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1 Introduction

In this paper we develop a test for the time-variation of the process d⟨Xc,Y c⟩t
d⟨Xc,Xc⟩t over a fixed interval of

time. Here X and Y are two semimartingales, Xc and Y c denote their continuous components, and

the angle bracket denotes the predictable component of the quadratic (co)variation, see e.g., Jacod

and Shiryaev (2003). Our analysis applies to bivariate Itô semimartingales having representation

of the following form

Xt = X0 + FXt +

∫ s

0
σsdWs, Yt = Y0 + F Yt +

∫ s

0
βsσsdWs +

∫ s

0
σ̃sdW̃s, (1)

where FXt and F Yt are finite variation processes (containing both continuous and jump parts), W

and W̃ are two independent Brownian motions, β, σ and σ̃ are stochastic processes with càdlàg

paths, exact assumptions being provided in the next section. In the setting of (1) the continuous

quadratic covariation is absolutely continuous with respect to time and βt ≡ d⟨Xc,Y c⟩t
d⟨Xc,Xc⟩t , and hence

our interest in this paper is in testing whether the process β remains constant over a given interval

of fixed length. The key motivating example for this problem comes from finance where X plays

the role of a (systematic) risk factor and Y of an asset. β in this case measures the exposure of the

asset to the risk factor, and constancy of β plays a central role in testing the validity of the asset

pricing model. Testing whether β is constant on a given interval helps further decide on the time

window for recovering the beta process from the data.

The asymptotic analysis in the paper is based on discrete equidistant observations of the bi-

variate Itô semimartingale on a fixed interval of time with mesh of the observation grid shrinking

to zero. Our focus on the sensitivity of the continuous martingale part of Y towards that of X is

similar to Barndorff-Nielsen and Shephard (2004), Andersen et al. (2006), Todorov and Bollerslev

(2010) and Gobbi and Mancini (2012).

We construct our test as follows. We first form a “pooled” estimate of beta as the ratio of

estimates over the fixed interval [0, T ] of the continuous covariation ⟨Xc, Y c⟩T and the continu-

ous variation ⟨Xc, Xc⟩T . This estimator is consistent for the constant beta and asymptotically

mixed normal under the null and it converges to a volatility weighted average of the time-varying

beta under the alternative. Using this “pooled” beta estimator, we then separate, under the null

hypothesis of constant beta, the residual component of the process Y which is orthogonal in the

continuous martingale sense to the process X. That is, we estimate, under the null, the part of Y

that has zero continuous quadratic covariation with X. Since the “pooled” beta estimates the true

beta process only under the null, the above estimate of the residual component is asymptotically

orthogonal to X only when beta is constant.
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Our test is formed by splitting the data into blocks of decreasing length and forming test

statistics for constant beta on each of the blocks. This is similar to block-based estimation of

volatility functionals in high-frequency setting developed in Jacod et al. (2009), Mykland and

Zhang (2009) and Jacod and Rosenbaum (2013). The test statistics on the blocks are based on

the different asymptotic behavior under the null and alternative of our estimate of the residual

component defined in the previous paragraph. Our test is then formed by summing the test

statistics over the blocks and appropriately scaling the resulting sum. The test is asymptotically

standard normal under the null and after scaling it down it converges to a volatility weighted

measure of dispersion of the beta around its volatility weighted average on the fixed time interval.

The asymptotic behavior of our statistic has several distinctive features compared with block-

based volatility functional estimators considered in Mykland and Zhang (2009) and Jacod and

Rosenbaum (2013). To achieve non-degenerate limits under the null of constant beta, unlike Jacod

and Rosenbaum (2013), we need to scale up appropriately the local block variance-covariance esti-

mates. As a result, unlike Jacod and Rosenbaum (2013), the limiting distribution of our statistic

is not determined from the first-order expansion of the nonlinear function of the block volatility

estimates around the function evaluated at the true (and observed) stochastic variance-covariance

matrix, but rather from a higher order expansion. We further extend the analysis in Jacod and

Rosenbaum (2013) by considering functions of volatility which are not bounded around zero. Fi-

nally, unlike earlier work, our statistic is constructed as a nonlinear function of adjacent volatility

block estimators. This makes the effect of biases arising from the local volatility estimation neg-

ligible and in particular it circumvents the need to do any bias correction which from a practical

point of view is very desirable.

Turning to the testing problem, our test has three distinctive features. First, the test is pathwise

in the sense that it tests whether beta is constant or not on the observed path. Hence the analysis

here is based on in-fill asymptotics and it requires neither assumptions regarding the sources of the

variation in beta nor stationarity and ergodicity conditions. Second, our test statistic is of self-

normalizing type (see de la Pena et al. (2009)) and hence its limiting distribution under the null

is pivotal, i.e., it does not depend on “nuisance parameters” like the stochastic volatilities of the

two processes. Finally, we can show that our test is asymptotically optimal for local nonparametric

alternatives βt that are α-Hölder regular. The separation rate of a weighted L2-distance between

hypothesis and alternative is n−2α/(4α+1), for which a minimax lower bound proves its optimality.

This analysis also provides a rationale for selecting the block size, depending on which kind of

alternatives we would like to discriminate. Let us also remark that a simple test based on the
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difference of a nonparametric estimator of βt from a constant (e.g. its mean) would be suboptimal

in separating only alternatives of weighted L2-distance of order n−α/(2α+1). A similar efficiency

gain for nonparametric testing is known for Gaussian white noise models, see Ingster and Suslina

(2003).

We compare next our test with related existing work. First, there is an enormous amount of

literature on parameter shifts and breaks (Kejriwal et al., 2013, and references therein), but the

results are all based on a long span ergodic-type theory rather than fixed length in-fill conducted

here. Second, Ang and Kristensen (2012) propose a test for constant beta based on a Hausman

type statistic that compares a nonparametric kernel-based estimate of betas at fixed time points

and a long-run estimate of beta. Ang and Kristensen (2012) do not consider formally the role of

the discretization error in their analysis. By contrast, we rely here solely on a fixed span and the

associated in-fill or high-frequency asymptotics, and we are interested in checking whether beta is

constant on the whole time interval, not only at fixed points in time. Thus, intuitively, our test

checks for constancy of beta on an asymptotically increasing number of blocks of shrinking time

span. Third, Todorov and Bollerslev (2010), Kalnina (2012) and Aue et al. (2012) consider tests

for constant integrated betas, i.e., deciding whether integrals of betas over fixed intervals of time

such as days or weeks are the same. Unlike these papers, we are interested in deciding whether the

spot beta process remains constant within a fixed interval of time which is a stronger hypothesis

and requires essentially conducting testing on blocks of shrinking time span. Finally, our work is

related to Mykland and Zhang (2006). In the pure diffusive setting (i.e., without jumps), Mykland

and Zhang (2006) are interested in estimating the residual component of the asset without any

assumption regarding whether the beta remains constant or not while our interest here is in testing

the latter.

Finally, our setup is based on equidistant observation grid for the pair (X,Y ) and rules out

microstructure noise. At ultra-high frequencies asynchronicity and irregularity of sampling times

as well as microstructure noise become very important. We believe that our approach can be

generalized to accommodate the above features, but the precise technical details will be challenging,

see e.g., Hayashi and Yoshida (2011), Bibinger (2012) and Fukasawa and Rosenbaum (2012) for the

related problem of integrated (multivariate) volatility estimation.

We find satisfactory performance of our estimator on simulated data. In an empirical application

we study the appropriate time window width over which market betas of four different assets remain

constant. For most of the assets we study we find such a window to be at least as long as a week

while for one of the assets our test rejects in a nontrivial number of weeks the null of constancy.
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The rest of the paper is organized as follows. In Section 2 we introduce our formal setup. In

Section 3 we develop the test, analyze its behavior under the null and alternative hypothesis, and

study its optimality. Section 4 contains a Monte Carlo analysis of the finite sample performance

of the test and in Section 5 we apply the test to study time-variation of market betas. Section 6

concludes. Proofs are in Section 7.

2 Setup and notation

We start with introducing the setting and stating the assumptions that we need for the results in

the paper. The underlying bivariate process (Xt, Yt), given in (1), is defined on a filtered probability

space (Ω,F , (Ft)t≥0,P). The finite variation components of (Xt, Yt) are assumed to be of the form

FXt =

∫ t

0
αXs ds+

∫ t

0

∫
E
δX(s, x)µ(ds, dx), F Yt =

∫ t

0
αYs ds+

∫ t

0

∫
E
δY (s, x)µ(ds, dx), (2)

where αX and αY are processes with càdlàg paths; µ is Poisson measure on R+×R with compensator

dt ⊗ dx; δX(t, x) and δY (t, x) are two predictable functions. The first and second components of

FXt and F Yt in (2) are the continuous and discontinuous finite variation parts of X and Y . We

note that for the last integrals in (2) to make sense, we need jumps to be absolutely summable on

finite time intervals. Our setup in (1)-(2), therefore, implicitly rules out jumps of infinite variation.

This is similar to prior work on estimation of integrated volatility because infinite variation jumps

necessarily spoil inference on the diffusion part of the processes, cf. Jacod and Reiß (2012).

We further assume that the volatility processes σ and σ̃ are themselves Itô semimartingales,

i.e., they have representations of the form

σt = σ0 +

∫ t

0
ασs ds+

∫ t

0
γσs dWs +

∫ t

0
γ̃σs dW̃s +

∫ t

0
γ

′
sdW

′
s

+

∫ t

0

∫
E
κ(δσ(s, x))µ̃(ds, dx) +

∫ t

0

∫
E
κ′(δσ(s, x))µ(ds, dx),

σ̃t = σ̃0 +

∫ t

0
ασ̃s ds+

∫ t

0
γσ̃s dWs +

∫ t

0
γ̃σ̃s dW̃s +

∫ t

0
γ

′′
s dW

′′
s

+

∫ t

0

∫
E
κ(δσ̃(s, x))µ̃(ds, dx) +

∫ t

0

∫
E
κ′(δσ̃(s, x))µ(ds, dx),

(3)

where W ′ and W
′′
are two Brownian motions, having arbitrary dependence, but independent from

(Wt, W̃t); µ̃(dt, dx) = µ(dt, dx) − dt ⊗ dx is the compensated jump measure; κ(•) is a continuous

function with bounded domain and with κ(x) = x in a neighborhood of zero, κ′(x) = x − κ(x);

ασ, ασ̃, γσ, γσ̃, γ̃σ, γ̃σ̃, γ
′
and γ

′′
are processes with càdlàg paths; δσ(t, x) and δσ̃(t, x) are two

predictable functions.
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We note that the specification in (1)-(3) is very flexible and allows for most of the stochastic

volatility models considered in empirical work. We also allow for arbitrary dependence between

the Brownian motion and Poisson measure driving X and the volatility processes. We state our

assumptions for (1)-(3) in the following.

