
Minimum Integrated Distance Estimation in

Simultaneous Equation Models∗

Zhengyuan Gao† Antonio F. Galvao‡

December 3, 2014

Abstract

This paper considers estimation and inference in semiparametric econometric mod-
els. Standard procedures estimate the model based on an independence restriction
that induces a minimum distance between a joint cumulative distribution function and
the product of the marginal cumulative distribution functions. This paper develops
a new estimator which generalizes estimation by allowing endogeneity of the weight-
ing measure and estimating the optimal measure nonparametrically. The optimality
corresponds to the minimum of the integrated distance. To accomplish this aim we
use Kantorovich’s formulation of the optimal transportation problem. The minimiz-
ing distance is equivalent to the total variation distance and thus characterizes finer
topological structures of the distributions. The estimation also provides greater gener-
ality by dealing with probability measures on compact metric spaces without assuming
existence of densities. Asymptotic statistics of the empirical estimates have standard
convergent results and are available for different statistical analyses. In addition, we
provide a tractable implementation for computing the estimator in practice.

Key Words: Minimum distance, Kantorovich’s duality, Kernel representation, Hilbert
space

JEL Classification: C12, C13, C14

∗The authors would like to express their appreciation to Ivan Fernandez-Val, Sergio Firpo, Keisuke Hirano,
Joel Horowitz, Simon Lee, George Neumann, Hyungsik Roger Moon, Aureo de Paula, Alexandre Poirier,
Andres Santos, Alex Torgovitsky and participants in the seminars at CORE, ECARES, and 2014 LAMES for
helpful comments and discussions. Part of this research was undertaken while Zhengyuan Gao was affiliated
with University of Iowa and Southwestern University of Finance and Economics whose Financial supports
are gratefully acknowledged. All the remaining errors are ours.
†Corresponding author, CORE, Universitie catholique de Louvain. E-mail:

zhengyuan.gao@uclouvain.be
‡Department of Economics, Tippie College of Business, University of Iowa. E-mail:

antonio-galvao@uiowa.edu



1 Introduction

Economists often use system of simultaneous equations to describe the relationship among

economic variables. In particular, nonlinear simultaneous equation models have provided

a valuable method of statistical analysis of policy variables on economic effects. This is

especially true for studies where these methods help to analyze the affects of the outcome

distributions of interest. Empirically, given data on the dependent and independent variables

in the system, one is usually interested in estimating functions, distributions, and primitives

describing the system. Identification and estimation of nonlinear structural models is often

achieved by assuming that the model’s latent variables are independent of the exogenous

variables. Examples of such arguments include, among others, Manski (1983), Brown (1983),

Roehrig (1988), Brown and Matzkin (1998), Matzkin (2003), Brown and Wegkamp (2002),

Benkard and Berry (2006), Brown, Deb, and Wegkamp (2008), and Linton, Sperlich, and

van Keilegom (2008).

This paper considers estimation and inference in semiparametric econometric models.

We develop a new minimum distance estimator for separable models based on minimizing

the distance from the independence condition, where the weighting measure is allowed to be

endogenous and is estimated nonparametrically. This is an important innovation for several

reasons. First, the new estimator allows general estimation without exogenous restrictions

on the weighting measure. Second, the estimator is more efficient than the others available

in the literature. Finally, in this general formulation, the proposed method is beneficial to

practitioners since the range of models for which the methods are applicable is very broad,

for instance, the framework includes an important class of nonlinear simultaneous equation

models without requiring knowledge on the reduced form of the model.

We focus on nonlinear simultaneous equations models with an exogenous observed ran-

dom vector X, a dependent observed random vector Y , and the model errors which are

endogenous and related to the parameterized model via ε = ρ(X, Y, θ). The underlying ε

is assumed to be drawn from a fixed but unknown distribution and to be stochastically in-

dependent of X. However, given the estimated parameters θ∗ 6= θ0, the model may induce

ε = ρ(X, Y, θ∗) that are not necessary independent of X. The intuition on the importance

and development of the new approach is as follows. Under the independence condition, the
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criterion function is an integral of a distance function d(·, ·) given by

ˆ
d(Hθ(x, ε), Pθ(x, ε))dµ(x, ε), (1)

where θ is the parameter of interest, (Hθ, Pθ) are distribution functions of (X, ε), µ is a

certain probability measure. Let ε = ρ(X, Y, θ) and (X, Y ) be pairs of observations. Thus,

the measure µ in (1) can be expressed as µ(X, ρ(X, Y, θ)) which, in general, depends on

a function of θ. We argue it is important to endogenize the measure µ because changes

in θ induce changes in the other inputs. For instance, a change in θ directly induces a

change in µ(X, ρ(X, Y, θ)) as well as in Pθ(ε) and Hθ(ε). A second reason to endogenize µ

is practical. The weighting measure µ in the criterion function characterizes the universal

differences between the distributions Hθ and Pθ via an integral. In principle, this measure

could be independent of the choice of θ. However, in practice these weighted measures are

unobservable as the underlying innovation ε = ρ(X, Y, θ0) is not available. Moreover, the

empirical measure on the product space of ε and x is sensitive to the choice of θ in the

estimation procedure, hence, in applications, it is difficult to specify a priori measure to

deliver the desired integrated values. Therefore, we view the endogeneity of µ thorough the

interaction amongst the weighting measures, Hθ(ε) and Pθ(ε).

To achieve the goal of endogenizing the weighting measure and developing the estimator,

we proceed in four steps. First, we are required to select the optimal measure. Hence, we

represent µ(·) as a transport measure γ(·) that pushes Hθ towards Pθ. Consider a set of joint

measures Γ(Hθ, Pθ). Let γ(x, ε;x′, ε′) belong to this set and satisfy

Pθ(x, ε) =

ˆ
dγ(x, ε;x′, ε′)dHθ(x

′, ε′), and, Hθ(x
′, ε′) =

ˆ
dγ(x, ε;x′, ε′)dPθ(x, ε).

The measure γ(x, ε;x′, ε′) replaces the role of µ in the problem (1) and accounts for interac-

tion with Pθ(ε) and Hθ(ε). For two pairs of samples (X, Y ), one is drawn from Pθ(x, ε) and

the other is drawn from Hθ(x, ε), joint measure γ(x, ε;x′, ε′) is the measure of a transport

map connecting these two samples. Second, given the transport measure, we reformulate the

main problem using a generalized estimation criterion function, W (θ), based on an integrated

distance w.r.t. the joint probability measure γ as

W (θ) := inf
γ∈Γ(Hθ,Pθ)

{ˆ
d(q, q′)dγ(q, q′) : q ∼ Hθ(x, ε) and q′ ∼ Pθ(x, ε)

}
.
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Third, to solve this problem practically, the above weighting measure is dually represented

by a transition kernel that pushes one measure to another under the new metric. Fourth,

from the dual representation, we establish a kernel representation theorem, such that we are

able to embed the infinite dimensional criterion function into a tractable space. In doing this,

the criterion function is represented in terms of a kernel-based distance. When the transition

kernel induces the zero criterion under the new metric, the parameters are identified at θ0,

and a practical estimator for the parameters of interest is developed.

The contributions of this paper to the literature are as following. First, we propose a

novel weighted minimum distance estimator from independence condition which employs a

nonparametric estimation of the distance function. Second, we establish identification of

the model in the dual representation. The dual distance characterizes finer topologies of

probability measures. Third, based on the new representation, we provide both asymptot-

ically biased (in the sense of root-n inconsistent) and unbiased statistics for estimation. In

addition, we establish consistency and derive their limiting distributions. Fourth, we develop

practical inference procedures. Fifth, we show that the proposed method is more efficient rel-

ative to the existing estimators. Finally, we provide tractable implementation for computing

the estimator in practice.

From a technical point of view, the construction of the estimation procedure, and deriva-

tions of the statistical and limiting properties of the proposed estimator are of independent

interest. The central mathematical tool used to accomplish these is the use of the opti-

mal transportation theory and its corresponding dual problem. In particular, we make use

of the Kantorovich’s formulation of the optimal transportation problem. The novel inte-

grated distance function can be interpreted as the optimal cost of transferring one mass

distributed according to joint cumulative distribution function (c.d.f.) of ε and x to an-

other mass distributed according to the product of ε and x’s marginal c.d.f.s. The use of

optimal weight is essential to the general formulation of integral minimum distance prob-

lems. Therefore, the main technical contribution of this paper is to introduce a new set of

theorems for establishing the asymptotic results (consistency and weak convergence) for the

weighted minimum distance from independence estimators for general distance functions in

both primal and dual problems. The problem of approximating measures with respect to

transportation distances has connections with the fields of probability theory (Talagrand,

1991), information theory (Graf and Luschgy, 2000), and optimal transport (Villani, 2009).
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The transportation distance also appears in economics and econometrics. Current appli-

cations include rearrangements, identification, matching and quantile regression see, e.g.

