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Abstract

A dynamic game of experimentation is examined where players search for an un-
known threshold. Players contribute to the rate of decline in a state variable, and the
game ends with a costly breakdown once the state falls below the threshold. In the
unique symmetric pure-strategy stationary Markov equilibrium, the state decreases
gradually over time and settles at a cutoff level asymptotically, conditional on no
breakdown. The cutoff depends on the patience, the cost of the breakdown, and the
prior distribution of the threshold, but not on the number of players. In a discrete-
time version of the game, the equilibrium time path of the state converges to that of
the continuous-time model when period length tends to zero.
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1 Introduction

Learning through experimentation is a common practice in many aspects of the econ-
omy. In the literature, a large number of models used the “bandit” framework that agents
learn about the quality of one or several “arms” through a potential stochastic process
(Cripps, Keller, and Rady (2005), Bolton and Harris (1999), Bonatti and Hörner (2011),
etc.). However, there are other situations in the economy where people need to learn
about an unknown threshold among arms rather than the prospect of a given arm. When-
ever the outcome as a function of the arm being operated takes a discontinuous all-or-
none form, the threshold that triggers the discrete change in outcome is an important
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parameter to learn. Situations of this nature are common in our economy. Manufactur-
ers try to pass some vague regulatory criteria when setting the quality of their products.
Countries with similar environmental conditions face a threshold level of effort to control
pollution, below which a costly ecological disaster happens. Risk management sector of
a bank struggle to search for the threshold level of risk exposure above which a financial
distress occurs, but low risk is costly in terms of profit.

In order to capture collective learning situations of this sort, I present a model that ab-
stracts the key feature of the “binary outcome” out of reality: as the input (the arm being
operated) continuously decreases, the outcome (the payoff from that arm) has a down-
ward jump at some unknown threshold. Using terminology from the bandit literature,
my model features a continuum of arms, although there are two important differences
from that literature. First, the arms in my model are dependent in that if one arm is bad
(below the threshold), then all arms below it are also bad. Second, the continuum of arms
in my model poses a “spatial” dimension that is the main object of learning. In a typical
exponential bandit problem, learning is slow in the sense that it takes time for belief to
evolve regarding a specific arm. To some extent, this way of learning is “chronological”,
learning is slow and the key decision is when to switch arms. In my model, in contrast,
learning on a specific arm is assumed to be instant but learning for the threshold is still
slow because of the continuous action space. I call it “spatial” learning since the key
decision parameter is how fast to skim down the spectrum of arms.

Specifically, I first consider a continuous-time multi-player team problem. There is
a common starting “effort level”. At each time, all players receive a fixed flow benefit,
and chooses a “contribution” to the decline of effort. The higher the common effort, the
larger the flow cost. The process continues until the current common effort falls below a
threshold level. The threshold is fixed from the beginning, but is unknown to the players.
At that moment, the game ends, the team is hit with a lumpy cost, and then receives a
terminal payoff that is equal to the present discounted value of staying slightly above the
threshold thereafter. As is solved in Section 3, the solution to the team problem entails a
very fast decline in common effort as long as it is above certain cutoff, after which it stays
constant.

In contrast, a multi-player game gives qualitatively different dynamics. Whenever
the threshold is hit, the lumpy cost is shared among players proportional to the rela-
tive contribution at that moment. There are information externalities among players: the
history of play is common knowledge, and thresholds they face are the same. In other
words, contribution from a player benefits others by providing more learning about the
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threshold, but larger contribution means higher share in the lumpy cost, which is not in-
ternalized. As a result, players tend to contribute less to the decline of effort, free riding
on the information provided by others. The game is shown to have a unique symmetric
Markov equilibrium, in which the common effort declines smoothly over time–faster in
the beginning and then slows down towards a long-run asymptotic level. Interestingly,
this asymptotic level is the same as the cutoff level in the team problem.

The paper connects to several branches of existing literature. First, it belongs to the
tradition of experimentation a la Rothschild (1974). Later, exponential bandit (Cripps,
Keller, and Rady (2005), Bonatti and Hörner (2011)) and Brownian bandit (Bolton and
Harris (1999), Moscarini (2005)) were most extensively studied. This paper contributes to
the literature with a less studied form of learning, where the dynamic choice is among
the continuum of arms available. Chronologically learning may never stop, but spatially
it should end outside some “inaction region”.

Second, the paper contributes to the studies of dynamic games. Admati and Perry
(1991) and Matthews (2013) studied the dynamic problem of contribution to a public
good, without uncertainty and learning. Maskin and Tirole (1988a,b) investigated a dy-
namic stationary duopoly game. Lancaster (1973), Levhari and Mirman (1980) analyzed
the dynamic game of the extraction of a common resource. My model fits well into this
category of games, although in a continuous-time form. Section 5 explores the property
of a discrete-time version of the model, and establishes convergence to the main model.

Moreover, the paper is closely related to three papers on spatial learning. Bonatti and
Hörner (2013) considered a single player learning problem with respect to an unknown
threshold, where action space is finite and the consequence of taking a too low action is
a Poisson process. Callander (2011) featured a spatial learning in which the realization
of each trial is a sample point on a path of Brownian motion. Rob (1991) investigated an
industrial organization model where a continuum of firms collectively learn the position
of a kink on the demand curve by decisions of entry and exit. My work models a different
underlying economic situation, and investigates the strategic interaction between several
players learning the same object.

The rest of the paper is organized as follows. Section 2 lays out the settings of the
main model. Before giving the analysis of the game, Section 3 considers the cooperative
problem first, serving as a benchmark. Section 4 solves the strategic problem for the multi-
player game. Section 5 describes the discrete time counterpart of the game, and shows
the convergence of the solutions to that of the continuous time game. Section 6 extends
the game in three directions. Section 7 concludes.
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2 Model Setup

The Game Time is continuous. The duration of the game is random, and the realized
duration is denoted by t. There are I > 1 players labeled i = 1, . . . , I . At each time t ∈ R+,
Player i (i = 1, . . . , I) chooses an action vi(t) ∈ [0, v] (where v > 0) if the game has not
ended, and I write vi = {vi(t)}tt=0 as the resulting path.

There is a state variable x > 0 which I interpret as the level of (collective) effort. The
law of motion of x is as follows:

x(t) = x0 −
∫ t

0

V (s)ds, where V (t) ≡
I∑

i=1

vi(t) (1)

for some initial value x0 > 0. Hence, each individual vi(t) serves as an additive contribu-
tion to the total “rate of decline” in x.

The game features incomplete information. Specifically, there is a random state of the
world c ∈ [0, x0). It is distributed with c.d.f. F (·) and a continuous density f(·) on support
[0, x0]. The realized value of c is fixed throughout, but unknown at the start. The game
ends when x(t) 6 c for the first time, if ever. In this sense, c is regarded as a threshold.1

The duration of the game is hence a stopping time

t = inf{t : x(t) 6 c} ∈ R+ ∪ {+∞}.

Because V (t) is bounded for any t ∈ [0, t], the time path of effort x(·) is continuous. There-
fore, if t <∞, the threshold c is revealed to be x(t) at the end of the game.

From now on I maintain the following assumptions on the distribution of c, unless
explicitly mentioned otherwise.

Assumption 1 (Monotone Hazard Rate)
The inverse hazard rate F (·)

f(·) is strictly increasing.

Assumption 2 (Strongly Positive Density)
The density f(·) is uniformly bounded away from zero, i.e. ∃f > 0 s.t. f(c) > f for all c ∈ [0, x0].

Assumption 3 (Lipschitz Continuous Density)
The density f(·) is Lipschitz continuous, i.e. ∃κ > 0 s.t. |f(x) − f(y)| 6 κ|x − y| for all x, y ∈

1In the language of bandits, c is the threshold that divides the continuum of arms into “good” arms
(x > c) and “bad” arms (x 6 c)
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[0, x0].

Assumption 1 is a standard monotonicity assumption. Assumptions 2 and 3 rule out
pathological solutions of the game.

Payoff comes in two forms: flow and lump. Flow cost consists of cost and benefit.
Higher flow cost results from higher effort. With little loss of generality, the flow cost is
simply x for everyone when the effort level is x.2 Also, each player enjoys a fixed flow
benefit p > x0 at all times.

Lumpy payoffs come at the end of the game, if it ends in finite time. Given a fixed
path x(·), the game ends at t (t = ∞ means no breakdown) along with a costly breakdown.
Let r be the common discount rate of the players. First, the breakdown brings lumpy cost
L > 0, if ever, at time t. It is assumed that Lr < F (x0)

f(x0)
, i.e. the lumpy cost is relatively

small. 3 The lumpy cost is divided among players as follows: Player i suffers Lvi(t)

V (t)
, so

that the share of cost equals the share of actions at that moment.4,5 Second, each player
receives a terminal benefit p−c

r
> 0.6

In sum, if the breakdown occurs at time t = t which reveals threshold c = x(t), then
Player i’s realized total present discounted payoff is

∫ t

0

(p− x(t)) e−rtdt︸ ︷︷ ︸
flow before t

+
p− c

r
e−rt︸ ︷︷ ︸

terminal benefit at t

− L
vi(t)

V (t)
e−rt︸ ︷︷ ︸

terminal cost at t

,

where x(t) is determined by (1).
2Actually, as long as the flow cost function ϕ(x) is Lipschitz continuous and strictly increasing in x, we

can always redefine the state variable (the effort level) to be ϕ(x) instead of x, so that the cost is again equal
to the state.

3As will become evident later, with this assumption at least some learning is worthwhile at the begin-
ning.

4It is well-defined because the breakdown arrives only when V > 0.
5It deserves some explanation why the probability of suffering the lumpy cost is shared in this way. It

is not some designed “cost sharing rule” that players agree upon; it is simply a natural implication if we
view the continuous time game as a limit of discrete time games with very short period length. In the latter,
players take turns to bring x downward from the previous level. If the turns shift frequently enough, then
the probability of hitting the threshold during one’s turn is approximately proportional to the change of x
in her turn. The reader is referred to Section 5 for the description of a discrete time model.

6This form of terminal payoff is not crucial for results. Actually we can allow for fairly general functions,
but the one used here has the following economic interpretation: the arrival of breakdown at t fully reveals
the location of the threshold, so if there was a continuation game after the stopping time, the supremum of
payoff for any player is a constant flow of p−c. The terminal benefit p−c

r > 0 is the present discounted value
of this flow. It is positive because by assumption p > x0 > c. One can also view this as a normalization
because in this way the real cost of a breakdown is indeed L, instead of L plus some change of continuation
value.
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Information and Beliefs I assume perfect monitoring of players’ actions. A plausible
history of length t is denoted by ht ≡ {vi(s) : s < t}Ii=1 such that x(t) > 0, and the set of
all plausible histories of length t is Ht. The space of all plausible histories is H ≡ ∪t∈R+Ht.
Beginning with the common prior F (·) at t = 0, players update their beliefs about the
distribution of the threshold provided that no breakdown has occurred so far. Since for
every x the outcome 1{x>c} is revealed immediately, updating process is a mere truncation
at the top of the prior distribution.

Solution Concept A pure strategy of Player i is a measurable map from H into [0, v].
I focus on stationary Markov perfect equilibrium in pure strategies so that the strategy
profile depends only on the payoff-relevant state variable x ∈ (0, x0], but not on calendar
time or on how the state x is reached. Formally, for all i = 1, . . . , I a stationary Markov
strategy of Player i is a measurable map νi : (0, x0] → [0, v]. A profile of Markov strategies
is denoted by ν ≡ {νi}Ii=1. The time path of x follows the ordinary differential equation
below

dx

dt
= −

I∑
i=1

νi(x), x(0) = x0. (2)

To ensure the existence and uniqueness of x(·), I restrict attention to strategies such that
for all i = 1, . . . , I : (a) νi is left continuous for all i = 1, . . . , I , and (b) νi is piecewise
Lipschitz continuous with at most finitely many jumps. With these restrictions on the
strategy profile, the path of x as is uniquely determined by ν, so that the stopping time t
is well-defined.

Given the strategy profile of other players, Player i aims to maximize the expect payoff

wi(ν) = E

[∫ t

0

(p− x(t)) e−rtdt+
p− c

r
e−rt − L

νi(c)

V(c)
e−rt

]
(3)

where x(t) is determined by ν via (2), t is pinned down by both ν and c, and the expecta-
tion is taken over c. A stationary Markov equilibrium in pure strategies (henceforth pure
MPE) is a profile ν that constitutes a Nash equilibrium for any initial state x ∈ (0, x0].
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3 Cooperative Problem

In this section I discuss the cooperative problem as a benchmark of the first best. The
Hamilton-Jacobi-Bellman equation (henceforth HJB) of the social planner is given. Its
analysis yields the solution to the problem, summarized in Proposition 1. Several impli-
cations from the result are discussed after that.

Denote V ≡ Iv as the upper limit on aggregate action, and denote UI(x) as the per-
capita value function in the I-player cooperative problem. Formally, I solve the following
optimization problem.

UI(x0) =
1

I
max
ν(·)

I∑
i=1

wi(ν)

= max
ν(·)

E

[∫ t

0

(p− x(t)) e−rtdt+
p− c

r
e−rt − L

I
e−rt

]

such that x evolves according to (2), t equals the stopping time determined by x, and
νi(x) ∈ [0, v] for all x ∈ [0, x0]. Since x and t both depend only on V(·) =

∑I
i=1 νi(·), it is

sufficient for the social planner to control the aggregate strategy V(·) only.