Assumption A. For the process defined in (1)-(3) we have:

(a) |σt|−1, |σt−|−1, |σ̃t|−1 and |σ̃t−|−1 are strictly positive;

(b) β, ασ, ασ̃, γσ, γσ̃, γ̃σ, γ̃σ̃, γ′ and γ
′′
are càdlàg adapted; δX , δY , δσ and δσ̃ are predictable;

(c) αX and αY are Itô semimartingales with locally bounded coefficients;

(d) There is a sequence Tk of stopping times increasing to infinity such that:

t ≤ Tk =⇒ |δX(t, x)| ∧ 1 + |δY (t, x)| ∧ 1 ≤ γ
(1)
k (x), |δσ(t, x)| ∧ 1 + |δσ̃(t, x)| ∧ 1 ≤ γ

(2)
k (x),

where γ
(1)
k (x) and γ

(2)
k (x) are deterministic functions on R satisfying∫

R
|γ(1)k (x)|rdx <∞, and

∫
R
|γ(2)k (x)|2dx <∞,

for some r ∈ [0, 1].

Parts (a) and (b) of Assumption A are necessary as our inference on βt depends on the presence

of the diffusion components in X and Y . Part (c) of Assumption A controls the activity of the

jumps in X and Y and some of our results will depend on the number r.

3 Main results

We proceed with formulating the testing problem that we study in the paper. We assume that we

observe the process (X,Y ) on the interval [0, 1] at the equidistant grid 0, 1n ,
2
n , ..., 1 for some n ∈ N,

and the asymptotics in the paper will be for n → ∞. The results, of course, extend trivially to

arbitrary time intervals of fixed length. Our interest lies in designing a test to decide whether the

stochastic spot beta process β remains constant or not on the interval [0, 1]. This is a pathwise

property and therefore we are interested in discriminating the following two events dividing the

sample space:

Ωc = {ω : βt(ω) = β0(ω) almost everywhere on [0, 1]} , Ωv = Ω \ Ωc. (4)

The set Ωc can be characterized in different ways. One natural way is

Ωc =

{
ω :

∫ 1

0
β2s (ω) ds−

(∫ 1

0
βs(ω) ds

)2

= 0

}
, (5)
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which in words means that βt is constant on the interval [0, 1] if and only if its variance on that

interval with respect to the occupation measure associated with β vanishes. One can then formulate

a feasible test by constructing estimates for
∫ 1
0 β

2
sds−

(∫ 1
0 βsds

)2
from the high-frequency data on

(X,Y ). This can be done by forming blocks with increasing number of observations in each of them

but with shrinking time span and estimating βt locally in each of the blocks, following a general

approach proposed in Jacod and Rosenbaum (2013) (see also Mykland and Zhang (2006)). It turns

out, however, that under the null of constant beta, a CLT for
∫ 1
0 β

2
sds −

(∫ 1
0 βsds

)2
as in Jacod

and Rosenbaum (2013) is degenerate and higher order asymptotics is needed. This is because the

derivatives of the test statistic with respect to the elements of the variance-covariance matrix on the

blocks, used to construct an estimate for
∫ 1
0 β

2
sds −

(∫ 1
0 βsds

)2
, vanish under the null hypothesis.

Besides, in this case we also need debiasing terms.

Therefore, we adopt here an alternative point of view to characterize Ωc that avoids the above

complications. Suppose that we know the value of βt at time t = 0. In this case, recalling that the

process σ is non-vanishing on the interval [0, 1], we have

Ωc = {ω : ⟨Y c − β0X
c, Xc⟩t = 0, for every t ∈ [0, 1]} . (6)

If Xc and Y c had constant and deterministic volatility, we would have to test for independence in

the bivariate Gaussian sample (∆n
i X

c,∆n
i (Y

c−β0Xc))16i6n, where henceforth we use the shorthand

∆n
i Z = Z i

n
−Z i−1

n
for an arbitrary process Z. In this case, the natural (i.e., uniformly most powerful

unbiased) test is of the form nR2 − 1 > c with the sample correlation coefficient

R =

∑
i∆

n
i X

c∆n
i (Y

c − β0X
c)√∑

i(∆
n
i X

c)2
√∑

i(∆
n
i (Y

c − β0Xc))2
. (7)

The critical value c > 0 is distribution-free and derived from the finite sample result that
√
n− 1R/

√
1−R2 follows a tn−1-distribution under the independence hypothesis (this follows from

the exact finite sample distribution of regressions with normal errors, see e.g., chapter 1 of Hayashi

(2000)) or asymptotically from nR2 → χ2(1). Since in our case, the volatilities are time varying

we base our test on localised statistics of this kind. In line with optimal testing for nonparametric

regression functions, cf. Section 3.4 below, the final test is based on the sum of these localised

test statistics which guarantees high power against time-varying βt deviating from β0 in terms of a

weighted L2-distance. With this in mind, we turn to the concrete construction of our test statistics.
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3.1 The test statistics

We split the high-frequency observations into ⌊n/kn⌋ blocks with kn observations per block for

kn → ∞ and kn/n→ 0. For some constant b ∈ R, α > 0 and ϖ ∈ (0, 1/2), we introduce

Ĉnj (b) =
n√
kn

jkn∑
i=(j−1)kn+1

∆n
i X(∆n

i Y − b∆n
i X)1{|∆n

i X|≤α∆ϖ
n , |∆n

i Y |≤α∆ϖ
n }. (8)

√
knĈ

n
j (b) is an estimate of n

kn

[
⟨Y c − bXc, Xc⟩ jkn

n
− ⟨Y c − bXc, Xc⟩ (j−1)kn

n

]
which is zero if the

continuous beta is constant and b = β0. In this case, because of the shrinking time span of the

block, for our purposes Ĉnj (β0) will be equivalent to σ (j−1)kn
n

σ̃ (j−1)kn
n

n√
kn

∑jkn
i=(j−1)kn+1∆

n
iW∆n

i W̃

asymptotically. So, conditionally on F (j−1)kn
n

we are in the above bivariate Gaussian setting.

The analogue of the denominator of R2 in (7) is given by

V̂ n
j (b) = V̂

(n,1)
j V̂

(n,2)
j (b), V̂

(n,1)
j =

n

kn

jkn∑
i=(j−1)kn+1

(∆n
i X)2 1{|∆n

i X|≤α∆ϖ
n , |∆n

i Y |≤α∆ϖ
n }, (9)

V̂
(n,2)
j (b) =

n

kn

jkn∑
i=(j−1)kn+1

(∆n
i Y − b∆n

i X)2 1{|∆n
i X|≤α∆ϖ

n , |∆n
i Y |≤α∆ϖ

n }. (10)

Here, however, we compensate Ĉnj (b)
2 by V̂ n

j (b) in the numerator, while dividing by the estimate

from the previous block, V̂ n
j−1(b). The predictable choice of the denominator (with respect to

F (j−1)kn
n

) guarantees a block-wise martingale difference property and thus avoids an additional bias

in the case of stochastic volatilities. Thus, our test statistic takes the final form

T̂n(b) =
1√
2

√
kn
n

⌊ n
kn

⌋∑
j=2

T̂nj (b), T̂nj (b) =

(
Ĉnj (b)

)2
− V̂ n

j (b)

V̂ n
j−1(b)

. (11)

Let us point out that for convenience all statistics Ĉnj (b), V̂
n
j (b), T̂

n
j (b) and T̂

n(b) are scaled to have

stochastic order one (under the null of constant beta).

3.2 Testing for a known constant beta

In the next theorem we formally characterize the behavior of our test statistic when we are interested

in testing for a known constant beta.

Theorem 1 Grant Assumption A and let the sequence (kn) satisfy kn → ∞ with kn
n → 0.

(a) If k−1
n n1/4 → 0 and k−1

n n2−(4−r)ϖ → 0 with ϖ ∈
(

1
2(2−r) ,

1
2

)
, we have

T̂n(β0)
L−→ Z, in restriction to the set Ωc, (12)

for Z being a standard normal random variable.
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(b) If k−1
n n1−(2−r)ϖ → 0, we have

1√
nkn

T̂n(β0)
P−→ 1√

2

∫ 1

0

(βs − β0)
2σ2s

((βs − β0)2σ2s + σ̃2s)
ds, in restriction to the set Ωv. (13)

Starting with the behavior under the null hypothesis of constant beta, we see that the asymptotic

limit of our statistic is standard normal and does not depend on any of the “nuisance parameters”

in our model like the volatility processes σ and σ̃. This is due to the fact that the statistic is of

“self-normalizing” type. This is very convenient for the inference process. In addition, the self-

normalization property of our statistic avoids the need of showing stable convergence (which is a

much stronger form of convergence), typically needed in high-frequency asymptotics for conducting

feasible inference, see e.g., Jacod and Protter (2012). The condition on the block size k−1
n n1/4 → 0

in part(a) of Theorem 1 is to ensure that the averaging within the blocks is sufficient so that the

within-block averages are not far away from their limits. The condition k−1
n n2−(4−r)ϖ → 0 is to

ensure that the error due to the elimination of the jumps is negligible. The user chooses ϖ, so as

with estimators of truncated type (Mancini (2009)), it is optimal to set ϖ as close as possible to its

upper limit of 1/2. In this case, the lower bound on ϖ in Theorem 1(a) will be satisfied (provided

r < 1). We note also that the second condition for kn in part(a) of the theorem becomes more

restrictive for higher values of the jump activity as the separation of higher activity jumps from

the diffusive component is harder.

Turning to the limit of our statistic in the case of β time-varying on the interval [0, 1], given

in part (b) of the theorem, we see that the limit is a weighted average of the distance (βs − β0)
2.

The weighting is determined by the stochastic volatilities σ2s and σ̃2s over the interval. The scaling

down of the statistic is by the factor
√
nkn, which means that higher block size kn leads to higher

rate of explosion of the statistic under the alternative. Finally, the condition for the block size in

part(b) of the theorem is very close to the analogous one under the null hypothesis in part (a) of

the theorem, provided ϖ is selected very close to 1/2.

3.3 Testing for unknown constant beta

In most cases of practical interest, we will not know the level of beta, but instead we shall need

to estimate it under the assumption that it is constant over a given interval. We will then be

simultaneously interested in the estimated value and in the outcome of a test to decide whether it

can be assumed to have stayed constant. Thus, we need first an initial estimator of the continuous

beta over the interval. We shall use the following natural estimator

β̂n =

∑n
i=1∆

n
i X∆n

i Y 1{|∆n
i X|≤α∆ϖ

n , |∆n
i Y |≤α∆ϖ

n }∑n
i=1(∆

n
i X)21{|∆n

i X|≤α∆ϖ
n , |∆n

i Y |≤α∆ϖ
n }

, (14)
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which can be equivalently defined as

β̂n = argminβ

n∑
i=1

(∆n
i Y − β∆n

i X)2 1{|∆n
i X|≤α∆ϖ

n , |∆n
i Y |≤α∆ϖ

n }, (15)

where the objective function in the above optimization is the empirical analogue of ⟨Y c−βXc, Y c−
βXc⟩1. This estimator has been studied in Todorov and Bollerslev (2010) and Gobbi and Mancini

(2012).