Galichon, Fernandez-Val, and Chernozhukov (2010), Ekeland, Galichon, and Henry (2010),

Chiappori, McCann, and Nesheim (2010) and Galichon and Salanie (2010). Techniques from

the transportation distance are often used for finding more tractable dual problems.

Estimation of econometric models based on the independence between the exogenous vari-

ables and the unobserved disturbance term has been explored in the literature. In a seminal

work, Manski (1983) developed an approach of minimizing the distance from the indepen-

dence condition for estimation. The procedure to estimate the parameters θ0 uses a criterion

function that compares the mean-square distance between a joint c.d.f. and the product of its

marginal c.d.f.s. In order to derive the asymptotic properties of Manski’s estimatior, Brown

and Wegkamp (2002) extend the criterion function to an integrated mean-square distance

criterion function. Importantly, the integral is taken with respect to a weighted measure on

the product space of ε and x. Their approach provides a foundation for estimating θ0 from

general nonlinear simultaneous equation models.1 However, it has been left unspecified the

essential argument on the practical weighting measure of the product space of ε and x. The

estimator studied in this paper is also related to other alternative methods. For instance,

Komunjer and Santos (2010) develop a semiparametric estimator for invertible nonseparable

models with scalar latent variables and an infinite dimensional component. Santos (2011)

proposes an M-estimator under the assumption that the model is strictly monotonic in the

scalar error term and derives its corresponding asymptotic properties.

The remaining of the paper is organized as follows. In Section 2 we present the basic

formulation of the simultaneous equation models. Section 3 describes the criterion function

including its primal and dual. In addition, it presents a method for representing the in-

finite dimensional criterion function. Section 4 discusses identification, and provides both

asymptotically biased and unbiased estimators. Large sample statistical theorems are also

included. Practical computation is presented in Section 5. Section 6 discusses several re-

lated estimates of the optimizing distance or divergence of probability measures. Conclusions

appear in Section 7.

Notations: Throughout the paper, we use capital alphabet to denote random variable,

1As discussed in Benkard and Berry (2006), the identification condition that ε is independent of X
generally does not hold for θ 6= θ0. For an integrated criterion, such a dependence between X and ε under
different θ reflects thorough the weighted measure.
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i.e. X; use bold letter alphabet to denote a bundle of realizations, i.e. x; and use the

alphabet to denote the deterministic value, i.e. x; ith-realization is denoted with a subscript

i.e. xi.

In this paper, H always denotes a Hilbert space, i.e. a complete, norm vector space

endowed with an inner product 〈·, ·〉 giving rise to its norm via ‖x‖ =
√
〈x, x〉. Let BH :=

{x ∈ H : ‖x‖ ≤ 1} be the closed unit ball ofH. Every separable Hilbert space is isometrically

isomorphic to the space of all square-summable sequences (`2 space). We denote ‖ · ‖∞ as

the supremum norm such that ‖f‖∞ := supx∈H |f(x)|.

2 Model Framework

2.1 Model Setup and Assumptions

We begin by describing the model framework, notation, and main assumptions for the subse-

quent developments. The setup is similar to Brown and Wegkamp (2002, hereafter BW), but

with important differences. We require greater generality, since we deal with distributions

on compact metric spaces, and densities are not assumed to exist. To count for the general

cases, we do not require existence of the reduce form.

Consider the following model

ε = ρ(X, Y, θ), (2)

where ρ(·) is the function describing the structural model, Y is the dependent observed

random vector, X is an exogenous observed random vector, ε is the model error which is

endogenous but is latent exogenous under the truth, and θ is a vector of unknown parameters.

First we define the distance used in the simultaneous equation model analyzed in this

paper. We define the minimum distance from independence conditions, where the function

d(·, ·) is a metric on the space of joint cumulative distribution functions (c.d.f.’s) of (X, ε),

where ε takes values in RK . Let Hθ(x, ε) be the joint c.d.f of (X, ε), and F (x) and Gθ(ε) be

the respective associated marginal c.d.f.’s. As a consequence of the identification assump-

tion, which will be discussed below in detail, for any metric function d(·, ·) on the space of

measures,

d(Hθ(x, ε), F (x)Gθ(ε)) = 0

if and only if X and ε are stochastically independent. Using this condition, we study ex-
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tremum estimators that minimize the above distance.

We are interested in estimating the parameters θ in equation (2). Consider the following

assumptions.

C1. Parameter: The true θ0 belongs to a parameter space Θ.

C2. Observations (independent): x := (x1, . . . , xn) ∈ RL×n are n draws of random vectorX.

Any X ∈ X . Let (Ω,FX , F ) be a probability space, where Ω is a sample space, FX is a

σ-field, and F is a sample probability measure on (Ω,FX). Then x ∈ {X(ω) : Ω→ X}.
Let X be a compact metric space.

C3. Observations (dependent) or model realizations: y := (y1, . . . , yn) ∈ RK×n are n draws

of random vector Y . Any Y ∈ Y . Y := ρ−1(X, ε, θ0) : Υ→ Y where Υ := X × Σ×Θ.

Let Y be a compact metric space.

C4. Observations (both independent and dependent): z := (x,y) ∈ R(L+K)×n are n draws

of joint observations Z := (X, Y ). Let Z := X × Y .

C5. Unobservable variable: ε = ρ(X, Y, θ). For all θ ∈ Θ, ρ(·, θ) is a mapping from Z into

RK . Let (Z × Θ,B(Z × Θ), Gθ) be a probability space, where B(Z × Θ) is the Borel

σ-algebra of the Cartesian product Z × Θ. Gθ(ε) is a probability measure defined on

(Z ×Θ,B(Z ×Θ)).

C6. Identification condition: ε = ρ(X, Y, θ) is independent of X if and only if θ = θ0.

Let Hθ(x, ε) be the joint probability measure of (X, ε). The independent assumption

between X and ρ(X, Y, θ0) is equivalent with

Hθ(x, ε) = F (x)Gθ(ε) iff θ = θ0

for any (x, ε) ∈ X × Σ.

C7. Structure: S is an ordered pair (ρ(X, Y, θ), Hθ0(x, ε)). The observations z = (x,y) are

generated by the structure S0 := (ρ(X, Y, θ0), Hθ0(x, ε)).

C8. Empirical probability measures: Fn(x), Gnθ(ε) and Hnθ(x, ε) are the empirical mea-

sures associated with F (x), Gθ(ε) and Hθ(x, ε) respectively based on the observed
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data z. For example, Fn(x) is a Borel probability measure defined on X as a discrete

measure with a number n of points, such that

Gnθ(ε) :=
1

n

n∑
i=1

1{ρ(zi, θ) ≤ ε}, dGnθ(ε) :=
1

n

n∑
i=1

δρ(zi,θ)(ε) (3)

where 1{·} is the indicator function and δρ(zi,θ)(·) is the Dirac function at position

ρ(zi, θ). The notation d(·) in this paper always denotes the differential notation.

C9. No reduce form: ρ(X, ε, θ) is non-invertible for θ 6= θ0. It means that there is no way of

estimating θ via Y = ρ−1(X, ε, θ) or ε = ρ(X, ρ−1(X, ε, θ), θ). But at θ0, Y = f(X, ε)

where f ∈ F is an unknown function and F can be embedded in a Hilbert space.

Conditions C1-C4 are standard in the econometric literature. In BW, compactness of the

parameter space Θ is assumed while we stay with a general parameter space. But as a

compensation, we impose the compactness for Y , the sample space of dependent observations,

in C3. The motivation of compactness in C2 and C3 is to ensure closeness and boundeness

for both observable variables sample spaces Z in C4.2 C5 concerns the measurability of Z.

The measurability of Z induces the measurability of ε = ρ(z, θ). Therefore, the probability

measure of ε always exists. Conditions C6 and C7 impose identification and are the same

as the identification conditions in Manski (1983) and BW. C6 is the independent condition

for the population probability Hθ(x, ε). The joint probability Hθ(x, ε) equals the product

of marginal c.d.f.s F (x) and Gθ(ε) if and only if θ = θ0. This is the key device to uniquely

identify θ0. This paper focus on estimation. But we highlight that, differently from BW,

we establish identification in the dual problem. There is an extensive literature discussing

identification in simultaneous equation models as that in our primal problem. We refer

the reader to Benkard and Berry (2006) and the literature therein. C7 states that the

pair observation (X, Y ) generated by ρ(X, Y, θ0) will give different simultaneous equation

system ρ(X, Y, θ) under different value of θ. C8 defines the empirical c.d.f. and considers the

weighted Dirac measure as the Randon-Nikodym derivative of the empirical c.d.f.. Similar

forms of C7 and C8 can be found in Section 2 and Section 3 respectively in BW. Assumption

C9 is novel and states that the simultaneous structure is not invertible. This is an important

assumption allowing flexibility and generality of the proposed methods because the estimator

2If Z is non-compact, then a kernel function with non-compact support may not be able to identify the
true parameter θ0.
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does not require knowledge on the reduced form. Thus, to attain an estimator of θ0 by

simply an inversion is not of our concern. However, with observations of Y , one can generate

a nonparametric approximation for the underlying true function f . In order to ensure the

approximation is feasible, the unknown true function f should come from an approximatible

functional class F . We restrict this class to reproducing kernel Hilbert space (RKHS). More

discussion about RKHS will be given in Section A of the Appendix.