Recall that with the assumption on L, we have F (x0)
f(x0)

> Lr > Lr
I

. On the other hand,
limx→0

F (x)
f(x)

= 0 < Lr
I

.7 By Intermediate Value Theorem and Assumption 1, there exists a
unique solution to the equation F (x)

f(x)
= Lr

I
. Let x∗I denote the solution, where the subscript

indicates the number of players in the problem.

For x ∈ (0, x0], if UI is differentiable at x (as will be verified), then the HJB equation for
the cooperative problem is

rUI(x) = (p− x) + max
V ∈[0,V ]

V

{
f(x)

F (x)

(
p− x

r
− UI(x)−

L

I

)
− U ′

I(x)

}
. (4)

The first term on the right-hand side is the flow payoff (benefit and cost) per capita. The
second term is the maximum of a linear function of V , and the bracket multiplying V

summarizes the benefit and cost of taking aggregate action V . The first term in the bracket
is the expected loss upon hitting the threshold, equalling the hazard rate f(x)/F (x) times

7The equality holds for the following reason. By Assumption 1 F (x)
f(x) is increasing, and by definition

it is bounded below by 0. Hence limx→0
F (x)
f(x) exists and is non-negative. If limx→0

F (x)
f(x) = a > 0, then

f(x) 6 F (x)/a for all x > 0, and with initial condition F (0) = 0, we get F (x) = 0 for all x > 0, a
contradiction. Hence, limx→0

F (x)
f(x) = 0.
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the net loss per capita conditional on breakdown. The second term in the bracket captures
the gains from learning by bringing x down to “x− V dt”, when there is no breakdown in
the next moment.

The linearity of the HJB leads to a corner solution: V = 0 or V = V . When V = 0,
we have UI(x) = (p − x)/r. When V = V , (4) implies the following ordinary differential
equation

V U ′
I(x) +

(
r +

V f(x)

F (x)

)
UI(x) = p− x+

V f(x)

F (x)

(
p− x

r
− L

I

)
,

the solution to which is

UI(x) =
p− x

r
+
e−rx/V

rF (x)

[
C1 +

∫ x

0

(
F (s)− Lr

I
f(s)

)
ers/V ds

]
, (5)

for some C1 ∈ R. The right-hand side of the above consists of two parts. The first term is
the payoff of staying at x forever (no learning), and the second term is the option value
of learning. Value-matching and smooth-pasting pin down the constant C1 and the cutoff
effort level at which V switches from V to zero.

Proposition 1 In the cooperative problem, the policy and the per-capita value function are

V =

{
V if x ∈ (x∗I , x0]

0 if x ∈ (0, x∗I ]
,

UI(x) =

{
p−x
r

+ 1
rF (x)

∫ x

x∗
I

(
F (s)− Lr

I
f(s)

)
e−r(x−s)/V ds if x ∈ (x∗I , x0]

p−x
r

if x ∈ (0, x∗I ]
. (6)

Proof. The value-matching condition requiresUI(x
∗
I) = (p−x∗I)/r, and the smooth-pasting

boils down to U ′
I(x

∗
I) = −1/r. Plugging these two equations in (5) yields F (x∗

I )

f(x∗
I )

= Lr
I

. The
optimality of the solution is guaranteed by Verification Theorem.

The solution (6) has several implications. First, there exists an inaction region (or
“safety buffer”) [0, x∗I ]. The fact that x∗I > 0 means that the planner wants players to
stop learning before they search through the entire spectrum of effort levels, even in the
absence of a breakdown. Intuitively, there are cost and benefit when choosing the total
speed of learning V . In (4), the benefit −V U ′

I(x) is the possible future gains from learning,
and the cost V f(x)

F (x)

(
p−x
r

− UI(x)− L
I

)
is the risk of hitting the threshold at the next mo-

ment. As x becomes smaller, the hazard rate f(x)/F (x) grows larger and eventually the
cost outweighs the benefit. Intuitively, knowing that the range of the costly threshold is
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sufficiently narrowed down, the planner optimally calls off learning.

Second, first best allows for no procrastination in learning. In other words, the plan-
ner wants the players to reach x∗I as fast as possible and then stop learning immediately
once it is not worthwhile. Procrastination serves to push back the arrival of breakdown,
but also necessitates a longer duration of high flow cost from effort. In the absence of
breakdown, the time path of effort x is piecewise linear: skimming down from x0 to x∗I
with maximum speed, followed by a constant level at x∗I forever. As we will see in Section
4, procrastination naturally arises in non-cooperative situations.

Third, the reason that players switch from “risky” actions V > 0 to “safe” actions
V = 0 is different from exponential bandits. In a two-armed exponential bandit with
good news, players eventually switch from risky arm to safe arm because they are suffi-
ciently pessimistic, in the sense that the current sacrifice in flow cost becomes too large
compared to the potential benefit from learning. In the bad news case, on the other hand,
once started learning is stopped only by a breakdown, and there is no voluntary switch
on path. The spatial learning model considered here differs from both cases. It is in na-
ture a bad news problem, and as the effort level decreases players grow more optimistic
about the distribution of c (in the sense of first order stochastic dominance). However,
unlike the exponential bandit with bad news, the learning stops when players get suffi-
ciently optimistic. The seemingly paradoxical solution is explained by the fact that while
the posterior distribution truncated at x first order stochastically dominates the one trun-
cated at x′ < x so that globally speaking the state x′ is better for the planner, the hazard
rate of breakdown at x′ is higher than the one at x (Assumption 1), which means that
locally speaking the incentive to search further down is lower for state x′. Hence, it is the
ordering of local incentives that determines the dynamics, not the global comparison of
distributions. At some point, players stop learning when it becomes relatively too risky to
search down, and at that point the current effort level is considered to be cheap enough.

One can also interpret the stopping property from the perspective of bandit prob-
lem with a continuum of correlated arms. Suppose a social planner faces a current state
variable x, which is the highest arm whose output is uncertain. Heuristically, consider
operating a “bunch of arms” in the interval [x+ dx, x] for the next instant of time dt. This
bunch of arms, as a whole, is bad with probability −dx f(x)

F (x)
. Hence, the experimentation

generates a good outcome (no breakdown) with probability 1 + dx f(x)
F (x)

saving future cost
of I −dx

r
in total, and brings a bad outcome (breakdown) with probability −dx f(x)

F (x)
inflict-

ing a damage of L. This marginal experimentation is profitable if and only if F (x)
f(x)

> Lr
I

. In
summary, the logic for an individual arm is the same as exponential bandit, but learning
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I = 1

I = 2

I = 5

x

U∞
I

p
r

x∗1x∗2x∗5

(a)

I = 1

I = 2

I = 5

x

U∞
I

x∗1

x∗2

x∗5

(b)

Figure 1: Cooperative Solution. (a) Value functions for 1, 2 or 5 players. (b) Time paths
for 1, 2 or 5 players.

stops eventually because the arms become less and less worthwhile to explore when x

goes down, due to the monotone hazard rate in Assumption 1.

Fourth, the cutoff effort level x∗I for inaction is decreasing with the number of players.
When I = 1, we are in the special case of a single player, and the cutoff effort x∗1 is
higher than the one for multiple players. This makes sense because the shared lumpy
cost among I players is lower. Meanwhile, from the perspective of a member in the team,
having more members is beneficial in two aspects. One is direct in that the lumpy cost is
shared among more players. The other is indirect in that the amount of learning is larger
(lower x∗I) in bigger groups because of information from learning is shared to a greater
extent.

Finally, the myopic cutoff effort is x0. Myopic players consider only the flow payoff.
In this model, the flow is p− x+ V f(x)

F (x)

(
p−x
r

− UI(x)− L
I

)
, strictly decreasing in V because

UI(x) > p−x
r

. Hence myopic players should never search downward because it is always
detrimental to flow payoff.

It is interesting to look at the limit of the solution as V → ∞. While V approaches
infinity, it takes less and less time for the team to reach x∗I and stop. In the limit, it takes
no time to achieve the preferred amount of learning. Also, for any fixed x, the value
function monotonically converges to

U∞
I (x) ≡ lim

V→∞
UI(x)

=

{
p−x
r

+ 1
rF (x)

∫ x

x∗
I

(
F (s)− Lr

I
f(s)

)
ds if x ∈ (x∗I , x0]

p−x
r

if x ∈ (0, x∗I ]
,
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which is the supremum of value functions for all V . This limit function is interpreted as
the per-capita value achievable if learning takes no time.

Figure 1 summarizes the solution for cooperative problem. The left panel shows the
per-capita value functions U∞

I (x) for I = 1 (thick solid curve), I = 2 (dashed curve) and
I = 5 (dot-dash curve). The thin solid line is the payoff of not experimenting at all. The
three curves touch the thin solid line at x∗1, x∗2 and x∗5, respectively. The right panel shows
the time path of x starting from x0 when V → ∞, with 1, 2 or 5 players. After a fast initial
decline, they stop at the corresponding cutoff effort levels.

4 Strategic Problem

In a game among I > 2 players, incentives depend on positive information exter-
nalities, resulting in very different equilibrium dynamics. In approaching the problem,
the HJB of a player is provided and the best response correspondence derived. Prop-
erties shared by all stationary Markov equilibria are then available. Since the focus is
on symmetric equilibrium, the main result (Theorem 4) solves for the unique symmetric
pure strategy stationary Markov equilibrium in closed form, in which learning is too slow
compared to social optimum. Some remarks and testable implications follow.

4.1 Best Response Function

For any strategy profile {vi}Ii=1 = {νi(x)}Ii=1, define Wi(x) as the value function for
Player i, treating as given the strategy profile of all other players. Let ν−i(x) ≡

∑
j ̸=i νj(x)

be the aggregate action contributed by all other players and V(x) ≡
∑I

i=1 νi(x) be the
aggregate action of all players. The HJB for Player i is

rWi(x) = (p− x) + max
vi∈[0,v]

vi

{
f(x)

F (x)

(
p− x

r
−Wi(x)− L

)
−W ′

i (x)

}
+ν−i(x)

{
f(x)

F (x)

(
p− x

r
−Wi(x)

)
−W ′

i (x)

}
. (7)

The first term on the right-hand side is still the flow payoff. The second term (the one
with the maximum operator) is decomposed as the loss from breakdown and the benefit
from learning generated by Player i’s own action. The term in the second line arises only in
the non-cooperative problem; it consists of loss and benefit brought by other players. This

11



HJB equation differs from the one of the cooperative problem (or single player problem)
in an important way, in that the information provided by other players’ actions benefits
Player i with more learning and lower probability of triggering the breakdown. This type
of information externality is exactly “learning from others’ (lack of) mistake.”

A strategic player who cares about the second term in (7) only faces a problem that is
linear in vi, so the shape of Wi completely determines the best response. The aggregate
action from other players, ν−i, affects Wi and thus serves indirectly as the argument of the
best response:

BRi(ν−i)


= v if f(x)

F (x)

(
p−x
r

−Wi(x)− L
)
> W ′

i (x),

∈ [0, v] if f(x)
F (x)

(
p−x
r

−Wi(x)− L
)
= W ′

i (x),

= 0 if f(x)
F (x)

(
p−x
r

−Wi(x)− L
)
< W ′

i (x).

(8)

A pure strategy stationary Markov equilibrium requires that νi(x) ∈ BRi(ν−i) for all
x ∈ (0, x0]. Proposition 2 states that in any pure strategy stationary Markov equilibrium
of an I-player game, the amount of learning must lie between those of a single player
problem and an I-player cooperative problem.

Proposition 2 In any pure strategy stationary Markov equilibrium, (a) V(x) > 0 for x > x∗1,
and (b) V(x) = 0 for x < x∗I .

Proof. See Appendix.

4.2 Symmetric Equilibrium

A pure strategy stationary Markov equilibrium is symmetric if νi(·) = ν(·) for all
i = 1, . . . , I . As a result, symmetry implies the value functions satisfy Wi(·) = W (·).
The following Proposition solves for the cutoff effort level where the actions switch from
positive to zero.

Proposition 3 In any symmetric pure strategy MPE, ν(x) > 0 if x > x∗1, and ν(x) = 0 if
x < x∗1.

Proof. See Appendix.

Proposition 3 indicates that an I-player game leads to the same inaction region [0, x∗1]

as does a single player problem, which is clearly larger than the planner’s optimal inac-
tion region [0, x∗I ]. In other words, when a single player optimally decides to maintain the

12



current effort level, then adding another player will not prompt her to lower the effort
level if we restrict attention to symmetric equilibrium. Here is the intuition. Suppose
with multiple players, the cutoff effort level is lowered to x̂ < x∗1. Is it sequentially ra-
tional for Player i to stick to this stopping rule when facing a state slightly above x̂? No.
At such a state the learning will stop soon, and the cost of experimentation is approxi-
mately f(x̂)

F (x̂)
viL >

f(x∗
1)

F (x∗
1)
viL = vi

r
, while the benefit from experimentation is approximately

−viW ′
i (x̂) =

vi
r

. Hence, cost overwhelms benefit, contradicting optimality for Player i.

The cutoff action only informs us that the eventual amount of decrease in effort is in-
sufficient in equilibrium, compared to first best. It is also of interest to look at the speed of
decrease in effort because slow decrease means staying at high effort levels for longer pe-
riod of time. The following theorem, main result of the section, characterizes the unique
symmetric equilibrium of the game, where the decline in effort is indeed slow.

