implied by this version of the model.
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Figure 15: Counterfactual scenario 4: No mortgage interest rate shock. All models continue to exhibit

significant boom-bust cycles in both housing value and debt, suggesting that the decline in the U.S. mortgage

interest rate was not a major driver of the episode.
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