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Abstract

We discuss the tension between some of the recent evidence of path
dependence in urban location with recent efforts to analyze calibrated
models of city sizes. One strand of recent work, including some of our
own, finds evidence of persistent city sizes following the obsolescence
of historical advantages. This literature argues that such persistence
cannot be understood as the medium-run effect of legacy capital, but
rather as the long-run effect of equilibrium selection. In contrast, a
different, recent literature uses stylized models that feature a single
long-run equilibrium at each site/city. We show this disjunction in
a standard model and then propose several modifications that might
allow for multiplicity and thereby historical path dependence. We use
mixed-integer-programming solvers to construct bounds on the degree
of multiplicity of steady states across US Counties. We find, absent
strong parametric restrictions, very wide bounds on the scope for mul-
tiple long-run equilibria. We then discuss a way forward for tightening
these bounds using the obsolete endowments as restrictions on the
model.
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1 Introduction

Are city sizes uniquely determined by locational fundamentals? Or, in the
presence of localized aggregate increasing returns, are city sizes instead char-
acterized by multiple steady-states, and thus perhaps influenced by history?
Because the natural advantages that first attracted economic activity to a
particular location are usually persistent, separately identifying the effects
of fundamentals versus history is difficult.

We attempt to deal with this identification problem by studying the role
of long-obsolete endowments in determining the sizes of cities. What these
natural advantages have in common—whether a convenient place to carry
cargo around rapids or over rivers, a source of water power, or the conflu-
ence of two rivers—is that they were made obsolete by new technologies a
century or more ago. The lasting footprint of these obsolete endowments on
the spatial distribution of activity, however, suggests that city sizes are not
uniquely determined by locational fundamentals. If they were, then cities
near these features should have declined with the value of their initial nat-
ural advantages. Instead, the persistence of these cities suggests that there
may be multiple steady-state spatial distributions of economic activity, with
history playing in an important role in equilibrium selection. In addition,
evidence of path dependence has important implications for quantitative
models of city sizes.

2 The footprint of history

Many cities founded near historical portage sites persist today (Hoyt Bleak-
ley and Jeffrey Lin, 2012a). During the early settlement of North America,
portage sites were convenient places for carrying a boat and its cargo over
land around some obstacle to navigation. These obstacles obliged traders
to get out of their canoes, which made such sites focal points for commerce.
But this natural advantage became obsolete a century or more ago, thanks
to improvements in transportation technology. Similarly, some falls at these
sites provided water power during early industrialization, an advantage that
was made obsolete by the advent of other, cheaper power sources.

Yet the footprint of portage is evident, even today. Prominent examples
can be found along rivers at the intersection of the fall line—a geomor-
phological feature dividing the Piedmont and the coastal plain, describing
the last set of falls or rapids experienced before emptying into the Atlantic
Ocean. Along rivers in the colonial era, towns tended not to form in the
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Figure 1: Fall line portage cities in contemporary Virginia

This map shows major cities at the intersections of the fall line (solid line) and rivers (dot-
dash), and the present-day distribution of economic activity using 2003 nighttime lights from
NationalAtlas.gov.

coastal plain, but instead at the fall line where the obstacle to water trans-
port required the offloading of goods sourced upstream. Thomas Jefferson
(1781) noted this phenomenon in Notes on the State of Virginia:

[The Tidewater area] being much intersected with navigable wa-
ters, and trade brought generally to our doors, instead of our
being obliged to go in quest of it, has probably been one of the
causes why we have no towns of any consequence.

Today, these rivers are no longer used for commercial transportation, yet
the major cities of Virginia continue to persist at fall line portage sites. Fig-
ure 1 shows several portage cities—among them Richmond (at the falls of the
James River), Petersburg (Appomattox), Fredericksburg (Rappahannock)—
in present-day Virginia.

Importantly, portage cities did not shrink over time compared to either
the average location or locations that were similarly dense historically. Nor
does any specific legacy capital (such as infrastructure, housing, sectoral
composition, or literacy) explain the persistence of portage city sizes. Fi-
nally, the relatively smooth landscapes of the coastal plain and Piedmont
suggests an absence of persistent geographic factors that might explain per-
sistence in other historical contexts (Donald R. Davis and David E. Wein-
stein., 2002; Sanghoon Lee and Jeffrey Lin, 2013).

A recent literature finds other important effects of temporary histori-
cal factors on the sizes and types of cities. For example, German division
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Figure 2: Utility paths with unique (A,B) and multiple (C) equilibrium city
sizes

resulted in a permanent diversion of air traffic from Berlin to Frankfurt
(Stephen J. Redding, Daniel M. Sturm and Nikolaus Wolf, 2011). Dramatic
but temporary reductions in the supply of raw cotton to the British textile
industry during the U.S. Civil War had a long-run impact on English towns
where cotton production had been concentrated before the war (Walker
Hanlon, 2014). Within Manhattan, historical marshes affect housing prices
even today, despite sewers having rendered their initial disadvantages moot
(Carlos Villareal, 2012). And rail lines that are subsequently scuttled ap-
pear to have permanent effects on the spatial distribution of activity, both
across cities (Remi Jedwab and Alexander Moradi, 2014) and within cities
(Leah Brooks and Byron Lutz, 2014). Intriguingly, the location of Roman
towns predicts later city locations in France, but not Britain—suggesting
that there may be significant consequences to path dependence in city sizes
(Guy Michaels and Ferdinand Rauch, 2013).