Theorem 4 Suppose v >
∫ x0
x∗1

(F (s)−Lrf(s))ds

(I−1)Lf
. There exists a unique symmetric pure strategy sta-

tionary Markov equilibrium in the I-player strategic problem. Furthermore, the equilibrium fea-
tures

ν(x) =


∫ x
x∗1

(F (s)−Lrf(s))ds

(I−1)Lf(x)
if x ∈ (x∗1, x0]

0 if x ∈ (0, x∗1]
, (9)

W (x) = U∞
1 (x). (10)

Proof. See Appendix.

The condition v >
∫ x0
x∗1

(F (s)−Lrf(s))ds

(I−1)Lf
in the theorem is not necessary for existence and

uniqueness; it is imposed to avoid corner solutions for ν(·). There are two noteworthy
remarks. First, in the unique symmetric equilibrium, the individual action v = ν(x) is
interior solution, in contrast with the planner’s problem. This means the players are
indifferent among any action in the range [0, v] for x ∈ (x∗1, x0], but choosing the specific
action as part of the symmetric equilibrium.

Second, the indifference among actions implies rent dissipation. Given the equilib-
rium strategies of other players, one can do equally well by choosing the highest action
v. As v → ∞, the difference between the payoff of this player in the game and pay-
off when playing alone vanishes (equation (10)), demonstrating an extreme form of rent
dissipation. Although having other players in the game seemingly benefits a player, the
procrastination in learning and the resulting high flow cost almost entirely negates the
rent.

13
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Figure 2: Symmetric Equilibrium. (a) Equilibrium strategy for 1, 2 or 5 players. (b) Time
paths for 1, 2 or 5 players.

Having discussed the equilibrium strategies, it is interesting to elaborate on the behav-
ior of the time path of effort. Absent any breakdown, the path x(·) is uniquely determined
by the differential equation (2). From Theorem 4, we know that x decreases over time as
long as x > x∗1, and will never reach a state below x∗1. Moreover, as is evident from (9), the
individual action (and also the aggregate action) shrinks to zero when x ↓ x∗1, reflecting
a severe downscaling in actions when the effort level is close to the cutoff. It is shown
below in Proposition 5 that the state never exactly reaches x∗1.

Proposition 5 When c 6 x∗1, the time path x(t) satisfies (a) limt→∞ x(t) = x∗1; (b) x(t) > x∗1 for
all t ∈ R+.

Proof. First, note that by Assumption 3, f defined on [0, x∗1] must have an upper bound
f > 0.

Part (a): x(t) is non-increasing, and is bounded below by x∗1. If limt→∞ x(t) = x̂ >

x∗1, then by Assumption 1, x′(t) = −Iν(x) < −
I
∫ x̂
x∗1

[F (s)−Lrf(s)]ds

(I−1)Lf
< 0 for all t ∈ R+, a

contradiction.

Part (b): ν(x) is bounded above by ν̂(x) ≡
∫ x
x∗1

(f+Lrκ)(s−x∗
1)ds

(I−1)Lf
. The path of x, when ν is

replaced by ν̂, is always above x∗1, so it must be true for the original path too.

The proposition says that without breakdowns, the long-run limit of x is x∗1, so that the
probability of eventually learning the threshold is 1−F (x∗1). It also implies that for thresh-
old realizations slightly above x∗1, the time to learn its exact location becomes unbounded.
Actually, we can derive the speed of convergence in the following.
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Proposition 6 Suppose c 6 x∗1. If limx↓x∗
1

d
dx

(
F (x)
f(x)

)
= b > 0, then the time path x(t) converges

to x∗1 at speed t−1.

Proof. See Appendix.

Figure 2 shows the equilibrium strategy vi = νi(x) and the time path, for games with
I = 2, 5 players. As a comparison, the time path for the single player problem is also
presented.

4.3 Comparative Statics and Implications

The dynamics of the game depend on the primitives. Fix x0 > 0, we first examine the
effect on the inaction region of changing the discount rate, the lumpy cost and the prior
distribution function.

Corollary 7 The cutoff effort level x∗1 is increasing in L and r. Moreover, if two prior distribution
functions F and F ′ are hazard rate ordered such that f(x)

F (x)
< f ′(x)

F ′(x)
for all x ∈ [0, x0], then x∗1 under

F is lower than that under F ′.

Proof. By Assumption 1, the above comparative statics are immediate from the equation
F (x∗

1)

f(x∗
1)

= Lr.

The cutoff is directly related to the probability of eventual learning 1− F (x∗1). Hence,
projects with less costly breakdown operated by a more patient group will likely to have
a lower cutoff effort level and higher probability of eventual learning. As players become
perfectly patient, sufficient learning is achieved. The second part of Corollary 7 says that
if the prior distribution is more favorable (concentrated more in the lower end), then the
cutoff is lower.

The model also generates some comparative statics regarding the equilibrium actions.
However, these results have testable implications only if the action history is also avail-
able to an outside econometrician.

There are contexts where the action/effort history is observable. Examples include
leverage levels in financial sectors, amount of pollution to the environment, etc. In these
situations, we have the following predictions.

Lemma 8 Fix distribution F . At any state x > x∗1, the individual action ν(x) (as well as the
aggregate action V(x)) is decreasing in L, r, and I .
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Proof. See Appendix.

The lemma implies that (a) in scenarios with more severe consequence from break-
down, players are less eager to bring down the effort level; (b) the same is true if the
group of players is less patient; (c) the aggregate action (the speed of decline in effort)
is decreasing in the number of players I . While statement (a) is somewhat expected, (b)
and (c) deserve short comments. Statement (b) is surprising at first glance if one fits the
story into a “quality maintenance” context. Why should less patient players keep a higher
quality (effort) level? There are two reasons. First, unlike in repeated games, the lumpy
cost of breakdown occurs immediately when x < c so that there is no discounting in the
size of the “punishment”. Second, there is learning in the threshold and it is precisely the
impatient players who do not wish to learn more at the cost of current payoff. Statement
(c) implies that the negative impact of free-riding outweighs the number of players, so
that even the aggregate action is decreasing in I . As I → ∞ the aggregate action becomes
half of that in a two-player game.

There are even more situations where the action/effort history is unobservable or dif-
ficult to quantify. For instance, product qualities from manufacturers are unobservable,
and maintenance effort levels for power plants are hard to measure. Thus one cannot use
the action or effort path to make predictions. However, there is an implication based on
the hazard rate: the hazard rate of breakdown is decreasing over time. It is useful for an
outsider econometrician as long as the occurrence of incidence (breakdown) is observable.

Lemma 9 The hazard rate of breakdown, Iν(x) f(x)
F (x)

, is decreasing over time.

Proof. To see this, note that the hazard rate of breakdown is

Iν(x)
f(x)

F (x)
=
I
∫ x

x∗
1
(F (s)− Lrf(s))ds

(I − 1)LF (x)
,

and this is increasing in x because

d

dx

(
Iν(x)

f(x)

F (x)

)
> 0

⇔
(
F (x)

f(x)
− Lr

)
F (x) >

∫ x

x∗
1

(
F (s)

f(s)
− Lr

)
f(s)ds,

which is true by Assumption 1.

Hence, as time goes by, x decreases, and the hazard rate of triggering a breakdown is
decreasing. This coincides with the general observation that long-established firms tend
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to maintain a steady quality and less likely suffer scandals of quality issues.

5 Discrete Time and Convergence

This section studies a discrete-time version of the game. In particular, the game fea-
tures alternating moves where I > 2 players take turns to change the current effort to a
possibly new level. A breakdown arrives as soon as the effort level falls below the un-
known threshold after some player’s move, and that player alone bears the lumpy cost
from the breakdown. The breakdown also ends the game and gives a terminal payoff,
just like the continuous time version.

The purpose of this section is to let the frequency of moves go to infinity (i.e., period
length goes to zero) and to show that the realized time path of effort in the discrete-time
game converges to that of the continuous-time version. In this sense, the outcome of the
continuous-time game is robust to perturbations in the fineness of time grids.

Formally, time is discrete and the time periods are indexed by n = 1, 2, . . .. The horizon
of the game is random. The period length is ∆ > 0. For simplicity, let there be I = 2

players labeled i = 1, 2. In each of the odd periods n, Player 1 chooses an action v1(n) ∈
[0, v] (again, v > 0), provided the game has not ended. In even periods, Player 2 chooses
an action v2(n) ∈ [0, v]. The effort level x evolves as follows:

x(n) =

{
x(n− 1)− v1(n)∆ for odd n,

x(n− 1)− v2(n)∆ for even n,

where x(0) is defined to be some x0 > 0, given at the beginning of Period 1. Hence, in
each period the effort decreases by vi(n)∆, where the identity of i depends on who makes
the move in that period. Note that vi(n) is similarly interpreted as the “speed of decline,”
but its magnitude is twice as large as the counterpart in continuous time, since here each
player only contributes in half of the time.

As in the continuous time model, the unknown threshold c ∈ [0, x0) has c.d.f. F (·) that
satisfies Assumptions 1 and 2. Moreover, the discreteness demands a slightly stronger
requirement on the hazard rate:

Assumption 4 (Strongly Monotone Hazard Rate)
The inverse hazard rate F (·)

f(·) is strongly increasing, i.e., for some b > 0, F (x)
f(x)

− F (y)
f(y)

> b(x− y) for
0 6 y 6 x 6 x0.
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Given the evolution of x, the game terminates at the end of Period n if n is the smallest
n > 1 such that x(n) 6 c, and n can be infinity. Differently from the continuous time
version, even the threshold is triggered in Period n, it is not perfectly inferred; players
only know that c ∈ [x(n), x(n− 1)).

Payoffs come in flows and lumps. Let r > 0 be the common real time discount rate of
the players, and δ ≡ e−r∆ be the discount factor between periods. Define for convenience
that ∆̃ ≡ 1−e−r∆

r
= 1−δ

r
. In each Period n 6 n, the flow benefit is

∫ ∆

0
e−rspds = p∆̃ for both

players. The flow cost from effort is
∫ ∆

0
e−rsx(n)ds = x(n)∆̃ for the player who moves in

Period n, and is x(n − 1)∆̃ for the other.8 If the game ever ends with terminal period n,
then the player who moves in that period bears the lumpy cost L > 0. Moreover, each
player receives a terminal lump sum p−x(n−1)

r
equalling the present discounted value of a

flow (p− x(n− 1))∆̃ per period from then on.9

Recall that in the continuous-time model, the lumpy cost for Player i at the end of the
game is Lvi(t)

V (t)
. This can be seen as a limit payoff in the discrete-time game when period

length goes to zero. Consider two consecutive periods n and n+ 1, where Player i moves
in the former and Player −imoves in the latter. Conditional on the fact that the game ends
within the time window [(n − 1)∆, (n + 1)∆], it ends in Player i’s turn with probability

vi(n)∆
(vi(n)+v−i(n+1))∆

= vi(n)
vi(n)+v−i(n+1)

. Once we restrict attention to Markov strategies (see below)
that are piecewise Lipschitz continuous in x, this ratio converges to the share of loss in
the continuous time model as ∆ → 0.

A pure Markov perfect strategy νi(·) is a mapping from the state space [0, x0] into
the action space [0, v], for i = 1, 2. Again, we are interested in symmetric MPE in pure
strategies. Denote it as ν1(·) = ν2(·) = ν(·).

5.1 Existence and Convergence

Having defined the discrete-time model, I present the existence result below, followed
by the convergence result that links the discrete- and continuous-time models.

Proposition 10 Fix a ∆ > 0 that is small enough. Suppose v > 2

∫ x0
x∗1

(F (s)−Lrf(s))ds

Lf
. There exists

8This difference in cost results from the asynchronous moves. The difference is unimportant, and it
vanishes in continuous time model. However, we cannot call x(n) the common effort level. Instead, we call
it the frontier of effort.

9Here the imaginary “continuation” payoff is based on the assumption that both players revert to the
effort in the last period as the cheapest safe action. Actually, if we allow the game to continue, then this
reversion is indeed optimal for small enough ∆.
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a continuum of symmetric pure strategy MPE E(y0; ∆), parametrized by y0 ∈ [y
0
, x0] for some

y
0
∈ (x∗1, x0), of the following form:

ν(x) =

{
x−yk+1

∆
if x ∈ (yk+1, yk] for some k > −1

0 if x 6 x∗1

where y−1 ≡ x0, x∗1 < . . . < yk+1 < yk < . . . < y1 < y0 and limk→∞ yk = x∗1.

Proof. See Appendix.

Proposition 10 has two facets. First, it claims that there exists some symmetric pure
strategy MPE with the skimming property, in which there is a strictly decreasing sequence
of “critical levels” {yk}∞k=1 of the state variable such that the player currently making a
move always chooses an action bringing the state x down to the highest critical level
strictly below x. The sequence starts with y0 ∈ [y

0
, x0] and monotonically converges to

x∗1, so on path Player 1 brings the state down from x0 to y0, then Player 2 brings it to y1,
and again Player 1 sets the new state at y2, etc. This process goes all the way down to
x∗1 asymptotically. In equilibrium the current mover facing state yk is indifferent between
staying at yk and moving down to yk+1, although the equilibrium requires her to choose
the latter.

