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1 Introduction

It is currently common practice in empirical work to use standard errors and associated

confidence intervals that are robust to the presence of heteroskedasticity. The most widely

used form of the robust, heteroskedasticity-consistent standard errors is that associated

with the work of White (1980) (see also Eicker (1967); Huber (1967)), extended to the

case with clustering by Liang and Zeger (1986). The justification for these standard errors

and the associated confidence intervals is asymptotic: they rely on large samples for their

validity. In small samples the properties of these procedures are not always attractive:

the robust (Eicker-Huber-White, or EHW, and Liang-Zeger or LZ, from hereon) variance

estimators are biased downward, and the Normal-distribution-based confidence intervals

using these variance estimators can have coverage substantially below nominal coverage

rates.

There is a large theoretical literature documenting and addressing these small sample

problems in the context of linear regression models, some of it reviewed in MacKinnon and

White (1985), Angrist and Pischke (2009, Chapter 8), and MacKinnon (2012). A number

of alternative versions of the robust variance estimators and confidence intervals have been

proposed to deal with these problems. Some of these alternatives focus on reducing the

bias of the variance estimators (MacKinnon and White, 1985), some exploit higher order

expansions (Hausman and Palmer, 2011), others attempt to improve their properties by

using resampling methods (Davidson and Flachaire, 2008; Cameron, Gelbach, and Miller,

2008; Hausman and Palmer, 2011), or data-partitioning (Ibragimov and Müller, 2010),

and some use t-distribution approximations (Bell and McCaffrey, 2002; Donald and Lang,

2007). Given the multitude of alternatives, combined with the ad hoc nature of some of

them, it is not clear, however, how to choose among them. Moreover, some researchers

(e.g. Angrist and Pischke, 2009, Chapter 8.2.3) argue that for commonly encountered

sample sizes—fifty or more units / fifty or more clusters—using these alternatives is not

necessary because the EHW and LZ standard errors perform well.

We make three specific points in this paper. First, we show that a particular improve-

ment to the EHW and LZ confidence intervals, due to Bell and McCaffrey (2002, BM from

hereon), is a principled extension of an approach developed by Welch (1951) to a simple,

much-studied and well-understood problem, known as the Behrens-Fisher problem (see
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for a general discussion, Scheffé (1970)). Understanding how the BM proposals and other

procedures perform in the simple Behrens-Fisher case provides insights into their general

performance. The BM improvement is simple to implement and in small and moderate-

sized samples can provide a considerable improvement over the EHW and LZ confidence

intervals. We recommend that empirical researchers should, as a matter of routine, use

the BM confidence intervals rather than the EHW and LZ confidence intervals.

Second, and this has been pointed out in the theoretical literature before (e.g. Chesher

and Jewitt, 1987), without having been appreciated in the empirical literature, problems

with the standard robust EHW and LZ variances and confidence intervals can be substan-

tial even with moderately large samples (such as 50 units / clusters) if the distribution

of the regressors is skewed. It is the combination of the sample size and the distribution

of the regressors that determines the accuracy of the standard robust confidence intervals

and the potential benefits from small-sample adjustments.

Third, we suggest a modification of the BM procedure in the case with clustering that

further improves the performance of confidence intervals in that case.

Let us briefly describe the BM improvement. Let V̂EHW be the standard EHW variance

estimator, and let the EHW 95% confidence interval for a parameter β be β̂±1.96
√
V̂EHW.

The BM modification consists of two components, the first removing some of the bias and

the second changing the approximating distribution from a Normal distribution to the

best fitting t-distribution. First, the commonly used variance estimator V̂EHW is replaced

by V̂HC2 (a modification for the general case first proposed by Horn, Horn, and Duncan

(1975)), which removes some, and in special cases all, of the bias in V̂EHW relative to

the true variance V. Second, the distribution of (β̂ − β)/
√
V̂HC2 is approximated by

a t-distribution. When t-distribution approximations are used in constructing robust

confidence intervals, the degrees of freedom (dof) are typically fixed at the number of

observations minus the number of estimated regression parameters. The BM dof choice

for the approximating t-distribution, denoted KBM, is more sophisticated. It is chosen so

that under homoskedasticity the distribution of KBM·V̂HC2/V has the first two moments in

common with a chi-squared distribution with dof equal to KBM, and it is a simple analytic

function of the matrix of regressors. To convert the dof adjustment into a procedure that

only adjusts the standard errors, we can define the BM standard error as
√
V̂BM =√

V̂HC2 · (tKBM
0.975/1.96), where tKq is the q-th quantile of the t-distribution with K dof. A
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key insight is that KBM can differ substantially from the sample size (minus the number

of estimated parameters) if the distribution of the regressors is skewed.

This paper is organized as follows. In the next section we study the Behrens-Fisher

problem and the solutions offered by the robust standard error literature specialized to

this case. In Section 3 we generalize the results to the general linear regression case,

and in Section 4 we study the case with clustering. Along the way, we provide some

simulation evidence regarding the performance of the various confidence intervals, using

designs previously proposed in the literature. We find that in all these settings the BM

proposals perform well relative to the other procedures. Section 5 concludes.

2 The Behrens-Fisher problem: performance of var-

ious proposed solutions

In this section we review the Behrens-Fisher problem, which can be viewed as a special

case of linear regression with a single binary regressor. For this special case there is a

large literature and several attractive methods for constructing confidence intervals with

good properties even in very small samples have been proposed. See Behrens (1929),

Fisher (1939), and for a general discussion Scheffé (1970), Wang (1971), Lehmann and

Romano (2005), and references therein. We discuss the form of the standard variance

estimators for this case, and discuss when they perform poorly relative to the methods

that are designed especially for this setting.

2.1 The Behrens-Fisher problem

Consider a heteroscedastic linear model with a single binary regressor,

Yi = β0 + β1 ·Di + εi, (2.1)

where Di ∈ {0, 1}, i = 1, . . . , N indexes units, and

E[εi | Di = d] = 0, and var(εi | Di = d) = σ2(d).

We are interested in β1 = cov(Yi, Di)/ var(Di) = E[Yi | Di = 1]− E[Yi | Di = 0]. Because

the regressor Di is binary, the least squares estimator for the slope coefficient β1 is given

by a difference between two means,

β̂1 = Y 1 − Y 0,
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where, for d = 0, 1,

Y d =
1

Nd

∑
i:Di=d

Yi, and N1 =
N∑
i=1

Di, N0 =
N∑
i=1

(1−Di).

The estimator β̂1 is unbiased, and, conditional on D = (D1, . . . , DN)′, its exact finite

sample variance is

V = var(β̂1 | D) =
σ2(0)

N0

+
σ2(1)

N1

.

If, in addition, we assume Normality for εi given Di, εi | Di = d ∼ N (0, σ2(d)), the

exact distribution for β̂1 conditional on D is Normal, β̂1 | D ∼ N (β1,V).

The problem of how to do inference for β1 in the absence of knowledge of σ2(d) is old,

and known as the Behrens-Fisher problem. Let us first review a number of the standard

least squares variance estimators, specialized to the case with a single binary regressor.

2.2 Homoskedastic variance estimator

Suppose the errors are homoskedastic, σ2 = σ2(0) = σ2(1), so that the exact variance for

β̂1 is V = σ2(1/N0 + 1/N1). We can estimate the common error variance σ2 as

σ̂2 =
1

N − 2

N∑
i=1

(
Yi − β̂0 − β̂1 ·Di

)2
.