3 History and theory

What, then, can explain persistence in city sizes at these sites, if natural
advantages went obsolete and historical legacy capital has long ago depreci-
ated? Localized aggregate increasing returns are a natural explanation for
path dependence in city sizes. Importantly, in the presence of increasing
returns, a particular location may feature multiple equilibrium city sizes.
Then, persistent differences in city size can be rationalized even in the ab-
sence of differences in natural advantages or sunk capital.

To see this, note that equilibrium models of city sizes typically include
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both agglomeration forces and congestion forces. Larger cities trade off su-
perior agglomeration benefits against higher congestion costs. For a partic-
ular location, a convenient way to describe equilibrium is to derive indirect
utility V (X) as a function of total city population or employment X. In
long-run spatial equilibrium, city size is determined so that the marginal
mobile household receives the same utility in that city as a reservation level
of utility (which may be endogenous) available in other cities.

The shapes of these utility paths vary with the number and types of
centripetal and centrifugal forces considered. Figure 2 shows these utility
paths as a function of total city size X, under three different assumptions
about the number and types of agglomeration and congestion forces.

The discussion that follows is relevant to a recent literature that has
attempted to quantify equilibrium models of city sizes.1 Many assume func-
tional forms or parameter values to guarantee unique equilibrium city sizes.
But if we want to take path dependence seriously, it may be useful and
important to work with a more flexible model that admits more features,
including multiple equilibria.2

A model featuring a single congestion force is the easiest to analyze.
For example, each location might feature a fixed land endowment that is
diluted with increasing population.3 As there are no countervailing ag-
glomeration economies, the essential feature of such a model is a downward
sloping pseudo-demand curve for labor at a location (Panel A). Then, there
is a unique long-run equilibrium city size X∗, shown where the utility path
intersects V ∗, the reservation level of utility in spatial equilibrium. In this
model, differences in city sizes can be rationalized by innate variation in
natural production or consumption amenities, which correspond to vertical
translations of the utility path. However, in the (very) long run, if labor and
households are mobile, then persistent differences in city sizes are difficult
to explain absent differences in fundamentals. In this simple model, there
can be no long-run history dependence.

Even the addition of a standard agglomerative force may not yield pre-
dictions consistent with path dependence. For example, consider a pro-

1Some recent examples include David Albouy and Bryan Stuart (2014); Satyajit Chat-
terjee (2006); Rebecca Diamond (2013); Klaus Desmet and Esteban Rossi-Hansberg
(2013); Andrew F. Haughwout and Robert P. Inman (2001); Sanghoon Lee and Qiang
Li (2013); and Jordan Rappaport (2008a, 2008b).

2Elhanan Helpman (1998) shows that the welfare properties of equilibrium are very
different in models featuring unique versus multiple equilibria.

3Alternatively, a congestion externality with a Poisson arrival process might be used
to justify an exponential functional form..
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duction function of the form Y = X̄δf(X,L,K), where f() is a firm-level
constant returns to scale production function in labor, land, and capital,
and 0 < δ < 1 is the degree of (external) increasing returns to scale in the
city-level employment (X̄).4 For δ large enough, a typical utility path under
these assumptions features a single-peaked hump shape (Panel B).

Though there are two points where the utility path crosses the reserva-
tion utility level, only the larger city size is a stable equilibrium. (At the
smaller size, utility is rising with city size, inducing factor movements into
the city.) Thus, these assumptions yield the result of a unique equilibrium
city size for each location.5 Two cities may be of different size because
of variation in locational fundamentals or the degree of increasing returns.
But again, it is difficult in this framework to explain path dependence in
city sizes.

Notice, too, that under this specification for agglomeration economies,
the model has very strong predictions about the pattern of city sizes. In
particular, such a model has difficulty explaining the preponderance of small,
non-empty cities without requiring them to be in an unstable equilibrium.6

This difficulty arises because of how agglomeration economies are modeled:
one typology of agglomeration economies might distinguish the effects of city
size on marginal product at very small scales. Modeling spillover benefits
as Xδ implies an infinite marginal agglomeration benefit or spillovers near
zero. At city size increases, the marginal spillover benefits strictly decline.

Some models of agglomeration have this property—for example, ones
based on matching. Peter Diamond’s (1982) coconut model is a leading
case, but see also Kevin M. Murphy (1986) and Bleakley and Lin (2012b).
But agglomeration economies might have the opposite pattern: negligible
effects at very small scales that don’t kick in until some important threshold
is crossed. For example, the presence of fixed costs implies variation across
industries in minimum efficient scale. Models of a “big push” have this flavor
(e.g., Murphy, Schleifer, and Vishny, 1993).

For these reasons, it seems desirable to choose a different set of assump-
tions about agglomeration and congestion forces. Helpman’s (1998) model
addresses many of these issues, using fixed costs, transport costs, and a fixed

4J.V. Henderson’s (1974) canonical model includes a similar specification for increasing
returns to scale at the city level. His congestion force is an exponential commuting cost
that increases with the size of the city. Several of the above-cited studies use this X̄δ form
of agglomeration.

5There may also exist an equilibrium city size of zero, but this is unstable by the same
argument.