Second, it also states that there is some indeterminacy leading to multiple equilibria.
As is usually the case for equilibrium with the skimming property (bargaining problem
for instance), multiplicity arises because unlike other critical levels of the state variable,
the initial state may not satisfy the indifference condition. As a result, there is leeway in
choosing y0 ∈ [y

0
, x0] as the first critical point satisfying the indifference condition. Once

y0 is chosen, everything else is determined.

The indeterminacy does not pose a problem in the limit as ∆ → 0, as we will show in
Proposition 11. The main idea is that with smaller ∆, the sequence {yk}∞k=0 is denser, and
the interval [y

1
, x0] is narrower. Hence, even there is a continuum of equilibria, they differ

by less and less as ∆ → 0.

The next proposition shows the convergence of time path as ∆ → 0. Thanks to Propo-
sition 10, for any small enough period length ∆ > 0, we can select a symmetric pure
strategy MPE E(y0(∆);∆) indexed by y0(∆) ∈ [y

0
(∆), x0], and the resulting path is de-

noted by x(·; ∆). Hence, if a sequence ∆n ↓ 0, then there exists N > 0 s.t. for all n > N ,
the selection E(y0(∆n);∆n) exists, generating a sequence of time paths {x(·; ∆n)}∞n=N .
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Proposition 11 Suppose v > 2

∫ x0
x∗1

(F (s)−Lrf(s))ds

Lf
. For any fixed sequence ∆n ↓ 0 there exists

N > 0 s.t. the sequence of paths {x(·; ∆n)}∞n=N generated by any selection converges to that from
the continuous time model at every t ∈ [0, t).

Proof. See Appendix.

Hence, viewed in real time, the path of effort levels in the discrete time model is a step
function, but it converges to a decreasing smooth function, which is the outcome of the
continuous-time model. To some extent, this convergence serves as a robustness check to
the main model, assuring that both the setup and the equilibrium predictions are valid as
a proper limit of some discrete time model.

Convergence does not always hold for any assumptions on the payoff structure. If,
for example, the negative impact of breakdown does not involve a lump sum L but in-
stead costs the entire terminal benefit as an “endogenous punishment”, then there are no
equilibrium outcomes of the discrete time version in the vicinity of the continuous time
outcome.

6 Extensions

This section returns to the continuous-time model, but considers several branches of
extensions. First, we aim to investigate the dependence of equilibrium on the monitoring
structure. Second, we relax the assumption of a constant lump sum L across states, allow-
ing for dependence of L on x. Finally, we use the ironing approach to solve the problem
when Assumption 1 fails.

6.1 Unobservable Actions

In this extension I consider an alternative monitoring structure: unobservable actions
with public breakdown. The benchmark case where both the action history and the break-
down are observable is analyzed in Section 4, while the other extreme—unobservable ac-
tions and breakdown—is equivalent to a single player problem because no information
is transmitted whatsoever. The monitoring structure considered here is a compromise;
players secretly operate their own learning enterprises with a common threshold, lead-
ing to potentially different effort paths over time, but the event of someone triggering the
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breakdown is instantly revealed. The relevance of this variation is justified by the obser-
vation that it is easier to get notified of a breakdown than to watch the operation of one’s
opponent. Information externalities still persist, although in a less straightforward way.

Formally, there are two players i = 1, 2. Time is continuous. For i = 1, 2, there is a
(potentially different) stopping time ti > 0, which is specified later. The horizon of the
game, t, is then defined as t ≡ max{t1, t2}. At each time t ∈ [0, ti], Player i takes private
action vi(t) ∈ [0, v]. Each player has an individual effort level xi > 0 the law of motion of
which is

xi(t) = x0 −
∫ t

0

vi(s)ds, (11)

for some common initial value x0 > 0. The effort level is no longer common because of
the lack of observability of the other player’s action.

The unknown threshold c ∈ [0, x0) is common, the distribution of which satisfies the
same conditions as in the main model. For i = 1, 2, define the stopping time as ti ≡ inf{t :
xi(t) 6 c} ∈ R+ ∪ {+∞}. Hence, Player i’s part in the game ends as soon as xi(t) 6 c.
If some player triggers the threshold first, then this event becomes public immediately
without revealing the effort level that pulls the trigger.

Payoffs come in flows and lumps. Before time ti, the flow payoff for Player i is p− xi:
fixed benefit minus the cost of effort. If ti < ∞, then her part of the game ends at ti, with
a terminal cost L from breakdown and a terminal benefit p−c

r
. If Player i’s part has ended

but Player j’s has not, then Player j moves on as a single player.

At time t ∈ [0, ti], the information available to Player i is her private action history
{vi(s)}s<t as well as the time at which Player j hits the threshold, if at all. Since time
itself contains information, the payoff-relevant states are individual effort level, time, and
possibly the time at which the opponent ends her part. A pure Markov strategy of Player
i is thus a pair of mappings

ν0i (xi, t) : [0, x0]× R+ → [0, v],

ν1i (xi, t, tj) : [0, x0]× R+ × R+ → [0, v],

where ν0i and ν1i describe the pure strategy of Player i before and after her opponent hits
the threshold, respectively. Let Ni be the set of pure Markov strategy pairs where both ν0i
and ν1i are piecewise Lipschitz continuous in xi. The first component of a pure strategy,
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ν0i , uniquely defines a path of effort xi(t) from the differential equation

dxi
dt

= −ν0i (xi, t), xi(0) = x0, (12)

when min{ti, tj} has not arrived. In what follows, path of effort refers to the effort level as
a function of time conditional on the event of no breakdown so far. The second compo-
nent, ν1i , is simply the single-player policy in the continuation game where the posterior
distribution of the threshold is obtained by Bayes-updating.

A pure strategy Markov equilibrium is a profile of pairs {(ν01 , ν11), (ν02 , ν12)} such that
(ν0i , ν

1
i ) constitutes a best response to (ν0j , ν

1
j ) for any feasible combination of (xi, t) or

(xi, t, tj). As we will soon see, the game does not admit a pure strategy Markov equilib-
rium, so it is necessary to consider mixed Markov strategies σi : [0, 1] → Ni for i = 1, 2. A
mixed strategy Markov equilibrium is a profile (σ1, σ2) such that any (ν0i , ν

1
i ) in the sup-

port of σi is a best response to σj for any feasible combination of (xi, t) or (xi, t, tj). Given
a mixed strategy σi of Player i and conditional on no breakdown, denote Pi(t|x) ≡ Pr(s 6
t|xi(s) = x) as the cumulative distribution of time conditional on Player i’s effort level be-
ing x. Also, define xhi (t) ≡ inf{x : Pi(t|x) = 1} and xli(t) ≡ sup{x : Pi(t|x) = 0}. Obviously
xhi (t) > xli(t) for all t ∈ R+. Moreover, xhi and xli are both non-increasing. The following
lemma makes comparison of payoffs in extreme cases.

Lemma 12 Fix Player j’s (possibly mixed) strategy σj . For Player i, consider two paths of effort
xi(·) and x̃i(·) resulting from two pure strategies, conditional on no breakdown.

(i) If for some 0 6 ta < tb 6 ∞ we have xi(t) > x̃i(t) > xhj (t) for t ∈ (ta, tb) and xi(t) = x̃i(t)

otherwise, then Player i strictly prefers x̃i to xi.

(ii) If for some 0 6 ta < tb 6 ∞ we have xlj(t) > xi(t) > x̃i(t) > x∗1 for t ∈ (ta, tb) and
xi(t) = x̃i(t) otherwise, then Player i strictly prefers x̃i to xi.

Proof. See Appendix.

The lemma says that on one hand, if two paths are both slow in decline so that Player
j has a lower effort level at all times, then Player i prefers the lower path. On the other
hand, if two paths (always above x∗1) are both quick in decline so that Player j has a higher
effort level at all times, then Player i also prefers the lower path. Intuitively, when the
choice of paths does not alter the probability of incurring the lumpy cost, faster decline in
effort is always preferable because of the savings in flow cost.

Proposition 13 utilizes the previous lemma to rule out the existence of any pure strat-
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egy equilibrium.

Proposition 13 There is no pure strategy Markov equilibrium.

Proof. See Appendix.

An equilibrium is said to have deterring property if for i = 1, 2, σi puts zero probability
on all strategies with ν1i > 0, i.e. once a player hits the threshold first, the other one
immediately stops lowering effort. I focus on symmetric Markov equilibria with this
deterring property. Denote Wi(xi, t) as Player i’s value function before anyone hits the
threshold. Denote Pi(t|x) ≡ Pr(s 6 t|xi(s) = x) as the distribution of time conditional
on Player i’s effort level being x, generated by her equilibrium mixed strategy σi. From
Player i’s point of view, the equilibrium distribution Pj(t|x) is given, and her HJB is:

rWi(xi, t) = (p− xi) + max
vi∈[0,v]

vi

{
Qjx(xi, t)

Qj(xi, t)

(
p− xi
r

− L−Wi(xi, t)

)
−Wix(xi, t)

}
−Qjt(xi, t)

Qj(xi, t)

(
p− xi
r

−Wi(xi, t)

)
+Wit(xi, t), (13)

where Qj(xi, t) ≡
∫ xi

0
[1 − Pj(t|s)]f(s)ds is the total probability that c < xi and Player j

reaches c after time t. In other words, Qj(xi, t) is the unconditional “real threat” of the
lumpy cost that Player i faces, and it is smaller than F (xi) because Player j might hit
the threshold before Player i. The subscripts x and t denote the partial derivatives. The
right-hand side consists of several parts. The first term is the net flow payoff as usual.
The second term captures two effects of taking action vi. One is the cost of triggering the
breakdown herself, and the other is the benefit from learning through state. The third term
is indirect learning from the opponent’s lack of breakdown, equalling the conditional
probability rate that Player j hits the threshold multiplied by the change of payoff in
that case. The last term is the capital gain from changes in time. The last two terms are
both benefits from learning through time. They are novel to this unobservable actions case
because the information externality from the other player comes indirectly through time.

Formally, for x > x∗1 define T (x) ≡ x0−x
v

+ 1
r
ln ξ(x) where ξ(x) ≡

[
1− e−

x−x∗1
Lr

f(x)
f(x∗

1)

]−1

.
Note that ξ(x) > 1, T (x) > x0−x

v
> 0, and − 1

v
< T ′(x) < 0 for x ∈ (x∗1, x0]. Consider a class
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of pure Markov strategies N ≡ {ν0(x, t; t0) : t0 ∈ [0, T (x0)]} where

ν0(x, t; t0) ≡


f(x)Lr2

[f(x)−Lrf ′(x)](1−e−r[t−(x0−x)/v])ξ(x)+f(x)Lr2/v
if x > x∗1, t0 6 t 6 T (x)

v if x > x∗1, t > T (x)

0 otherwise

.

(14)

The strategy ν0(x, t; t0), indexed by t0, stipulates a player to remain inactive for some
initial period [0, t0]. If we integrate out the differential equation (12) using (14), then for
each t0 ∈ [0, T (x0)] there is a weakly decreasing time path x(·; t0) implicitly defined by the
equation

(
er[t−(x0−x)/v] − 1

)
(ξ(x)− 1)−1 =

(
ert0 − 1

)
(ξ(x0)− 1)−1

The following proposition describes a symmetric mixed strategy Markov equilibrium
with deterring property, where the support of mixed strategies is exactly N .

Proposition 14 The following strategy σ describes a symmetric mixed strategy Markov equilib-
rium with deterring property.

Prσ(ν0(·, ·; t0) : t0 6 τ) = (erτ − 1) (ξ(x0)− 1)−1, (15)

ν1(x, t, tj) ≡ 0.

Furthermore, absent any breakdown, the time path corresponding to any index t0 ∈ [0, T (x0)]

converges to x∗1.

Proof. See Appendix.

Actually, we can solve for the value function in closed form:

W (x, t) =

{
p−x
r

+ 1
rQ(x,t)

∫ x

x∗
1
[Q(s, t)− LrQx(s, t)]ds if x ∈ (x∗1, x0]

p−x
r

if x ∈ (0, x∗1]
. (16)
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where

Q(x, t) =

∫ x

0

[1− P (t|s)]dF (s), (17)

P (t|x) =


(
er[t−(x0−x)/v] − 1

)
(ξ(x)− 1)−1 if x > x∗1, t ∈

[
x0−x
v
, T (x)

]
1 if x > x∗1, t ∈ (T (x),∞)

0 otherwise

. (18)

The proposition has many implications. First, the equilibrium entails symmetric ran-
domization over a compact set of pure strategies (see (15)). Each such strategy is a mem-
ber of N , indexed by the initial hibernation period t0 ∈ [0, T (x0)]. Hence, with the real-
ization of t0, a player waits at the starting effort level x0 until t0 and then takes positive
actions resulting in a deterministically decreasing path in effort. All choices of t0 give the
player the same ex ante payoff, and t0 > T (x0) leads to lower payoff, so the player is
willing to randomize with the particular distribution.

Second, the players are willing to follow the prescribed deterministic path of effort
once t0 is chosen. Taking (16) to the HJB (13), we know that in equilibrium the multiplier
on vi is zero, so Player i is indifferent in choosing any vi ∈ [0, v]. In particular, she does
well with the prescribed path. This indifference among all effort levels at any time makes
it sufficient to consider only initial randomization on t0.

Third, the randomization in t0 means a compact spread of t at which xi reaches any
level between x0 and x∗1 (see (18)), and conversely a compact spread of xi at any time t.
For the lowest realization t0 = 0, the law of motion (11) yields the effort path of a single
player problem: fastest decrease before reaching x∗1 and then stay there. For higher t0, the
decrease in xi is slower.