2.2 An Example

We now illustrate the model in light of the imposed conditions, especially C9. We start with

a standard example satisfying our model specification (2). Consider a general separable

supply and demand model

Q = D(Z, P ; θD) + εD

P = S(W,Q; θS) + εS,

where Q is quantity, P is price, (Z,W ) are characteristics, (εD, εS) are shocks, (θD, θS) the

parameters of interest, and the functions D(·) and S(·) are allowed to be nonlinear functions.

In the representation (2) we have that Y = (Q,P ), X = (Z,W ), ε = (εD, εS), θ = (θD, θS),

and the structural model ρ = (Q−D(·), P − S(·)).
If a simultaneous equation model satisfies C1-C8 and has the specification in (2), one can

establish the integrated distance function

ˆ
d(Hθ(x, ε), F (x)Gθ(ε))dµ(x, ε), (4)

which is continuous on Θ and θ0 is the unique global minimum of this integrated distance

function for a bounded measure µ(x, ε) of (x, ε) and a compact parameter space Θ. This

result is a summary of Theorems 2 and 3 of BW.

To consider an example satisfying C9, we define a non-separable supply and demand

model,

Q = D(Z, P, εD; θD), P = S(W,Q, εS; θS),

with a triangular structure for the joint distribution of P and Q such that

Ũ1 = Ψ(Q|Z,W ), Ũ2 = Ψ(P |Z,W,Q),
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where Ψ(·) is the joint distribution of the dependent variables and exogenous shifters, and

Ũ ’s are constructed such that they are independent of one another as well as independent

of (Z,W ). The triangular construction implies that the reduced form takes the form Q =

f(Z,W, Ũ1), whereas in the general model the reduce form takes the form

Q = f(Z,W, εD, εS).

Thus, the triangular system cannot retrieve the true reduce form which satisfies C9.

It is important to highlight the role of condition C9 and its link with the literature.

This assumption specifies the underlying relation between Y and X when θ = θ0, which can

be nonparametrically recovered. Assumption C9 excludes the possibility of reduced form

relation. Models allowing for a reduced form have been addressed in Benkard and Berry

(2006). Their concern is whether a derivative condition on ρ(·) is sufficient to derive a

reduced form, and consequently identification. Differently from BW and Benkard and Berry

(2006), the setup in this paper neither assume a derivative condition as in Lemma 3.1 of the

later, nor assume the existence of a reduced form.

A generalization of (4) is the main concern in this paper. To estimate θ0 via (4), BW

consider a specified bounded measure µ and a compact parameter space. Importantly, both

of these two conditions will be relaxed later in this paper. We will estimate an optimal

measure γ (it differs from the original notation µ) and consider a general topological vector

space Θ. To achieve this we first propose a new estimator. We show that the new estimator

generalizes (4) and induces a dual representation. Given this dual representation setup, we

show that the problem is still identifiable. The key device of our identification procedure

is to select a proper integrated distance function so that Hθ(x, ε) and Pθ(x, ε) are from a

complete separable metric space. If such an integrated distance similar to (4) one can induce

a complete separable metric space for Hθ(x, ε) and Pθ(x, ε) on Q, then any θ generating the

associated distance value of (4) will be separated from the others. Thus θ0, which gives a

unique value of this integrated distance, is well separated from the other θ’s.3

3This idea is based on Ascoli’s theorem, see i.e. Shorack (Exercise 2.10 2000). Ascoli’s theorem states that
for a class of equicontinuous functions mapping from a complete separable metric space P to another metric
space Θ, any sequence of such functions with a compact support will uniformly converge. The mapping in
our setup is an estimator. The complete separable metric space is for Hθ(x, ε) and Pθ(x, ε). Equicontinuouity
implies that if any θ such that d(θ, θ0) ≥ δ, then the distance between Hθ and Hθ0 (or Pθ and Pθ0) is larger
than some ε. This is exactly the identification condition.
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3 Criterion Function

This section establishes the grounds for constructing the minimum integrated distance esti-

mator in the next section. First, we define the primal objective function from the indepen-

dence condition. Second, we reformulate the problem with a new criterion function based

on the Monge-Wasserstein distance. Third, we establish the validity of the dual problem.

Finally, we establish a kernel representation theorem.

3.1 Primal Objective Function

With a bounded measure µ on Z, under the independence assumption the criterion function

for estimation of θ0 is given by

M(θ) =

ˆ
d(Hθ(x, ε), F (x)Gθ(ε))dµ(x, ε). (5)

This distance function is based on mean-square distance. The criterion function is minimized

at θ0. In the literature, statistical estimation has been based on the empirical counterpart

of M(θ),

M̂(θ) =

ˆ
d(Hnθ(x, ε), Fn(x)Gnθ(ε))dµ(x, ε), (6)

where Hnθ(x, ε), Fn(x), and Gnθ(ε) are as defined in (3).

An open question for this estimation procedure is how to construct an estimator for the

bounded measure µ. Actually, in practice the selection of µ will affect the estimation scheme

substantially. If µ is attached to a specific measure form, then the natural question is what

form of µ would be in practice. One possibility for practical implementation would be to use

a grid search on µ which is shown in Brown and Wegkamp (2001). However, this procedure

implies the use of a uniform empirical distribution for µ, which might not be the correct

underlying distribution. Below, we show numerically that an optimal choice of µ is quite

different from the uniform measure.

In (5), BW requires the integral measure µ(x, ε) to be independent of θ. Without this

condition, there may exist some θ 6= θ0 such that

n−1

n∑
i=1

d(Hnθ(xi, εi), Fn(xi)Gnθ(εi)) = 0.
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A simple choice of this empirical measure is to set µ(x, ε) = Hnθ(x, ε). That means the

empirical summation is taken over the data (xi, εi) generated by the model ρ(X, ε, θ) at

θ. The summation implies that the value of θ matters for evaluating the integral. By

endogenizing the role of θ in the integrated minimum distance function, we can relax the

requirement of independence of µ in (5).

Therefore, the first goal of this paper is to propose a new estimator in which we endogenize

the measure µ(x, ε) and then estimate the new endogenized measure and θ0 simultaneously

while making minimal assumptions regarding the measure µ(x, ε). This is an important inno-

vation to practitioners since the estimation of µ(x, ε) affects the estimation of the parameters

of interest. We will illustrate that in the numerical simulations below. In addition, we pro-

vide a general result for estimating these measures. Formally, we formulate the following

inferential procedure:

(M) Let the joint probability measureHθ(x, ε) and the mixing probability measure Pθ(x, ε) =

F (x)Gθ(ε) be Borel probability measures defined on a domain Q = X ×Σ. Given ob-

servations x ∈ X and generating realizations ε = (ρ(x1, y1, θ), . . . , ρ(xn, yn, θ)), we

consider that (x, ε) ∼ Hθ(x, ε) and (x′, ε′) ∼ Pθ(x
′, ε′) are drawn independently and

identically distributed (i.i.d) from two unknown probability measures on Q. We repre-

sent µ(x, ε) as a transport measure γ(x, ε;x′, ε′) that pushes Hθ(x
′, ε′) towards Pθ(x, ε).

We show that there is an optimal γ and represent this optimal measure using kernels.

By this optimal measure, we introduce a new criterion (Wasserstein distance function)

and develop the associated estimator and testing procedure.

3.2 Transport Measure Representation

In this section, we reformulate the primal problem described above and represent µ(x, ε)

as a transport measure. We start by reformulating the problem (5) with a new criterion

W (θ). The criterion is based on the Wasserstein or Monge-Wasserstein distance. Following

the definition in Dudley (p.420, 2002), we introduce the criterion:

W (θ) := inf
γ∈Γ(Hθ,Pθ)

{ˆ
d(q, q′)dγ(q, q′) : q ∼ Hθ(x, ε) and q′ ∼ Pθ(x, ε)

}
, (7)

where γ(·) is the transport measure, Γ(Hθ, Pθ) is the set of jointly distributions on Q × Q
with the marginals of γ given by Hθ(x, ε) and Pθ(x, ε). Note that Hθ(x, ε) as a marginal of

11



γ is still jointly distributed for (x, ε). The set Γ refers to a product of probability measures.