This variance estimator is unbiased for σ2, and as a result the estimator for the variance

for β̂1,

V̂homo =
σ̂2

N0

+
σ̂2

N1

,

is unbiased for the true variance V. Moreover, under Normality of εi given Di, the t-

statistic (β̂1 − β1)/
√

V̂homo has an exact t-distribution with N − 2 degrees of freedom

(dof). Inverting the t-statistic yields an exact 95% confidence interval for β̂1 under ho-

moskedasticity,

CI95%homo =
(
β̂1 − tN−20.975 ×

√
V̂homo, β̂1 + tN−20.975 ×

√
V̂homo

)
,

where tNq is the q-th quantile of a t-distribution with dof equal to N . This confidence

interval is exact under these two assumptions, Normality and homoskedasticity.
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2.3 Robust EHW variance estimator

The familiar form of the robust Eicker-Huber-White (EHW) variance estimator, given the

linear model (2.1), is(
N∑
i=1

XiX
′
i

)−1( N∑
i=1

(
Yi −Xiβ̂

)2
XiX

′
i

)(
N∑
i=1

XiX
′
i

)−1
,

where Xi = (1, Di)
′. In the Behrens-Fisher case with a single binary regressor the com-

ponent of this matrix corresponding to β1 simplifies to

V̂EHW =
σ̃2(0)

N0

+
σ̃2(1)

N1

, where σ̃2(d) =
1

Nd

N∑
i:Di=d

(
Yi − Y d

)2
, d = 0, 1. (2.2)

The estimators σ̃2(d) are downward-biased in finite samples, and so V̂EHW is also a

downward-biased estimator of the variance. Using a Normal approximation to the t-

statistic based on this variance estimator, we obtain the standard EHW 95% confidence

interval,

CI95%EHW =

(
β̂1 − 1.96×

√
V̂EHW, β̂1 + 1.96×

√
V̂EHW

)
. (2.3)

The justification for the Normal approximation is asymptotic even if the error term εi

has a Normal distribution, and requires both N0, N1 → ∞. Sometimes researchers use a

t-distribution with N − 2 dof to calculate the confidence limits, replacing 1.96 in (2.3) by

tN−20.975. However, there are no assumptions under which this modification has exact 95%

coverage

2.4 Unbiased variance estimator

An alternative to V̂EHW is what MacKinnon and White (1985) call the HC2 variance

estimator, which we denote by V̂HC2. In general, this correction removes only part of the

bias, but in the single binary regressor (Behrens-Fisher) case the MacKinnon-White HC2

correction removes the entire bias. Its form in this case is

V̂HC2 =
σ̂2(0)

N0

+
σ̂2(1)

N1

, where σ̂2(d) =
1

Nd − 1

N∑
i:Di=d

(
Yi − Y d

)2
, d = 0, 1. (2.4)
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These conditional variance estimators σ̂2(d) differ from the EHW estimator σ̃2(d) by a

factor Nd/(Nd − 1). In combination with the Normal approximation to the distribution

of the t-statistic, this variance estimator leads to the 95% confidence interval

CI95%HC2 =

(
β̂1 − 1.96×

√
V̂HC2, β̂1 + 1.96×

√
V̂HC2

)
.

The estimator V̂HC2 is unbiased for V, but the resulting confidence interval is still not

exact. Just as in the homoskedastic case, the sampling distribution of the t-statistic

(β̂1 − β1)/
√
V̂HC2 is in this case not Normally distributed in small samples, even if the

underlying errors are Normally distributed (and thus (β̂1−β1)/
√
V has an exact standard

Normal distribution). Whereas in the homoskedastic case, the t-statistic has an exact

t-distribution with N − 2 dof, here the exact distribution of the t-statistic does not lend

itself to the construction of exact confidence intervals: the distribution of V̂HC2 not chi-

squared, but a weighted sum of two chi-squared distributions with weights that depend

on σ2(d).

In this single-binary-regressor case it is easy to see that in some cases N − 2 will be

a poor choice for the degrees of freedom for the approximating t-distribution. Suppose

that there are many units with Di = 0 and few units with Di = 1 (N0 � N1). In

that case E[Yi | Di = 0] is estimated relatively precisely, with variance σ2(0)/N0 ≈ 0.

As a result the distribution of the t-statistic (β̂1 − β1)/
√

V̂HC2 is approximately equal

to that of (Y 1 − E[Yi | Di = 1])/
√
σ̂2(1)/N1. The latter has, under Normality, an exact

t-distribution with dof equal to N1−1, substantially different from the t-distribution with

N − 2 = N0 +N1 − 2 dof if N0 � N1.

2.5 Degrees of freedom adjustment: Welch and Bell-McCaffrey
solutions

One popular and attractive approach to deal with the Behrens-Fisher problem is due

to Welch (1951). Welch suggests approximating the distribution of the t-statistic (β̂1 −
β1)/

√
V̂HC2 by a t-distribution with dof adjusted to reflect the variability of the variance

estimator V̂HC2. To describe this adjustment in more detail, consider the t-statistic in the

heteroskedastic case:

tHC2 =
β̂1 − β1√
V̂HC2

=
β̂1 − β1√

σ̂2(0)/N0 + σ̂2(1)/N1

.
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Suppose there was a constant K such that the distribution of K ·V̂HC2/V had a chi-squared

distribution with dof equal to K. Then, under Normality, because V̂HC2 is independent of

β̂1−β1, tHC2 would have a t-distribution with dof equal to K, which could be exploited to

construct an exact confidence interval. Unfortunately, there is no value of K that makes

K · V̂HC2/V exactly chi-squared distributed. Welch therefore suggests approximating

the scaled distribution of V̂HC2 by a chi-squared distribution, with the dof parameter K

chosen to make the approximation as accurate as possible. In particular, Welch proposes

to choose the dof parameter K such that K ·V̂HC2/V has the first two moments in common

with a chi-squared distribution with dof equal to K. Because irrespective of the value for

K, E[K · V̂HC2/V] = K, this amounts to choosing K such that var(K · V̂HC2/V) = 2K.

To find this value of K, note that under Normality, V̂HC2 is a linear combination of two

chi-squared random variables. To be precise, (N0 − 1)σ̂2(0)/σ2(0) ∼ χ2(N0 − 1), and

(N1 − 1)σ̂2(1)/σ2(1) ∼ χ2(N1 − 1), and σ̂2(0) and σ̂2(1) are independent of each other

and of β̂1 − β1. Hence it follows that

var
(
V̂HC2

)
=

2σ4(0)

(N0 − 1)N2
0

+
2σ4(1)

(N1 − 1)N2
1

,

which leads to

K∗Welch =
2 · V2

var
(
V̂HC2

) =

(
σ2(0)
N0

+ σ2(1)
N1

)2
σ4(0)

(N0−1)N2
0

+ σ4(1)

(N1−1)N2
1

=

(
1
N0

σ2(0)
σ2(1)

+ 1
N1

)2
1

(N0−1)N2
0

σ4(0)
σ4(1)

+ 1
(N1−1)N2

1

This choice for K is not feasible because K∗Welch depends on the unknown ratio of the

conditional variances σ2(0)/σ2(1). In the feasible version we approximate the distribution

of tHC2 by a t-distribution with dof equal to

KWelch =

(
σ̂2(0)

N0

+
σ̂2(1)

N1

)2/(
σ̂4(0)

(N0 − 1)N2
0

+
σ̂4(1)

(N1 − 1)N2
1

)
, (2.5)

where the unknown σ2(d) are replaced by the estimates σ̂2(d). Wang (1971) presents

some exact results for the difference between the coverage of confidence intervals based on

the Welch procedures and the nominal levels, showing that the Welch intervals perform

extremely well in very small samples.