Fourth, the game with unobservable actions leads to the same cutoff effort level as in
the main model (see (14)). This is not too surprising, considering the fact that both no-
information (single player) game and full-information game have the same cutoff effort.

Fifth, the ex ante payoff of a player is the same as in the observable action case, i.e.
W (x0, 0) = W (x0). This means the observability of action affects only the dynamics of
the play, but not the payoffs. Indeed, in the main model the symmetric equilibrium is
interior so that the value function must assume a particular form to support the indiffer-
ence; a player is just as willing to choose ν = v any time, which is the single player policy.
In the extension here the symmetric equilibrium is in mixed strategies so that similar re-
quirements are put on the value function to maintain the willingness to randomize; the

25



2nd

50th

100th

t

x
x0

x∗1

T (x0)

(a)

Unobservable

Observable

t

x
x0

x∗1

(b)

Figure 3: Unobservable actions. (a) Time paths from mixed strategies. (b) Comparison of
speed of decline in effort.

single-player path of effort is in the support of the mixed strategy. That is why the pay-
offs are equal. Again, we have rent dissipation: having other players in the game does
not benefit the existing player.

Proposition 15 Suppose c 6 x∗1. If limx↓x∗
1

d
dx

(
F (x)
f(x)

)
= b > 0, then the time path x(t) converges

to x∗1 at speed e−rt.

Proof. See Appendix.

Define T∞(x) = limv→∞ T (x). By definition, (T∞)−1(·) is the path of effort following
the highest realization of t0. As v → ∞, the pair (t, x) on path fills the entire set {(t, x) :
x ∈ [x∗1, x0], t ∈ [0, T∞(x)]}. Panel (a) of Figure 3 plots in the t− x plane the deterministic
paths of effort following the 2nd, 50th, and 100th percentile of t0.

Panel (b) of Figure 3 gives a comparison between the observable and unobservable
action cases, for the time paths of the expectation of the lower action conditional on no
breakdown. Intuitively, the expected speed of decline in x is faster in the unobservable
action case, but it is in turn slower than the no information case (single player case).

6.2 Variable Lumpy Cost

It has been previously assumed that the lumpy cost L is a fixed amount. However, one
can readily argue that the lumpy cost can vary with the realized threshold. For example,
in the maintenance of environment or health, the realized threshold is usually negatively
correlated with the cost upon triggering. On the other hand, in international relations, a
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high threshold is often associated with a high lumpy cost, when both are indicators of the
“toughness” of the country.

In order to obtain well-behaved solutions, we need modify Assumptions 1 through 3:

Assumption 5 (Modified Monotone Hazard Rate)
The ratio F (·)

f(·)L(·) is strictly increasing.

Assumption 6 (Strongly Positive Density and Cost)
Both f(·) and L(·) are uniformly bounded away from zero, i.e. ∃f > 0 s.t. min{f(c), L(c)} > f

for all c ∈ [0, x0].

Assumption 7 (Lipschitz Continuous Density and Cost)
Both f(·) and L(·) are Lipschitz continuous, i.e. ∃κ > 0 s.t. max{|f(x)−f(y)|, |L(x)−L(y)|} 6
κ|x− y| for all x, y ∈ [0, x0].

Accordingly, we need to define x̃∗1 as the unique solution to F (x)
f(x)L(x)

= r. The following
result is a counterpart of Theorem 4.

Proposition 16 Suppose v >
∫ x0
x̃∗1

(F (s)−L(s)rf(s))ds

(I−1)f2 . There exists a unique symmetric pure strategy
stationary Markov equilibrium in the I-player strategic problem. Furthermore, the equilibrium
features

ν(x) =


∫ x
x̃∗1

[F (s)−L(s)rf(s)]ds

(I−1)L(x)f(x)
if x ∈ (x̃∗1, x0]

0 if x ∈ (0, x̃∗1]

W (x) =

{
p−x
r

+ 1
rF (x)

∫ x

x̃∗
1
(F (s)− L(s)rf(s)) ds if x ∈ (x̃∗1, x0]

p−x
r

if x ∈ (0, x̃∗1]
,

The proof of this proposition is similar to that of Theorem 4.

6.3 Non-Monotone Hazard Rate: Ironing

That F (x)
f(x)

is strictly increasing is assumed for technical simplicity. However, in some
real situations the distribution function does not necessarily satisfy this condition. For
example, the players may know that the subject of experimentation has two major types:
tough or delicate, and within each type there are some noises determining the actual
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Figure 4: Two candidates. x1 not worth reaching.

realization of the threshold. In this way the distribution is bimodal, and Assumption 1
may fail. This subsection provides an ironing method to overcome this problem.

In this subsection we discard both Assumption 1 and the requirement that F (x0)
f(x0)

> Lr.
Due to the failure of monotone hazard rate, the solutions to F (x)

f(x)
= Lr may not be uniquely

determined, or may fail to exist when F (x0)
f(x0)

< Lr. The left panel of Figure 4 depicts
a situation where F (x) − Lrf(x) crosses 0 from below at both x1 and x2, but the total
area under the curve from x1 to x2 is negative. After ironing, the curve to the left of x2
becomes negative everywhere, meaning that x1 is a wrong candidate for settling point.
The right panel shows the hypothetical payoff function if the players stop learning at x1.
The payoff at x2 goes below the “no move” payoff p−x2

r
, implying suboptimality to stop at

x1. Intuitively, the distribution F is such that going downward from x2, the players have
to experience some hardship due to locally higher density f , but ease follows when they
do overcome the peak in f . In this case, the forward-looking players choose to stop at x2
because the cost outweighs the benefit. On the contrary, Figure 5 shows a situation where
the ironed curve crosses 0 at x1, meaning that the local hardship is worth investing for a
reward to the far-left.

Formally, define K(x) ≡
∫ x

0
[F (s) − Lrf(s)]ds, and following the similar trick to My-

erson (1981), define K(·) ≡ Vex(K(·)) as the convexification of K(·). With this transfor-
mation, K

′
(x) is weakly increasing. The result below shows the selection criterion when

facing non-monotone hazard rate.

Proposition 17 (i) If K ′
(x0) 6 0, then any player in the symmetric equilibrium should stay at

x0 forever.

(ii) If K ′
(x0) > 0 and K ′

(x) has a unique intersection with 0 at x∗, then it is the cutoff effort
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Figure 5: Two candidates. x1 worth reaching.

where learning stops eventually.

(iii) If K ′
(x0) > 0 and K ′

(x) equals 0 on some interval [x−, x+], then there are at least two
cutoff effort levels between which the players are indifferent.

7 Conclusion

In a dynamic game with multiple players experimenting on an unknown threshold,
the features of the dynamics depend on the extent of information externality, the severity
of breakdown, and patience. In the team problem, the time path of effort collapses to a
very fast decline until it reaches some cutoff level. In contrast, for games with multiple
players, the time path is gradual and smooth, asymptotically settling down at the same
cutoff.

Conditional on no breakdown, the long-run effort level depends on the size of lumpy
cost and patience, while the speed of decline changes with the number of players. As
time goes on, the conditional hazard rate of a breakdown is decreasing.
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A Appendix

A.1 Proof of Proposition 2

Proof. We prove part (a) first. If an equilibrium requires V(x) = 0 for some x ∈ (x∗1, x0],
then HJB implies that Wi(x) =

p−x
r

. Also, Wi(x
′) > p−x′

r
for all x′ < x, so that W ′

i (x) 6 −1
r
.

Plug these into the first order condition to see that

f(x)

F (x)

(
p− x

r
−Wi(x)− L

)
−W ′

i (x) >
F (x)− Lrf(x)

rF (x)
> 0

violating optimality.

Now we turn to part (b). Suppose that there is a positive measured set A ⊂ (0, x∗I)

such that V(x) > 0 for all x ∈ A. For x ∈ A and for every i = 1, . . . , I , solve W ′
i (x) from

the HJB (7) and we have

W ′
i (x) = −Lνi(x)

V(x)
f(x)

F (x)
−
(
Wi(x)−

p− x

r

)(
f(x)

F (x)
+

r

V(x)

)

Since Player i always has the choice to take null action vi = 0, we must requireWi(x) >
p−x
r

, then the above becomes

W ′
i (x) 6 −Lνi(x)

V(x)
f(x)

F (x)
< −1

r

Iνi(x)

V(x)

Adding up the above for all i, we have

d

dx

I∑
i=1

Wi(x) < −I
r
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On the other hand, for x ∈ (0, x∗I)\A, we have V(x) = 0 and
∑I

i=1Wi(x) = − I(p−x)
r

. So,

lim
x→0

I∑
i=1

Wi(x)

=
I∑

i=1

Wi(x
∗
I)− lim

x→0

∫ x∗
I

x

d

dx

I∑
i=1

Wi(s)ds

=
I∑

i=1

Wi(x
∗
I)− lim

x→0

(∫
A

d

dx

I∑
i=1

Wi(s)ds+

∫
(0,x∗

I )\A

d

dx

I∑
i=1

Wi(s)ds

)

>
I(p− x∗I)

r
+ lim

x→0

I(x∗I − x)

r

=
Ip

r

However, this consists a contradiction since limx→0

∑I
i=1Wi(x) =

Ip
r

by Sandwich The-
orem. Hence the measure of A is zero and Wi(x) =

p−x
r

. Plugging back Wi(x) to the FOC
implies that A is empty.

A.2 Proof of Proposition 3

Proof. Part (a) is directly implied by Proposition 2. We now turn to part (b). For x ∈
(0, x∗1), suppose there is a positive-measured set A ⊂ (0, x∗1) such that ν(x) > 0 for all
x ∈ A. Then for x ∈ A, first order condition for Player i reads

f(x)

F (x)

(
p− x

r
−Wi(x)− L

)
−W ′

i (x) > 0

so that

W ′
i (x) 6

f(x)

F (x)

(
p− x

r
−Wi(x)− L

)
< −1

r

On the other hand, for x ∈ (0, x∗1)\A, we have ν(x) = 0 and Wi(x) = −p−x
r

. Also,
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Wi(x
′) > p−x′

r
for all x′ < x, so that W ′

i (x) 6 −1/r. Hence,

lim
x→0

Wi(x) = Wi(x
∗
1)− lim

x→0

∫ x∗
1

x

W ′
i (s)ds

= Wi(x
∗
1)− lim

x→0

(∫
A

W ′
i (s)ds+

∫
(0,x∗

1)\A
W ′

i (s)ds

)
>

p− x∗1
r

+ lim
x→0

x∗1 − x

r

=
p

r

This contradiction implies that the measure of A is zero, and furthermore that A is
empty.

A.3 Proof of Theorem 4

Proof. That the proposed expression (9) for ν(·) consists a symmetric equilibrium is guar-
anteed by verification Theorem taking other players’ strategies as fixed.

The uniqueness of symmetric pure strategy equilibrium is shown below by following
Tarski’s fixed point Theorem. Notice first that combining (7) and (8) we have

BRi(ν−i)


= v if Wi(x) >

p−x
r

+ ν−i(x)
f(x)
F (x)

L
r
,

∈ [0, v] if Wi(x) =
p−x
r

+ ν−i(x)
f(x)
F (x)

L
r
,

= 0 if Wi(x) <
p−x
r

+ ν−i(x)
f(x)
F (x)

L
r

. (19)

For any Lipschitz continuous functionW with −1
r
6 W ′ 6 0, define functional ψ1(·) by

(ψ1(W ))(x) ≡ min
{
(I − 1)v, (rW (x)−(p−x))F (x)

Lf(x)

}
, and define functional ψ2(ν−i) as the value

function of a player when the aggregate action of other players is ν−i. From (19), we know
thatW is a value function of a player in a symmetric pure strategy equilibrium if and only
if W is a fixed point of ψ ≡ ψ2 ◦ ψ1.

Evidently, ψ1 is non-decreasing in W . The following lemma shows that ψ2 is non-
decreasing.

Lemma 18 Consider problem (7). If ν̃−i > ν−i for all x, then the respective solutions satisfy
W̃i(x) > Wi(x) for all x.

Proof. First, we bound Wi(x) from below by U1(x). If not, then ∃x1 s.t. Wi(x1) < U1(x)
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and W ′
i (x1) < U ′

1(x1). Following similar logic of Keller, Rady and Cripps (2005), we have
the following inequality:

max
vi∈[0,v]

(p− x1) +
vif(x1)

F (x1)

(
p− x1
r

− U1(x1)− L

)
− V U ′

1(x1)

= rU1(x1)

> rWi(x1)

= max
vi∈[0,v]

(p− x1) +
vif(x1)

F (x1)

(
p− x1
r

−Wi(x1)− L

)
− viW

′
i (x1)

+
ν−if(x1)

F (x1)

(
p− x1
r

−Wi(x1)

)
− ν−iW

′
i (x1)

> max
vi∈[0,v]

(p− x1) +
vif(x1)

F (x1)

(
p− x1
r

− U1(x1)− L

)
− viU

′
1(x1)

+
ν−if(x1)

F (x1)

(
p− x1
r

− U1(x1)

)
− ν−iU

′
1(x1)

> max
vi∈[0,v]

(p− x1) +
vif(x1)

F (x1)

(
p− x1
r

− U1(x1)− L

)
− viU

′
1(x1)

a contradiction. The last inequality follows from the fact that f(x1)
F (x1)

(
p−x1

r
− U1(x1)

)
−

U ′
1(x1) > 0.