The function d(·, ·) is a metric function for samples on Q. The differences between the

original problem (5) and the problem (7) are threefold. First, the criterion function in (7)

distinguishes the joint observations (q1, q2, . . . ) = ({x1, ε1}, {x2, ε2}, . . . ) and the marginal

observation (q
′
1, q

′
2, . . . ) = ({x1, ε

′
1}, {x2, ε

′
2}, . . . ). The observations ε in Q := (X, ε) are

drawn from ε = ρ(X, Y, θ) which are jointly distributed with X. While the generic observa-

tions ε′ in Q′ := (X, ε′) are drawn from a marginal distribution Gθ(ε) independently of X.

Empirically, the number of observations in these two cases are also different. We denote q

as (q1, . . . , qn) and denote q′ as (q
′
1, . . . , q

′
m).4 Second, the measure γ in (7) is defined as a

product measure of Hθ and Pθ. Unlike the unspecified µ(x, ε) in the original problem (5), γ

is restricted to the set Γ(Hθ, Pθ) such that any element in this set satisfies:

Hnθ(xi, εi) =
1

m

m∑
j=1

γ((xi, εi), (xj, ε
′

j)), Pnθ(xj, ε
′

j) =
1

n

n∑
i=1

γ((xi, εi), (xj, ε
′

j)). (8)

Third, the distance function in (7), d(·, ·), is for samples (xi, εi) and (xj, ε
′
j) not for their

c.d.f.s.

Similarly to (6), the new minimum distance estimator will be based on the empirical

Wasserstein distance defined as follows:

Ŵ (θ) := inf
γ∈Γ(Hnθ,Pmθ)

{ˆ
d(q, q′)dγ(q, q′) : q ∼ Hnθ(x, ε) and q′ ∼ Pmθ(x, ε)

}
. (9)

= inf
γ(qi,qj)∈Γ(Hnθ,Pmθ)

{
1

nm

m∑
j=1

n∑
i=1

d(qi, q
′

j) : qi ∼ Hnθ(x, ε) and q
′

j ∼ Pmθ(x, ε)

}
.

The subscript m indicates that q
′

are drawn from m samples. One can consider m = n as a

special case. The above criterion function (9) and the corresponding marginals in (8) contain

γ(·). Thus, without further restrictions, γ(·) is an infeasible element with infinite dimensions.

Next we provide a tractable representation of Ŵ (θ) in order to achieve feasible estimation.

The infinite dimension issue will be solved by considering the dual representation of Ŵ (θ).

Remark 1. The interpretation of (7) is the cost in terms of a distance function d(·, ·) of

transferring a mass Q := (X, ε) distributed according to Hθ(x, ε) to a mass Q′ := (X ′, ε′)

4More generally, we can think q′ = (q
′

1, . . . , q
′

m) are from a resampling scheme of q. Then even if m = n,
one should realize that q′ 6= q.
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distributed according to Pθ(x, ε). The measure γ ∈ Γ is the transportation schedule between

Q and Q′.

Remark 2. The criterion W (·) comes from a general class called k-Wasserstein distance

W k(H,P ) :=
{

infγ∈Γ(H,P )

´
d(q, q′)kdγ(q, q′)

} 1
k . Let Pk(Q) denote the space of Borel prob-

ability measures on Q with the first k-th moments. For any sample space with finite moment,

the space of measures endowed with W k metric is a complete separable metric space (p.94,

Villani, 2009). The most useful versions of k-Wasserstein distance are k = 1, 2. In our

context, W (θ) is the 1-Wasserstein distance. Note that both measures Hθ(x, ε) and Pθ(x, ε)

belong to P1(Q). Thus, W (θ) induces a complete separable metric space for Hθ(x, ε) and

Pθ(x, ε) on Q. This complete separable metric space with compact supports imply the iden-

tification of θ0 in our dual problem.Therefore, except the case that Hθ0(x, ε) = Pθ0(x, ε), any

Hθ(x, ε) will differ from Pθ(x, ε) in W (θ)-distance. Thus any W (θ) will be separated from

zero if θ 6= θ0. In other words, θ0 is well separated from the other θ’s.

Remark 3. There are many possible choices of distances between probability measures, such

as the Levy-Prokhorov (Brown and Matzkin, 1998), or the weak-* distance. Among them,

W k metrizes weak convergence (Theorem 6.9, Villani, 2009), that is, a sequence {Pn}n∈N of

measures converges weakly to P if and only if W k(Pn, P ) → 0. However, as pointed out in

Villani (p.98, 2009) “Wasserstein distances are rather strong,... a definite advantage over

the weak-*distance”. Also, it is not so difficult to combine information on convergence in

Wasserstein distance with some smoothness bound, in order to get convergence in stronger

distances.

Remark 4. Note that, for clarity, we adhere to the strict association of a random variable with

a distribution. Thus Hnθ(x, ε) and Pmθ(x, ε) are associated with distinct random variables (q

and q′, respectively) representing distinct states of knowledge about the same set of variables.

This view is slightly different than the usual notion of a single random variable for which we

“update” our belief.

Remark 5. When the metric d(q, q′) for distribution laws on R is the absolute function |q−q′|,
W (·) is the Gini index, see e.g. Dudley (p.435, 2002).

3.3 The Dual Problem

While the independence condition is for c.d.f.s, the distance function in the optimization

described in (7) is for samples. Thus, by transferring the focus from samples to c.d.f.s, we

13



need a dual problem of (7). We note that, in this paper, both he identification and estimation

will be conducted in this dual problem.

The dual representation of W (θ) in (7) was introduced by Kantorovitch in order to solve

of a convex linear program. For the empirical distance Ŵ (θ) in (9), the dual corresponds

to the convex relaxation of a combinatorial problem when the densities are sums of the

same number of Diracs. This relaxation extends the notion of Γ(Hnθ, Pmθ) to arbitrary sum

of weighted Diracs, see for instance Villani (2003). The following is called Kantorovich-

Rubinstein theorem. It introduces the Kantorovich’s duality principle to W (θ) and Ŵ (θ).

Theorem 1. Let Hθ, Pθ ∈P1(X ). The dual problem to (7) by Kantorovich’s duality prin-

ciple is:

W (θ) = ‖Hθ(x, ε)− Pθ(x, ε)‖∗l := sup
‖f‖l≤1

∣∣∣∣ˆ fd {Hθ(x, ε)− Pθ(x, ε)}
∣∣∣∣ ,

where ‖f‖l := supx6=y∈X |f(q) − f(q′)|/d(q, q′) is the Lipschitz semi-norm for real valued

continuous f on Q. Here d{·} is the differential notation. The optimal transportation

problem for discrete measure Hnθ(x, ε) and Pmθ(x, ε) becomes

Ŵ (θ) = ‖Hnθ(x, ε)− Pmθ(x, ε)‖∗l := sup
‖f‖l≤1

∣∣∣∣ˆ fd {Hnθ(x, ε)− Pmθ(x, ε)}
∣∣∣∣ ,

Hnθ =
1

n2

[
n∑
i=1

n∑
j=1

1{xi ≤ x, ρ(zj, θ) ≤ ε}

]
, Pnθ =

1

n2

[
n∑
i=1

1{xi ≤ x}

][
n∑
i=1

1{ρ(zi, θ) ≤ ε}

]
.

Proof. Please refer to Dudley (Theorem 11.8.2, 2002). Note that Dudley (Theorem 11.8.2,

2002) gives a stronger result which is for complete separable metric space. But the original

result in Rubinshtein (1970) is for the compact metric space Q.

The integrals in Theorem 1 are with respect to empirical measures. In practice, these

integrals are replaced by summations over observations. Recall that Q and Q′ are drawn

from different distributions. The empirical Wasserstein distance in (9) becomes

Ŵ (θ) := sup
‖f‖l≤1

∣∣∣∣∣ 1n
n∑
i=1

f(qi)−
1

m

m∑
j=1

f(q
′

j)

∣∣∣∣∣ . (10)

where m is not necessarily the same as n.
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The criterion function in (10) is similar to the total variation distance between Hnθ and

Pmθ. Thus, the estimation problem based on integral distance function in BW is modified to

the one based on the total variation distance. The distance between Hnθ and Pmθ is evaluated

by the comparison of means of f(·) w.r.t. Hnθ and Pnθ. The way of handling two different

integrals or summations separately makes the estimation more feasible. One advantage of

this separation is that the empirical c.d.f. of Gθ(ε) allows for resampling scheme:

m−1

m∑
j=1

1{ρ(x
′

j, y
′

j, θ) ≤ ε},

where {x′j, y
′
j}j≤m are resamples of {xi, yi}i≤n. It also allows for other smoothing techniques

for estimating Gθ(ε). If the sample size is small, the smoothing technique becomes important

for identifying θ0. Notice that Fn(x)Gnθ(ε) 6= Hnθ(x, ε)

1

n2

[
n∑
i=1

1{xi ≤ x}

][
n∑
i=1

1{ρ(zi, θ) ≤ ε}

]
6= 1

n2

[
n∑
i=1

n∑
j=1

1{xi ≤ x, ρ(zj, θ) ≤ ε}

]
,

for given (x, ε). Thus if θ 6= θ0, we have that

n∑
i=1

f(z, ε)
[
δρ(zi,θ)(ε)

]
[δxi(x)] 6=

n∑
i=1

n∑
j=1

f(z, ε)
[
δ{xi,ρ(zj ,θ)}(x, ε)

]
.