BM propose a slightly different degrees of freedom adjustment. For the Behrens-Fisher

problem (regression with a single binary regressor) the BM modification is minor, but it
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has considerable attraction in settings with more general distributions of regressors. The

BM adjustment simplifies the Welch dof K∗Welch by assuming homoskedasticity, leading to

KBM =

(
σ2

N0
+ σ2

N1

)2
σ4

(N0−1)N2
0

+ σ4

(N1−1)N2
1

=
(N0 +N1)

2(N0 − 1)(N1 − 1)

N2
1 (N1 − 1) +N2

0 (N0 − 1)
. (2.6)

Because the BM dof does not depend on the conditional variances, it is non-random

conditional on the regressors, and as a result tends to be more accurate then the Welch

adjustment in settings with noisy estimates of the conditional error variances. The asso-

ciated 95% confidence interval is now

CI95%BM =

(
β̂1 − tKBM

0.975 ×
√

V̂HC2, β̂1 + tKBM
0.975 ×

√
V̂HC2

)
. (2.7)

This is the interval we recommend researchers use in practice.

To gain some intuition for the BM dof adjustment, consider some special cases. First,

if N0 � N1, then KBM ≈ N1 − 1. As we have seen before, as N0 → ∞, using N1 − 1

as the degrees of freedom leads to exact confidence intervals under Normally distributed

errors. If the two subsamples are equal size, N0 = N1 = N/2, then KBM = N − 2.

Thus, if the two subsamples are approximately equal size, the often-used dof adjustment

of N − 2 is appropriate, but if the distribution is very skewed, this adjustment is likely to

be inadequate.

2.6 Small simulation study based on Angrist-Pischke design

To see how relevant the small sample adjustments are in practice, we conduct a small

simulation study based on a design previously used by Angrist and Pischke (2009). The

sample size is N = 30, with N1 = 3 and N0 = 27. The parameter values are β0 = β1 = 0

(the results are invariant to the values for β0 and β1). The distribution of the disturbances

is Normal,

εi | Di = d ∼ N (0, σ2(d)), d = 0, 1. (2.8)

with σ2(1) = 1. Angrist and Pischke report results for three choices for σ(0): σ(0) ∈
{0.5, 0.85, 1}. We add the complementary values σ(0) ∈ {1.18, 2}, where 1.18 ≈ 1/0.85.

Angrist and Pischke report results for a number of variance estimators, including some
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where they take the maximum of V̂homo and V̂EHW or V̂HC2, but they do not consider the

Welch or BM dof adjustments.

We consider the following confidence intervals. First, two intervals based on the

homoskedastic variance estimator V̂homo, using either the Normal distribution or a t-

distribution with N − 2 dof. Next, four confidence intervals based on V̂EHW. The first

two again use either the Normal or the t-distribution with N − 2 dof. The last two are

based on the wild bootstrap, a resampling method discussed in more detail in Appendix

A. The first one of these methods (denoted “wild”) is based on the percentile-t method

of obtaining the confidence interval. The second confidence interval (denoted “wild0”)

consists of all null hypotheses H0 : β1 = β0
1 that were not rejected by wild bootstrap tests

that impose the null hypothesis when calculating the wild bootstrap distribution (see

Appendix A for details). This method involves a numerical search, and is therefore com-

putationally intensive. Next, seven confidence intervals based on V̂HC2, using: Normal

distribution, t-distribution with N−2 dof, the two versions of the wild bootstrap, KWelch,

K∗Welch, and KBM. We also include a confidence interval based on V̂HC3 (see Appendix A

for more details). Finally, we include confidence intervals based on the maximum of V̂homo

and V̂EHW, and on the maximum of V̂homo and V̂HC2, both using the Normal distribution.

Table 1 presents the simulation results. For each of the variance estimators we report

coverage probabilities for nominal 95% confidence intervals, and the median of the stan-

dard errors over the simulations. To make the standard errors comparable, we multiply

the square root of the variance estimators by tK0.975/t
∞
0.975 in cases where the confidence

intervals are based on t-distributions with K degrees of freedom. We also report the mean

K∗Welch, KWelch and KBM dof adjustments, which are substantial in these designs. For in-

stance, in the first design, with σ(0)/σ(1) = 0.5, the infeasible Welch dof is K∗Welch = 2.1,

indicating that the EHW standard errors may not be reliable: the dof correction leads

to an adjustment in the standard errors by a factor1 of t2.10.975/t
∞
0.957 = 4.11/1.96 = 2.1.

Indeed, the coverage rate for Normal-distribution confidence interval based on V̂EHW is

0.77, and it’s 0.82 based on the unbiased variance estimator V̂HC2.

For the variance estimators included in the Angrist-Pischke design our simulation

1To implement the degrees-of-freedom adjustment with non-integer dof K, we define the t-distribution
as the ratio of two random variables, one a random variable with a standard (mean zero, unit variance)
Normal distribution and and the second a random variable with a gamma distribution with parameters
α = K/2 and β = 2.
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results are consistent with theirs. However, the three confidence intervals based on the

(feasible and infeasible) Welch and BM degrees of freedom adjustments are superior in

terms of coverage. The confidence intervals based on the wild bootstrap with the null

imposed also perform well although they undercover somewhat at σ(0) = 0.5, and are

very conservative and wide at σ(0) = 2: their median length is about 45% greater than

that of BM.

An attractive feature of the BM correction is that the confidence intervals have sub-

stantially more variation in their width relative to the Welch confidence intervals. For

instance, with σ(0) = 1, the median widths of the confidence intervals based on KWelch

and KBM are 3.5 and 3.7 (and the Welch confidence interval slightly undercovers), but

the 0.95 quantile of the widths are 7.1 and 6.5. The attempt to base the approximating

chi-square distribution on the heteroskedasticity consistent variance estimates leads to a

considerable increase in the variability of the width of the confidence intervals (this is

evidenced in the variability of KWelch, which has variance between 2.6 and 7.5 depending

on the design). Moreover, because conditional on the regressors, the BM critical value is

fixed, size-adjusted power of tests based on the BM correction coincides with that of tests

based on HC2 and the Normal distribution, while, as evidenced by the simulation results,

its size properties are superior.

To investigate the importance of the assumption of the Normality for these results,

we also consider a design with log-Normal errors, εi | Di = d ∼ σ(d)Li, where Li is a log-

Normal random variable, recentered and rescaled so that it has mean zero and variance

one. The results are reported in Table 2. Here the BM intervals perform substantially

better than Welch intervals. The undercoverage of the remaining confidence intervals

except the wild bootstrap with the null imposed is even more severe than with Normal

errors. The wild bootstrap intervals, however, again tend to be very conservative and

wide for larger values of σ(0).

For comparison, we also report in Table 3 the results for a simulation exercise with a

balanced design where N0 = N1 = N/2 = 15, and Normal errors. Here KBM = 28 across

the designs, and since t280.975 = 2.05 is close to the 1.96, it suggests that refinements are

not important here. Indeed, the actual coverage rates are close to nominal coverage rates

for essentially all procedures: for a sample size of 30 and balanced design, the asymptotic

Normal-distribution-based approximations are fairly accurate.
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3 Linear regression with general regressors

Now let us look at the general regression case, allowing for multiple regressors, and re-

gressors with other than binomial distributions.