When the process β varies over the time interval [0, 1], β̂n converges in probability to

β =

∫ 1
0 βsσ

2
sds∫ 1

0 σ
2
sds

, (16)

which can be viewed as a volatility weighted average of the time-varying beta over the interval.

The rate of convergence of β̂n is
√
n and its limiting behavior in the general case when the process

β can vary over time is given by the following lemma.

Lemma 1 Suppose the process (X,Y ) satisfies Assumption A and let ϖ ∈
(

1
2(2−r) ,

1
2

)
. Then

√
n
(
β̂n − β

)
L−s−→

√
VβZ, (17)

where Z is independent standard normal defined on an extension of the original probability space

and

Vβ =
2(∫ 1

0 σ
2
sds
)4[ ∫ 1

0
(β2sσ

4
s + σ2s σ̃

2
s)ds

(∫ 1

0
σ2sds

)2

+

(∫ 1

0
βsσ

2
sds

)2 ∫ 1

0
σ4sds

− 2

∫ 1

0
βsσ

2
sds

∫ 1

0
βsσ

4
sds

∫ 1

0
σ2sds

]
.

(18)

The proof of Lemma 1 follows from the limiting results for multivariate truncated variation, see

e.g., Theorem 13.2.1 of Jacod and Protter (2012), and an application of the Delta method.

With this estimator of β0 (under the null), our test in the case of unknown beta is simply based

on T̂n(β̂n). Its asymptotic behavior is given in the following theorem.

Theorem 2 Grant Assumption A and let the sequence (kn) satisfy kn → ∞ with kn
n → 0.

(a) If k−1
n n1/4 → 0 and k−1

n n2−(4−r)ϖ → 0 with ϖ ∈
(

1
2(2−r) ,

1
2

)
, we have

T̂n(β̂n)
L−→ Z, in restriction to the set Ωc, (19)

for Z being a standard normal random variable.

10



(b) If k−1
n n1−(2−r)ϖ → 0, we have

1√
nkn

T̂n(β̂n)
P−→ 1√

2

∫ 1

0

(βs − β)2σ2s(
(βs − β)2σ2s + σ̃2s

)ds, in restriction to the set Ωv. (20)

From part(a) of the theorem we can see that the estimation of the unknown beta has no

asymptotic effect on our statistic under the null. The only difference from the testing against a

known constant beta under the alternative is that now the limit of the statistic in (20) contains the

averaged value β. Note that the limit of (20) is a volatility weighted version of (5).

3.4 Testing against local alternatives and asymptotic optimality

The asymptotics under the alternative in Theorems 1(b) and 2(b) are somewhat misleading regard-

ing the choice of the block size kn. For a fixed single alternative the test is asymptotically most

powerful if kn is chosen as large as possible. This, however, is not reasonable for fixed n because

on large blocks time varying betas that oscillate will give similar values for the test statistics as

constant betas due to the averaging on each block. This phenomenon is well understood for testing

a nonparametric regression function where the bandwidth h of a kernel smoother takes on the

role of the relative block size kn/n. For a more meaningful statement local alternatives as well as

uniform error probabilities should be considered.

Following Ingster and Suslina (2003) we are studying the optimal separation rate rn between

the single hypothesis

H0 = {Pβ},

for some fixed constant risk value β > 0 and the local nonparametric alternative

H1,α(rn) =
{
Pβt such that a.s. βt ∈ Cα(R),

∫ 1

0

σ2t (βt − β)2

σ2t (βt − β)2 + σ̃2t
dt > r2n,

}
,

where Cα(R) = {f : |f(t)− f(s)| 6 R|t− s|α, |f(t)| 6 R} for all t, s ∈ [0, 1] denotes a Hölder ball

of regularity α ∈ (0, 1] and radius R > 0. In this notation it is understood that the laws Pβt are

defined on the path space of ((Xt, Yt), t ∈ [0, 1]) and the nuisance parameters σ2t , σ̃
2
t and the drift

and jump parts may vary with the parameter of interest βt.

The separation rate rn ↓ 0 is called minimax optimal over Cα(R) if there is a test φn, based on

n observations, such that

∀γ ∈ (0, 1) ∃Γ > 0 : lim sup
n→∞

(
Pβ(φn = 1) + sup

Pβt
∈H1,α(Γrn)

Pβt(φn = 0)
)
6 γ

holds while the infimum of the error probabilities over any possible test ψn remains positive:

∀γ ∈ (0, 1) ∃Γ̃ > 0 : lim inf
n→∞

inf
ψn

(
Pβ(ψn = 0) + sup

Pβt
∈H1,α(Γ̃rn)

Pβt(ψn = 0)
)
> γ.

11



Our test then satisfies a minimax bound with separation rate rn = n−2α/(4α+1). To keep the proofs

transparent, we show this only in the case when X and Y do not jump and β from the hypothesis

H0 is assumed to be known.

Theorem 3 Assume that Assumption SA in Section 7.1 holds and δX(t, x) = δY (t, x) = 0 almost

surely for t ∈ [0, 1]. Suppose α > 5/12 and kn = ⌊n
4α−1
4α+1 ⌋, rn = n−2α/(4α+1). Then for any γ ∈ (0, 1)

and critical value cγ/2 under the hypothesis (i.e. lim supn→∞ Pβ(T̂
n(β) > cγ/2) 6 γ/2), there is a

Γ > 0 such that the test φn = 1{T̂n(β) > cγ/2} satisfies

lim sup
n→∞

(
Pβ(φn = 1) + sup

Pβt
∈H1,α(Γrn)

Pβt(φn = 0)
)
6 γ. (21)

The condition α > 5/12 in the above theorem is due to the rate condition on the block size

k−1
n n1/4 → 0 in Theorem 1(a). The natural assumption for the process β is that it is itself a

continuous Itô semimartingale and thus has Hölder regularity α of almost 1/2. In this case the

optimal block length is kn ≈ n1/3 and the separation rate is rn ≈ n−1/3, which is far better than

the optimal nonparametric estimation rate n−α/(2α+1) ≈ n−1/4.

For an adaptive choice of the optimal block length kn, without specifying the regularity α

in advance, and even “parametric power” (in the sense of Theorem 1(b)) for certain parametric

submodels for βt, an analogue of the maximal test statistics of Horowitz and Spokoiny (2001) can

be applied. Note that they also show that their test allows for a parametric form of the null

hypothesis, assuming that the true parameter can be estimated at rate n−1/2 under the null. This

estimator is plugged into the test statistics exactly in the same way as we test for unknown β.

Here, we focus on the non-obvious question of optimality. We shall derive a lower bound on the

separation rate for the even smaller subclass of pure Gaussian martingales, where neither jumps nor

drift terms appear in (X,Y ) and where the volatilities are deterministic. Already in this subclass

no other test can have a smaller minimax separation rate than rn = n−2α/(4α+1), which then, of

course, extends to the more general model for which our test is designed. Our test is thus indeed

minimax optimal.

Theorem 4 Assume that Assumption SA in Section 7.1 holds, αXt = αYt = δX(t, x) = δY (t, x) = 0

almost surely for t ∈ [0, 1], and σt and σ̃t are deterministic. Then for any α ∈ (0, 1], γ ∈ (0, 1)

there is a Γ̃ > 0 such that for rn = n−2α/(4α+1) and arbitrary tests ψn

lim inf
n→∞

inf
ψn

(
Pβ(ψn = 1) + sup

Pβt
∈H1,α(Γ̃rn)

Pβt(ψn = 0)
)
> γ. (22)
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4 Monte Carlo study

We now evaluate the performance of our test on simulated data from the following model

dXt =
√
VtdWt + dLt, dYt = βtdXt +

√
ṼtdW̃t + dL̃t,

dVt = 0.03(1− Vt)dt+ 0.18
√
VtdBt, dṼt = 0.03(1− Ṽt)dt+ 0.18

√
ṼtdB̃t,

(23)

where (W, W̃ ,B, B̃) is a vector of independent standard Brownian motions; L and L̃ are two pure-

jump Lévy processes, independent of each other and of the Brownian motions, each of which with

characteristic triplet (0, 0, ν) for a zero truncation function and ν(dx) = 1.6e−2|x|dx. V and Ṽ

in (23) are square-root diffusion processes used extensively in financial applications for modeling

volatility. For the process β, we consider

H0 : βt = 1 and Ha : dβt = 0.03(1− βt)dt+ 0.18
√
βtdB

β
t , (24)

for Bβ being a Brownian motion independent from the Brownian motions in (23). The parameters of

the model are calibrated to real financial data. In particular, the means of Vt and Ṽt are set to 1 and

they are both persistent processes (our unit of time is a trading day and returns are in percentage).

Jumps in X and Y have intensity of 0.4 jumps per day and 0.8 jumps per day respectively. The

variances of the jump components of both X and Y are 40% that of their continuous components

(on any fixed time interval).

The observation scheme is similar to that of our empirical application. We set 1/∆n = 38,

which corresponds to sampling every 10 minutes in a 6.5 hours trading day. In the application of

the test, we set kn = 19 which corresponds to constructing two blocks per unit of time (which is

day). We test for constant beta on an interval of length of T = 5 (week), T = 22 (one month) and

T = 66 (one quarter) by summing the test statistics over the T days.

The results from the Monte Carlo, which is based on 1000 replications, are reported in Table 1.

The test performs reasonably in finite samples. In particular, the actual rejection rates are in the

vicinity of the nominal ones under the null hypothesis of constant beta across the three intervals

T = 5, T = 22 and T = 66. We notice a bit of over-rejection at the 1% level across the three

intervals. Turning to the power of the test, not surprisingly we note that the power increases with

T , with the power against the considered time-varying beta model being lowest for the case T = 5.

Intuitively, more observations (higher T ) allow us to better discriminate the noise in the recovery

of β from its true time variation.
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Table 1: Monte Carlo Results

Interval Significance Level (Percent)

10.0 5.0 1.0 10.0 5.0 1.0

Constant Beta Time-Varying Beta

week 7.11 4.70 2.30 12.64 8.95 5.07
month 10.50 6.30 3.00 45.97 39.43 29.17
quarter 10.70 7.10 3.10 83.20 79.50 72.20

5 Empirical application

The test for constant market beta is conducted on four assets sampled at the 10-minute frequency

over the period 2006–2012. We refer to them by ticker symbol: IBM, XOM (Exxon Mobil), GLD

(an Exchange-traded Fund (ETF) that tracks the price of gold), and BAC (Bank of America). IBM

and XOM are both very stable large-cap stocks; GLD (or gold) is a storable asset that provides a

hedge against general macroeconomic risks, while BAC went through stressful episodes with large

price fluctuations during the global financial crises. The market index is SPY , the ETF that tracks

the S&P 500 index.