But if the sample size is small, i.e. n = 10, it is very likely to have an equality from the

above expression even if θ 6= θ0. Nevertheless, with re-sampling devices, one can reduce this

small samples issue.

The dual distance ‖Hθ(x, ε) − Pθ(x, ε)‖∗l is an instance of the integral probability met-

ric which has been used in proving central limit theorems and in empirical process theory

(Muller, 1997). The dual distance measures the dis-similarity between Hθ(x, ε) and Pθ(x, ε)

on the basis of samples drawn from each of them, by finding a well behaved function which

is large on the points drawn from Hθ(x, ε) and small on the points drawn from Pθ(x, ε). This

is equivalent to measure the difference between the mean function values on two samples.

Theorem 1 establishes the dual problem, and hence the objective function of interest.

However, there are infinite candidates f satisfying ‖f‖l ≤ 1 in equation (10). Thus, both

Kantorovich’s dual W (θ) and empirical estimate criterion Ŵ (θ) are criterion functions over

infinite dimensions. Before we establish identification and the estimator of interest we pro-
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vide yet another representation to the problem which allows for practical implementation.

Therefore, in the next section, we embed this infinite dimensional problem into a tractable

form so that we can represent the criterion function.

3.4 Kernel Representation

Now we establish a kernel representation theorem, such that we are able to embed the

infinite dimensional criterion function in (10) into a tractable space. In doing this, the

criterion function is represented in terms of a kernel-based distance.

3.4.1 Kernel Representation Theorem

In this paper, we only consider continuous kernel because every function induced by a contin-

uous kernel is also continuous. For a continuous kernel k on a compact metric space (X , d),

we are interested in the space of all functions induced by k that is dense in C(X ) (the space

of all continuous functions), i.e. for every function f ∈ C(X ) and every ε > 0 there exists a

function g induced by k with

‖f − g‖∞ ≤ ε.

Definition. If a kernel induces a dense set of C(X ), we say that the kernel is able to represent

C(X ).

Next we provide the a kernel representation result.

Theorem 2. (Representation Theorem) Let (X ,d) be a compact metric space and k is a

kernel on X with k(x, x) > 0 for all x ∈ X . Suppose that we have an injective feature map

Φ : X → `2 of k with Φ(x) = (Φn(x))n∈N. If A := span{Φn : n ∈ N} is an algebra then k

represents C(X ).

Proof. This is a direct result of representation for reproducing kernels (Theorem 12) and

Stone-Weierstrass theorem (Thereom 11).

In the Appendix, Section A, we state additional mathematical results on the existence

of the kernel function k(q) for F := {f : ‖f‖l ≤ 1}.
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3.4.2 WH(θ)-Distance

The quality of empirical Wasserstein distance Ŵ (θ) as a statistic depends on the class F :=

{f : ‖f‖l ≤ 1}. There are two requirements: (1) F must be large enough so that Ŵ (θ) = 0

if and only if Hnθ(x, ε) = Pnθ(x, ε); (2) for the distance to be consistent, F needs to be

restrictive enough for the empirical estimate of Ŵ (θ) to converge to its expectation. We will

use a unit ball in the Hilbert space where all functions in the class F can be represented by

the elements in this ball. This representation will be shown to satisfy both of the required

properties.

In this paper, the class F is chosen as follows. Given observations y = (y1, . . . yn) and

yi = f(xi, εi) for an unknown function f defined in condition C9, we consider a kernel function

k(q) in F . This kernel function has an inner product representation k(q, ·) = 〈Φ(q),Φ(·)〉.
The function Φ in the representation approximates any f ∈ F such that for any ε > 0, there

exists α as the coefficient and

‖f(q)− 〈α,Φ(q)〉‖∞ ≤ ε

with ε-degree of accuracy.

Now we propose a new distance WH(θ) that characterizes the distance between two

distinct measures Hnθ(x, ε) and Pnθ(x, ε) for θ 6= θ0 in the optimal sense. The idea is to

consider F := {f : ‖f‖l ≤ 1} to be embedded in a unit ball BH of a Hilbert space H.5 For

any function f ∈ BH there exists a feature map Φ : Q → H. Then H is the feature space

of a kernel k which represents all continuous bounded functions in F . In other words, we

construct a Hilbert space so that

F := {f : ‖f‖l ≤ 1} = {f : ‖f‖H ≤ 1} = BH.

By Theorem 2 we know that a kernel k induced by the feature map Φ : Q → H can represent

f ∈ BH and hence after f ∈ F . Then the same kernel will be used for defining the metric

for W (θ).

Here is our construction. First, we construct a pseudo-metric on BH by using the kernel

k. Kernel k is induced by H. Then we will show that the new metric characterizes the weak

5F is embedded in BH means that there exists a map Π : F → BH such that the map is injective and
preserving topological structure of F
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topology of Ŵ (θ) and in Section 4.3 below we develop an asymptotically unbiased empirical

estimate for W (θ) based on this new metric.

C10. For any θ ∈ Θ, the kernel k is square-root integrable w.r.t. both Hθ(x, ε) and Pθ(x, ε).

That is ˆ
Q

√
k(q, q)dHθ(q) <∞ and

ˆ
Q

√
k(q, q)dPθ(q) <∞.

and k(·, ·) ∈ BH is measurable on Q×Q.

Let P(Q) :=
{
P :
´
Q

√
k(q, q)dP(q) <∞

}
. Condition C10 implies {Hθ(x, ε), Pθ(x, ε)} ⊂

P(Q). Note that P(Q) is a subset of P1(Q), the space of Borel probability measures on

Q with the first moments. C10 restricts the support P1(Q) in W (θ). However, it returns

flexibility of defining pseudo-metric for P(Q) by kernels.

Theorem 3. Assume that the simultaneous model ρ(X, Y, θ) = ε satisfies C1-C9. If Hθ(x, ε)

and Pθ(x, ε) satisfy C10, then

WH(θ) :=

∥∥∥∥∥∥∥∥∥
ˆ
Q

k(·, q)dHθ(q)︸ ︷︷ ︸
:=Hθk

−
ˆ
Q

k(·, q)dPθ(q)︸ ︷︷ ︸
:=Pθk

∥∥∥∥∥∥∥∥∥
H

, (11)

where H induces kernel k ∈ BH.

Proof. See Appendix C.1.

Therefore, the minimum integrated distance estimator proposed in this paper will be

defined below as a minimization of problem in equation (11).

As stated in Theorem 2, an algebra A := span{Φn : n ∈ N} associating with a sequence

of (Φn(x))n∈N will represent any f ∈ F ⊂ C(Q). By using the inner product operation, we

have

f = 〈α,Φ(·)〉 = 〈〈β,Φ(·)〉 ,Φ(·)〉 = 〈α′,k(·, ·)〉 ,

where α, β, and α′ are some coefficients in R. The bilinear map 〈α′, ·〉 : F → BH is injective

and preserving the topological structure of F . Thus we can say F is embedded into a unit

ball BH in the Hilbert space. The representation of WH(θ) yields a mapping from P(Q) to

a Hilbert space H:

Pk : P 7→
ˆ
Q

k(·, q)dP(q)
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where P ∈P(Q) and k ∈ BH. In order to verify that WH(θ) is a distance function, we need

the following corollary.

Corollary 1. WH(θ) metrizes the weak topology on P.

Proof. See Appendix D.1.

WH(θ) measures the dis-similarity between Hθ and Pθ, however, so far it is not clear

that whether the new distance WH(θ) relates to W (θ). Corollary 1 states the result that all

elements in P(Q) can be metrized by WH(θ). The following condition ensures the regularity

of WH(θ) for all q ∈ Q. With these results, WH(θ) is comparable with W (θ) in the probability

metric space.

C11. Let supq∈Q k(q, q) ≤ C and dk = ‖k(·, q)−k(·, q′)‖H. We assume that the metric space

(Q, ρ) is separable.

Theorem 4. For any Hθ(x, ε) and Pθ(x, ε) satisfy C10 and (Q,dk) satisfies C11, then

WH(θ) ≤ W (θ) ≤
√
W 2
H(θ) + 2C

where the distance function in W (θ) is dk.