3.1 Setup

We have an L-dimensional vector of regressors Xi, and a linear model

Yi = X ′iβ + εi, with E [εi|Xi] = 0, var (εi|Xi) = σ2(Xi).

Let X be the N ×L dimensional matrix with ith row equal to X ′i, and let Y and ε be the

N -vectors with ith elements equal to Yi and εi respectively. The ordinary least squares

estimator is given by

β̂ = (X′X)
−1

(X′Y) =

(
N∑
i=1

XiX
′
i

)−1( N∑
i=1

XiYi

)
.

Without assuming homoskedasticity, the exact variance for β̂ conditional on X is

V = var(β̂ | X) = (X′X)
−1

N∑
i=1

σ2(Xi)XiX
′
i (X′X)

−1
,

with k-th diagonal element Vk. For the general regression case the EHW robust variance

estimator is

V̂EHW = (X′X)
−1

N∑
i=1

(
Yi −Xiβ̂

)2
XiX

′
i (X′X)

−1
,

with k-th diagonal element V̂EHW,k. Using a Normal distribution, the associated 95%

confidence interval for βk is

CI95%EHW =

(
β̂k − 1.96×

√
V̂EHW,k, β̂k + 1.96×

√
V̂EHW,k

)
.

This robust variance estimator and the associated confidence intervals are widely used in

empirical work.
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3.2 Bias-adjusted variance estimator

In Section 2 we discussed the bias of the robust variance estimator in the case with a

single binary regressor. In that case there was a simple modification of the EHW variance

estimator that removes all bias. In the general regression case it is not possible to remove

all bias in general. We focus on a particular adjustment for the bias first proposed by

MacKinnon and White (1985) (see also Horn, Horn, and Duncan, 1975). In the special

case with only a single binary regressor this adjustment is identical to that used in Section

2. Let P = X(X′X)−1X′ be the N ×N projection matrix, with i-th column denoted by

Pi = X(X′X)−1Xi and (i, i)-th element denoted by Pii = X ′i(X
′X)−1Xi. Let Ω be the

N × N diagonal matrix with i-th diagonal element equal to σ2(Xi), and let eN,i be the

N -vector with i-th element equal to one and all other elements equal to zero. Let IN be

the N ×N identity matrix. The residuals ε̂i = Yi −X ′iβ̂ can be written as

ε̂i = εi − e′N,iPε = e′N,i(IN −P)ε, or, in vector form, ε̂ = (IN −P)ε.

The expected value of the square of the i-th residual is

E
[
ε̂2i
]

= E
[
(e′N,i(IN −P)ε)2

]
= (eN,i −Pi)

′Ω(eN,i −Pi),

which, under homoskedasticity reduces to σ2(1−Pii). This in turn implies that ε̂2i /(1−Pii)

is unbiased for E [ε2i ] under homoskedasticity. This is the motivation for the variance

estimator that MacKinnon and White (1985) introduce as HC2:

V̂HC2 = (X′X)
−1

N∑
i=1

(
Yi −Xiβ̂

)2
1−Pii

XiX
′
i (X′X)

−1
. (3.1)

Suppose we want to construct a confidence interval for βk, the k-th element of β. The vari-

ance of β̂k is estimated as V̂HC2,k, the kth diagonal element of V̂HC2. The 95% confidence

interval, based on the Normal approximation, is then given by

CI95%HC2 =

(
β̂k − 1.96×

√
V̂HC2,k, β̂k + 1.96×

√
V̂HC2,k

)
.

3.3 Degrees of freedom adjustment

BM, building on Satterthwaite (1946), suggest approximating the distribution of the t-

statistic tHC2 = (β̂k − βk)/
√

V̂HC2,k by a t-distribution instead of a Normal distribution.
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Like in the binary Behrens-Fisher case, the degrees of freedom K are chosen so that under

homoskedasticity (Ω = σ2IN) the first two moments of K · (V̂HC2,k/Vk) are equal to those

of a chi-squared distribution with degrees of freedom equal to K. Under homoskedasticity,

V̂HC2 is unbiased, and thus thus E[V̂HC2,k] = Vk, so that the first moment ofK·(V̂HC2,k/Vk)

is always equal to to that of a chi-squared distribution with dof equal to K. Therefore, we

choose K to match the second moment. Under Normality, V̂HC2,k is a linear combination

of N independent chi-squared one random variables (with some of the coefficients equal

to zero),

V̂HC2,k =
N∑
i=1

λi · Zi, where Zi ∼ χ2(1), all Zi independent,

where the weights λi are eigenvalues of the N ×N matrix σ2 ·G′G, with the i-th column

of the N ×N matrix G, equal to

Gi =
1√

1−Pii

(eN,i −Pi)X
′
i(X

′X)−1eL,k.

Given these weights, the BM dof that match the first two moments of K · (V̂HC2,k/Vk) to

that of a chi-squared K distribution is given by

KBM =
2 · V2

k

var
(
V̂HC2,k

) =

(
N∑
i=1

λi

)2/ N∑
i=1

λ2i . (3.2)

The value of KBM only depends on the regressors (through the matrix G) and not on σ2

even though the weights λi do depend on σ2. In particular, the effective dof will be smaller

if the distribution of the regressors is skewed. Note also that the dof adjustment may be

different for different elements of parameter β. The resulting 95% confidence interval is

CI95%BM =

(
β̂k + tKBM

0.025 ×
√

V̂HC2,k, β̂k + tKBM
0.975 ×

√
V̂HC2,k

)
.

In general, the weights λi that set the moments of the chi-squared approximation equal

to those of the normalized variance are the eigenvalues of G′ΩG. These weights are not

feasible, because Ω is not known in general. The feasible version of the Sattherthwaite dof

suggestion replaces Ω by Ω̂ = diag(ε̂2i /(1 − Pii)). However, because Ω̂ is a noisy estima-

tor of the conditional variance, the resulting confidence intervals are often substantially

conservative. By basing the dof calculation on the homoskedastic case with Ω = σ2 · IN ,

the BM adjustment avoids this problem.

[13]



If there is a single binary regressor, the BM solution for the general case (3.2) reduces

to that in the binary case, (2.6). Similarly, the infeasible Sattherthwaite solution, based

on the eigenvalues of GΩG, reduces to the infeasible Welch solution K∗Welch. In contrast,

applying the feasible Sattherthwaite solution to the case with a binary regressor does not

lead to the feasible Welch solution because the feasible Welch solution implicitly uses an

estimator for Ω different from Ω̂.

The performance of the Sattherthwaite and BM confidence intervals is similar to that

of the Welch and BM confidence intervals in the binary case.2 In particular, if the design

of regressors is skewed (for example, if the regressor of interest has a log-Normal distribu-

tion), then the robust variance estimators V̂EHW and the bias-adjusted version V̂HC2 based

on a normal distribution or a t-distribution with N − 2 dof may undercover substantially

even when N ≈ 100. In contrast, the Sattherthwaite and BM confidence intervals control

size even in small samples, because any skewness is captured in the matrix G, leading to

appropriate dof adjustments. The KBM dof adjustment leads to much narrower confidence

intervals with much less variation, so again that is the superior choice in this setting.