Each 10-minute data set consists of 1746 days of 38 within-day returns (log-price increments),

and the tests are conducted at the weekly, monthly, and quarterly time intervals. A week consists

of five consecutive trading days, while the calendar months and quarters contain (on average) 22

and 66 trading days, respectively. We use the term windows for these time segments. The test is

implemented exactly as in the Monte Carlo, in particular we set the block size to kn = 19.

Table 2 shows the observed rejection rates of the test for constant, but unknown, beta over the

three windows for different size levels and each of the four securities. Starting with IBM, for the

weekly window there is little evidence against the null of constant beta at the 10 and 5 percent

levels and only slightly so at the 1 percent level (but recall from the Monte Carlo that at 1% our

test is slightly over-rejecting in finite samples). On the other hand, the observed rejection rates are

somewhat above nominal for a monthly window and well above nominal for a quarter interval. We

detect a very similar pattern for XOM. Mainly, at the weekly window there is no strong statistical

evidence for time-varying betas while the rejection rates of the test for constant betas increases

well above nominal levels as we move from a monthly to a quarterly window. We note that the

evidence for time-variation in the market beta of XOM at the monthly and quarterly level is quite

stronger than that for IBM. Interestingly for GLD the results are much the same, despite the fact
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Table 2: Tests for Constant Market Betas

Interval Significance Level (Percent)

10.0 5.0 1.0 10.0 5.0 1.0

IBM XOM

week 10.60 6.59 3.72 10.60 8.02 3.44
month 20.24 10.71 7.14 29.76 21.43 16.67
quarter 42.86 39.29 14.29 57.14 50.00 28.57

GLD BAC

week 7.74 5.16 2.87 14.61 10.89 6.02
month 22.62 16.67 9.52 38.10 30.95 23.81
quarter 64.29 50.00 39.29 78.57 71.43 57.14

Note: See text for securities associated with the ticker symbols. For each specified
window length, the table shows the percent of all windows for which the hypothesis
of constant but unknown beta is rejected at the specified nominal level.

that gold is just a storable commodity with negative cost of carry and used largely as a reserve

asset in contrast to IBM and XOM, two huge profitable enterprizes. Taken together, the results

suggest that for IBM, XOM and GLD, a weekly window would be a safe choice for treating market

beta as constant in an asset pricing study.

On the other hand, the conclusions from Table 2 for BAC are far different. The betas appear

unstable for any testing window at all three nominal frequencies. In retrospect, this instability might

not be surprising given the changing corporate structure and regulatory environment experienced

by this company over the period 2006—2012. The outcomes in the table suggest it would be

misguided and perhaps misleading to undertake an asset pricing test of BAC treating its market

beta as constant over any of the considered windows.

Figure 1 shows time series of the weekly estimated market betas based on the pooled estimator

in (14). The contrasts are especially interesting when viewed in the context of the test results in

Table 1 and also keeping in mind that the sample contains the most turbulent financial episode

in many decades. Starting with IBM, we see from Figure 1 no significant pattern in the time

series variation of its weekly market beta. Most of the weekly IBM market beta variation can be

attributed to sampling error in its estimation. This is consistent with our test results in Table 2

and in particular the relatively low rejection rates for constancy of beta even over a time window of

a month. Again consistent with our test results in Table 2 we see more time variation in the XOM
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Figure 1: Estimated Betas Using Weekly Windows
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market betas. Particularly noticeable is the period of July-August 2008 during which the market

beta of XOM is quite low. Another interesting episode is that of May 2011 during which XOM’s

market beta was much higher than its average level.

Turning to GLD, we see a lot of variation in its sensitivity towards the market over the analyzed

period. Perhaps not surprisingly, during bad times, such as the 2008 global financial crisis and the

subsequent European monetary crises, GLD market beta is negative as during these periods gold

serves the purpose of a hedging financial instrument. On the other hand, during normal times gold

has little (positive) market sensitivity and it acts more like a pure commodity. Finally for BAC,

and completely in accordance with our results in Table 2, we see very clear and persistent time

variation. Over the period of 2006 until 2012, BAC market beta gradually increases from around

1 to around 2. Along the way of this gradual increase, we notice spikes in market beta around

periods of crises such as the one in the Fall of 2008.
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6 Conclusion

We propose a nonparametric test for constant beta over a fixed interval of time from discrete obser-

vations of an asset and a risk factor with asymptotically vanishing distance between observations.

The test is based on forming test statistics for constant beta over blocks with asymptotically in-

creasing observations within them and shrinking time span and then summing them and scaling

appropriately the resulting sum. The test is of self-normalized type which makes its limiting distri-

bution under the null pivotal and independent from nuisance “parameters” such as the stochastic

volatilities of the underlying processes. We show asymptotic optimality for local nonparametric

alternatives that are α–Hölder regular. We find satisfactorily performance on simulated data in a

Monte Carlo. In an empirical application we study the time window over which market betas of

four different assets can be assumed to remain constant.

7 Proofs

Throughout the proofs we will denote with K a constant that does not depend on n and the indices

i and j, but only on the characteristics of the multivariate process (X,Y ) and the powers involved in

the estimates below, and further K can change from line to line. We will further use the shorthand

notation Eni (•) = E
(
•|F i−1

n

)
and Pni (•) = P

(
•|F i−1

n

)
.

We start with some auxiliary notation to be used throughout the proofs. For arbitrary b ∈ R,

we denote

Cnj (b) =
n√
kn

jkn∑
i=(j−1)kn+1

∆n
i X

c(∆n
i Y

c − b∆n
i X

c), V n
j (b) = V

(n,1)
j V

(n,2)
j (b),

V
(n,1)
j =

n

kn

jkn∑
i=(j−1)kn+1

(∆n
i X

c)2 , V
(n,2)
j (b) =

n

kn

jkn∑
i=(j−1)kn+1

(∆n
i Y

c − b∆n
i X

c)2 ,

Tn(b) =
1√
2

√
kn
n

⌊ n
kn

⌋∑
j=2

Tnj (b), Tnj (b) =

(
Cnj (b)

)2
− V n

j (b)

V n
j−1(b)

,

where recall Xc and Y c are the continuous parts of the processes X and Y . We also use the

following shorthand notation

Ỹ c
t =

∫ t

0
α̃sds+

∫ t

0
σ̃sdW̃s, α̃s = αYs − β0α

X
s ,

and we further set

Xn
s = Xc

s −Xc
i−1
n

, Ỹ n
s = Ỹ c

s − Ỹ c
i−1
n

, for s ∈
[
i− 1

n
,
i

n

]
.
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Finally, we denote

Bn =
{
|β̂n − β| ≤ δnι−1/2

}
,

for some arbitrary small positive numbers ι > 0 and δ > 0.

7.1 Localization

We will proof the results under the following stronger assumption:

Assumption SA. For the process defined in (1)-(3) we have:

(a) |σt| and |σ̃t| are uniformly bounded from below and above;

(b) β, ασ, ασ̃, γσ, γσ̃, γ̃σ, γ̃σ̃, γ′ and γ
′′
are bounded; δX , δY , δσ and δσ̃ are bounded;

(c) the coefficients in the Itô semimartingale representations of αX and αY are bounded;

(d) |δX(t, x)| + |δY (t, x)| ≤ γ(1)(x) for all t ≤ 1 with
∫
R |γ(1)(x)|rdx < ∞ for some r ∈ (0, 1);

|δσ(t, x)|+ |δσ̃(t, x)| ≤ γ(2)(x) for all t ≤ 1 with
∫
R |γ(2)(x)|2dx <∞;

Extending the results to the case when only the weaker assumption A holds follows from standard

localization procedure as in Lemma 4.4.9 of Jacod and Protter (2012).

7.2 Preliminary results

Lemma 2 Under assumption SA and βt = β0 for t ∈ [0, 1], we have∣∣∣E (j−1)kn
n

(
Cnj (β0)

2 − V n
j (β0)

)∣∣∣ ≤ K

(
kn
n

∨ 1√
n

)
. (25)

Proof of Lemma 2. First, we derive some bounds for Cnj (β0)
2. Note that for βt = β0 on t ∈ [0, 1],

we have Cnj (β0) =
n√
kn

∑jkn
i=(j−1)kn+1∆

n
i X

c∆n
i Ỹ

c. Applying Itô formula and since Wt and W̃t are

orthogonal, we have

Eni−1(∆
n
i X

c∆n
i Ỹ

c) = Eni−1

(∫ i
n

i−1
n

Xn
s α̃sds+

∫ i
n

i−1
n

Ỹ n
s α

X
s ds

)
.

Next, given the Itô semimartingale assumption for the processes αX and αY , as well as an appli-

cation of Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, we have∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Xn
s (α̃s − α̃ i−1

n
)ds+

∫ i
n

i−1
n

Ỹ n
s (α

X
s − αXi−1

n

)ds

)∣∣∣∣∣ ≤ K

n2
.

From here, using the definition of the processes Xn and Ỹ n, we have altogether

|Eni−1(∆
n
i X

c∆n
i Ỹ

c)| ≤ K

n2
. (26)
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Next, using Itô formula we have

(∆n
i X

c)2(∆n
i Ỹ

c)2 =

(
2

∫ i
n

i−1
n

Xn
s dX

c
s +

∫ i
n

i−1
n

σ2sds

)(
2

∫ i
n

i−1
n

Ỹ n
s dỸ

c
s +

∫ i
n

i−1
n

σ̃2sds

)
.

Applying Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, and using the independence

of Wt and W̃t, we get ∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Xn
s dX

c
s

∫ i
n

i−1
n

Ỹ n
s dỸ

c
s

)∣∣∣∣∣ ≤ K

n2
√
n
. (27)

Further using the Itô semimartingale assumption for σt, Cauchy-Schwarz and Burkholder-Davis-

Gundy inequalities, we have∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Xn
s dX

c
s

∫ i
n

i−1
n

(σ̃2s − σ̃2i−1
n

)ds

)∣∣∣∣∣+
∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Ỹ n
s dỸ

c
s

∫ i
n

i−1
n

(σ2s − σ2i−1
n

)ds

)∣∣∣∣∣ ≤ K

n2
√
n
.