Proof. See Appendix C.2

Remark 6. The metric dk(δq, δq′) = ‖k(·, q)−k(·, q′)‖H used in Theorem 4 is called Hilbertian

metric. Given this metric, one can obtain the associated kernel k via

k(q, q′) =
1

2

[
d2
k(q, z) + d2

k(q′, z)− d2
k(q, q′)

]
for any q, q′, z ∈ Q. This is called three points interpolation.

To conclude this section, note that we use a general Wasserstein criterion (7) to measure the

dis-similarity between these two sequences. The criterion captures infinite intrinsic connec-

tions between Hθ(x, ε) and Pθ(x, ε) via a transition measure γ. The measure γ in Wasserstein

criterion (7) is the key mechanism to provide an optimal criterion function of the minimum

distance problem over two probability measures. By Kantonovich’s dual (10) and kernel

representation result in (11), we embed this infinite dimensional criterion function into a
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tractable space. Then the criterion function is represented in terms of a kernel-based dis-

tance. Since the new distance is equivalent to the total variation distance, the modified

estimation problem maintains finer topological details.

Given these results we are in position to establish identification, propose the estimator,

and derive its asymptotic properties.

4 Estimation and Inference

In this section we first establish identification in the dual problem, then construct the

new minimum integrated distance estimator θ∗ for θ0 and finally provide the correspond-

ing asymptotic properties, and discuss its optimality. Practical computation of the proposed

estimator will be given in Section 5.

4.1 Identification

In order to identify θ0, we need to make sure that when Hθ 6= Pθ, the kernel based distance

WH(θ) cannot attain zero. The following condition restricts the class of kernels to be strictly

positive definite.

C12. The k is strictly positive definite on Q such that

ˆ
Q×Q

k(q, q′)dP(q)dP(q′) > 0

for any P ∈P and P(Q) :=
{
P :
´
Q

√
k(q, q)dP(q) <∞

}
.

Example. There are many kernels satisfying the integrally strictly positive definite con-

dition. Here we list few of them: Gaussian kernel exp(−σ‖q − q′‖2
2) with σ > 0; inverse

multi-quadratics (σ2 +‖q−q′‖2
2)−c with c > 0 and σ > 0, Laplacian kernel exp(−σ‖q−q′‖1),

with σ > 0.

Lemma 1. Let k be a bounded kernel on a metric space (Q,dk). Let Hθ(x, ε) and Pθ(x, ε)

satisfy C1-C12. Then the following statement is true that Hθ(x, ε) 6= Pθ(x, ε) but WH(θ) 6= 0

if and only if there exists a finite non-zero signed Borel measure P ∈P(Q) that satisfies:

(I)
´
Q×Q k(q, q′)dP(q)dP(q′) = 0. (II) P(Q) = 0.

Proof. See Appendix D.2.
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Theorem 5. For any Hθ(x, ε) and Pθ(x, ε) satisfy C10 and kernel k satisfies C11, if

Hθ(x, ε) 6= Pθ(x, ε), then WH(θ) does not attain zero.

Proof. Condition C12 implies that for any non-zero signed Borel measure P , (I) in Lemma

1 is violated. Therefore, if Hθ(x, ε) 6= Pθ(x, ε), then WH(θ) must be non-zero.

Remark 7. In fact, both WH(θ) and W (θ) are equivalent to the total variation distance

sup
q∈Q
|Hθ(q)− Pθ(q)|

if the distance function d(·, ·) in the primal problem (7) of W (θ) is chosen to be a Hamming

metric H(x, y) = 1x 6=y. This result is given in Gozlan and Leonard (Proposition 1.3, 2010).

4.2 Convergence of Pnθ and Hnθ

In this paper, we only consider pre-compact space (P,d) over Hilbert spaces (complete

spaces) which means that the space (P,d) is a compact metric space. In other words,

the covering numbers of P are finite and distance d(·, ·) metrizes P by a Hilbertian type

metric. The covering number is to measure how big the function set P. For a finite covering

number, Glivenko-Cantelli theorem (uniform law of large number) always hold. Thus, sample

counterparts of Pθ, Hθ converge. The rigorous probability theory argument is given in the

Appendix B.

4.3
√
n-Biased and Unbiased Estimates

Given the identification of the dual problem stated in the previous section, we are able

to estimate the parameters of interest. The minimum integrated distance estimator, θ∗, is

defined as follows

θ∗ = arg min
θ∈Θ

ŴH(θ) := arg min
θ∈Θ

∥∥∥∥ˆ k((x, ε), q)dHnθ(q)−
ˆ

k((x, ε), q′)dPnθ(q
′)

∥∥∥∥
H
, (12)

where k((x, ε), ·) = 〈Φ(x, ε),Φ(·)〉 is the kernel function on a feature space, and Φ(·) is the

feature map such that the representation f = 〈α,Φ(·)〉 is alway valid for any f ∈ F . This

criterion is a restatement of the minimization problem in (11).

The estimator of the empirical counterpart of WH(θ), ŴH(θ), defined in (12), has an

asymptotic bias. This is because WH(θ) is an equivalent metric as total variation distance,
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as pointed out in Devroye and Gyorfi (1990), not all distributions have convergent results for

empirical probability measure with respect to the total variation distance. The consequence

of using ŴH(θ)-distance is to obtain an
√
n or

√
m-inconsistent estimator. This could bring

serious issues for hypothesis testing or some other weakly convergent outcomes.

In this subsection, we first consider the regular consistency result of ŴH(θ). It serves a

baseline criterion for the following analyses. The consistency result also shows that ŴH(θ) is

not
√
n or

√
m-consistent. Then, we propose an asymptotically unbiased criterion by simply

taking the square of ŴH(θ). We show that the
√
n or

√
m-bias terms will be eliminated.

The following theorem establishes that ŴH(θ) is consistent for WH(θ) as n or m diverges

to infinity. But it is not
√
n or

√
m-consistent.

Theorem 6. Given Conditions C1-C12, we can assume 0 ≤ k(q, q′) ≤ Ck for any q and q′,

then

Pr
{
ŴH(θ)−WH(θ) > 2(

√
Ck/m+

√
Ck/n) + ε

}
≤ 2 exp

(
−ε2mn

2Ck(m+ n)

)
where ε is an arbitrarily small number.

Proof. See Appendix C.3.

Theorem 6 shows that ŴH(θ) is not
√
n or

√
m-consistent for WH(θ). The statistics

n
1
2

{
ŴH(θ)−WH(θ)

}
or m

1
2

{
ŴH(θ)−WH(θ)

}
has a bias term Ck that does not vanish

even if ε → 0 and n,m → ∞. It also provides an insight that the bias (Ck/m)
1
2 + (Ck/n)

1
2

is related to the kernel size.

Now we propose the square of WH(θ)-distance as the new criterion distance and will show

that this distance leads to an asymptotically unbiased estimate. As the proof in Lemma 1,

the square of WH(θ)-distance is:

SH(θ) := [WH(θ)]2 = ‖Hθk− Pθk‖2
H = 〈Hθk− Pθk, Hθk− Pθk〉

=

ˆ
Q×Q

k(q, q′)d(Hθ − Pθ)(q)d(Hθ − Pθ)(q′).

Given the norm ‖Hθk− Pθk‖2
H, SH(θ) may be easily computed in terms of kernel functions.
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This leads to our empirical estimate of the SH(θ):

ŜH(θ) :=
1

m(m− 1)

m∑
i 6=j

h(qi, qj), (13)

when m = n in (10) and h(·, ·) is a U -statistic such that h(qi, qj) := k(xi, xj) + k(εi, εj) −
k(xi, εj)− k(xj, εi). In general, if m 6= n in (10), then we have

ŜH(θ) :=

[
1

m2

m∑
i 6=j

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, εj) +
1

n2

n∑
i 6=j

k(εi, εj)

]
, (14)

The consistent statistical distance base on the following theorem, which is a straightforward

application of the large deviation bound on U -statistics of the Hoeffding bound. The next

theorem shows consistency of the estimator θ∗.

Theorem 7. Given C1-C12, we can assume 0 ≤ k(q, q′) ≤ Ck, from which it follows

−2Ck ≤ h(q, q′) ≤ 2Ck for any q and q′. Define θ∗ as

ĥ(θ∗|Θ) = inf
θ∈Θ

1

n2

n∑
i 6=j

h(qi, qj), s.t. q ∼ Hnθ, q
′ ∼ Pnθ.

Assume that for each θ 6= θ0, there is an open set Bθ such that θ ∈ Bθ and h(θ|Bθ) > 0

h(θ∗|Bθ) = inf
θ∈Bθ

ˆ
h(q, q′)dHθ(q)dPθ(q

′), s.t. q ∼ Hθ, q
′ ∼ Pθ.

If Θ is not compact, assume further that there exists compact K ⊆ Θ such that θ0 ∈ K and

h(θ|Kc) > 0. Then,

Pr
{

lim sup
n→∞

|θ∗ − θ0| ≥ ε
}

= 0. (15)

Proof. See Appendix C.4.