4 Robust variance estimators with clustering

In this section we discuss the extensions of the variance estimators discussed in the pre-

vious sections to the case with clustering. The model is:

Yi = X ′iβ + εi, (4.1)

There are S clusters. In cluster s the number of units is Ns, with the overall sample size

N =
∑S

s=1Ns. Let Si ∈ {1, . . . , S} denote the cluster unit i belongs to. We assume that

the errors εi are uncorrelated between clusters, but there may be arbitrary correlation

within a cluster,

E[ε | X] = 0, E[εε′ | X] = Ω, Ωij =

{
ωij if Si = Sj,

0 otherwise.

If ωij = 0 for i 6= j (that is, each unit is in its own cluster), the setup reduces to that in

Section 3.

2See an earlier version of this paper (Imbens and Kolesár, 2012) for simulation evidence.
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Let β̂ be the least squares estimator, and let ε̂i = Yi −X ′iβ̂ be the residual. Let ε̂s be

the Ns dimensional vector with the residuals in cluster s, let Xs the Ns × L matrix with

ith row equal to the value of X ′i for the ith unit in cluster s, and let X be the N×L matrix

constructed by stacking X1 through XS. Define the N ×Ns matrix Ps = X(X′X)−1X′s,

the Ns × Ns matrix Pss = Xs(X
′X)−1X′s, and define the N × Ns matrix (IN − P)s to

consist of the Ns columns of the N ×N matrix (IN −P) corresponding to cluster s.

The exact variance of β̂ conditional on X is given by

V = (X′X)−1X′ΩX(X′X)−1.

The standard robust variance estimator, due to Liang and Zeger (1986) (see also Diggle,

Heagerty, Liang, and Zeger, 2002), is

V̂LZ = (X′X)
−1

S∑
s=1

X′sε̂sε̂
′
sXs (X′X)

−1
.

Often a simple multiplicative adjustment is used, for example in STATA, to reduce the

bias of the LZ variance estimator:

V̂STATA =
N − 1

N − L
· S

S − 1
· (X′X)

−1
S∑
s=1

X′sε̂sε̂
′
sXs (X′X)

−1
.

The main component of this adjustment is typically the S/(S−1) factor, because in many

applications, (N − 1)/(N − L) is close to one.

The bias-reduction modification developed by Bell and McCaffrey (2002), analogous

to the HC2 bias reduction of the original Eicker-Huber-White variance estimator, is

V̂LZ2 = (X′X)
−1

S∑
s=1

X′s(INs −Pss)
−1/2ε̂sε̂

′
s(INs −Pss)

−1/2Xs (X′X)
−1
,

where (INs −Pss)
−1/2 is the inverse of the symmetric square root of (INs −Pss). For each

of the variance estimators, let V̂LZ,k, V̂STATA,k and V̂LZ2,k are the k-th diagonal elements

of V̂LZ, V̂STATA and V̂LZ2 respectively.

To define the degrees-of-freedom adjustment, let G denote the N×S matrix with s-th

column equal to the N -vector

Gs = (IN −P)s(INs −Pss)
−1/2Xs (X′X)

−1
eL,k.
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Then the dof adjustment is given by

KBM =

(∑N
i=1 λi

)2
∑N

i=1 λ
2
i

.

where λi are the eigenvalues of G′G. If each unit is in its own cluster (so there is no

clustering), this adjustment reduces to the adjustment given in (3.2). The 95% confidence

interval is given by

CI95%cluster,BM =

(
β̂k + tKBM

0.025 ×
√
V̂LZ2,k, β̂k + tKBM

0.975 ×
√

V̂LZ2,k

)
. (4.2)

We also consider a slightly different version of the dof adjustment. In principle, we

would like to use the eigenvalues of the matrix G′ΩG, so that the first two moments of

K · V̂LZ2,k/Vk match that of χ2(K). It is difficult to estimate Ω accurately without any

restrictions, which motivated BM to use σ2 · IN instead. In the clustering case, however,

it is attractive to put a random-effects structure on the errors as in Moulton (1986, 1990)

and estimate a model for Ω where

Ωij =


σ2
ε if i = j,

ρ if i 6= j, Si = Sj.

0 otherwise

We estimate σν as the average of the product of the residuals for units with Si = Sj, and

i 6= j

ρ =
1

n−m

 S∑
s=1

∑
i : Si=s

∑
j : Sj=s

ε̂iε̂j −
∑
i

ε̂2i

 ,

where m =
∑

sN
2
s , and Ns is the number of observations in cluster S, and we estimate

σ2
ε as the average of the square of the residuals, σ̂2

ε = N−1
∑N

i=1 ε̂
2
i . We then calculate the

λ̃i as the eigenvalues of G′Ω̂G, and set

KIK =

(∑N
i=1 λ̃i

)2
∑N

i=1 λ̃
2
i

.

4.1 Small simulation study

We carry out a small simulation study. The first sets of designs is corresponds to the

designs first used in Cameron, Gelbach, and Miller (2008). The baseline model (design I)
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is the same as in (4.1), with a scalar regressor:

Yi = β0 + β1 ·Xi + εi,

with β0 = β1 = 0, Xi = VSi + Wi and εi = νSi + ηi, with Vs, Wi, νs, ηi are all Normally

distributed, with mean zero and unit variance. There there are S = 10 clusters, with

Ns = 30 units in each cluster. In design II, we have S = 5 clusters, again with Ns = 30 in

each cluster. In design III, there there are again S = 10 clusters, half with Ns = 10 and

half with Ns = 50. In the fourth and fifth design we return to the design with S = 10

clusters and Ns = 30 units per cluster. In the design IV we introduce heteroskedasticity,

with ηi|X ∼ N(0, 0.9X2
i ), and in the design V, the regressor is fixed within the clusters:

Wi = 0 and Vs ∼ N (0, 2). All five designs correspond to those in Cameron, Gelbach, and

Miller (2008).

We consider the following confidence intervals. First, two intervals based on the ho-

moskedastic variance estimator V̂homo that ignores clustering, using either the Normal

distribution or a t-distribution with S − 1 dof. Next, four confidence intervals based on

V̂LZ. The first two again use either the Normal or the t-distribution with S − 1 dof.

The last two are based on the wild bootstrap, a resampling method discussed in more

detail in Appendix A. The first one of these methods (denoted “wild”) is based on the

percentile-t method of obtaining the confidence interval. The second confidence interval

(denoted “wild0”) consists of all null hypotheses H0 : β1 = β0
1 that were not rejected by

wild bootstrap tests that impose the null hypothesis when calculating the wild bootstrap

distribution (see Appendix A for details). This method involves a numerical search, and

is therefore computationally intensive. Next, we report two confidence intervals based

on V̂STATA, using the Normal distribution and the t-distribution with N − 1 dof. Fi-

nally, we report seven confidence intervals based on V̂LZ2, using: Normal distribution,

t-distribution with S − 1 dof, the two versions of the wild bootstrap, KBM, KIK, and the

infeasible Sattherthwaite dof K∗Satt. that uses eigenvalues of the matrix G′ΩG to compute

the dof correction.

Table 4 presents the simulation results. As in the simulations in Section 2, we report

coverage probabilities and normalized standard errors for each estimator, and we also

report report the mean K∗Satt., KBM and KIK dof adjustments, which are substantial in

these designs. The KIK dof adjustment yields confidence intervals that are closer to
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K∗Satt., which yields slight improvements in coverage. Overall, however, for the BM and

IK methods are superior in terms of coverage to all other methods. Although using S− 1

dof rather than a Normal approximation improves coverage for V̂LZ, V̂STATA and V̂LZ2, the

confidence intervals still undercover. The wild bootstrap with the null imposes does better

than these methods, although it results in very wide confidence intervals in design II with

only 5 clusters. In design III, the unbalanced cluster size means that the distribution

of the regressor is more skewed than in design I, and leads to one less effective dof (3.1

rather than 4.1 for KIK, for instance), and consequently to more severe undercoverage of

the standard confidence interval.

