The Causal Effect of Serving in Army on Health: Evidence from Regression Kink Design and Russian Data

David Card and Evgeny Yakovlev¹

¹David Card from UC Berkeley; Evgeny Yakovlev from NES

ASSA, 2016

David Card and Evgeny Yakovlev The Causal Effect of Serving in Army on Health: Evidence

- Analysis of the effect of compulsory military service on health based on Russian micro-level data
- Contribute to the growing literature that studies consequences of conscription in different countries
 - New evidence came from quasi-natural experiment (Gorbachev' demilitarization reform)
- Contribute to the analysis of health consequences of military service: first evidence from peaceful-era drafts
- Apply RKD

Literature: Consequences of Compulsory Service in Army in Economics Literature

Effect on

- Earning (Angrist,1990, Angrist, Chen, and Song, 2011); Health (Hearst et al. 1986, Autor et al., 2011); Education (Angrist and Chen, 2011, Card and Lemieux 2010); Household Stability (Conley and Heerwig, 2011); Crime (Galiani et al., 2011)
- Evidence from different countries
 - Recent elimination of compulsory service in many countries + new data/methods available renewed interest to this question
 - German data: Bauer et al, 2012; Dutch data: Imbents and van der Klaav, 1995; Portuguese: Card and Cardoso, 2011; 2014; British : Grenet et al. 2011; Swedish: Albrecht et al. 1999; Argentina: Galiani, Rossi, and Schargrodsky, 2011; India: Oliver Vanden Eynde (2013)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Literature: Army and Health

- Most studies find negative effect
- Death rates, suicides, car accidents: Hearst et al. 1986, Vietnam War veterans
- Mortality, smoking and related to smoking diseases (lung cancer) for World War II and Korean War veterans: Bedard and Deschenes, 2006
- Post traumatic syndrome, stress
- Decrease in employment and rise of disability welfare transfers for Vietnam War veterans: Autor et al., 2011
- No effect: Angrist et al, 2010
- Negative but insignificant effect: Dobkin and Shabani, 2009
- Previous studies: Mainly evidence from war era drafts, Our paper: evidence from peaceful draft

・ 同 ト ・ ヨ ト ・ ヨ ト

- Use Russian micro level data (RLMS survey, 1994-2012)
- Find strong effect of compulsory military service on smoking, alcohol consumption and related to smoking and alcohol diseases
- Serving in army results in
 - increase in daily alcohol consumption (in days when drinks) by 45 ml (of pure alcohol)
 - increase in daily cigarettes consumption by 5 cigarettes
 - 13% higher chance of getting tuberculosis / hepatitis / chronic lung or liver
 - 13% higher chance of having general health problems

・ 同 ト ・ ヨ ト ・ ヨ ト

Our paper: why Russia?

- Rich data, can expect some other interesting results
- Provides quasi-natural experiment that can answer many interesting questions
- Demilitarization reform started in 1988 with the end of Cold War
 - In December 1988, in the UN General Assembly, Gorbachev announced a unilateral reduction of Soviet armed forces to 500 thousands Man, 10 thousands Tanks, 8,500 artillery pieces and 800 combat aircraft
 - In 1989 Mikhail Gorbachev and George Busch signed arms control treaty and Soviet troops withdrew from Afghanistan
- Next decade: gradual decrease in chance of being conscripted

伺 ト イヨ ト イヨト

Share of conscripts: date-turned-18-profile

- There is clear kink in probability of being conscripted
- Regression Kink Design: use kink to identify causal relationship between serving in army and health

David Card and Evgeny Yakovlev The Causal Effect of Serving in Army on Health: Evidence

Alcohol and Smoking

David Card and Evgeny Yakovlev

The Causal Effect of Serving in Army on Health: Evidence

Serving in army and health: How to identify causal relationship?