6This observation was made by Chatterjee (2006).
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endowment of housing to generate utility paths as in Panel C. In this formu-
lation, utility paths are S-shaped, and the S-shape reflects different ranges of
city size where congestion or agglomeration forces dominate. There are now
two stable, nonzero equilibrium city sizes, labeled X ′ and X∗. Note that
locations that are otherwise identical in terms of locational fundamentals
might have very different long-run city sizes. Across locations, which equi-
libria are selected might depend on history (Paul Krugman, 1991). Thus, a
temporary shock to fundamentals might lead to persistent differences. The
additional curvature in the utility paths yields multiplicity in equilibrium
city sizes, providing an intriguing and attractive way to rationalize path
dependence in city sizes.

However, note that such a model would have now have difficulty in ex-
plaining intermediate city sizes, corresponding to the range where utility
is upward sloping, without requiring them to be in unstable equilibrium.
(Note that the empirical distribution of city sizes does not exhibit bimodal-
ity around X ′ and X∗.) This is because of the way locational fundamentals
enter the model: natural production or consumption amenities shift utility
paths across locations vertically, up or down. A positive amenity is neutral
with respect to density, thus yielding the same proportional benefit to a
large or small city.

Reflecting on differences across places, this neutrality assumption seems
at best incomplete. One can think of a whole host of investments or en-
dowments that might complement density. Infrastructure investments, for
example, are a way to reduce the negative externalities from congestion at
a given density; so, too, might congestion pricing complement density (Jef-
frey Brinkman, 2013). Geographic barriers to development might also affect
how congestion responds to city size (Mariaflavia Harari, 2014). Or, echoing
Henderson’s (1974) explanation, cities may vary in industrial composition
and therefore the degree of increasing returns.

The non-neutrality of fundamentals echoes the time-honored concept of
“economic base” from regional economics. Economic base matters because—
roughly speaking—products that can be exported are not subject to a sharply
downward sloping local demand curve. Locations endowed with better trans-
port access to the rest of the world face, in effect, a more elastic demand
curve for their exports. Market access complements density because sites
with better access can get larger without depressing prices received for their
output.
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4 Model

We outline a static, multi-region, general equilibrium model of city sizes that
can rationalize persistent differences in population densities across locations,
even absent differences in natural advantages. The model is a simplified,
multi-region version of Helpman (1998). Our main departure is to model
agglomeration economies and congestion costs in a reduced-form way, versus
from micro-foundations as in Helpman. This is helpful for quantitatively
matching the data (notably, by not restricting agglomeration and congestion
forces to be identical across locations), while (1) accommodating multiple
equilibria and (2) keeping the model parsimonious.

There are two kinds of agglomerating forces: heterogeneity in the nat-
ural amenity or productivity value of locations and scale economies to the
geographic concentration of economic activity. These centripetal forces are
balanced with congestion costs and scarce fixed factors that discourage all
economic activity from concentrating in a single black-hole location.

We show that the model, given the observed data and a handful of
calibrated parameters, is log linear in unobserved parameters (productivity
shifters, e.g.). This allows us to use linear programming and mixed-integer
linear programming to solve the model efficiently.

4.1 Setup

There are i distinct geographic areas (i = 1, 2, 3, ..., I), in which i is a large
number covering the entire spatial economy. Household location choice is the
central endogenous decision in the model, determining the size of regions.

The traded good Y is produced at the plant level according to y =
λφiσ(Xi)f(x, k, h), in which λ is an economy-wide productivity shifter, φi
is a local natural advantage that affects productivity, and x, k, and hp are
labor, capital, and land inputs at the plant level. Capital is freely traded at
a national rental rate r; local wages w and land prices p are determined in
equilibrium. Land is inelastically supplied and non-traded.

Each plant’s production function is constant returns to scale and Cobb
Douglas: f ≡ xβkω (hp)

1−β−ω. Also, a reduced-form function of total pop-
ulation Xi, σ(Xi) is modeled as

log σ(Xi) ≡
[
δ1 logXi + δ2 (logXi)

2
]
,

and accounts for local scale economies not internalized by plants.7 While an
individual plant may face constant returns to scale in its own factor inputs

7This parameterization is useful for quantitatively matching the model to data; see
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(i.e., in f), its choice of factors can create positive externalities to other
plants in the same location—for instance, by raising the marginal product of
other factors in that location. Goods are costlessly traded across locations.
Traded goods plants behave competitively, taking populations and factor
prices as given.

People receive income from inelastically supplying one unit of labor at
wage w.8 Utility is U = y1−θ(hc)

θψτ(Xi), where hc is consumption of land,
ψi is the value of local natural amenities in consumption, and τ(Xi) ≡ e−γXi
is a reduced-form function that captures disutility from crowdedness.

4.2 Equilibrium

In equilibrium, local factor prices wi, pi, local shifters φi, ψi and factors Xi,
Ki are such that marginal products equal factor prices; factor, goods, and
land markets clear; and utility is equal across locations. Equations 1–4.2
define an equilibrium at each site. (Here local subscripts i are suppressed.)
These conditions must hold for each site and a global population constraint
must also be satisfied.

Aggregate production in each location is

Y = λφσ(X)XβKω [(1− α)H]1−β−ω (1)

σ(X) = exp
[
δ1 logX + δ2 (logX)2

]
, (2)

where (1 − α) is the share of land H devoted to production (with the bal-
ance left for consumption), determined in equilibrium. Equilibrium α =

θβ
1−β−ω+θβ .