(28)

Finally using the definition of Xn and Ỹ n, exactly as in (26) above, we get∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Xn
s dX

c
s

)∣∣∣∣∣+
∣∣∣∣∣Eni−1

(∫ i
n

i−1
n

Ỹ n
s dỸ

c
s

)∣∣∣∣∣ ≤ K

n2
. (29)

Combining the bounds in (26)-(29), we get

E (j−1)kn
n

(
Cnj (β

n)
)2

=
n2

kn

jkn∑
i=(j−1)kn+1

E (j−1)kn
n

(∫ i
n

i−1
n

σ2sds

∫ i
n

i−1
n

σ̃2sds

)
+ R̃

(n,1)
j ,

where ∣∣∣R̃(n,1)
j

∣∣∣ ≤ K

(
kn
n

∨ 1√
n

)
. (30)

We turn next to V n
j (β0). Using Itô formula, we can write

V
(n,1)
j = n

kn

(
2
∫ jkn

n
(j−1)kn

n

Xn
s dX

c
s +

∫ jkn
n

(j−1)kn
n

σ2sds

)
,

V
(n,2)
j (β0) =

n
kn

(
2
∫ jkn

n
(j−1)kn

n

Ỹ n
s dỸ

c
s +

∫ jkn
n

(j−1)kn
n

σ̃2sds

)
.

(31)

From here, using similar bounds to the ones derived in (27)-(29), we get

E (j−1)kn
n

(
V n
j (β0)

)
=
n2

k2n
E (j−1)kn

n

(∫ jkn
n

(j−1)kn
n

σ2sds

∫ jkn
n

(j−1)kn
n

σ̃2sds

)
+ R̃

(n,2)
j ,

where ∣∣∣R̃(n,2)
j

∣∣∣ ≤ K√
n
. (32)
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Given the bounds for the conditional expectations of the residual terms R̃
(n,1)
j and R̃

(n,2)
j , we are

left with the difference

n2

kn

jkn∑
i=(j−1)kn+1

E (j−1)kn
n

(∫ i
n

i−1
n

σ2sds

∫ i
n

i−1
n

σ̃2sds

)
− n2

k2n
E (j−1)kn

n

(∫ jkn
n

(j−1)kn
n

σ2sds

∫ jkn
n

(j−1)kn
n

σ̃2sds

)
.

Using the Itô semimartingale representation of σ2 and σ̃2 in (3) and Cauchy-Schwarz inequality,

we have

|E
(
σ2t − σ2u|Fu

)
|+ |E

(
σ̃2t − σ̃2u|Fu

)
| ≤ K|t− u|, u ≤ t,

|E
(
(σ2t − σ2u)(σ̃

2
t − σ̃2u)|Fu

)
| ≤ K|t− u|, u ≤ t.

Using these inequalities as well as the algebraic identity

x1y1 − x2y2 = (x1 − x2)(y1 − y2) + x2(y1 − y2) + (x1 − x2)y2 for any real x1, x2, y1, y2,

we have∣∣∣∣∣E (j−1)kn
n

(∫ i
n

i−1
n

σ2sds

∫ i
n

i−1
n

σ̃2sds−
1

n2
σ2(j−1)kn

n

σ̃2(j−1)kn
n

)∣∣∣∣∣ ≤ K
kn
n3
, i = (j − 1)kn + 1, .., jkn,

∣∣∣∣∣E (j−1)kn
n

(∫ jkn
n

(j−1)kn
n

σ2sds

∫ jkn
n

(j−1)kn
n

σ̃2sds−
k2n
n2
σ2(j−1)kn

n

σ̃2(j−1)kn
n

)∣∣∣∣∣ ≤ K

(
kn
n

)3

.

Combining these results with the bounds in (30) and (32), we get the result to be proved. �

Lemma 3 Under assumption SA and βt = β0 for t ∈ [0, 1], we have

E (j−1)kn
n

∣∣∣∣∣V n
j (β0)−

n2

k2n

∫ jkn
n

(j−1)kn
n

σ2sds

∫ jkn
n

(j−1)kn
n

σ̃2sds

∣∣∣∣∣
2

≤ K

kn
. (33)

Proof of Lemma 3. We make use of (33) as well as the boundedness of the processes σ2 and

σ̃2, to bound

E (j−1)kn
n

∣∣∣∣∣V n
j (β0)−

n2

k2n

∫ jkn
n

(j−1)kn
n

σ2sds

∫ jkn
n

(j−1)kn
n

σ̃2sds

∣∣∣∣∣
2
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n

∣∣∣∣∣V (n,1)
j − n

kn

∫ jkn
n
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n
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∣∣∣∣∣
2
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n
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n
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∫ jkn
n
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n
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∣∣∣∣∣
2

+KE (j−1)kn
n

∣∣∣∣∣V (n,1)
j − n

kn

∫ jkn
n

(j−1)kn
n

σ2sds

∣∣∣∣∣
4

+KE (j−1)kn
n

∣∣∣∣∣V (n,2)
j (β0)−

n

kn

∫ jkn
n

(j−1)kn
n

σ̃2sds

∣∣∣∣∣
4

.

Using the decomposition of V
(n,1)
j and V

(n,2)
j (β0) in (31) and applying the Burkholder-Davis-Gundy

inequality we get the result to be proved. �
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Lemma 4 Under assumption SA and βt = β0 for t ∈ [0, 1], we have∣∣∣∣E (j−1)kn
n

(
Cnj (β0)

2 − V n
j (β0)

)2 − 2σ4(j−1)kn
n

σ̃4(j−1)kn
n

∣∣∣∣ ≤ K

[(
kn
n

)1/2−ι∨ 1√
kn

]
, ∀ι > 0. (34)

Proof of Lemma 4. We first denote the analogues of Cnj (β0) and V
n
j (β0), with σs and σ̃s kept at

their values at the beginning of the block, as

C
n
j =

n√
kn
σ (j−1)kn

n

σ̃ (j−1)kn
n

jkn∑
i=(j−1)kn+1

∆n
iW∆n

i W̃ ,

V
n
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n2

k2n
σ2(j−1)kn

n

σ̃2(j−1)kn
n

jkn∑
i=(j−1)kn+1

(∆n
iW )2

jkn∑
i=(j−1)kn+1

(∆n
i W̃ )2.

Using Burkholder-Davis-Gundy inequality for discrete martingales, we have

E (j−1)kn
n

∣∣Cnj ∣∣p ≤ K, E (j−1)kn
n

∣∣V n
j

∣∣p ≤ K, ∀p ≥ 2. (35)

Using the algebraic identity x2 − y2 = (x − y)2 + 2y(x − y) as well as Cauchy-Schwarz inequality

and (35), we can write∣∣∣E (j−1)kn
n

(
Cnj (β0)

2 − V n
j (β0)

)2 − E (j−1)kn
n

(
(C

n
j )

2 − V
n
j

)2∣∣∣
≤ Kχ

(
E (j−1)kn

n

(
Cnj (β0)

2 − (C
n
j )

2
)2)

+Kχ
(
E (j−1)kn

n

(
V n
j (β0)− V

n
j

)2)
,

(36)

for χ(u) = u ∨
√
u. Next, applying the Itô formula as well as the Itô semimartingale assumption

for the process αX , we have∣∣∣Eni−1

(
∆n
i X

c − σ (j−1)kn
n

∆n
iW

)
∆n
i Ỹ

c
∣∣∣ ≤ K

√
kn
n2

.

From here, using Burkholder-Davis-Gundy inequality for discrete martingales, together with our

assumption for σ being Itô semimartingale, Itô formula and the independence of Wt from W̃t, as

well as Hölder inequality, we have for every p ≥ 1 and any ι > 0

E (j−1)kn
n

∣∣∣∣∣∣ n√
kn

jkn∑
i=(j−1)kn+1

(
∆n
i X

c − σ (j−1)kn
n

∆n
iW

)
∆n
i Ỹ

c

∣∣∣∣∣∣
p

≤ K

(
kn
n

)(p/2)∧1−ι
.

Similar analysis implies

E (j−1)kn
n

∣∣∣∣∣∣ n√
kn

jkn∑
i=(j−1)kn+1

∆n
iW

(
∆n
i Ỹ

c − σ̃ (j−1)kn
n

∆n
i W̃

)∣∣∣∣∣∣
p

≤ K

(
kn
n
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,
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and therefore

E (j−1)kn
n

∣∣Cnj (β0)− C
n
j

∣∣p ≤ K

(
kn
n

)(p/2)∧1−ι
. (37)

Combining this result with the bound in (35), together with Cauchy-Schwarz inequality, we get

E (j−1)kn
n

(
Cnj (β0)

2 − (C
n
j )

2
)2 ≤ K

(
kn
n

)1−ι
. (38)

We turn to bounding E (j−1)kn
n

(
V n
j (β0)− V

n
j

)2
. Using inequality in means, i.e.,

∣∣∣∑n
i=1 xi
n

∣∣∣p ≤∑n
i=1 |xi|p
n for any p ≥ 1 and any real {xi}i=1,..,n, we first have for p ≥ 1

E (j−1)kn
n

 n

kn

jkn∑
i=(j−1)kn+1

[
(∆n

i X
c)2 + (∆n

i Ỹ
c)2 + σ2

(j−1)kn
n

(∆n
i W )2 + σ̃2

(j−1)kn
n

(∆n
i W̃ )2

]p

≤ K.

Using the algebraic identity x2−y2 = (x−y)2+2y(x−y), the Burkholder-Davis-Gundy inequality

for discrete martingales, Itô formula for the function f(x, y) = xy, our assumption for σ being Itô

semimartingale, we have for any ι > 0

E (j−1)kn
n

∣∣∣∣∣∣ nkn
jkn∑

i=(j−1)kn+1

[
(∆n

i X
c)2 − σ2(j−1)kn

n

(∆n
iW )2

]∣∣∣∣∣∣
p

≤ K

(
kn
n

)1−ι
, ∀p ≥ 2,

and similarly

E (j−1)kn
n

∣∣∣∣∣∣ nkn
jkn∑

i=(j−1)kn+1

[
(∆n

i Ỹ
c)2 − σ̃2(j−1)kn

n

(∆n
i W̃ )2

]∣∣∣∣∣∣
p

≤ K

(
kn
n

)1−ι
, ∀p ≥ 2.

Using the above inequalities and Hölder inequality, we have

E (j−1)kn
n

(
V n
j (β0)− V

n
j

)2 ≤ K

(
kn
n

)1−ι
, ∀ι > 0. (39)

Altogether, combining the bounds in (36), (38) and (39), we get

∣∣∣E (j−1)kn
n

(
Cnj (β0)

2 − V n
j (β0)

)2 − E (j−1)kn
n

(
(C

n
j )

2 − V
n
j

)2∣∣∣ ≤ K

(
kn
n

)1/2−ι
, ∀ι > 0. (40)

We are thus left with E (j−1)kn
n

(
(C

n
j )

2 − V
n
j

)2
. First, using finite sample distribution results for

regressions with normally distributed errors, see e.g., Hayashi (2000), we have

(C
n
j )

2

V
n
j

1− 1
kn

(C
n
j )

2

V
n
j

d
=

kn
kn − 1

t2kn−1 =⇒
(C

n
j )

2

V
n
j

d
=

t2kn−1

1 + 1
kn
(t2kn−1 − 1)

,
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where tk denotes a random variable, having a t-distribution with k degrees of freedom. Therefore,

for kn > 7 (so that the tkn−1-distribution has finite sixth moment), using the moments of the

t-distribution, we have ∣∣∣∣∣∣E (j−1)kn
n

(
(C

n
j )

2

V
n
j

− 1

)2

− 2

∣∣∣∣∣∣ ≤ K

kn
.