To further investigate the effect of the skewness of the regressors, we consider addi-

tional simulation designs, which are reported in Table 5. The baseline design (design VI),

is the same as design I, except there are 50 clusters, with 6 observations in each cluster.

Here, like in the balanced design in section 2, the dof correction is not important, and

all methods perform well. Next, in design VII we consider a log-normal distribution of

the regressor, Vs ∼ exp(N (0, 1)), Wi = 0. Here, the dof correction matters, and standard

methods undercover substantially in spite of there being as many as 50 clusters. Finally,

we consider three designs similar to the unbalanced designs in Section 2. There are three

treated states with Xi = 1, and Xi = 0 for observations in the remaining states. In design

VII, the errors are drawn as in the baseline design, with both νSi and ηi standard Normal.

In design IX, νSi | Xi = x ∼ N (0, σν(x)), with σν(1) = 2 and σν(0) = 1. The final design

(design X) is the same except σν(1) = 1 and σν(0) = 2. Again, in these designs the

standard methods undercover due to the skewness of the regressors despite the relatively

large number of clusters. In contrast, both the IK and the BM adjustment work well.

5 Conclusion

Although there is a substantial literature documenting the poor properties of the con-

ventional robust standard errors in small samples, in practice many researchers continue

to use the EHW and LZ robust standard errors. Here we discuss one of the proposed

modifications, due to Bell and McCaffrey (2002), and argue that it should be used more

widely, even in moderately sized samples, especially when the distribution of the covari-

ates is skewed. The modification is straightforward to implement. It consists of two
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components. First, it removes some of the bias in the EHW variance estimator. Second,

it uses a degrees-of-freedom adjustment that matches the moments of the variance esti-

mator to one of a chi-squared distribution. The dof adjustment depends on the sample

size and the joint distribution of the covariates, and differs by covariate. We discuss the

connection to the Behrens-Fisher problem, and suggest a minor modification for the case

with clustering.
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Appendix A Other methods

A.1 HC3

A second alternative to the EHW variance estimator is V̂HC3. We use the version discussed

in MacKinnon (2012):

V̂HC3 =

(
N∑
i=1

XiX
′
i

)−1 N∑
i=1

(
Yi −Xiβ̂

)2
(1− Pii)2

XiX
′
i

( N∑
i=1

XiX
′
i

)−1
. (A.1)

Compared to V̂HC2 this variance estimator has the square of 1− Pii in the denominator.

In the binary regressor case this leads to:

V̂HC3 = σ2(0)
N0

(N0 − 1)2
+ σ2(1)

N1

(N1 − 1)2
.

In simple cases this leads to an upwardly biased estimator for the variance.

A.2 Wild bootstrap

Although the confidence intervals based on the standard nonparametric bootstrap (where

we resample N units picked with replacement from the original sample) have better cov-

erage than the EHW confidence intervals, they can still suffer from substantial undercov-

erage if the distribution of the regressors is skewed or if the sample size is small (see, for

instance, MacKinnon (2002) or Cameron, Gelbach, and Miller (2008) for simulation evi-

dence). The problem is that the additional noise introduced by variation in the regressors

adversely affects the the properties of the corresponding confidence intervals. Researchers

have therefore focused on alternative resampling methods. One that has been proposed as

an attractive choice is the wild bootstrap (Liu, 1988; Mammen, 1993; Cameron, Gelbach,

and Miller, 2008; Davidson and Flachaire, 2008; MacKinnon, 2002, 2012).

There are several ways to implement the wild bootstrap. Here we focus on two methods

based on resampling the t statistic. We first describe the two methods in the regression

setting, and then in the cluster setting.

Suppose that we wish to test the hypothesis that H0 : β` = β0
` . Let β̂ be the least

squares estimate in the original sample, let ε̂ = Yi −X ′iβ̂ be the estimated residuals, and

let V̂ be a variance estimator, either V̂EHW, or V̂HC2, or V̂HC3. Let t̂ = (β̂` − β0
` )/
√

V̂
denote the t-statistic.

In the wild bootstrap the regressor values are fixed in the resampling. For the first
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method, the value of the i-th outcome in the bth bootstrap replication is redrawn as

Yi,b = X ′iβ̂1 + Ui,b · ε̂i,

where Ui,b is a binary random variable with pr(Ui,b = 1) = pr(Ui,b = −1) = 1/2, with Ui,b

independent across i and b. (Other distributions for Ui,b are also possible; we focus on this

particular choice following Cameron, Gelbach, and Miller (2008).) The second method

we consider “imposes the null” when redrawing the outcomes. In particular, letting β̃(β0
` )

denote the value of the restricted least squares estimate that minimizes the sum of squared

residuals subject to β` = β0
` . Then the i-th outcome in the bth bootstrap replication is

redrawn as

Yi,b = X ′iβ̃(β0
` ) + Ui,b · (Yi −X ′iβ̃(β0

` ))

Once the new outcomes are redrawn, for each bootstrap sample (Yi,b, Xi)
n
i=1, calculate the

t-statistic as

t1b =
β̂b,` − β̂`√

V̂b

,

if using the first method, or as

t2b(β
0
` ) =

β̂b,` − β0
`√

V̂b

,

if using the second method, where V̂b is some variance estimator. We focus on a symmetric

version of the critical values. In particular, over all the bootstrap samples, set the critical

value to q0.95(|t1|), the 0.95 quantile of the distribution of |t1b | (or q0.95(|t2(β0)|) if using

the second method). Reject the null if |t̂| is greater than the critical value.

The first method does not impose the null hypothesis when redrawing the outcomes,

or calculating the critical value, so that q0.95(|t1|) does not depend on which β0
` is being

tested. Therefore, to construct a 95% confidence interval, we simply replace the standard

1.96 critical value by qwild
0.95 ,

CI95%wild =

(
β̂` − q0.95(|t1|)×

√
V̂, β̂1 + q0.95(|t1|)×

√
V̂
)
. (A.2)

We denote this confidence interval as “wild” in the simulations.For the second method,
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the confidence interval consists of all points b such that the null H0 : β` = b is not rejected:

CI95%wild0 =

{
b : |β̂` − b|/

√
ˆ̂V ≤ qwild

0.95 (t2(b))

}
.

We denote this confidence interval as “wild0” in the simulations. Because constructing

this confidence interval involves testing many null hypotheses, the method it is computa-

tionally intensive. The wild bootstrap standard errors reported in the tables defined as

the length of the bootstrap confidence interval divided by 2× 1.96.

For the cluster version of the wild bootstrap, the bootstrap variable Us,b is indexed

by the cluster only. Again the distribution of Us,b is binary with values −1 and 1, and

probability pr(Us,b = 1) = pr(Us,b = −1) = 0.5. The bootstrap value for the outcome for

unit i in cluster s is then

Yis,b = X ′isβ̂ + Us,b · ε̂is

for the first method, and

Yis,b = X ′isβ̃(β0,`) + Us,b · (Yis −X ′isβ̃(β0,`))

for the second method that imposes the null, with the covariates Xis remaining fixed

across the bootstrap replications.
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Table 1: Coverage rates and normalized standard errors for different confidence intervals
in the Behrens-Fisher problem. Angrist-Pischke unbalanced design, N0 = 27, N1 = 3,
Normal errors.