Incorporating the budget constraint and land market clearing, indirect
utility is:

V = V ≡ [w(1− θ)](1−θ)
(
αH

X

)θ
ψe−γX , (3)

in which V is equilibrium utility at every location.

below. It also has the attractive features of no spillovers for a local employment of one
person (σ(X = 1) = 1) and that agglomeration spillovers are non-declining for X =≥ 1
and δ1, δ2 ≥ 0. Note that, for δ2 = 0, this collapses to a commonly used Xδ specification
for agglomeration spillovers.

8Payments to land and capital are made to absentee landlords. Helpman (1998)
uses these payments rebated lump-sum to workers and the consumption of rival non-
traded goods (e.g., land for housing) to generate disutility from crowdedness from micro-
foundations. Instead, we assume absentee landlords and introduce a reduced-form function
of population τ to achieve a similar effect.
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Finally, marginal products equal factor prices:

w =
βY

X
; r =

ωY

K
; p =

(1− β − ω)Y

(1− α)H

Following Helpman, equilibrium can be solved numerically. A convenient
way to describe possible equilibrium configurations at a single site i is to
derive indirect utility V (Xi) as a function of a single endogenous variable,
population Xi, and parameters:

log V̄ = log V (Xi) (4)

= C +

(
1− θ
1− ω

)[
δ1 logXi + δ2(logXi)

2
]

− (1− θ)
(

1− ω − β
1− ω

)
logXi

− θ logXi−γXi (5)

C ≡
(

1− θ
1− ω

)
log φi + logψi

+ (1− θ)
(

1− ω − β
1− ω

)
logHi + θ logHi

+ F (θ, β, ω, λ, r), (6)

where F () is a function of global parameters. (The endogenous variables for
wages, land prices, and the capital stock were solved out.) Note that in equa-
tion 4, δ1 and δ2 govern the strength of agglomeration economies (conditional
on Xi in the first term after C. The subsequent terms capture decreasing
marginal product of labor, crowding of the fixed factor (land) in consump-
tion, and general congestion costs, respectively. Equation 6 describes how
the constant term C is composed of site-specific natural advantages and land
area, as well as global parameters.

Depending on parameters, a site may feature one of two types of equi-
librium configurations. These two cases are shown in figure 3. Each panel
shows V (Xi) as a function of population Xi for a particular location. Equi-
librium population densities can be seen by the point where the V (Xi) curve
intersects the equilibrium utility across locations, V̄ .

In case 1 (left panel), if agglomeration economies are weak, then V (Xi)
is monotonically decreasing in Xi. Thus, conditioned on these parameters
there is a unique equilibrium population at this site.

Note that if every site features parameters ensuring a unique equilibrium
size, then differences in city sizes must be rationalized by differences in land
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area and/or natural amenities in production or consumption. According
to equation 6, these differences correspond to vertical translations of the
(log) indirect utility curve. When equilibrium population is unique, then
city size is determined by the point where congestion costs exhaust natural
advantages.

Alternatively, in case 2 (right panel), V (Xi) is declining in Xi except
for some range of Xi where agglomeration economies dominate congestion
costs. This is the case where agglomeration economies are strong and multi-
ple equilibria in city size are possible. In this figure, δ1 and δ2 are such that
agglomeration economies are greater than congestion costs over an interme-
diate range of population—the region corresponding to the upward-sloping
portion of V (Xi).

A key implication of strong increasing returns is the possibility of multi-
ple stable equilibrium city sizes. Note that this feature allows for differences
in long-run populations between two locations—say, along the same river—
that are nearly identical in terms of natural advantages.

Figure 3: V (Xi) with unique (left) and multiple equilibrium (right) sizes

In the figure there are two “stable” and one “unstable” equilibrium city
size, in the Krugman (1991) sense. Note that the middle equilibrium is
“unstable” in the sense that small increases in city size increase utility,
which in turn might attract more workers. In contrast, V ′(X) < 0 in the
two outer “stable” equilibria.

4.3 Flexibility in agglomeration and congestion forces

Allowing for multiple equilibria introduces some problems when we attempt
to quantitatively match the model to data. First note that parameterizations
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restricting the model to a unique spatial equilibrium have no trouble fitting
the model to data. Given observed population, there is some combination
of natural advantages (φ, ψ) that can rationalize the employment data.
Visually, in figure 3, left panel, variation in population along the horizontal
axis is taken care of via vertical translations of the V (X) curve.

However, things are not so simple when multiple equilibria are possi-
ble.9 First, consider the case where agglomeration and congestion forces are
identical across locations (i.e., each site’s indirect utility curve is a verti-
cal translation of the curve in Figure 3, right panel). Then, medium-sized
cities (i.e., along the upward-sloping portion of V (X)) are predicted by the
model to be in an unstable equilibrium. Thus, this restricted version of
the model would have difficulty accounting for the large number of cities
featuring intermediate levels of population.

A key feature of our quantitative work is to allow δ1, δ2, and/or γ to
vary across locations, thus allowing the model to explain the data without
requiring any site to be in an “unstable” equilibrium. Reasons why agglom-
eration and congestion forces may vary across locations include variation in
industrial composition and spillovers. In Henderson’s (1974) model, city-
industry specialization and varying spillovers are used in a similar way to
justify differences in city sizes. On the congestion side, differences in natural
geography affecting transportation and housing supply, or differences in the
productivity of a non-traded sector, may affect the elasticity of congestion
forces across locations.