Next, we need to show that f(x)
F (x)

(
p−x
r

−Wi(x)
)
−W ′

i (x) > 0.

If vi > 0, then the FOC of (7) must require that f(x)
F (x)

(
p−x
r

−Wi(x)− L
)
−W ′

i (x) > 0,
hence we have f(x)

F (x)

(
p−x
r

−Wi(x)
)
−W ′

i (x) > 0. If vi = 0 and ν−i = 0, then Wi(x) =
p−x
r

and W ′
i (x) 6 −1

r
, hence f(x)

F (x)

(
p−x
r

−Wi(x)
)
−W ′

i (x) > 1
r
> 0. If vi = 0 and ν−i > 0, then

f(x)
F (x)

(
p−x
r

−Wi(x)
)
−W ′

i (x) = r
ν−i

(
Wi(x)− p−x

r

)
> 0. In sum, the required inequality is

true.

Finally,

W̃i(x)

= max
vi∈[0,v]

(p− x) +
vif(x)

F (x)

(
p− x

r
− W̃i(x)− L

)
− viW̃

′
i (x)

+
ν̃−if(x)

F (x)

(
p− x

r
− W̃i(x)

)
− ν̃−iW̃

′
i (x)

> max
vi∈[0,v]

(p− x) +
vif(x)

F (x)

(
p− x

r
− W̃i(x)− L

)
− viW̃

′
i (x)

+
ν−if(x)

F (x)

(
p− x

r
− W̃i(x)

)
− ν−iW̃

′
i (x)
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Since W̃i(0) = Wi(0) = (p − x)/r, if ever W̃i < Wi, there must exist x1 s.t. W̃i(x1) <

Wi(x1) and W̃ ′
i (x1) < W ′

i (x1). Then

W̃i(x1)

> max
vi∈[0,v]

(p− x) +
vif(x)

F (x)

(
p− x

r
− W̃i(x)− L

)
− viW̃

′
i (x)

+
ν−if(x)

F (x)

(
p− x

r
− W̃i(x)

)
− ν−iW̃

′
i (x)

> max
vi∈[0,v]

(p− x) +
vif(x)

F (x)

(
p− x

r
−Wi(x)− L

)
− viW

′
i (x)

+
ν−if(x)

F (x)

(
p− x

r
−Wi(x)

)
− ν−iW

′
i (x)

= Wi(x1)

a contradiction.

Hence, it follows from Tarski’s fixed point Theorem that ψ = ψ2 ◦ ψ1 has minimal and
maximal fixed points W− and W+. For W−, we know from Proposition 3 that

W ′
−(x) =

{
−1

r
if x ∈ [0, x∗1]

min{p−x−rW−(x)
Iv

+ (I−1)Lf(x)
IF (x)

, 0} − (−p+Lr+x+rW−(x))f(x)
rF (x)

if x ∈ [x∗1, x0]

Similarly, there exists a unique cutoff x+ ∈ [0, x∗1] for W+. Hence the difference W ≡
W+ −W− satisfies

W
′
(x) =


0 if x ∈ [0, x∗1]

−W (x)f(x)
F (x)

+min{p−x−rW+(x)
Iv

+ (I−1)Lf(x)
IF (x)

, 0}
−min{p−x−rW−(x)

Iv
+ (I−1)Lf(x)

IF (x)
, 0} if x ∈ (x∗1, x0]

.

Therefore, W (x) > 0 and W
′
(x) 6 0 for all x ∈ [0, x0]. Meanwhile, W (0) = 0 because

W+(0) = W−(0) =
p
r
. So W (x) = 0 for all x ∈ [0, x0], implying uniqueness.

A.4 Proof of Proposition 6

Proof. Since limx↓x∗
1

d
dx

(
F (x)
f(x)

)
= b, we have limx↓x∗

1
ν(x) =

b(x−x∗
1)

2

2L(I−1)
. For any A > 1, there

exists a x̂ s.t. 1
A

b(x−x∗
1)

2

2L(I−1)
< ν(x) < A

b(x−x∗
1)

2

2L(I−1)
for x ∈ [x∗1, x̂]. Denote t̂ as the solution to

x̂ = x(t̂). Starting from the point (t̂, x̂), the path x(t) is sandwiched by paths where ν(x) is
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replaced by 1
A

b(x−x∗
1)

2

2L(I−1)
and A

b(x−x∗
1)

2

2L(I−1)
, respectively. Hence, we have

2(I − 1)Lt(x̂− x∗1)

2(I − 1)L+ AbI(t− t̂)(x̂− x∗1)
<
x(t)− x∗1

1/t
<

2(I − 1)Lt(x̂− x∗1)

2(I − 1)L+ A−1bI(t− t̂)(x̂− x∗1)
(20)

for t > t̂, so that

lim sup
t→∞

x(t)− x∗1
1/t

6 2(I − 1)LA

bI

lim inf
t→∞

x(t)− x∗1
1/t

> 2(I − 1)L

AbI

Since the above hold for any A > 1, we know limt→∞
x(t)−x∗

1

1/t
= 2(I−1)L

bI
.

A.5 Proof of Lemma 8

Proof. Notice that x∗1 is a function of L and r. Taking derivative of ν(x) w.r.t. L and r gives

∂ν(x)

∂L
= −

∫ x

x∗
1
F (s)ds

(I − 1)L2f(x)
− ∂x∗1
∂L

F (x∗1)− Lrf(x∗1)

(I − 1)Lf(x)
= −

∫ x

x∗
1
F (s)ds

(I − 1)L2f(x)
< 0

∂ν(x)

∂r
= −F (x)− F (x∗1)

(I − 1)f(x)
− ∂x∗1

∂r

F (x∗1)− Lrf(x∗1)

(I − 1)Lf(x)
= −F (x)− F (x∗1)

(I − 1)f(x)
< 0

Since both 1
I−1

and I
I−1

are decreasing in I , the statement for I is obvious.

A.6 Proof of Proposition 10

Proof. The key step of the proof is Lemma 19 below. In order to understand the structure
of MPE’s in Proposition 10, consider the following system of difference equations with
generic variables yk and zk.

(p− yk)∆̃ + δzk = (p− yk+1)∆̃− L
F (yk)− F (yk+1)

F (yk)

+δ

[
zk+1

F (yk+1)

F (yk)
+
p− yk
r

F (yk)− F (yk+1)

F (yk)

]
, (21)

zk = (p− yk)∆̃

+δ

[
[(p− yk+1)∆̃ + δzk+1]

F (yk+1)

F (yk)
+
p− yk
r

F (yk)− F (yk+1)

F (yk)

]
, (22)

y0 ∈ [x∗1, x0] is given. (23)
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One can think of {yk}∞k=0 as a sequence of critical effort levels and {zk}∞k=0 as the se-
quence of corresponding payoffs when faced with the critical effort levels and the player
is currently not the mover. The MPE we look for has the skimming property such that
starting from a state x ∈ (yk+1, yk], the current mover takes action x−yk+1

∆
to bring down

the state to the highest critical level strictly below x, namely yk+1. Equation (21) is the
indifference condition that facing state x = yk, the player is indifferent between staying at
yk and moving one step down to yk+1, given the continuation play prescribed by the MPE.
Equation (22) is the promise keeping condition saying that the payoff of the non-mover
facing state yk is the weighted sum of current payoff and continuation payoff, where the
indifference condition is already embodied in the continuation payoff. Now we state
Lemma 19.

Lemma 19 Suppose ∆ is small. There exists a unique z0 > 0 such that the solution to the differ-
ence equation system (21)-(23) has the property that yk monotonically decreases and limk→∞ yk =

x∗1.

Proof.

Step 1: Change of variables: zk = uk

F (yk)
+ p−yk

r
.

Noting also that ∆̃ = (1− δ)/r, the system is simplified to

uk+1 =
ruk − δ(yk − yk+1)F (yk+1)

δ2r
(24)

δ[Lr − (1− δ)(yk − yk+1)][F (yk)− F (yk+1)] = (1− δ2)ruk (25)

Now, (24), (25) and (23) consist a new difference equation system with generic variables
yk and uk. For a fixed y0, there is one-to-one mapping from u0 to z0, so we want to find
the unique u0 such that yk monotonically converges to x∗1. We can immediately rule out
the case u0 < 0. To see why, note that y0 − y1 < x0 − x∗1 is bounded, so for δ close enough
to 1 (∆ small), Lr − (1− δ)(y0 − y1) > 0, and hence from (25) we have u0 > 0.

Step 2: Induction on the new system.

First we examine conditions for (yk, uk) s.t. (yk+1, uk+1) exists as the unique solution to
(24) and (25). From (25) define

J(yk, yk+1, uk) ≡ δ[Lr − (1− δ)(yk − yk+1)][F (yk)− F (yk+1)]− (1− δ2)ruk
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so that

∂J

∂yk+1

= (1− δ)[F (yk)− F (yk+1)]− [Lr − (1− δ)(yk − yk+1)]f(yk+1)

∂J

∂yk
= −(1− δ)[F (yk)− F (yk+1)] + [Lr − (1− δ)(yk − yk+1)]f(yk)

∂J

∂uk
= −(1− δ2)r

Now, J(yk, yk, uk) 6 0 and moreover, ∂J
∂yk+1

< 0 for yk+1 ∈ [x∗1, yk] when yk > x∗1 and δ is
close enough to 1 (remember that f is bounded below by f > 0). By Intermediate Value
Theorem, there exists a unique yk+1 ∈ [x∗1, yk] if and only if J(yk, x∗1, uk) > 0, i.e. uk is not
too large given yk. Having pinned down yk+1, we immediately determine uk+1 by (24).

The following lines show that uk > 0 ⇒ uk+1 > 0 if yk+1 ∈ [x∗1, yk] exists.

δ2ruk+1 = ruk − δ(yk − yk+1)F (yk+1) > ruk −
δ

f
[F (yk)− F (yk+1)]F (yk+1)

= ruk

(
1− (1− δ2)F (yk+1)

f [Lr − (1− δ)(yk − yk+1)]

)
> ruk

(
1− 1− δ2

f [Lr − (1− δ)x0]

)
> 0

where the last inequality follows when δ is close to 1.

With the above observations, we define the transition function from tuple to tuple:

Γ(yk, uk) ≡ (Γy(yk, uk),Γu(yk, uk)) ≡ (yk+1, uk+1)

where (yk+1, uk+1) is the solution to (24) (25) satisfying yk+1 ∈ [x∗1, yk], if it exists. Other-
wise, the function returns some arbitrary vector, say (−1,−1), to indicate nonexistence.
Γ(n) ≡ (Γ

(n)
y (yk, uk),Γ

(n)
u (yk, uk)) is the function Γ applied n times.

Step 3: Uniform upper bound on u0 such that Γ(∞)
y (y0, u0) > x∗1.

Fix (y0, u0), we want to bound the locus of Γn(y0, u0) from below on the y − u plane.
Define a lower bound function:

GL(y) ≡ u0 −
1

δr

∫ y0

y

[F (s)− Lrf(s)]ds (26)

where y0 > x∗1, with GL(y0) = u0. If we can show that uk > GL(yk) ⇒ Γu(yk, uk) >
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GL(Γy(yk, uk)) provided Γy(yk, uk) ∈ [x∗1, yk], then by induction Γ
(n)
u (yk, uk) > GL(Γ

(n)
y (yk, uk))

for all n, provided Γ
(n)
y (yk, uk) ∈ [x∗1,Γ

(n−1)
y (yk, uk)]. Let uk = GL(yk) + ε where ε > 0. De-

note yk+1 = Γy(yk, uk) and uk+1 = Γu(yk, uk) = ruk−δ(yk−yk+1)F (yk+1)

δ2r
(by (24)). The claim

above is true if

r[GL(yk) + ε]− δ(yk − yk+1)F (yk+1)

δ2r
> GL(yk+1) = GL(yk)−

1

δr

∫ yk

yk+1

[F (s)− Lrf(s)]ds

⇔ (1− δ2)GL(yk) > −δ
r

∫ yk

yk+1

[F (s)− F (yk+1)− Lrf(s)]ds− ε (27)

On the other hand, (25) gives

GL(yk) = uk − ε =
δ

(1− δ2)r
[Lr − (1− δ)(yk − yk+1)][F (yk)− F (yk+1)]− ε

so this together with (27) yields

(1− δ)(yk − yk+1)[F (yk)− F (yk+1)]−
∫ yk

yk+1

[F (s)− F (yk+1)]ds 6 0 (28)

because it holds for all ε > 0.

Let fm ≡ minx∈[yk+1,yk] f(x) > f , then F (s) − F (yk+1) > fm(s − yk+1). By Lipschitz
continuity of f , we have F (yk)−F (yk+1)

yk−yk+1
6 fm + κ(yk − yk+1) 6 fm + κx0. So, a sufficient

condition for (28) is

(1− δ)(yk − yk+1)
2(fm + κx0)− fm

∫ y

yk+1

(s− yk+1)ds 6 0

⇔ δ > 1− fm
2(fm + κx0)

Since fm > f , a uniform sufficient condition is δ > 1− f

2(f+κx0)
.

Note that GL(·) is strictly increasing in [x∗1, y0]. Also, GL(x
∗
1) = u0 − 1

δr

∫ y0
x∗
1
F (s)ds +

L
δ
[F (y0)− F (x∗1)] > 0 if u0 > u ≡ y0−x∗

1

δr
.