- Selection:
 - those who go to army are selected based on health status, so generally healthier
 - those who go to army usually from poor families and so easier involved in risky behavior (smoking, alcohol consumption, drugs)
- Ideal case:
 - Randomization: Hearst, Newman, and Hulley (1986), Angrist (1990) and subsequent studies: military draft lottery in Vietnam War draft
- In absence of randomization
 - IV: Bedard and Deschenes (2006) and Dobkin and Shabani (2009)
 - RD strategy: Bauer et al (2009)
 - RKD: our paper

- Similar to regression discontinuity intuition
- Look on date-of-birth profile
- Look on change in slope before and after threshold
- Under assumption that other factors change smoothly in neighborhood of kink (with respect to assignment variable), we identify causal relationship

(Fuzzy) RK estimand

- Y : outcome
 - alcohol consumption, smoking, related chronic diseases, hepatitis, tuberculosis
- A is a dummy variable indicating whether individual *i* went to compulsory military service
- v = a18 1989, where a18 is a date $(year + \frac{month}{12} + \frac{day}{365})$ when person turned 18
- RK estimand • $\frac{\lim_{v_0 \to 0+} \frac{dE(Y|v)}{dv}|_{v=v_0} - \lim_{v_0 \to 0-} \frac{dE(Y|v)}{dv}|_{v=v_0}}{\lim_{v_0 \to 0+} \frac{dE(A|v)}{dv}|_{v=v_0} - \lim_{v_0 \to 0-} \frac{dE(A|v)}{dv}|_{v=v_0}}$ • see Card. Lee, Pei, and Weber, 2015

- Use females as a control group
 - If some factors that 1) affect young people more than old people and can persist till today; 2) change non-smoothly around kink then problem
 - \implies Use females as a control group
- Hepatitis, tuberculosis, chronic diseases are rare events
 - ullet \implies global polynomial approximation
 - Repeat analysis for smoking & alcohol with local polynomial approximation

Estimation (Main specification)

- Two groups of population, females (j = 0) and males (j = 1)
- System of two equations with group-specific coefficients

$$y_{it} = A_i \delta_j + f_j (a18_i) + D_{1988} g(a18_i) + X_{it} \alpha_j + u_{it} A_i = h_j (a18_i) + D_{1988} k_j (a18) + X_{it} \gamma_j + \varepsilon_{it}$$

Note: g() is not gender-specific; $k_j()$ is gender-specific

- y_{it} health outcomes; A_i is a indicator that person went to army; a18_i is a date when person turned 18
- D_{1988} is Dummy for person turned 18 in or after 1988
- f(), g(), k(), h() are smooth function (polynomials)
- X_{it} set of observable characteristics: smooth function of age, l(live in city), income, marital status, δ_t , δ_r

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

		hard	Log hard	# of
	alcohol	alcohol	alcohol	cigarets
	intake	intake	intake	per day
l(served)	47.0***	54.6***	0.476**	4.921***
	[10.836]	[8.564]	[0.238]	[1.435]
		start	hep/tub/	
		smoking	chronic	Health
	l(smokes)	at 18-21	diseases	problems
l(served)	0.103	0.199***	0.130**	0.131***
	[0.075]	[0.052]	[0.053]	[0.044]

▲御▶ ▲ 臣▶ ▲ 臣▶

- Deal with panel data, clustered errors
- Bandwidth may be too small if work with pooled data
- Start with data on averages within a18 X gender cells
- Choose bandwidths according to CCT (Calonico, Cattaneo and Titiunik, 2015), and IK (Imbents, Kalyanaraman, 2012)
- Local linear regressions

		hard		# of
	alcohol	alcohol		cigarets
	intake	intake	Smokes?	per day
l(served)	48.9***	57.2***	0.213**	4.4***
	[11.2]	[9.1]	[0.07]	[1.2]
BW	IK for firs			
BW size	9.7			

★ Ξ →

Local Polynomials: Starting from bw=3-5 years most results are similar

Figure: RK Estimates with Varying Bandwidths

Males-Females

Alcohol and Smoking

Why more smoking&alcohol?

- Initiating (facilitation) smoking&alcohol in army: cigarettes subsidies, peer influence

- Post traumatic stress syndrome, depression
- worse labor market conditions/family outcomes etc...

Robustness: Dif-in-Dif around Age 20, Young males

AGE PROFILE, YOUNG MALES:

Increase in alcohol consumption and smoking after compulsory service

Note: date fixed effects are excluded from # of cigarettes and alcohol consumption.