4.4 Data and Calibration

We use 1990 data for US counties on employmentXi, wages wi, and land area
Hi, reported in the 1994 and 1998 county data books (Michael R. Haines and
the Inter-university Consortium for Political and Social Research, 2004). For
wages, we use total BEA earnings, all industries (ea10090d) divided by total
BEA employment (ge50090d). 3,109 counties (out of 3,142) have nonzero
employment and earnings reported. Total annual earnings per employee
(in thousands) range from under 8 (Mercer County, MO) to over 43 (New
York, NY). (An outlier is North Slope, AK, where average annual earnings
top 57.) Employment ranges from 108 (Loving, TX) to 5.3 million (Los
Angeles, CA). Land area is reported in square miles.

The model contains many parameters, some of which we calibrate. Global

9These issues were recognized by Chatterjee (2006), who dealt with them by (1) fixing
some population, instead of fixing land as we do, and (2) setting agglomeration economies
to zero below some threshold, versus introducing a new congestion force.
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β 2/3 cost share of labor
ω 1/4 cost share of capital
θ 1/3 expenditure share on land
r 0.04 national rental rate
α† 8/11 ≈ 0.73 consumption share of land
λ 1 output normalization

V 1 utility normalization

Table 1: Calibrated and normalized global parameters

†—Implied by other parameters.

parameters include β, ω, θ, r, λ, and V . We normalize units of output and
utility so that λ and V are 1. Other parameters are calibrated as described
in Table 1. Local shifters φi and ψi are determined in determined (perhaps
uniquely) by the model, data, and calibrated parameters. Endogenous local
variables σ, Y , K, V ′, V ′′, and p are similarly determined. The parameters
governing the strength of agglomeration and congestion forces, δ1, δ2, and
γ, are either fixed, restricted to be equal across locations, or locally flexible,
as explained later.

4.5 Solution method

In general, there may be many solutions for equilibrium factor prices, shifters,
and factor allocations, even conditioned on the calibrated parameters and
the data on X, w, and H. Nevertheless, conditional on these data and a few
calibrated parameters, the model is log-linear in the remaining parameters.
This form makes the model amenable to linear programming, which is suited
to optimizing possibly underdetermined systems. We use a binary variable
to measure multiplicity, thus necessitating an integer-constraint on the oth-
erwise linear program. We use the model to formulate a mixed-integer-linear
program (MIP) to construct bounds on various concepts defined below.

The integer aspects of this program would render impossible a simple
brute-force approach to the problem. Each of the 3109 sites could either have
or not have another stable long-run equilibrium. This means that there are
23109 configurations, or approximately 9×10935 cases. Randomization-based
solvers such as simulated annealing would have a tough go with so many
permutations to sift through. Fortunately, mixed-integer linear programs are
well suited to this sort of problem, and we are able to solve these problems
in minutes rather than in ages of the universe.
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4.6 Implementing the linear program

Conditioned on observing employment, wages, and land areas, and the cali-
brated parameter values, the equilibrium conditions (equations 1–4.2 can be
written as a system of linear equations in a vector of endogenous variables

xi ≡ [γi, δ1,i, δ2,i, log φi, logψi, log σ, log Yi, logKi, log pi, ∂ log Vi/∂ logXi].
(7)

For example, taking logs of equation 1 and rearranging yields

log φ+log σ−log Yi−ω logKi = −(1−β−ω) [log(1− α) + logHi − β logXi] ,
(8)

where the right-hand-side of equation 8 consists only of calibrated param-
eters or data. Note that each equation 1–4.2 can be rewritten in a similar
way—where the right hand side is composed only of calibrated parameters
and data, and the left hand side is a linear equation in the endogenous
variables.

Thus, the equilibrium conditions at each site can be summarized by the
linear problem Aixi = bi, in which

Ai ≡



0 0 0 1 0 1 −1 ω 0 0
0 logXi (logXi)

2 0 0 −1 0 0 0 0
−Xi 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1 0

−Xi
1−θ
1−ω 2 1−θ

1−ω logXi 0 0 0 0 0 0 −1


and

bi ≡



−(1− β − ω) [log(1− α) + logHi − β logXi]
0

−(1− θ)] [logwi + log(1− θ)]− θ(logα+ logHi − logXi)
log r − logω

logXi − log β + logwi
− log(1− β − ω) + log(1− α) + logHi

−(β(1− θ)− 1 + ω)/(1− ω)

.


Note that the seventh row defines V ′(Xi), and rows 1–6 correspond to equa-
tions 1–6. In addition, we require that the data be in a stable equilibrium—
so V ′(Xi) < 0 is the final site-specific equilibrium condition, appended to
Ai and bi.
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The global equilibrium is defined by 8 × I (i.e., the number of rows of
A times the number of locations) constraints and 10 × I (the number of
columns of A times the number of locations) endogenous variables.

5 Bounds on multiplicity (χ)

The model above is consistent with both a very broad and a very limited
scope for multiplicity in long-run equilibria. In this section, we solve for
bounds on multiplicity using the model above. Specifically, what is the min-
imum (maximum) number of sites where alternative equilibrium allocations
of population are feasible?