4.4 Asymptotic Distribution of the Unbiased Statistic

The
√
n-inconsistency of the baseline criterion ŴH(θ) motivates us to consider another statis-

tic, ŜH(θ). Root-n asymptotic bias is eliminated by taking a quadratic form of ŴH(θ). Then,

the asymptotic unbiased estimator is valid for hypothesis testing since it induces an unbiased

statistic. This unbiased statistic has a standard Gaussian limiting distribution with root-n
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rate. It is a nonparametric test statistic and therefore its asymptotic properties may fit a

more general framework beyond the current setting.

The following two results derive the limiting distribution of ŜH(θ∗), where θ∗ is given in

(12).

Theorem 8. The statistic ŜH(θ∗) converges in distribution to

nŜH(θ∗) 
∞∑
l=1

λl
[
z2
l − 1

]
where zl  N (0, 1) and zl are i.i.d., λl = (λ

(1)
l + λ

(2)
l ) are the solutions to the eigenvalue

equations

ˆ
k̃(x, ·)ψl(x)dFθ0(x) = λ

(1)
l ψl(·)ˆ

k̃(ε, ·)ψl(ε)dGθ0(ε) = λ
(2)
l ψl(·)

where ψl(·) is the eigenfunction and

k̃(xi, xj) := k(xi, xj)− Exk(xi, x)− Exk(x, xj) + Ex,x′k(x, x′)

is the centered kernel. In particular, h(qi, qj) in (13) is k̃(xi, xj) + k̃(εi, εj) − k̃(xi, εj) −
k̃(εi, xj).

Proof. See Appendix C.5.

Theorem 9. Let θ∗ be the value which gives the minimum distance of ŜH(θ). It follows that

ŜH(θ∗) converges in distribution to a Gaussian random variable such that

√
n
(
ŜH(θ∗)− SH(θ0)

)
 N (0, σ2

s),

where σ2
s := 4

(
Eq [Eq′h(q, q′)]2 − [Eq,q′h(q, q′)]2

)
.

Proof. With Theorem 8, the proof follows directly from the result in Serfling (p. 193 Theorem

B, 1980).
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4.5 Optimal Information

In this section we show the proposed estimator is more efficient than that in Brown and

Wegkamp (2002) (BW). To derive an information matrix of θ∗ comparable with that of BW,

we need additional assumptions:

C13. The integrated minimum distance criterion function has a positive definite second

derivative matrix V at θ0.

C14’. Define Dθ(q) ≡ Hθ(q)− Pθ(q) is differentiable at θ0 in L2(µ) where µ is an underlying

probability measure for q = (x, ε). Assume that

lim
‖θ−θ0‖→0

ˆ (
Dθ(q)− (θ − θ0)T∆(q)

‖θ − θ0‖

)2

dµ(q) = 0, (16)

where ∆ is the differentiable mean of Dθ(q) in L2(µ).

Condition C13 refers to the condition A.7 in BW and it is about the second derivative matrix

of the criterion function M(θ). In our setting, the integrated criterion function in C13 is

ŴH(θ) which always has second derivative if the kernel function is smooth and second order

differentiable. C14’ requires the existence of differentiable mean ∆(q) in L2(µ) for Dθ(q).

The differentiable mean ∆(q) is essential to the information contained in BW’s estimator.

The limiting covariance matrix of n−1/2(θ̂BW − θ) in BW is 4V−1WV−1, where V is the

second derivative matrix of M(θ) and W is

W =

ˆ ˆ
∆(q)∆(q′)×

[F (x)F (x′)G(εmin) + F (xmin)G(ε)G(ε′) +H(xmin, εmin)− 3H(q)H(q′)]︸ ︷︷ ︸
(∗)

dµ(q)dµ(q′),

and εmin := ε ∧ ε′, xmin := x ∧ x′. The (∗) term in W is a weight for the product measure

d(µ(q)× µ(q′)).

We show that if there is a unique true µ in C14’ then assumption C14’ is equivalent to the

minimum optimal measure γ in our setting. The idea is that W comes from a simplification

of the following covariance term:

lim
‖θ−θ0‖→0

(ˆ
∆(q)Dθ(q)dµ(q)

)(ˆ
∆(q′)Dθ(q

′)dµ(q′)

)T
,
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which is equivalent (in the weak topological sense) to lim‖θ−θ0‖→0WH(θ). The optimal mea-

sure corresponds to the most efficient information. We modify condition C14’ in order to

emphasize that endogenous effect of the measure µ in simultaneous equations.

C14. Dθ(q) has a differentiable quadratic mean (DQM) of ∆(q) at θ0 such that

lim
‖θ−θ0‖→0

ˆ (√
hθ(q)−

√
pθ(q)− (θ − θ0)T∆w(q)k−1/2(q)

‖θ − θ0‖

)2

wθ(q)dq = 0, (17)

where 0 < k(q) < 1 is the kernel on Q such that k(q) = 〈Φ(·),Φ(q)〉 such that

Y = f(q) = 〈α,Φ(q)〉 for some coefficient α and the feature map Φ(·). The endogenous

weight is embedded in H such that wθ ∈ H for any θ and at θ0,

w
1/2
θ0

(q)dq = d
(√

Hθ0 −
√
Pθ0

)
(q).

C14 has two differences with C14’. First, we consider the DQM of
√
dDθ(q) in C14 instead of

the differentiable mean of Dθ(q). Second, DQM of
√
dDθ(q) is associated with an endogenous

weight wθ(q). Assume that the simultaneous model ρ(X, Y, θ) = ε satisfies C1-C9. The idea

of making these differences is to attain a better representation for the derivative6:

∆w(q) ≈ (
√
dDθ(q)wθ(q))

′ =
1

2
√
Dθ(q)wθ(q)

(Dθ(q)wθ(q))
′

so that (
√
Dθ(q)wθ(q))

′
∣∣∣
θ=θ0
×w−1/2

θ0
= (logDθ(q)wθ(q))

′|θ=θ0 = ιθ0(q) which is the informa-

tion score.

The information form in a minimum Hellinger distance with DQM condition has the

following result:

lim
‖θ−θ0‖→0

d2
H(Hθ, FGθ) = lim

‖θ−θ0‖→0

1

2

ˆ (√
hθ(q)wθ(q)−

√
pθ(q)wθ(q)

)2

dq

≈1

2
(θ − θ0)TI(θ0)(θ − θ0)T

where I(θ0) is the Fisher type (or BW type) information matrix. The following theorem

shows that estimator based on WH(θ) or SH(θ)-distance share the same form.

6The square root of density may not exist in general. Aussming DQM condition is to induce a score
involving the endogenous term wθ that is comparable to the one in BW.
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Theorem 10. Given C1-C14, SH(θ) can be expressed as

SH(θ) = max
f∈F

ˆ
|hθ(q)− pθ(q)|2 f(q)dq.

Let SH(θ) attain its minimum at (θ∗,k). The score of SH(θ) at θ0 is

ˆ
∆w(q)

(wθ0
k

) 1
2
d(Hθ0 − Pθ0)(q).

The covariance matrix[ˆ (
∆w(q)

(
wθ
wθ∗

) 1
2

(q)

)
d(Hθ − Pθ)(q′)

][ˆ (
∆w(q)

(
wθ0
wθ∗

) 1
2

(q′)

)
d(Hθ − Pθ)(q′)

]T

which is optimal at wθ∗ = k.

Proof. See Appendix C.6

Remark. The densities hθ(q) and pθ(q) may not exist in the previous general inference results.

However, in order to distinguish the optimal measure from the underlying measure µ in BW,

we modify C14’ (a condition on probability measures Hθ and Pθ) to C14 (a condition on

their densities). Thus, instead of using dµ, we use wθ(q)dq to emphasize the important role

of selecting the optimal measure.

5 Computation and Numerical Experiment

5.1 Computation of the Estimator

Theorems 6 and 7 induce the equivalence between ŴH(θ) and ŜH(θ). Thus the estimator

θ∗ minimizes the empirical ŴH(θ)-distance or ŜH(θ), the square of ŴH(θ)-distance. By

minimizing the distance function, the statistic ŜH(θ∗) gives a regular consistent solution to

the dual problem in (10):

θ∗ = arg min
θ∈Θ

Ŵ (θ) := arg min
θ∈Θ

sup
‖f‖l≤1

∣∣∣∣∣ 1

m

m∑
i=1

f(qi)−
1

n

n∑
j=1

f(q
′

j)

∣∣∣∣∣ ,
= arg min

θ∈Θ
ŜH(θ) := arg min

θ∈Θ

[
1

m2

m∑
i 6=j

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, εj) +
1

n2

n∑
i 6=j

k(εi, εj)

]
,
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s.t. (xi, εi) = qi ∼ Hnθ, (xj, εj) = q
′

j ∼ Pnθ.