Dif-in-Dif estimates: Serving in army increases chance of smoking on 8%; consumption of hard alcohol by 22% and consumption of cigarettes by 1.35 cigarets per day

Robustness

RD around 1st January FALL DRAFT dates November - December 31 Quite similar point estimates, (noisy for alcohol consumption)

Table: RD around January 1st

	alcohol intake	hard alcohol intake	# of cigarettes per day	l(smokes)	Served in Army		
Served in Army	77.10	53.65	10.02	0.192			
robust se	[72.60]	[59.90]	[9.596]	[0.443]			
se	[35.48]	[30.35]	[3.274]	[0.140]			
l(after NY)					-0.077***		
					[0.0280]		
BW size	2 months	2 months	2 months	2 months	2 months		
Note: Robust st.errors clustered at age18 level (a,b)							
David Card and Evgeny Yakovley The Causal Effect of Serving in Army on Health: Evid							

nce

- Sample of 2000-2011 dates only: similar results
- Look only on males: results are higher in magnitude
- Look on averages within (gender)*a18 cells rather than on individual level data: same results
- Add national averages of alcohol (beer, vodka, and ratio of beer to vodka) and cigarettes consumption at age 18 (with gender-specific coefficients): similar results (higher in magnitude)
- Add national GNP per capita, death rates etc at age 18 (with gender-specific coefficients): similar results
- Look only males who become 18 age old before 1998 (Expansion of beer industry): similar results with smaller magnitude and bigger standard errors
- RKD within 3-years neighborhood of kink: similar with higher in magnitude results

Identification assumption: Placebo for kink

Placebo for kink: moving 20-year window of year-turned-18 profile

$$y_{ij} = \beta_0 + \beta_1 a_{18_i} + \xi (D_{central year_k}(a_{18_i} - central year_k)) + \beta_2 a_{28}e^2 + I(Male)(\alpha_0 + \alpha_1 a_{18_i} + \theta (D_{central year_k}(a_{18_i} - central year_k)) + u_{it}$$

• Kink in risk of conscription around 1989

David Card and Evgeny Yakovlev The Causal Effect of Serving in Army on Health: Evidence

Placebo for kink

 No kinks in pre-determinant characteristics (parents demographics, education, location, height, early age diseases)

• No discontinuity in distribution of pre-determinant charact-cs

• Indeed for females we do not observe kinks

A B A A B A

Alcohol consumption profiles

David Card and Evgeny Yakovlev

Hard Alcohol Consumption

David Card and Evgeny Yakovlev

Smoking

David Card and Evgeny Yakovlev

Hepatitis/Tuberculosis/Liver/Lung chronic diseases

David Card and Evgeny Yakovlev

- Analysis of the effect of compulsory military service on health
 - New evidence came from natural experiment (Russian/USSR Demilitarization Reform)
- Contribute to the analysis of health consequences of military service: first evidence from peaceful-era drafts
 - Strong effect on alcohol consumption, smoking, and related diseases
- Introduce new method (RKD) in health (and development) economics

• Appendix

David Card and Evgeny Yakovlev The Causal Effect of Serving in Army on Health: Evidence

★御≯ ★理≯ ★理≯

æ

RKD implementation (not main specification)

$$y_{it} = A_i \delta + f(a18)_i + X_{it} \alpha + u_{it}$$

- y_{it} is a outcome (health outcomes)
- *A_i* is a indicator that person went to compulsory military service
- f(a18) is a smooth function (polynomial) representing the date-turned-18 profile of the outcome y
- X_{it} set of observable characteristics (smooth function of age, l(live in city), income, marital status, time®ional FE)
- *a*18; is a date (year+month/12+day/365) when person turned eighteen

・ 同 ト ・ ヨ ト ・ ヨ ト …

 A_i is endogenous Use kink (in year 1988) as an instrument for A_i

$$A_i = k(a18_i) + (D_{1988}g(a18))_i + X_{it}\alpha + \varepsilon_{it}$$

 D_{1988} indicator that person turned 18 years in or later than 1988 $k(a18_i), g(a18)_i$ smooth functions of date when person turned 18, g(1988) = 0 $D_{1988}g(a18)_i$ captures the kink

•
$$y_{it} = A_{it}\delta + X_{it}\alpha + f(a18) + \delta_t + \delta_r + u_{it}$$

• $A_{it} = X_{it}\alpha + f(a18) + (D_{1988}g(a18))_{it} + \delta_t + \delta_r + \varepsilon_{it}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

Ratio ratio of Males to Females by date of birth

David Card and Evgeny Yakovlev The Causal Effect of Serving in Army on Health: Evidence