After we take as given both the calibrated parameters above and the
observations on X, w, and H, there are two sets of remaining parameters.
First, the φ and ψ are productivity and amenity shifters that are allowed
to be site-specific. Second, the γ, δ1, and δ2 are parameters that influence,
roughly speaking, the returns to scale as a site. We dub these “stretcher”
parameters because they affect the slope of the V curve. The shifters are
neutral in scale, with a rise in φ or ψ increasing V at all levels of X. In
contrast, the stretchers are complements with X, at least when evaluated
over a large enough span of X, because if γ, δ1, or δ2 goes up, the V curve
rises more at very large X than at very small X. We treat the stretcher
parameters in three distinct ways: fixed at a default value (label “fixed”
below), constrained to the the same across sites (“global”), or site-specific
(“local”). The default values for these parameter allow for congestion, but
not agglomeration, but we relax these assumptions below.

5.1 Computation of V (Xi) over a grid of counterfactual city
sizes

Identifying when alternative feasible solutions exist is not directly possible
with a linear program because log V (X) is nonlinear in counterfactual em-
ployment levels. Our solution is to compute log V (Xij) over a fine grid of
J discrete values of Xij , for all sites i. (Here, j = 1, ..., J indexes coun-
terfactual employment levels for each site i. For the computations below,
J = 100.) Because equation 4 is linear in the endogenous and unobserved
variables x, we can append a set of gridded computation constraints to the
linear program.

The next step is to define an auxiliary binary variable χi ∈ {0, 1} that
indicates for each location whether, given parameters and data, population
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is uniquely determined (χi = 0) or not (χi = 1). This makes the problem a
MIP rather than a pure linear program.

5.2 Minimize χ

We first consider the minimum number of sites where multiplicity is possible,
i.e., the maximum number of sites where population is uniquely determined
by fundamentals.

The following mixed-integer linear program attempts to find the φi, ψi,
δ1,i, δ2,i and γi such that the number of locations with multiplicity is mini-
mized.

min

I∑
i=1

χi

subject to
A · x = b

G1 · x−V = G2

tol × sign(Xij −Xi)× V (Xij) ≤ χi
∀i, j

χi binary

where V is a vector of computed Vij for each location i and discretized
population grid point Xj and G1 and G2 are matrices of coefficients from
equation 4, that defines log Vij as a linear function of endogenous variables,
parameters, and counterfactual employment levels Xij .

The third set of constraints, tol × sign(Xij − Xi) × V (Xij) ≤ χi, ∀i.j,
define χi for each site. tol is a very small number, i.e. 1× 10−3. V (Xij) is
the computed indirect utility for each grid point Xj . sign(Xij −Xi) is the
sign of the difference between grid point Xij and observed population Xi.
Thus, the sign of the left hand side of the inequality is +1 for Xij > Xi and
−1 for Xij < Xi.

Consider the case where population is uniquely determined for location
i, as in Figure 3, leftmost panel. In other words, indirect utility V (Xij)
monotonically declines with population Xij . In this case, the sign(Xij−Xi)
transforms the left hand side into a function that is weakly negative over
the entire range of Xij , i.e., tol × sign(Xij −Xi)× V (Xij) ≤ 0.

As the problem tries to minimize
∑
χi, this implies that optimal χ∗i = 0

for sites with no multiplicity. In contrast, consider the case where population
is not uniquely determined for location i, as in Figure 3, right panel. Then,
tol× sign(Xij −Xi)× V (Xij) > 0 for some Xij , so 0 < χ∗i , which translates
to χi = 1 on account of χ being binary. In this setup, the mixed-integer
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linear program will attempt to choose parameters to avoid multiplicity and
guarantee uniqueness at each site, thus allowing for χi = 0 at as many sites
are possible.

The model is compatible with little to no multiplicity, as shown in Ta-
ble 2. Columns 1-3 indicate the class of restrictions on the stretcher param-
eters (γ, δ1, δ2), while column 4 reports the results from the χ-minimization
program. For row A.1, we choose the default parameter values that shut
down agglomeration, and, as expected, the MIP solver finds that χ can be
zero for all sites. When we allow for agglomeration parameters to be pos-
itive, the routine still indicates a lower bound on multiplicity at exactly
zero sites. This holds up even if we allow the stretcher parameters to be
site-specific (“local”).

5.3 Maximize χ

The second problem we consider is the maximum number of locations where
multiplicity is possible, i.e., the minimum number of sites where population
is uniquely determined by fundamentals.

The following MILP attempts to find ψi, ψi, δ1,i, δ2,i and γi such that
the number of locations with multiplicity is maximized.

max
I∑
i=1

χi

subject to

Ax = b
G1 · x−V = G2

µi − sign(Xij −Xi)× V (Xij)−Msij ≤ 0 ∀i, j∑
j
sij = J − 1 ∀i

χi −M ∗ zi ≤ 0 ∀i
−µi +M ∗ zi ≤ M ∀i

χi −Myi ≤ 0 ∀i
−V (Xi,1) +Myi ≤ M ∀i

V (Xi,J) < 0 ∀i
χi, sij , yi, zi binary
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The first two sets of constraints are identical to the minimization prob-
lem.