Second, using Burkholder-Davis-Gundy inequality for discrete martingales, we have

E (j−1)kn
n

∣∣∣∣(V n
j

)2 − σ4(j−1)kn
n

σ̃4(j−1)kn
n

∣∣∣∣p ≤ K

k
p/2
n

, ∀p ≥ 2.

Combining the above bounds, and using Hölder inequality, we have for kn > 6∣∣∣∣E (j−1)kn
n

(
(C

n
j )

2 − V
n
j

)2 − 2σ4(j−1)kn
n

σ̃4(j−1)kn
n

∣∣∣∣ ≤ K√
kn
. (41)

The result of the lemma then follows from (40) and (41). �

Lemma 5 Under assumption SA and βt = β0 for t ∈ [0, 1], for any constant α > 0, we have

E (j−1)kn
n

∣∣Cnj (β0)∣∣p + E (j−1)kn
n

∣∣∣V (n,1)
j

∣∣∣p + E (j−1)kn
n

∣∣∣V (n,2)
j (β0)

∣∣∣p ≤ K, ∀p ≥ 1, (42)

P

(∣∣∣∣∣V (n,1)
j − n

kn
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n

(j−1)kn
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σ2sds

∣∣∣∣∣ ≥ α
n
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∫ jkn
n

(j−1)kn
n

σ2sds

)
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k
p/2
n

, ∀p ≥ 1, (43)

P

(∣∣∣∣∣V (n,2)
j (β0)−

n

kn

∫ jkn
n

(j−1)kn
n

σ̃2sds

∣∣∣∣∣ ≥ α
n

kn

∫ jkn
n

(j−1)kn
n

σ̃2sds

)
≤ K

k
p/2
n

, ∀p ≥ 1, (44)

where the constant K in the above bounds depends on the constant α.

Proof of Lemma 5. Using Burkholder-Davis-Gundy inequality for discrete martingales, we have

E (j−1)kn
n

∣∣∣∣∣∣ n√
kn

jkn∑
i=(j−1)kn+1

[
(∆n

i X
c∆n
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c)− Eni−1(∆

n
i X
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c)
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p

≤ K.

Using this bound together with the bound for Eni−1(∆
n
i X

c∆n
i Ỹ

c) in (26), we get the bound for

Cnj (β0) in (42). The bounds for V
(n,1)
j and V

(n,2)
j (β0) in (42) follow from inequality in means.

Next using the decomposition of V
(n,1)
j and V

(n,2)
j (β0) in (31), we have by an application of

Burkholder-Davis-Gundy inequality
E (j−1)kn

n

∣∣∣∣V (n,1)
j − n

kn

∫ jkn
n

(j−1)kn
n

σ2sds
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k
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n

, ∀p ≥ 1,
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n
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∫ jkn
n

(j−1)kn
n

σ̃2sds

∣∣∣∣p ≤ K

k
p/2
n

, ∀p ≥ 1.

From here, using the boundedness of the processes |σ| and |σ̃|, both from below and above, we get

the bounds in (43) and (44). �
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Lemma 6 Under Assumption SA for any constant α > 0 and provided n2ι/kn → 0, for ι being the
constant in the definition of the set Bn, we have

E (j−1)kn
n


(

1√
kn
Cn
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n
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∫ jkn
n
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n
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, (45)
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(
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n
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n
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(
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n
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n
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P
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n
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)
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k
p/2
n
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Proof of Lemma 6. Using Itô formula, we have

1√
kn
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n
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∫ jkn
n

(j−1)kn
n

(βs − β̂n)σ
2
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+
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c
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c
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c
s .

From here using the definition of the set Bn and applying the Burkholder-Davis-Gundy inequality,

we have the result in (45). The results in (46) and (47) are shown in exactly the same way. Finally,

the bounds on the probabilities in (48) and (49) follow from the fact that on Bn, β̂n is bounded as

well as an application of the Burkholder-Davis-Gundy inequality. �

Lemma 7 Under Assumption SA, and with nι̃/kn → 0 for some ι̃ > 0, for any bounded random

variable b and n sufficiently high, we have

E (j−1)kn
n
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j (β̂n)|1{Bn} > ϵ
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≤ Kn−(2−r)ϖ, ∀ϵ > 0. (52)
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Proof of Lemma 7. In the proof we use the shorthand notation

Cni = {|∆n
i X| ≤ α∆ϖ

n , |∆n
i Y | ≤ α∆ϖ

n } .

We can decompose
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jkn∑
i=(j−1)kn+1

∆n
i X
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c − b∆n
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c)(∆n

i Y
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i X
j)1{Cn

i },

where we denoted Xj = X −Xc and Y j = Y − Y c. We then have for ∀p ≥ 1 and ∀ι > 0
Eni−1

[
(∆n

i X
c)2p1{(Cn

i )
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(53)

Combining these results, using successive conditioning, we have the result in (50).

We next turn to (51). We have

Ĉnj (b)− Cj(b) =
n√
kn
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(54)

From here, using successive conditioning, we have the result in (51). We finally show (52). For

some sufficiently big constant δ > 0 and sufficiently high n, taking into account the definition of

the set Bn, we have
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,
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and note that β coincides with β0 under the null hypothesis and is a bounded positive random

variable otherwise under Assumption SA. From here, applying the bounds in (53) above, as well as

the bounds in (48)-(49) of Lemma 6 and taking into account the rate of growth of kn, we get the

result in (52). �

7.3 Proof of parts (a) of Theorems 1 and 2.

We first prove the result for the statistic Tn(β̂n) with the result stated in the following lemma.

Lemma 8 Under Assumption SA with βt = β0 for t ∈ [0, 1] and further k−1
n n1/4 → 0 and k−1

n n→
∞, we have

Tn(β̂n)
L−→ Z,

for Z being a standard normal random variable.

Proof of Lemma 8. We denote the sets
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We decompose
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We can further split
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T
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) 1
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n

 .

We split the proof into several steps.

Step 1. We prove T (n,1)(β0)
L−→ Z. The result follows from an application of Theorem VIII.3.6

in Jacod and Shiryaev (2003). In particular, using Lemmas 2, 3, 4 and 5, we have

√
kn
n

∑⌊n/kn⌋
j=2 E (j−1)kn

n

(
T
(n,1)
j (β0)

)
P−→ 0,

1
2
kn
n

∑⌊n/kn⌋
j=2

{
E (j−1)kn

n

(
T
(n,1)
j (β0)

)2
−
(
E (j−1)kn

n

(
T
(n,1)
j (β0)

))2} P−→ 1,∑⌊n/kn⌋
j=2 P

(∣∣∣∣√kn
n T

(n,1)
j (β0)

∣∣∣∣ > ϵ

∣∣∣∣F (j−1)kn
n

)
P−→ 0, ∀ϵ > 0.

Step 2. We prove
√

kn
n

∑⌊n/kn⌋
j=2

(
T
(n,2)
j (β0)1{A(n,1)

j−1 ∩ A(n,2)
j−1 (β0)

}) P−→ 0. Using Lemmas 2, 3 and

5, successive conditioning, the Itô semimartingale assumption for σ and σ̃, and the definition of the

sets A(n,1)
j and A(n,2)

j (β0), we have

⌊n/kn⌋∑
j=2

E
(
T
(n,2)
j (β0)1{An

j−1}
)2

≤ K

(
n

k2n

∨
1

)
,

∣∣∣∣∣∣
∑

i,j: i̸=j, i≥2, j≥2

E
(
T
(n,2)
i (β0)1{An

i−1}T
(n,2)
j (β0)1{An

j−1}
)∣∣∣∣∣∣ ≤ K

(
n3/2

k3n

∨
1

)
,

where we use the shorthand notation An
j = A(n,1)

j ∩ A(n,2)
j (β0). Combining the above three bounds,

and taking into account the rate of growth condition in the Lemma, we establish the asymptotic

negligibility result of this step.

Step 3. We prove
√

kn
n

∑⌊n/kn⌋
j=2

(
R

(n,1)
j 1{A(n,1)

j−1 ∩ A(n,2)
j−1 (β̂n)

}) P−→ 0. First, we can decompose

Cnj (β̂n)
2 − Cnj (β0)

2 = kn(β̂n − β0)
2
(
V

(n,1)
j

)2
− 2
√
kn(β̂n − β0)C

n
j (β0)V

(n,1)
j , (55)

V n
j (β̂n)− V n

j (β0) =
(
β̂n − β0

)2 (
V

(n,1)
j

)2
− 2√

kn
(β̂n − β0)V

(n,1)
j Cnj (β0). (56)

Next, using using successive conditioning, Cauchy-Schwarz inequality, as well as the bounds derived

in Lemma 5, we get

kn
n

⌊n/kn⌋∑
j=2

[
E
(
|Cnj (β0)|V

(n,1)
j (V

(n,1)
j−1 )2

)
+ E

(
|Cnj (β0)|V

(n,1)
j |Cnj−1(β0)|V

(n,1)
j−1

)
+ E

(
(V

(n,1)
j )2(V

(n,1)
j−1 )2

)
+ E

(
(V

(n,1)
j )2|Cnj−1(β0)|V

(n,1)
j−1

)]
≤ K,
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and the result of this step then follows from the
√
n rate of convergence of β̂n to β0 established in

Lemma 1.

Step 4. We prove
√

kn
n

∑⌊n/kn⌋
j=2

(
R

(n,2)
j 1{A(n,1)

j−1 ∩ A(n,2)
j−1 (β̂n)

}) P−→ 0. Using successive conditioning,

the Itô semimartingale assumption for σ and σ̃, as well as Lemma 3, we get

kn
n

⌊n/kn⌋∑
j=2

E
{[

|Cnj (β0)|V
(n,1)
j + (V

(n,1)
j )2

] ∣∣∣∣V n
j−1(β0)− σ2(j−1)kn

n

σ̃2(j−1)kn
n

∣∣∣∣} ≤ K

(√
kn
n

∨ 1√
kn

)
,

and from here the result to be proved in this step follows because of the
√
n rate of convergence of

β̂n to β0 established in Lemma 1 and the decomposition in (55)-(56).