I II III IV V

σ(0) 0.5 0.85 1 1.18 2

Panel 1: Coverage rates and median standard errors

variance cov med cov med cov med cov med cov med
estimator dist/dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 72.5 0.33 90.2 0.52 94.0 0.60 96.7 0.70 99.8 1.17

N − 2 74.5 0.34 91.5 0.54 95.0 0.63 97.4 0.73 99.8 1.22

V̂EHW

∞ 76.8 0.40 79.3 0.42 80.5 0.44 81.8 0.45 86.6 0.55

N − 2 78.3 0.42 80.9 0.44 82.0 0.46 83.3 0.47 88.1 0.57

wild 89.6 0.73 89.4 0.70 89.6 0.69 89.9 0.68 91.8 0.69

wild0 89.7 0.51 97.5 0.74 98.7 0.85 99.5 0.98 99.9 1.64

V̂HC2

∞ 82.5 0.49 84.4 0.51 85.2 0.52 86.2 0.53 89.8 0.62

N − 2 83.8 0.51 85.6 0.53 86.5 0.54 87.4 0.56 91.0 0.65

wild 90.5 0.76 90.4 0.74 90.5 0.73 90.8 0.72 92.4 0.72

wild0 89.7 0.51 97.5 0.74 98.7 0.85 99.4 0.98 99.9 1.64

K∗Welch 96.1 1.02 96.8 0.98 97.0 0.95 97.1 0.93 96.7 0.87

KWelch 93.1 1.00 92.5 0.93 92.4 0.90 92.5 0.87 93.5 0.80

KBM 94.7 0.90 96.4 0.94 97.0 0.95 97.6 0.98 99.1 1.14

V̂HC3
∞ 87.2 0.60 88.6 0.61 89.2 0.62 89.9 0.63 92.4 0.71

N − 2 88.2 0.62 89.5 0.64 90.1 0.65 90.8 0.66 93.4 0.74

max(V̂homo, V̂EHW)∞ 82.2 0.41 91.8 0.54 94.7 0.62 97.0 0.71 99.8 1.17

max(V̂homo, V̂HC2) ∞ 86.1 0.49 93.2 0.57 95.4 0.64 97.3 0.73 99.8 1.17

Panel 2: Mean effective dof

K∗Welch 2.1 2.3 2.5 2.7 4.1

KWelch 2.8 3.8 4.4 5.1 8.6

KBM 2.5 2.5 2.5 2.5 2.5

Notes: “cov. rate” refers to coverage of nominal 95% confidence intervals (in percentages), and
“med. s.e.” refers to standard errors normalized by tK0.975/t

∞
0.975. Variance estimators and degrees-of-

freedom (dof) adjustments are described in the text, wild bootstrap confidence intervals (“wild” and
“wild0”) are described in Appendix A.2.
Results are based on 1,000,000 replications, except for wild wild bootstrap-based confidence intervals,
which use 100,000 replications, and 1,000 bootstrap draws in each replication.
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Table 2: Coverage rates and normalized standard errors for different confidence intervals
in the Behrens-Fisher problem. Angrist-Pischke unbalanced design, N0 = 27, N1 = 3, log-
Normal errors.

I II III IV V

σ(0) 0.5 0.85 1 1.18 2

variance cov med cov med cov med cov med cov med
estimator dist/dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 75.9 0.26 91.8 0.41 93.3 0.47 94.4 0.55 97.0 0.91

N − 2 78.2 0.27 92.6 0.43 93.9 0.49 94.9 0.58 97.3 0.96

V̂EHW

∞ 66.8 0.22 73.4 0.26 76.7 0.27 80.6 0.30 91.1 0.41

N − 2 68.2 0.23 75.0 0.27 78.4 0.29 82.4 0.31 92.6 0.42

wild 76.1 0.36 78.8 0.36 81.1 0.36 84.2 0.38 94.3 0.46

wild0 95.2 0.42 99.0 0.63 99.1 0.72 99.2 0.83 99.5 1.36

V̂HC2

∞ 71.3 0.26 77.2 0.29 80.2 0.31 83.7 0.33 93.3 0.44

N − 2 72.5 0.27 78.6 0.31 81.7 0.33 85.3 0.35 94.5 0.46

wild 77.2 0.38 79.7 0.38 81.8 0.38 84.7 0.39 94.4 0.48

wild0 95.2 0.42 99.0 0.63 99.2 0.72 99.3 0.83 99.5 1.36

KWelch 79.9 0.47 82.2 0.44 84.3 0.44 87.1 0.44 95.7 0.52

K∗Welch 90.1 0.54 95.8 0.57 97.2 0.57 98.3 0.58 98.9 0.62

KBM 87.2 0.48 94.9 0.54 97.2 0.57 98.8 0.61 99.7 0.81

V̂HC3
∞ 75.4 0.31 80.6 0.34 83.2 0.36 86.4 0.38 94.9 0.49

N − 2 76.5 0.33 81.9 0.36 84.6 0.37 87.8 0.40 95.9 0.51

max(V̂homo, V̂EHW) ∞ 85.7 0.30 97.8 0.44 98.4 0.50 98.6 0.58 98.8 0.93

max(V̂homo, V̂HC2) ∞ 86.9 0.33 98.5 0.46 99.0 0.52 99.2 0.60 99.3 0.94

Panel 2: Mean effective dof

K∗Welch 2.1 2.3 2.5 2.7 4.1

KWelch 4.9 7.5 8.5 9.7 14.0

KBM 2.5 2.5 2.5 2.5 2.5

Notes: “cov. rate” refers to coverage of nominal 95% confidence intervals (in percentages), and
“med. s.e.” refers to standard errors normalized by tK0.975/t

∞
0.975. Variance estimators and degrees-of-

freedom (dof) adjustments are described in the text, wild bootstrap confidence intervals (“wild” and
“wild0”) are described in Appendix A.2.
Results are based on 1,000,000 replications, except for wild wild bootstrap-based confidence intervals,
which use 100,000 replications, and 1,000 bootstrap draws in each replication.
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Table 3: Coverage rates and normalized standard errors for different confidence intervals
in the Behrens-Fisher problem. Angrist-Pischke balanced design, N0 = 15, N1 = 15,
Normal errors.