The next two lines specify a set of constraints that attempt to find
the maximum value µi of the sign-transformed indirect utility curve, i.e.,
max [sign(Xij −Xi)× V (Xij)]. Note that sij is a binary variable and M is
a large number, i.e., 1 × 103. The summing-up constraint,

∑
sij = J − 1,

ensures that sij = 1 for all but one grid point Xij per site. Note that if
sij = 1, then the previous inequality is dominated by the “big M ,” and
is not relevant for the maximization problem.10 If however, for some grid
point Xij , sij = 0, then the constraints require that µi be no less than than
the maximum value of V (Xij).

The subsequent two lines specify a set of constraints that link χi to
µi. These constraints implement the logical statement: If µi ≤ 0, then
χi ≤ 0, else χi ≤ M . In words, if the maximum of the sign-transformed
indirect utility curve is less than equal to zero (i.e., population is uniquely
determined by fundamentals), then the value of χi for that site is restricted
to be no more than zero. Since the problem is trying to maximize

∑
χi, it

will attempt to find a feasible solution to avoid this constraint.
The next two lines specify a set of technical constraints. These con-

straints implement the logical statement: If V (Xi,1) ≤ 0, then χi ≤ 0. In
words, if indirect utility at the minimum Xij is negative, then set χi to
be no greater than 0. We can show numerically that if computed indirect
utility at the minimum Xij is negative, then any alternative equilibria (if
they exist) are unstable.

Finally, the last line specifies a set of “no-black-hole” constraints. We
require computed indirect utilities at the maximum Xij to be strictly neg-
ative, i.e. below equilibrium utility across locations. This ensures that in
equilibrium, no site might be so attractive as to absorb the entire population.

As the problem is attempting to maximize
∑
χi, it will attempt to find

parameters so that zi = 1 (according to the fifth constraint). Note that if
zi = 1, then µi ≥ 0, according to the sixth constraint. Thus, the problem
will attempt to find parameters so that µi is positive.

There is significant scope for multiplicity, although not for all sets of
parameter restrictions. These results are also seen in Table 2, but in columns
5-9. As above, we first consider a default set of stretcher parameters that
allows for congestion but not for agglomeration. Specifically, γ = 1.5e −
06, δ1 = 0, and δ2 = 0. The upper bound on the number of sites with

10Such “big M” strategies are commonly used in mixed-integer-linear programming to
find approximate solutions to nonlinear equations, for example.
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multiplicity is zero, as shown in row A.1. This should come as little surprise
because we have shut down agglomeration. Indeed, for no δ2 = 0 is max
χ > 0, as seen in A.1, B.1-2, C.1-2, and D.3. This is also consistent with the
analysis above: δ2 must be greater than zero to obtain V curve with three
intersections (Figure 3, rightmost panel). Relaxing this δ2 = 0 assumption
is not enough alone, however; we see in C.2 that no single δ2 can be found
that allows for multiplicity, if we fix the other stretcher parameters at their
default levels.

Nevertheless allowing for more flexible parameters options yields scope
for multiple equilibria. For example, row C.3 displays the output from a
program in which the δ2 are allowed to be site-specific (“local”) in which
we find that as much as 86% of sites could be characterized by multiplicity.
In Panel D, we allow for local heterogeneity in one of the other stretcher
parameters, and we see that as much as all (γ local, row D.2) or all but
one (δ1 local, row D.1) sites could have the possibility of another long-run
equilibrium. Panel E further relaxes the assumption in Panel D by letting
parameters that were fixed at their defaults be globally flexible (i.e., not
fixed ex ante at a specific value, but constrained to be common values across
sites). Allowing all three to be local (site-specific) yields an upper bound of
all sites possessing an additional stable, long-run equilibrium.

In Table 3, we explore the scope for multiplicity on a grid for the stretcher
parameters. For Panel A, we allow for site-specific γ but fix the δ at specific
values for each χ-maximization exercise over a grid of plausible δ. The first
cell (in which max

∑
χi/J = 0) is equivalent to Table 2, Panel B.1, column

5. Moving up in {δ1, δ2} space (right and/or down on the grid), we see this
unique-equilibrium result is robust in the neighborhood around δ1 = δ2 = 0.
It is also robust throughout the first column for all δ2 = 0, which concords
with the results in Table 2, various panels. Nevertheless, as both δ get
sufficiently far from zero, scope for multiplicity emerges. The upper bound
on χ peaks in the vicinity of δ1 = .07 and δ2 = .0185. Blank cells in the
grid indicate that no feasible solution was possible. This reflects the fact
that, if the agglomeration forces are so large, the model cannot find a stable
equilibrium over the (amply wide) grid of city sizes.

In results not shown, we also created a version of Panel A for the
χ−minimization exercise. This table would have the same upper-triangular
form, but with zeros throughout the non-blank cells. This is true for a site-
specific γ or for a γ that is constrained to be the same across all sites. How
is this possible even in the presence of strong agglomeration forces? While
it is true that the δ might generate a curve with just the right wiggles, it is
relatively easy to simply perturb those curves up or down with the shifters,
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and thereby leave the curve with only one intersection with V̄ .
Finally, in Panel B, we allow both γ and δ1 to be site-specific and attempt

to maximize χ over a grid of δ2. Here we see only small values of δ2 are
sufficient to allow for indeterminacy of equilibria across all sites. As above,
however, very large values of δ2 reduce the scope for multiplicity and then
render the model infeasible.