Hence, if u0 is too big for a given y0, then uk > GL(yk) > GL(x
∗
1) > 0 whenever

yk ∈ [x∗1, x0]. However, in order to have y∞ = x∗1, we must have u∞ = 0 by (25), a con-
tradiction. Therefore, given any y0 ∈ [x∗1, x0], u0 has a uniform upper bound independent
of δ. Moreover, because G′

L(y) > 0 for all y ∈ [x∗1, y0], we can restrict attention to points
(y, u) ∈ [x∗1, y0]× [0, u] for further analysis.
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Step 4: Uniform lower bound on u0 such that Γ(∞)
y (y0, u0) 6 x∗1.

Fix (y0, u0), we want to bound the locus of Γn(y0, u0) from above on the y−u plane. To
achieve this, define

GH(y) = u0 + a(1− δ)(y0 − y)− 1

δr

∫ y0

y

[F (s)− Lrf(s)]ds (29)

where y0 > x∗1, a is a positive constant to be determined later, andGH(y0) = u0. Because of
induction, we only need to show that u 6 GH(y) ⇒ Γu(y, u) 6 GH(Γy(y, u)) if Γy(y, u) ∈
[x∗1, y] and u ∈ [0, u]. I claim that this is true for some a > 0. Let uk = GH(yk) − ε where
ε > 0. Denote yk+1 = Γy(yk, uk) and uk+1 = Γu(yk, uk) =

ruk−δ(yk−yk+1)F (yk+1)

δ2r
as before. The

claim is true if

r[GH(yk)− ε]− δ(yk − yk+1)F (yk+1)

δ2r

6 GH(yk+1) = GH(yk) + a(1− δ)(yk − yk+1)−
1

δr

∫ yk

yk+1

[F (s)− Lrf(s)]ds

which is true if the following sufficient condition is satisfied:

(1− δ2)GH(yk) 6 aδ2(1− δ)(yk − yk+1)−
δ

r

∫ yk

yk+1

[F (yk)− F (yk+1)− Lrf(s)]ds+ ε(30)

On the other hand, (25) gives

GH(yk) = uk + ε =
δ

(1− δ2)r
[Lr − (1− δ)(yk − yk+1)][F (yk)− F (yk+1)] + ε

so that (30) reduces to

a > [F (yk)− F (yk+1)](yk − yk+1)− rε

r(1− δ)(yk − yk+1)
for all ε > 0

⇒ a > (1 + δ)uk
δ[Lr − (1− δ)(yk − yk+1)]

For δ close to 1, it is sufficient to set a = 4u0

Lr
. With this value of a, u0 = maxy∈[x∗

1,y0]
, and GH

is indeed an upper bound for the sequence Γ(n)(y0, u0) when δ is close to 1.
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Note that

GH(x
∗
1) = u0 + a(1− δ)(y0 − x∗1)−

1

δr

∫ y0

x∗
1

f(s)

(
F (s)

f(s)
− F (x∗1)

f(x∗1)

)
ds

6 u0 + a(1− δ)(y0 − x∗1)−
1

δr

∫ y0

x∗
1

f(s− x∗1)bds

= u0 +
4u0
Lr

(1− δ)(y0 − x∗1)−
(y0 − x∗1)

2fb

2δr

so that when δ is close to 1, GH(x
∗
1) < 0 if u0 <

(y0−x∗
1)

2fb

4r
. In order to have y∞ = x∗1, we

require u∞ = 0, but the point (x∗1, 0) is above the graph of GH , a contradiction. Actually,
if u0 <

(y0−x∗
1)

2fb

4r
, we know that for δ close to 1, J(y0, x∗1, u0) > 0, so that y1 ∈ (x∗1, y0].

By induction, yk ∈ (x∗1, y0] for any k, meaning that {yk}∞k=0 is a decreasing sequence with
lower bound x∗1, admitting a limit y∞ ∈ (x∗1, y0]. Therefore, fix any y0 ∈ [x∗1, x0], a too small
u0 leads to y∞ > x∗1.

Step 5: Order preserving property of Γ(·, ·).

Order preserving property means that for any two different points (y, u), (y′, u′) ∈
[x∗1, x0] × [0, u] with y′ 6 y and u′ > u, Γy(y

′, u′) < Γy(y, u) and Γu(y
′, u′) > Γu(y, u),

provided Γy(y
′, u′),Γy(y, u) > x∗1.

We want to prove the above for u, u′ <. Given existence, recall from Step 2 that ∂J
∂yk+1

<

0, ∂J
∂yk

> 0 and ∂J
∂uk

< 0 for δ close to 1. By Implicit Function Theorem, ∂yk+1

∂yk
> 0 and

∂yk+1

∂uk
< 0.

Moreover, from (24) we use the chain rule to get

∂uk+1

∂uk
=

1

δ2
− 1

δr
[(yk − yk+1)f(yk+1)− F (yk+1)]

∂yk+1

∂uk
(31)

Note that while (yk−yk+1)f(yk+1)−F (yk+1) is bounded, ∂yk+1

∂uk
uniformly converges to zero

as δ → 1, so ∂yk+1

∂uk
> 0 for δ close to 1.

Finally,

∂uk+1

∂yk
= −F (yk+1)

δr
− 1

δr
[(yk − yk+1)f(yk+1)− F (yk+1)]

∂yk+1

∂yk

If ∂yk+1

∂yk
6 1, then ∂uk+1

∂yk
< 0. Otherwise, ∂yk+1

∂yk
< Lrf(yk)−(1−δ)

Lrf(yk+1)−(1−δ)
when δ is close to 1. By the
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assumption on the hazard rate, we have

F (yk)

f(yk)
>
F (yk+1)

f(yk+1)
+ b(yk − yk+1)

⇒ F (yk+1)[f(yk)− f(yk+1)] < f(yk+1)[F (yk)− F (yk+1)]− b(yk − yk+1)f(yk)f(yk+1)

so that

∂uk+1

∂yk
<

f(yk+1)(yk − yk+1)

δr[f(yk+1)Lr − (1− δ)]

[(
F (yk)− F (yk+1)

yk − yk+1

− f(yk)− bf(yk)

)
Lr + (1− δ)

]
<

f(yk+1)(yk − yk+1)

δr[f(yk+1)Lr − (1− δ)]
[(κ(yk − yk+1)− bf(yk))Lr + (1− δ)]

<
f(yk+1)(yk − yk+1)

δr[f(yk+1)Lr − (1− δ)]

[(
κru(1− δ2)

δ[Lr − (1− δ)(yk − yk+1)]
− bf(yk)

)
Lr + (1− δ)

]
< −

bf(yk − yk+1)

2r

for δ close to 1.

With the signs of the four partial derivatives, we have Γy(y
′, u′) < Γy(y, u) and Γu(y

′, u′) >

Γu(y, u) if u′ > u, y′ 6 y and (y′, u′) ̸= (y, u). Iteration forward gives us the desired order-
ing for the whole sequence.

Step 6: For those u0 s.t. y∞ ∈ [x∗1, y0], y∞ is strictly decreasing in u0.

Suppose this is not true, then there exist two initial points (y0, u0) and (y0, u
′
0) with

u′0 > u0 but y′∞ = y∞ > x∗1 (by Step 5, y′∞ > y∞ is impossible). We will show that this
cannot happen.

The idea is that if y′∞ = y∞ then yk − y′k will be small for any k, contradicting the initial
difference F (y1)− F (y′1) > 0. Formally, for any s > 0, by (25)

F (y′s)− F (y′s+1)

=
Lr − (1− δ)(ys − ys+1)

Lr − (1− δ)(y′s − y′s+1)
[F (ys)− F (ys+1)]

u′s
us

>
Lr − (1− δ)(ys − ys+1)

Lr − (1− δ)(y′s − y′s+1)
[F (ys)− F (ys+1)]

> [F (ys)− F (ys+1)]

(
1− (1− δ)(ys − y′s)

Lr − (1− δ)x0

)
using the fact that u′s > us and ys > y′s.
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For an arbitrary k > 1, adding up the above inequality on the far left and far right
sides for s from k to ∞, we have

F (y′k)− F (y∗)

> F (yk)− F (y∗)− 1− δ

Lr − (1− δ)x0

∞∑
s=k

[F (ys)− F (ys+1)](ys − y′s)

> F (yk)− F (y∗)− 1− δ

Lr − (1− δ)x0
x0 (32)

which means

F (yk)− F (y′k) <
1− δ

Lr − (1− δ)x0
x0

⇒ yk − y′k < Ax0 (33)

where A ≡ 1−δ
f [Lr−(1−δ)x0]

.

Note that in deriving (32) we use the initial bound that ys−y′s < x0 for all s, and arrive
at another bound that that yk − y′k < Ax0 for all k. One can iterate between inequalities
(32) and (33) for arbitrarily many (n) rounds to get yk − y′k < Anx0 for all k. The factor A
is smaller than 1 if δ is close to 1, resulting in yk − y′k = 0. But we know from Step 5 that
for u′0 > u0, it must be the case that yk > y′k. This contradiction means that y′∞ < y∞.

Step 7: There is a unique u0 such that Γ(∞)
y (y0, u0) = x∗1.

For any given y0 ∈ [x∗1, x0], define U ≡ {u0 ∈ [0, u] : Γ
(∞)
y (y0, u0) ∈ [x∗1, y0]}. From

Steps 3, 4 and 5 we know that this set is non-empty, bounded above, and has the property
u ∈ U ⇒ u′ ∈ U for all u′ ∈ [0, u]. Hence, U is an interval [0, u∗0] or [0, u∗0) for some u∗0 > 0.

It can be shown that u∗0 = supU ∈ U . To see this, let u0 > u∗0 so that Γ(∞)
y (y0, u0) < x∗1,

and hence there exists a smallest k > 1 s.t. Γ(k)
y (y0, u0) < x∗1. This means J(yk−1, x

∗
1, uk−1) <

0. Notice that fix y0, (yk−1, uk−1) = Γ(k−1)(y0, u0) is a continuous function of u0, so if u′0 < u0

is close enough to u0, we still have J(y′k−1, x
∗
1, u

′
k−1) < 0. Therefore, U is closed and u∗0 ∈ U .

It remains to show that Γ(∞)
y (y0, u

∗
0) = x∗1. Suppose towards contradiction that Γ(∞)

y (y0, u
∗
0) =

x̂ > x∗1. Let (yk, uk) = Γ(k)(y0, u
∗
0). Fix an arbitrary η > 0. Because of the convergence, there

is a K such that |yK − x̂| < η
2

and 0 < uK < η
2
. On the other hand, because of the con-

tinuity of Γ(K)(·, ·), we know that there is a ε > 0 small enough s.t. |y′K − yK | < η
2

and
|u′K − uK | < η

2
, where (y′K , u

′
K) = Γ(K)(y0, u

∗
0 + ε). Hence, |y′K − x̂| < η and 0 < u′K < η.

By virtue of Step 4, if u′K <
(y′K−x∗

1)
2fb

4r
then Γ(∞)(y′k1 , u

′
k1
) exists. This condition is satisfied
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when the arbitrarily fixed η is small enough. Step 4 then implies u∗0+ ε ∈ U , contradicting
the definition of u∗0. Therefore, Γ(∞)

y (y0, u
∗
0) = x∗1. By Step 6, it is the unique u0 s.t. y∞ = x∗1.

From above we know that every y0 ∈ [x∗1, x0] pins down a unique u∗0(y0). In the follow-
ing, we aim to show that for any y0 ∈ [y

0
, x0], the strategy defined in Proposition 10 with

yk = Γ
(k)
y (y0, u

∗
0(y0)) consists an MPE, where y

0
≡ Γy(x0, u

∗
0(x0)). For any x ∈ (x∗1, x0], we

must have x ∈ (yk, yk−1] for some k > 0.

Step 1: Verify that for every k > 0, the payoff of the current mover facing state
x ∈ (yk, yk−1] and brings new state x′ is decreasing in x′ on every interval (yk+s, yk+s−1) for
all s > 1 and on interval (yk, x), where x′ = x− v∆ and y−1 = x0.

The payoff of the current mover if she brings new state x′ ∈ (yk+s, yk+s−1) is

U(x′;x) = (p− x′)∆̃− L
F (x)− F (x′)

F (x)

+δ

[
F (x)− F (x′)

F (x)

p− x

r
+
F (x′)

F (x)
w(x′)

]
where

w(x′) = (p− x′)∆̃

+δ

[
F (x′)− F (yk+s)

F (x′)

p− x′

r
+
F (yk+s)

F (x′)
[(p− yk+s)∆̃ + δzk+s]

]
and zk+s =

uk+s

F (yk+s)
+ p−yk+s

r
, (yk+s, uk+s) = Γ(k+s)(y0, u

∗
0).

Plugging in ∆̃ = (1− δ)/r, we have

dU(x′; x)

dx
> 0

⇔ −δF (x′) + δ2F (yk+s) + (Lr + δ(x− x′)]f(x) > 0

which is true when δ is close enough to 1. So, for x ∈ (yk+s, yk+s−1], U(x′;x) is increasing
in x′. The above analysis also holds for x′ ∈ (yk, x). In particular, U(x′;x) 6 U(x;x) when
x′ ∈ (yk, x].