Step 5. We prove
√

kn
n

∑⌊n/kn⌋
j=2 R

(n,3)
j

P−→ 0. Given the CLT result in Lemma 1 for β̂n, and the

decomposition in (55)-(56), the result to be proved in this step will follow if we can show(
kn
n

)3/2 ⌊n/kn⌋∑
j=2

(
V

(n,1)
j

)2 P−→ 0,
kn
n

⌊n/kn⌋∑
j=2

(
Cnj (β0)V

(n,1)
j

)
P−→ 0.

The first of this results follows trivially from the bound on the moments of V
(n,1)
j derived in

Lemma 5. Next, application of Cauchy-Schwarz inequality, the proof of Lemma 3 and the bound

of Lemma 5 for the p-th absolute moment of Cnj (β0), yields

kn
n

⌊n/kn⌋∑
j=2

(
Cnj (β0)

(
V

(n,1)
j − σ2(j−1)kn

n

))
P−→ 0.

Finally, using the bound in (26) in the proof of Lemma 2, as well as successive conditioning and

Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, we get

E

⌊n/kn⌋∑
j=2

Cnj (β0)

2

≤ K
n

kn
,

and this implies the asymptotic negligibility of knn
∑⌊n/kn⌋

j=2 Cnj (β0) and hence the result to be shown

in this step.

Step 6. We prove
√

kn
n

∑⌊n/kn⌋
j=2

(
R

(n,4)
j 1{A(n,1)

j−1 ∩ A(n,2)
j−1 (β̂n) ∩ A(n,2)

j−1 (β0)
}) P−→ 0. Using successive

conditioning, Cauchy-Schwarz inequality, as well as the bounds in Lemma 5, we get

kn
n

⌊n/kn⌋∑
j=2

E
{∣∣(Cnj (β0))2 − V n

j (β0)
∣∣ [(V (n,1)

j−1 )2 + |Cnj−1(β0)|V
(n,1)
j−1

]}
≤ K,

and this implies the result to be shown in this step, given the
√
n rate of convergence of β̂n and

the decomposition in (55)-(56).
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Step 7. We prove√
kn
n

⌊n/kn⌋∑
j=2

((
T
(n,2)
j (β0) +R

(n,1)
j +R

(n,2)
j +R

(n,4)
j

)
1{Ãn

j−1}

)
P−→ 0,

for Ãn
j =

{
A(n,1)
j ∩ A(n,2)

j (β0) ∩ A(n,2)
j (β̂n)

}c
. In view of Lemma 1, it suffices to prove conver-

gence on the set Bn for some sufficiently small positive numbers ι > 0 and δ > 0. We have

E

∣∣∣∣∣∣
√
kn
n

⌊n/kn⌋∑
j=2

((
T
(n,2)
j (β0) +R

(n,1)
j +R

(n,2)
j +R

(n,4)
j

)
1{Ãn

j−1

∩
Bn}

)∣∣∣∣∣∣
∧

1


≤

⌊n/kn⌋∑
j=2

P
(
Ãn
j−1

∩
Bn
)
≤ K

n

kn

1

k
p/2
n

, ∀p ≥ 1,

where for the last inequality, we applied Lemmas 5 and 6 and the boundedness from below of the

processes |σ| and |σ̃|. This bound implies the asymptotic negligibility to be proved in this step. �

Proof of parts (a) of Theorems 1 and 2 continued. What remains to be shown is that the

difference T̂n(β̂n)− Tn(β̂n) is asymptotically negligible. Recalling the definition of the set Bn, we
first note that P((Bn)c) → 0, therefore it suffices to focus on the set Bn only.

We decompose T̂nj (β̂n)− Tnj (β̂n) = ξ
(n,1)
j + ξ

(n,2)
j + ξ

(n,3)
j + ξ

(n,4)
j , where

ξ
(n,1)
j =

Ĉnj (β̂n)
2 − Cnj (β̂n)

2 − V̂ n
j (β̂n) + V n

j (β̂n)

V̂ n
j−1(β̂n)

,

ξ
(n,2)
j =

Cnj (β̂n)
2 − Cnj (β0)

2 − V n
j (β̂n) + V n

j (β0)

V n
j−1(β̂n)V̂

n
j−1(β̂n)

(
V n
j−1(β̂n)− V̂ n

j−1(β̂n)
)
,

ξ
(n,3)
j =

Cnj (β0)
2 − V n

j (β0)

V n
j−1(β0)V̂

n
j−1(β0)

(
V n
j−1(β0)− V̂ n

j−1(β0)
)
,

ξ
(n,4)
j = (Cnj (β0)

2 − V n
j (β0))

(
1

V̂ n
j−1(β̂n)

− 1

V̂ n
j−1(β0)

− 1

V n
j−1(β̂n)

+
1

V n
j−1(β0)

)
.

The proof consists of several steps and we will henceforth denote with ϵ some sufficiently small

positive constant.

Step 1. We prove 1{Bn}

√
kn
n

∑⌊n/kn⌋
j=2 ξ

(n,1)
j 1{|V̂ n

j−1(β̂n)|>ϵ}
P−→ 0, whenever n1/2−(2−r)ϖ → 0 and

n2−(4−r)ϖ

kn
→ 0. This follows directly from applying the algebraic identity x2−y2 = (x−y)2+2y(x−y)

for any real x and y, the bound on β̂n − β0 on the set Bn, as well as Lemmas 5 and 7.

Step 2. We prove 1{Bn}

√
kn
n

∑⌊n/kn⌋
j=2 ξ

(n,2)
j 1{|V̂ n

j−1(β̂n)|>ϵ, |V̂ n
j−1(β0)|>ϵ}

P−→ 0. We make use of the

decomposition in (55) and (56), the bounds in Lemmas 5 and 7, the fact that n1/2−ι(β̂n−β0)
P−→ 0

for arbitrary small ι > 0 (by Lemma 1).
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Step 3. We prove 1{Bn}

√
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n

∑⌊n/kn⌋
j=2 ξ

(n,3)
j 1{|V̂ n

j−1(β0)|>ϵ, |V n
j−1(β0)|>ϵ}

P−→ 0, provided n1− (8−r)ϖ
3

kn
→ 0.

This result follows from showing convergence in L2-norm, upon applying successive conditioning,

using Cauchy-Schwarz inequality and the bounds in Lemmas 2, 4 and 7.

Step 4. We prove 1{Bn}

√
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1
3− 2

3 (4−r)ϖ+ι

kn
→ 0 for some arbitrary small ι > 0.

Making use of an analogous decomposition of the difference V̂ n
j (β̂n)− V̂ n

j (β0) as in (56), we can

bound ∣∣∣∣∣ 1

V̂ n
j−1(β̂n)

− 1

V̂ n
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≤ K√
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|β̂n − β0|V̂ (n,1)
j |Ĉnj (β0)|+K|β̂n − β0|2(V̂ (n,1)

j )2.

Similar analysis can be made for the term involving 1/V n
j (β̂n) − 1/V n

j (β0). From here using the

convergence result for β̂n in Lemma 1, and the results in Lemmas 4, 5 and 7, we get the result to

be proved in this step.

Step 5. We prove

1{Bn}

√
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]
P−→ 0,

provided n1−(2−r)ϖ

kn
→ 0. Using the definition of the set Bn, the bounds in Lemmas 5, 6 and 7, we

get the result of this step. �

7.4 Proof of parts (b) of Theorems 1 and 2.

We can decompose 1
kn
T̂nj (β̂n) = ξ

(n,1)
j + ξ

(n,2)
j + ξ

(n,3)
j , where

ξ
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∫ jkn
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∫ jkn
n

(j−1)kn
n
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)
−
(
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∫ jkn
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(j−1)kn
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ξ
(n,3)
j =

1

kn

Ĉnj (β̂n)
2 − V̂ n

j (β̂n)

V̂ n
j−1(β̂n)

− 1

kn

Ĉnj (β̂n)
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n
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σ2sds
n
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(
(βs − β)2σ2s + σ̃2s

)
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.

The proof consists of the following steps in which we denote with ϵ some sufficiently small positive

constant.

Step 1. We have kn
n

∑⌊n/kn⌋
j=2 ξ

(n,1)
j

a.s.−→
∫ 1
0

(βs−β)2σ2
s

((βs−β)2σ2
s+σ̃

2
s)
ds. This follows from convergence of

Riemann sums and the fact that the processes β, σ and σ̃ have càdlàg paths (and hence are

Riemann integrable).

Step 2. We prove kn
n

∑⌊n/kn⌋
j=2 ξ

(n,2)
j

P−→ 0, provided n1−(4−r)ϖ

kn
→ 0. First, it suffices to focus

attention to the set Bn because of the CLT for β̂n in Lemma 1 and we do so. Then using the

bounds in Lemma 6, we have E|ξ(n,2)j | ≤ K

(
1√
kn

∨ n
1−(4−r)ϖ

2√
kn

∨ n1−(4−r)ϖ

kn

∨
n−(2−r)ϖ

)
, and this

implies the result to be shown in this step.

Step 3. We prove kn
n
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(n,3)
j 1{|V̂ n

j−1(β̂n)|>ϵ}
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the algebraic inequality:∣∣∣∣∣∣ 1kn Ĉnj (β̂n)2 −
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(n,1)
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From here, using successive conditioning and Lemmas 6 and 7, we get

E
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 ≤ Kηn,

where we use the shorthand ηn =

(
1√
kn

∨ n
1−(4−r)ϖ

2√
kn

∨ n1−(4−r)ϖ

kn

∨
n−(2−r)ϖ

)
. Similar analysis leads

to

E

(∣∣∣∣∣V̂ n
j (β̂n)−

n
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n

σ2sds
n
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n
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n

(
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)
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)
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Combining the above two results, it is hence sufficient to prove the result of this step in which

1
kn

(
Ĉnj (β̂n)

2 − V̂ n
j (β̂n)

)
in ξ

(n,3)
j is replaced with the term

(
n

kn
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n
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− 1
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n
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n
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The last term is bounded and hence the result follows by an application of Lemmas 6 and 7.
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Step 4. We prove kn
n

∑⌊n/kn⌋
j=2 ξ

(n,3)
j 1{|V̂ n

j−1(β̂n)|≤ϵ}
P−→ 0 provided n1−(2−r)ϖ

kn
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We will be done if we can show P
(
|V̂ n
j−1(β̂n)| ≤ ϵ ∩ Bn

)
≤ K

(
kn
n

)
ηn for some deterministic

sequence ηn → 0. This follows from an application of the bounds in Lemmas 6 and 7, as well as

the fact that on Bn β̂n is bounded. �

7.5 Proof of Theorem 3.

For a general process βt we define Z
n
t = Yt−

∫ t
0 β⌊sn⌋/ndXs and we split Ĉnj (β) = Ĉn,Xj (β)+Ĉn,Zj (β)

with {
Ĉn,Xj (β) = n√

kn

∑jkn
i=(j−1)kn+1 s

2
i (β(i−1)/n − β), s2i = (∆n

i X)2,

Ĉn,Zj (β) = n√
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∑jkn
i=(j−1)kn+1∆

n
i X∆n

i Z
n.