6 Bounds on gains (or losses) from reallocation

Beyond the scientific interest in the determinants of city size, the theme
of multiplicity raises the specter of misallocation. In the present context,
can we find a set of shifter and stretcher parameters that are consistent
with the data and calibrated parameters, but would also, given the model,
permit an alternate (equilibrium) allocation of employment across sites?
If so, would any of these alternative allocations produce higher (or lower)
utility? What is the minimum (maximum) level of utility V that can be
achieved by reallocating population across sites? The corresponding MIP
can be written as follows:

maxV

subject to

Ax = b
G1 · x−V = G2

V (Xi,J) < 0 ∀i

Vi,j+1 − V ≤ +M × (1− Zij) ∀i, j
−Vi,j + V ≤ +M × (1− Zij) ∀i, j

J∑
j=1

Zij = 1 ∀i

Zij binary∑
i

∑
j Zij (Xi,j +Xi,j+1) /2 = Xtotal

The first three sets of constraints are identical to the min/max χ problem.
The next three lines specify a set of constraints that—in effect–find the al-
ternative equilibrium at each site for a given value of V . The two inequalities
insure that such that Vi,j+1 ≤ V ≤ Vi,j for some j. The summing-up con-
straint

∑
Zij = 1, combined with Z being binary, specifies that this relation
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hold at exactly one grid point Xij for each site i. Thus, for Zij = 1, the
bounding constraints hold, but for the rest of the grid points Xij , Zij = 0
and the bounding constraints are effectively ignored. (Note that the bound-
ing constraints Vi,j+1 ≤ V ≤ Vi,j implicitly require that any new equilibrium
allocation be stable, because Vi,j+1 ≤ V ≤ Vi,j .) The final equation assures
that the new allocation of employment across sites sums to the total. Popu-
lation is pinned midway between grid points because a closer approximation
would not be a linear function of parameters. (Future work will refine this
approximation with a ’big M’ strategy for the interpolation and/or with a
finer Xij grid.)

In Figure 4, we show sample results from such an exercise. In this
simulation, a 15% increase in utility is possible, if we assume that all three
of the stretcher parameters are site-specific. (This is an example and not
the maximum V̄ nor is it a unique reallocation for log V̄ = .15.) Panel
A plots log employment in the data (x axis) versus in the simulation (the
”counterfactual” on the y axis). Panels B-D shows the Ṽ curves for several
examples sites and illustrate the types of transitions that would occur. (We
label these sites with numbers, not county names, to protect the innocent.)
The dashed lines at zero denote the original (current) level of log indirect
utility while the dashed lines at .15 denote the utility level (log V̄ ) after
reallocation. Equilibrium (both observed and counterfactual) are seen at the
starred downward sloping intersections of the Ṽ curve with the respective
dashed lines. Panel B shows a site that is in the low equilibrium but that
might be bumped up to a high one. Such sites would grow tremendously in
this counterfactual world and must absorb population from elsewhere. Such
sites are the circles above the diagonal in Panel A.

The remaining sites would shrink, but in two distinct ways. Panel C
shows two sites whose equilibria are uniquely defined. Reallocating popu-
lation away from these counties reduces congestion and land dilution there.
Panel D shows instead the example of a site that shrinks down to a low
equilibrium, but this new low equilibrium is well below the original low
equilibrium that was consistent with a log V̄ = 0.

Note that the utility gains come from the reduced dilution/congestion in
all three Panels. By construction, two equilibria that could be obtained at a
given site and a given V̄ would generate the same utility level locally. This is
important for thinking about understanding how the gains from reallocation
would take place in such a model. Simply flipping one site from high to low
and another site from low to high, in a way that satisfies the total population
constraint, would not produce gains, again by virtue of what it means for
there to be two equilibria at each of these two sites.
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This is distinct from Paul David’s (1985) story about the QWERTY key-
board, in which he claimed they were potentially large benefits from having
chosen a different keyboard layout. The key difference between David’s ex-
ample and this one is whether the equilibrium arises through constraints or
marginal conditions. In the keyboard example, we are at a corner solution:
essentially everyone has specialized into a particular layout (QWERTY), but
the next person to arrive on the scene would still strictly prefer to learn the
QWERTY layout. Thus the keyboard layouts are analogous to the ‘black
hole’ locations that we sought to rule out by assumption above. In our
model, there are no black-hole cities but rather equilibria are all determined
by the marginal worker being indifferent between one site and another.

Why does this QWERTY comparison matter for our intuition? Consider
the usual informal theorizing in which someone laments that it would be
nice if accidents of history had brought us to have the current distribution
of population in places with milder winters or nicer beaches or more reliable
water supply or some such. Of course, this lament is nonsensical if all of
the equilibria are uniquely determined. But note that it is also hard to
understand this comment even in our model in the case where multiplicity
is possible. The amenities mentioned above should, in equilibrium, already
be priced.

7 Conclusions

How can an equilibrium model of city sizes accommodate both the historical
evidence of path dependence and the empirical size distribution of cities?
One solution is to allow for multiple equilbria in city sizes and locational
fundamentals that are non-neutral with respect to city size. Of course,
allowing for such flexibility comes at a cost in terms of identification. We
leave an investigation of such a model for future work.
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