Step 2: Verify that the current mover facing state x ∈ (yk, yk−1] prefers yk to x.
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The equilibrium action leading to yk yields

U(yk;x) = (p− yk)∆̃− L
F (x)− F (yk)

F (x)

+δ

[
F (x)− F (yk)

F (x)

p−M

r
+
F (yk)

F (x)
zk

]
so

U(yk; x) > U(x; x)

⇔ −(1− δ2)δruk + [Lr − (1− δ)(x− yk)]F (x)− [Lr + (1− δ)δ(x− yk)]F (yk) 6 0 (34)

where uk = (zk − (p− yk)/r)[F (yk)− F (m)]. Recall from (24) and (25) that (34) holds with
equality when x = yk−1 (provided k > 1). Taking the derivative of the left hand side of
(34) w.r.t. x gives

−(1− δ)[F (x) + δF (yk)] + [Lr − (1− δ)(x− yk)]f(x) > 0

when δ is close to 1. That means, the left hand side of (34) is non-positive for x ∈ (yk, yk−1],
i.e. U(yk;x) > U(x;x) when k > 1.

The only caveat is for the case k = 0. Because x0 does not belong to the sequence
{yk}∞k=0, the indifference condition does not hold at x = x0. In order to have U(y0;x) >
U(x; x) when x ∈ (y0, x0], we need the condition y0 > Γy(x0, u

∗
0(x0)) = y

0
. In sum, the

incentive conditions are satisfied if y0 > y
0
.

Step 3: Verify that the current mover prefers moving to yk to all actions below.

Step 1 has shown that for any s > 0, setting new state within (yk+s+1, yk+s) is domi-
nated by setting yk+s, so we only need to show that the mover prefers yk+s to yk+s+1 for
any s > 0. To see this, note

U(yk+s;x) > U(yk+s+1;x)

⇔ δr(uk+s − uk+s+1)− (1− δ)(yk+s − yk+s+1)F (x)

+[Lr + δ(x− yk+s)]F (yk+s)− [Lr + δ(x− yk+s+1)]F (yk+s+1) > 0

which holds with equality when x = yk+s by (24) and (25). Taking the derivative of the
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left hand side w.r.t. x gives

δ[F (yk+s)− F (yk+s+1)]− (1− δ)(yk+s − yk+s+1)f(x)

> [δf − (1− δ)f(x)](yk+s − yk+s+1)

> 0

when δ is close to 1 (because of the Lipschitz continuity of f ). Hence for any s > 0,
U(yk+s; x) > U(yk+s+1;x) whenever x > yk+s, and by telescoping U(yk; x) > U(yk+s;x) for
any s > 1.

The three steps above confirm that choosing the new state at yk is indeed globally
optimal when x ∈ [yk, yk−1], ∀k > 0, and hence the proposed strategy profile consists a
MPE. Moreover, given any y0 ∈ [y

0
, x0], the sequence Γ(n)(y0, u

∗
0(y0)) uniquely pins down

a MPE. Hence there is a continuum of MPEs.

A.7 Proof of Proposition 11

Proof. We prove the theorem by construction. First we prove that

lim
∆→0

(
y⌊ t

∆
⌋+1 − y⌊ t

∆
⌋

∆
+

∫ y⌊ t
∆

⌋
x∗

(
[F (s)− F (m)]− 2Lrf(s)

)
ds

Lf(y⌊ t
∆
⌋)

)
= 0

To see this, note from (25) that

yk+1 − yk > − (1− δ2)ruk
δ[Lr − (1− δ)x0][f(yk)− κ(yk − yk+1)]

> − (1− δ2)ruk
δ[Lr − (1− δ)x0][f(yk)− (1− δ)B]

, (35)

yk+1 − yk 6 − (1− δ2)ruk
δLr[f(yk) + κ(yk − yk+1)]

6 − (1− δ2)ruk
δLr[f(yk) + (1− δ)B]

(36)

where B = 2ruκ
Lrf

.
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Meanwhile, note from (24) that uk+1 − uk =
1−δ2

δ2
uk +

1
δr
(yk+1 − yk)F (yk+1) so

F (yk+1)− Lr[f(yk) + (1− δ)B]

δr

6 uk+1 − uk
yk+1 − yk

=
1− δ2

δ2(yk+1 − yk)
uk +

1

δr
F (yk+1)

6 F (yk+1)− [Lr − (1− δ)x0][f(yk)− (1− δ)B]

δr

Hence,

∞∑
s=0

F (yk+s+1)− Lr[f(yk+i) + (1− δ)B]

δr
(yk+s − yk+s+1)

6 uk = u∞ −
∞∑
s=0

(uk+s+1 − uk+s)

6
∞∑
s=0

F (yk+s+1)− [Lr − (1− δ)x0][f(yk+s)− (1− δ)B]

δr
(yk+s − yk+s+1).

Plugging the above into (35) and (36), we have

y⌊ t
∆
⌋ − y⌊ t

∆
⌋+1

∆̃
6 r(1 + δ)

δ2[Lr − (1− δ)x0][f(y⌊ t
∆
⌋)− (1− δ)B]

×

∞∑
s=0

[
F (y⌊ t

∆
⌋+s+1)− [Lr − (1− δ)x0][f(y⌊ t

∆
⌋+s)− (1− δ)B]

]
(y⌊ t

∆
⌋+s − y⌊ t

∆
⌋+s+1), (37)

y⌊ t
∆
⌋ − y⌊ t

∆
⌋+1

∆̃
6 r(1 + δ)

δ2Lr[f(y⌊ t
∆
⌋) + (1− δ)B]

×

∞∑
s=0

[
F (y⌊ t

∆
⌋+s+1)− Lr[f(y⌊ t

∆
⌋+s) + (1− δ)B]

]
(y⌊ t

∆
⌋+s − y⌊ t

∆
⌋+s+1). (38)

which can be further simplified to

2

Lf(y⌊ t
∆
⌋)

∞∑
s=0

[F (y⌊ t
∆
⌋+s)− Lrf(y⌊ t

∆
⌋+s)](y⌊ t

∆
⌋+s − y⌊ t

∆
⌋+s+1) + CH(1− δ)− g(y⌊ t

∆
⌋)

>
y⌊ t

∆
⌋ − y⌊ t

∆
⌋+1

∆̃
− g(y⌊ t

∆
⌋)

> 2

Lf(y⌊ t
∆
⌋)

∞∑
s=0

[F (y⌊ t
∆
⌋+s)− Lrf(y⌊ t

∆
⌋+s)](y⌊ t

∆
⌋+s − y⌊ t

∆
⌋+s+1)− CL(1− δ)− g(y⌊ t

∆
⌋)
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for some constants CL and CH , when δ is close to 1. Also, g(y) ≡ 2
∫ y

x∗
1

F (s)−Lrf(s)
Lf(y)

ds. Note
that since F (x)−Lrf(x) is integrable and yk − yk+1 uniformly converges to 0, the left and
right hand side both converge to 0 by Dominated Convergence Theorem, and the conver-

gence is uniform in t. By Sandwich Theorem, we know that lim∆→0

(y⌊ t
∆

⌋−y⌊ t
∆

⌋+1

∆̃
− g(y⌊ t

∆
⌋)
)
=

0, uniformly for all t > 0. For a fixed t, ⌊ t
∆
⌋ is finite, so g(y⌊ t

∆
⌋) > 0. Also, lim∆→0(∆̃−∆) =

lim∆→0
1−e−r∆

r
−∆=0. The convergence therefore can be rewritten as lim∆→0

y⌊ t
∆

⌋−y⌊ t
∆

⌋+1

g

(
y⌊ t

∆
⌋

)
∆

=

1. The convergence is now uniform for all times t′ 6 t, meaning that by Sandwich Theo-
rem again,

lim
∆→0

(⌊ t
∆

⌋)−1 ⌊ t
∆
⌋−1∑

k=0

yk − yk+1

g(yk)∆
= 1

⇒ lim
∆→0

⌊ t
∆
⌋−1∑

k=0

yk − yk+1

g(yk)
= t

On the other hand, by Dominated Convergence Theorem we have

0 = lim
∆→0

⌊ t
∆
⌋−1∑

k=0

yk − yk+1

g(yk)
−
∫ x0

y⌊ t
∆

⌋

1

g(s)
ds

 = t− lim
∆→0

∫ x0

y⌊ t
∆

⌋

1

g(s)
ds.

Note that the state at real time t is x(t; ∆) = y⌊ t
∆
⌋, so that

lim
∆→0

∫ x0

x(t;∆)

1

g(s)
ds =

∫ x0

lim∆→0 x(t;∆)

1

g(s)
ds = t.

Comparing the above with the time path in continuous time:
∫ x0

x(t)
1

2ν(s)
ds = t, and

noting that g(s) = 2ν(s), we immediately have lim∆→0 x(t; ∆) = x(t).

A.8 Proof of Lemma 12

Proof. For the first part, note that if the breakdown occurs during t ∈ (ta, tb), then it is
Player j who incurs the lumpy cost, not Player i. Hence, in the continuation game where
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t = ta, xi(ta) = xj(ta), the present discounted payoff of Player i following path xi(·) is

W h
i (xi(·), ta) =

erta

F (x(ta))

∫ xi(tb)

0

[∫ tb

ta

e−rt(p− xi(t))dt+ e−rtbW h
i (xi(·), tb)

]
dF (c),

+
erta

F (x(ta))

∫ xi(ta)

xi(tb)

∫ tb

ta

[∫ t

ta

e−rs(p− xi(s))ds+ e−rtU(xi(t), t)

]
dPj(t|c)dF (c)

where U(xi(t), t) is the value function of a (surviving) player whose current state is xi(t)
and her opponent just triggered the threshold at time t. Since xi(t) > x̃i(t) for t ∈ (ta, tb),
we have U(xi(t), t) < U(x̃i(t), t) for t ∈ (ta, tb). Note also that W h

i (xi(·), tb) = W h
i (x̃i(·), tb).

Therefore W h
i (xi(·), ta) < W h

i (x̃
′
i(·), ta). Since it is with positive probability that time ta is

reached before triggering the breakdown, this inequality carries over to the payoff evalu-
ated at time 0.

For the second part, note that if the breakdown occurs during t ∈ (ta, tb), then it is
Player i who incurs the lumpy cost, not Player j. Hence, in the continuation game where
t = ta, xi(ta) = xj(ta), the present discounted payoff of Player i following path xi(·) is

W l
i (xi(·), ta)

= − erta

F (x(ta))

∫ tb

ta

[∫ t

ta

e−rs(p− xi(s))ds+ e−rt

(
p− x(t)

r
− L

)]
dF (x(t))

+
erta

F (x(ta))

[∫ tb

ta

e−rt(p− x(t))dt+ e−rtbW l
i (xi(·), tb)

]
=

erta

F (x(ta))

∫ tb

ta

e−rt

(
LrF (t)−

∫ t

0

F (s)ds

)
dt+

erta

F (x(ta))
F (x(tb))e

−rtbW l
i (xi(·), tb)

+
erta

rF (x(ta))

[
e−rta

∫ x(ta)

0

F (s)ds− e−rtb

∫ x(tb)

0

F (s)ds

]

+
erta

rF (x(ta))

[
e−rtaF (x(ta))(p− Lr − x(ta))− e−rtbF (x(tb))(p− Lr − x(tb))

]
,

Since xi(ta) = x̃i(ta), xi(tb) = x̃i(tb), the only term that matters is the first one (with the
integral). Pointwise differentiation inside the integral gives

∂

∂x(t)
e−rt

(
LrF (t)−

∫ t

0

F (s)ds

)
= e−rt(Lrf(x(t))− F (x(t))) < 0,

(39)

so that W l
i (xi(·), ta) < W l

i (x̃
′
i(·), ta). Since it is with positive probability that time ta is

reached before triggering the breakdown, this inequality carries over to the payoff evalu-
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ated at time 0.

A.9 Proof of Proposition 13

Proof. Suppose there were a pure strategy Markov equilibrium that conditional on no
breakdown induces paths of effort x1(·) and x2(·), respectively. Define ta ≡ inf{t ∈ R+ :

x1(t) ̸= x2(t)} ∈ R+ ∪ {∞}.

If ta = ∞, then x1(t) = x2(t) for all t > 0. There are two subcases: x1(t) = x2(t) = x0 for
all t > 0, or not. In the former subcase, either player has incentive to deviate to the path
for single player (see Section 3) because F (x0)

f(x0)
> Lr by assumption. In the latter subcase,

either player, say Player i, could deviate to a feasible path x̃i(t) = xi(max{t − ε, 0}) for
some small ε > 0, paying slightly more flow cost than before while avoiding breakdown
completely.

If ta < ∞, then define tb ≡ sup{t > ta : x1(t) ̸= x2(t) on (ta, tb)} ∈ (ta,∞) ∪ {∞}. By
continuity and differentiability of x1(·) and x2(·), we know that x1(ta) = x2(ta), x1(tb) =

x2(tb) (if tb <∞), and either x1(t) > x2(t) for all t ∈ (ta, tb) or x1(t) < x2(t) for all t ∈ (ta, tb).
Without loss of generality suppose x1(t) > x2(t) for t ∈ (ta, tb). If tb < ∞, then apply
Lemma 12 to see that

t̃1(t) =

{
αt1(t) + (1− α)t2(t) if t ∈ (ta, tb)

t1(t) otherwise

is a profitable deviation for Player 1, where α ∈ (0, 1).
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