(57)

We further set

V̂ n,X
j (β) =

( n
kn

jkn∑
i=(j−1)kn+1

s2i

)( n
kn

jkn∑
i=(j−1)kn+1

s2i (β(i−1)/n − β)2
)
,

and
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2

√
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n

⌊ n
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Ĉn,Xj (β)2 − V̂ n,X
j (β)

V̂ n
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.

We start with the analysis of T̂n,X(β). First, by the Hölder property, we have

Ĉn,Xj (β)2 =
n2
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s2i

)( jkn∑
i=(j−1)kn+1

s2i (β(i−1)/n − β)2 −
jkn∑

i=(j−1)kn+1

s2i (β(i−1)/n − β̄j)
2
)

> n2
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where we denoted β̄j =
∑jkn

i=(j−1)kn+1 s
2
iβ(i−1)/n/

∑jkn
i=(j−1)kn+1 s

2
i . From here, by straight-forward

expectation and variance bounds, and taking into account the assumed rate at which kn grows

asymptotically, we find

Ĉn,Xj (β)2 − V̂ n,X
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kn
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It is easy to see that Lemma 5 continues to hold with Yt replaced by
∫ t
0 β⌊sn⌋/ndXs. Therefore, for

any δ ∈ (0, 1) there is a K > 0 such that

P
( ∪
j=1,...,n/kn

Dj

)
6 Kk−1

n with

Dj :=
{ n
kn
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σ2t dt
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/
V̂ n
j (β) /∈ [1− δ, 1 + δ]

}
.

Hence, we can asymptotically work on the event
∩
j=1,...,n/kn

Dc
j and conclude that T̂n,X(β) is

bounded from below by√
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n
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The latter is, using Riemann sum approximations and the separation Γrn under the alternative, of

order √
nkn
2

(
(1− δ)Γ2r2n − (1 + δ)R2(kn/n)

2α
)∫ 1

0

σ2t
(βt − β)2σ2t + σ̃2t
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where we also made use of the fact that σ2t and σ̃2t are Itô semimartingales as well as the assumed

growth condition for kn. Consequently, for Γ =
√

(
√
2K + 1)1+δ1−δR and the choices of kn and rn we

have

T̂n,X(β) > KR2

∫ 1

0

σ2t
(βt − β)2σ2t + σ̃2t
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uniformly over the alternative and over K > 0, n > 1.

The same arguments as for the proof of Theorem 1(a), applied to the pair
(
Xt, Yt −

∫ t
0 βsdXs

)
,

the fact that d⟨Xc, (Zn)c⟩t = (βt − β⌊tn⌋/n)σ
2
t dt is asymptotically negligible due to supt∈[0,1] |(βt −

β⌊tn⌋/n)σ
2
t | = OP (n

−α) for βt ∈ Cα(R), together with the bounds derived above and a Cauchy-

Schwarz bound for the cross term yield the following uniform result

T̂n(β) > KR2
(∫ 1

0

σ2t
(βt − β)σ2t + σ̃2t

dt
)2

−OP (
√
K).

The right-hand side converges to +∞ in probability as K → +∞. Hence, we choose K and thus Γ

so large that Pβt(T̂
n(β) > cγ/2) > 1− γ/2 on H1,α(Γrn) holds, which implies the result. �

7.6 Proof of Theorem 4.

For any sign sequence ε = (εj) ∈ {−1,+1}Jn with Jn = n/kn, we define

βε(t) = β +

Jn−1∑
j=0

εjJ
−α
n K(Jnt− j),
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where K is a kernel of support [0, 1] with α-Hölder constant smaller than R. Then the functions

J−α
n K(Jnt − j), j = 0, . . . , Jn − 1, have disjoint support on [0, 1] and lie in Cα(R). Consequently,

also βε(t) is in the Hölder ball Cα(R). We obtain further ∥βε(t) − β∥L2 = J−α
n ∥K∥L2 and thus

βε(t) ∈ H1(cJ−α
n ∥K∥L2) holds for some c > 0.

Under the alternatives we work with some fixed (deterministic and positive) σ2t and σ̃2t . For the

hypothesis H0 : βt = β we set

ρi =

∫ i/n
(i−1)/n σ

2
t |βε(t)− β| dt√∫ i/n

(i−1)/n σ
2
t dt
√∫ i/n

(i−1)/n(σ̃
2
t + σ2t (βε(t)− β)2) dt

,

which is independent of ε because |βε(t) − β| does not depend on the sign. Under H0 we then

consider volatilities σ20,t and σ̃
2
0,t, depending on n, such that

∫ i/n
(i−1)/n σ

2
0,tdt = (1 − ρ2i )

∫ i/n
(i−1)/n σ

2
t dt

and with σ̃20,t defined in an analogous way. Note that by construction and by Hölder continuity

of βε(t) we have ρi = O(J−α
n ) and |ρi − ρi−1| = O(n−α) (assuming σ and σ̃ are regular) so that

for each n we can even find a smooth version of σ20 and σ̃20. This minimal change simplifies the

ensuing likelihood considerations drastically because it guarantees that the empirical covariances

are sufficient statistics for these sets of parameters.

We bound the minimax testing error by the average error over βε using the likelihood to change

the measure and the Cauchy-Schwarz inequality in combination with Eβ[ψ
2
n] 6 1, Eβ[

dPβε
dPβ

] = 1:

Pβ(ψn = 1) + sup
βt∈H1,α(cJ

−α
n ∥K∥L2 )

Pβt(ψn = 0) > 2−Jn
∑

ε∈{−1,+1}Jn

(
Pβ(ψn = 1) + Pβε(t)(ψn = 0)

)
= 1− Eβ

[
ψn

(
2−Jn

∑
ε∈{−1,+1}Jn

(dPβε
dPβ

− 1
))]

> 1−
(
Eβ

[(
2−Jn

∑
ε∈{−1,+1}Jn

dPβε
dPβ

)2]
− 1
)1/2

.

Since the transformed increments ∆n
i (X,Y − βX) = (∆n

i X,∆
n
i Y − β∆n

i X) are independent under

all Pβt , the likelihood factorizes over the Jn blocks:

dPβε
dPβ

(∆n
i (X,Y − βX)16i6n) =

Jn−1∏
j=0

pj,εj (∆
n
jkn+i

(X,Y − βX))16i6kn
pj,0(∆n

jkn+i
(X,Y − βX))16i6kn

with density functions pj,1, pj,−1, pj,0 on R2kn of the transformed increments on block j. This

factorization permits a significant simplification, using invariance with respect to bi-measurable

transformations:

Eβ

[(
2−Jn

∑
ε∈{−1,+1}Jn

dPβε
dPβ

)2]
= 2−2Jn

∑
ε,ε′∈{−1,+1}Jn

Jn−1∏
j=0

∫ pj,εjpj,ε′j
p2j,0

pj,0 =

Jn−1∏
j=0

∫ (pj,1 + pj,−1

2pj,0

)2
pj,0.
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Under Pβε(t) the increments ∆n
i (X,Y −βX) on block j with εj = ±1 are independent and centered

Gaussian with covariance matrix

Σiεj =

( ∫ i/n
(i−1)/n σ

2
t dt εj

∫ i/n
(i−1)/n σ

2
t |βε(t)− β| dt

εj
∫ i/n
(i−1)/n σ

2
t |βε(t)− β| dt

∫ i/n
(i−1)/n(σ̃

2
t + σ2t (βε(t)− β)2) dt

)
,

which implies correlation of εjρi. Denoting by Σi0 the covariance matrix under H0 we obtain

therefore

(Σiεj )
−1 − (Σi0)

−1 =
−εjρi

det(Σi0)
1/2

(
0 1
1 0

)
.

Using the above, upon denoting with (Zx,i, Zy,i)i a sequence of independent standard Gaussian

random vectors, we obtain∫ (pj,1 + pj,−1

2pj,0

)2
pj,0

= E
[( (j+1)kn∏

i=jkn+1

(1− ρ2i )
)(1

2
exp

( (j+1)kn∑
i=jkn+1

ρiZx,iZyi

)
+

1

2
exp

(
−

(j+1)kn∑
i=jkn+1

ρiZx,iZyi

))2]

=
( (j+1)kn∏
i=jkn+1

(1− ρ2i )
)1
4
E
[
exp

( (j+1)kn∑
i=jkn+1

2ρiZx,iZyi

)
+ exp

(
−

(j+1)kn∑
i=jkn+1

2ρiZx,iZyi

)
+ 2
]

=
( (j+1)kn∏
i=jkn+1

(1− ρ2i )
)1
2
E
[
exp

( (j+1)kn∑
i=jkn+1

2ρ2iZ
2
yi

)
+ 1
]

=
( (j+1)kn∏
i=jkn+1

(1− ρ2i )
)1
2

(
1 +

(j+1)kn∏
i=jkn+1

(1− 4ρ2i )
−1/2

)
=
(
1−

∑
i

ρ2i +
∑
i̸=j

ρ2i ρ
2
j

)(
1 +

∑
i

ρ2i + 3
∑
i

ρ4i + 2
∑
i̸=j

ρ2i ρ
2
j

)
+O(knmax

i
ρ6i )

= 1 + 2
( (j+1)kn∑
i=jkn+1

ρ2i

)2
+O(knmax

i
ρ6i ),

where we applied a Taylor expansion to the logarithm of the product, using that knmaxi ρ
2
i =

O(nJ−1−2α
n ) is small. Noting kn/n→ 0 and the continuity of the integrands, we have the Riemann

sum approximation

Jn−1∑
j=0

( (j+1)kn∑
i=jkn+1

ρ2i

)2
≈ nkn

∫ 1

0

σ4t (βε(t)− β)4

(σ̃2t + σ2t (βε(t)− β)2)2
dt.

A similar expansion of the product as above thus yields the total asymptotic bound

(nkn)
−1
( Jn−1∏

j=0

∫ (pj,1 + pj,−1

2pj,0

)2
pj,0 − 1

)
→ 2

∫ 1

0

σ4t (βε(t)− β)4

(σ̃2t + σ2t (βε(t)− β)2)2
dt
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for n, Jn, kn → ∞. Noting |βε(t)− β| 6 J−α
n ∥K∥∞, the last expression, when scaled up by nkn, is

less than (1−γ)2 for J−4α
n 6 C(1−γ)2Jnn−2 with some constant C = C(K,σ, σ̃) > 0. Hence, for Jn

at most (C(1−γ2))−1/(4α+1)n2/(4α+1) the minimax error is bounded by γ. Choosing Jn ∈ N of that

order, the separation bound cJ−α
n ∥K∥L2 of the alternative is Γ̃rn with Γ̃ = c(C(1− γ)2)−1/(4α+1),

as asserted. �
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