I II III IV V

σ(0) 0.5 0.85 1 1.18 2

variance cov med cov med cov med cov med cov med
estimator dist/dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 93.7 0.28 94.0 0.33 94.0 0.36 94.0 0.39 93.7 0.57

N − 2 94.7 0.30 95.0 0.35 95.0 0.38 95.0 0.41 94.7 0.59

V̂EHW

∞ 92.8 0.27 93.1 0.32 93.1 0.35 93.1 0.38 92.8 0.55

N − 2 93.9 0.29 94.2 0.34 94.2 0.36 94.2 0.40 93.9 0.57

wild 94.9 0.30 94.9 0.35 95.0 0.38 95.0 0.41 94.9 0.60

wild0 94.8 0.30 95.0 0.35 95.0 0.38 95.0 0.41 94.9 0.60

V̂HC2

∞ 93.7 0.28 94.0 0.33 94.0 0.36 94.0 0.39 93.7 0.57

N − 2 94.7 0.30 95.0 0.35 95.0 0.38 95.0 0.41 94.7 0.59

wild 94.9 0.30 94.8 0.35 94.8 0.38 94.8 0.41 94.8 0.60

wild0 94.9 0.30 95.0 0.35 94.9 0.38 95.0 0.41 94.8 0.60

KWelch 95.0 0.30 95.1 0.35 95.1 0.38 95.1 0.41 95.0 0.60

K∗Welch 95.0 0.30 95.0 0.35 95.0 0.38 95.0 0.41 95.0 0.60

KBM 94.7 0.30 95.0 0.35 95.0 0.38 95.0 0.41 94.7 0.59

V̂HC3
∞ 94.5 0.29 94.8 0.35 94.8 0.37 94.8 0.41 94.5 0.59

N − 2 95.4 0.31 95.7 0.36 95.7 0.39 95.7 0.43 95.4 0.61

max(V̂homo, V̂EHW) ∞ 93.7 0.28 94.0 0.33 94.0 0.36 94.0 0.39 93.7 0.57

max(V̂homo, V̂HC2) ∞ 93.7 0.28 94.0 0.33 94.0 0.36 94.0 0.39 93.7 0.57

Panel 2: Mean effective dof

K∗Welch 20.6 27.3 26.4 27.3 20.6

KWelch 21.0 26.0 28.0 26.0 21.0

KBM 28.0 28.0 28.0 28.0 28.0

Notes: “cov. rate” refers to coverage of nominal 95% confidence intervals (in percentages), and
“med. s.e.” refers to standard errors normalized by tK0.975/t

∞
0.975. Variance estimators and degrees-of-

freedom (dof) adjustments are described in the text, wild bootstrap confidence intervals (“wild” and
“wild0”) are described in Appendix A.2.
Results are based on 1,000,000 replications, except for wild wild bootstrap-based confidence intervals,
which use 100,000 replications, and 1,000 bootstrap draws in each replication.
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Table 4: Coverage rates and normalized standard errors for different confidence intervals
with clustering. Cameron-Gelbach-Miller designs with 10 clusters.

I II III IV V

Baseline 5 clusters Unbalanced
cluster size

Hetero-
skedasticity

Xi fixed in
cluster

Panel 1: Coverage rates and median standard errors

variance cov med cov med cov med cov med cov med
estimator dist/dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo ∞ 51.3 0.06 53.0 0.08 46.6 0.06 71.1 0.18 36.1 0.06

V̂LZ

∞ 84.7 0.12 73.9 0.13 79.6 0.12 85.7 0.26 81.7 0.18

S − 1 89.5 0.14 86.9 0.19 85.2 0.14 90.2 0.31 86.4 0.21

wild 92.5 0.17 89.8 0.28 90.2 0.18 92.6 0.36 88.7 0.26

wild0 94.2 0.17 94.0 1.33 93.4 0.17 94.3 0.36 94.3 0.37

V̂STATA
∞ 86.7 0.13 78.8 0.15 81.9 0.13 87.6 0.28 83.6 0.19

S − 1 91.1 0.15 90.3 0.21 87.2 0.15 91.8 0.32 88.1 0.22

V̂LZ2

∞ 89.2 0.14 84.7 0.17 87.2 0.15 89.1 0.29 87.7 0.22

S − 1 93.0 0.16 93.6 0.24 91.3 0.17 92.8 0.34 91.4 0.26

wild 92.6 0.18 90.9 0.29 91.2 0.19 92.8 0.37 88.6 0.27

wild0 94.0 0.17 93.9 1.33 93.7 0.18 94.4 0.36 94.3 0.37

K∗Satt. 96.9 0.20 97.7 0.34 97.9 0.25 96.2 0.40 96.6 0.35

KBM 94.4 0.17 95.3 0.27 94.4 0.19 94.2 0.36 96.6 0.35

KIK 96.7 0.20 97.1 0.33 97.4 0.24 94.7 0.37 96.6 0.35

Panel 2: Mean effective dof

K∗Satt. 4.0 2.3 2.9 4.6 3.4

KBM 6.6 3.3 5.1 6.6 3.4

KIK 4.1 2.4 3.1 5.7 3.4

Notes: “cov. rate” refers to coverage of nominal 95% confidence intervals (in percentages), and
“med. s.e.” refers to standard errors normalized by tK0.975/t

∞
0.975. Variance estimators and degrees-of-

freedom (dof) adjustments are described in the text, wild bootstrap confidence intervals (“wild” and
“wild0”) are described in Appendix A.2.
Results are based on 100,000 replications, except for wild wild bootstrap-based confidence intervals, which
use 10,000 replications, and 500 bootstrap draws in each replication.

[29]



Table 5: Coverage rates and normalized standard errors for different confidence intervals
with clustering. 50 clusters.

VI VII VIII IX X

Baseline,
balanced
covariates

Log-normal
regressors

3 treated
clusters,
σν(1)
σν(0)

= 1

3 treated
clusters,
σν(1)
σν(0)

= 2

3 treated
clusters,
σν(1)
σν(0)

= 1/2

Panel 1: Coverage rates and median standard errors

variance cov med cov med cov med cov med cov med
estimator dist/dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo ∞ 80.8 0.06 69.8 0.04 43.6 0.35 69.9 0.34 86.1 0.52

V̂LZ

∞ 93.0 0.08 86.0 0.07 76.2 0.82 78.6 0.45 83.6 0.52

S − 1 93.7 0.08 86.9 0.07 77.0 0.84 79.5 0.46 84.4 0.53

wild 94.3 0.09 86.9 0.08 89.9 1.52 89.0 0.76 90.4 0.71

wild0 94.4 0.09 95.4 0.12 94.3 1.23 99.8 1.12 99.9 2.08

V̂STATA
∞ 93.4 0.08 86.5 0.07 76.7 0.83 79.1 0.46 84.1 0.52

S − 1 94.0 0.09 87.3 0.07 77.5 0.85 80.0 0.47 84.9 0.54

V̂LZ2

∞ 93.7 0.08 89.7 0.08 82.0 0.99 83.8 0.54 87.4 0.60

S − 1 94.3 0.09 90.3 0.08 82.7 1.02 84.5 0.56 88.1 0.61

wild 94.1 0.09 86.4 0.08 90.6 1.55 90.2 0.80 91.3 0.76

wild0 94.3 0.09 95.6 0.12 94.5 1.23 99.7 1.11 99.9 2.08

K∗Satt. 95.3 0.09 97.1 0.11 95.7 2.11 96.6 1.07 98.8 1.19

KBM 94.7 0.09 97.1 0.11 94.9 1.95 96.6 1.07 98.7 1.18

KIK 95.2 0.09 97.1 0.11 94.9 1.95 96.6 1.07 98.7 1.18

Panel 2: Mean effective dof

K∗Satt. 20 5.4 2.1 2.3 2.2

KBM 28 5.4 2.3 2.3 2.3

KIK 20 5.4 2.3 2.3 2.3

Notes: “cov. rate” refers to coverage of nominal 95% confidence intervals (in percentages), and
“med. s.e.” refers to standard errors normalized by tK0.975/t

∞
0.975. Variance estimators and degrees-of-

freedom (dof) adjustments are described in the text, wild bootstrap confidence intervals (“wild” and
“wild0”) are described in Appendix A.2.
Results are based on 100,000 replications, except for wild wild bootstrap-based confidence intervals, which
use 10,000 replications, and 500 bootstrap draws in each replication.
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