The simplest form of implementing this estimate is to use the grid search. One can

evaluate θ at different locations and then compute ŜH(θ) thorough the kernel representation.

This idea is feasible for one dimension case. However, due to the fact that the simultaneous

equation problem in (10) has at least two variables (xi, εi), grid search is computational

demanding.

Based on the duality, we propose a kernel-based Kantorovitch formulation. The formu-

lation will induce a Linear Programming (LP) problem for the dual representation of

Ci,j := [k(xi, xj)− k(xi, εj)]− [k(xi, εj)− k(εi, εj)] ≥ 0.

Let γi,j(θ) be the empirical counterpart of the transportation measure γ ∈ Γ(Hθ, Pθ) in

(7). Then dHnθ =
∑m

j=1 γi,j(θ) and dPnθ =
∑n

i=1 γi,j(θ). The kernel-based Kantorovitch

formulation of (7) is

γi,j(θ
∗) ∈ arg min

γi,j(θ)∈Γ(Hnθ,Pnθ)

∑
i,j

γi,j(θ)Ci,j. (18)

Note that (18) is a standard LP problem. Every LP has a dual. The neatest way to write

the dual of (18) is:

max
ui,vj

∑
i

ui +
∑
j

vj s.t. ui + vj ≥ Ci,j (19)

where ui and vj are the Lagrange multipliers of the constraints

dHnθ(xi, εi) =
m∑
j=1

γi,j(θ), dPnθ(xj, εj) =
n∑
i=1

γi,j(θ),

where the measures are sums of Diracs.

The dual problem (19) can be solved by the simplex method which is feasible for two or

higher dimensional problems. It means that we could set up a simultaneous equation problem

and solve it using the simplex method as with any LP problem. The duality between (19)

and (18) is given by the following corollary.

Corollary 2. If (19) has a solution (u, v) such that ui+vj = Ci,j, then this solution induces

a solution γi,j(θ
∗) in (18), and vice versa.
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Proof. See Appendix D.3.

The optimal ŜH(θ∗)-distance is defined as

ŜH(θ∗) =
∑
i,j

γi,j(θ
∗)Ci,j

s.t. dHnθ∗(xi, εi) =
m∑
j=1

γi,j(θ
∗) for any i,

dPnθ∗(xj, εj) =
n∑
i=1

γi,j(θ
∗) for any j.

The scheme of computing θ∗ is summarized below.

Step 1. Initialization.

Step 2. Generate Hnθ(xi, εi) and Pnθ(xj, εj) for given θ. Solve problem (18) via its

dual (19). Obtain θ∗.

Step 3. Compute ŜH(θ∗) by the kernel representation. If ŜH(θ∗) 6= 0, then go to Step

2, otherwise done.

Sampling for Hnθ(xi, εi) and Pnθ(xj, εj) in Step 2 has several options. One can draw the sam-

ples ε(θ) from ρ(z, θ) for given z and θ, then obtain the empirical c.d.f. n−2
∑n

i=1

∑n
j=1 1{xi ≤

x, ρ(zj, θ) ≤ ε} for Hnθ and n−2
∑n

i=1 1{xi ≤ x}
∑n

i=1 1{ρ(ziθ) ≤ ε} for Pnθ. On the other

hand, one can resampling z in order to generate more observations for ε(θ) from ρ(z, θ).

With a larger (generic) sample size of z and ε(θ), one can obtain a smoother empirical c.d.f..

Computation for ŜH(θ∗) in Step 3 needs a LP solver. We use Dikin’s method in this

solver. To outline the routine in Step 3, first we construct the kernel representation such

that y = αTΦ(x) where k(x,x) = 〈Φ(x),Φ(x)〉, then we use k to obtain Ci,j, finally we solve

the LP given in (19).

5.2 Numerical Experiment

The following numerical experiment illustrates more details about the computation. We

generate a random vector q = (x, ε) which is jointly distributed as Hnθ. The product of

marginal empirical distribution of x and ε is Pnθ, another empirical c.d.f.. Figure 1 shows

two point clouds. The squares explain the distribution of Hnθ and the dots explain the
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distribution of Pnθ0 at the value θ = θ0. When θ = θ0 = 1, the elements x and ε are

distributed independently as two smaller point clouds. The size of each dot (square) is

proportional to its probability weight.

The specification of this computation is given as follows. The samples qi = (x1,i, x2,i,

ε1,i,θ, ε2,i,θ)i≤140 are jointly generated by a bivariate Gaussian distribution with means (0,−0.5)

and (0, 0.25 + θ) for x and ε respectively. All the variances are set to 1. The correlation

between x2 and ε2(θ) is 1 − θ while zero for the others. When θ0 = 1, x and ε(θ0) are

independent since the correlation value is zero. For q′i, (x1,i, x2,i)i≤150 and (ε1,i,θ, ε2,i,θ)i≤150,

the samples are drawn independently from two bivariate Gaussian distributions. For x, the

mean and variance are (0,−0.5) and 1. For ε(θ), the mean and variance are (0, 0.25 + θ) and

1. Obviously, these two groups of samples are equivalent under the true θ0.

[Figure 1 about here.]

The computation of θ can be considered as pushing q ∼ Hnθ (or q′ ∼ Pnθ) towards a new

q ∼ Hnθ0 (or q′ ∼ Pnθ0). Under the independence condition, q is equivalently distributed as

q′ for θ = θ0. Figure 2 gives an illustration about the transformation procedure. The initial

points q′ ∼ Pnθ at θ = 0 are pushed towards to q′ ∼ Pnθ0 at θ = θ0 = 1. The mechanism

behind this transformation relies on the transportation measure γi,j(θ) from the LP problem

(18). By solving the LP problem, θ∗ is obtained when γi,j(θ
∗) is achieved. Figure 3 shows

the matrix plot of the optimal γi,j(θ
∗).

[Figure 2 about here.]

In the experiment, we consider the case n = 140, m = 150. So γi,j(θ) is contained in a

150×140 matrix. Figure 3 shows that for optimal γi,j(θ
∗) most of the transitions betweens qi

and q
′
j are never happen, namely with probability zero. The transition matrix is very sparse

and has few non-zero entities. We also compute the marginal probabilities by summing up

γi,j(θ
∗) w.r.t. j and i respectively:

dHnθ∗(xi, εi) =
m∑
j=1

γi,j(θ
∗), dPnθ∗(xj, εj) =

n∑
i=1

γi,j(θ
∗).

The smoothed density plots in Figure 4 shows that neither dHnθ∗(xi, εi) nor dPnθ∗(xi, εi) is

close to uniform distribution. Also, the pattern of the transition matrix in Figure 3 shows that
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the optimal γi,j(θ
∗) is not uniformly distributed. In fact, in Figure 4, the marginal densities

seem have mixture patterns and have very irregular shapes. This feature is important. It

means that in a simultaneous equation estimation problem:

ˆ
d(Hnθ(x, ε), Pnθ(x, ε))dµ(x, ε),

the optimal choice of µ could be excluded from any regular specified distribution, i.e. uniform,

normal, etc. Instead of giving a priori specification of µ, one can endogenize the effect of µ

as a transportation measure. By computing the new estimator, one will obtain θ∗ and an

optimal measure γi,j(θ
∗) for µ simultaneously.

[Figure 3 about here.]

[Figure 4 about here.]

Although the role of γi,j(θ
∗) is a statistical inference mechanism, its meaning is far more

than that. In economic theory, γi,j(θ
∗) can induce an optimal transportation in the matching

problem. The optimal inference is then an optimal matching mechanism. Nonparametric

representation of the optimal distance is applicable for solving some general matching prob-

lems. Figure 5 shows the role of γi,j(θ
∗) as pushing the initial points (square) towards to the

posterior points (dots). The lines in Figure 5 represent the connections. A line connecting

the square (xi, εi) and the dot (x
′
j, ε

′
j) means that γi,j(θ

∗)Ci,j for these two groups is non-zero.

[Figure 5 about here.]

6 Related Likelihood-based Inference

If the model is fully specified, then the c.d.f.s Hθ(x, ε) and Pθ(x, ε) in (7) are some parametric

distributions. The estimation problem becomes:

min
θ
W (θ) := min

θ
inf

γ∈Γ(Hθ,Pθ)

{ˆ
d(q, q′)dγ(q, q′) : q ∼ Hθ(x, ε) and q′ ∼ Pθ(x, ε)

}
.

Unlike the empirical optimal distance function Ŵ (θ), the integrable W (θ) can have densities

for Hθ(x, ε) and Pθ(x, ε). We define pθ(q
′) = dPθ to be the density of θ with respect to some

Lebesgue measure. In parametric frameworks, we can assume that such a density always
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exists. Similarly, the density of Hθ also exists and is denoted by hθ(q). The conditional

density defines the likelihood function L(θ; q′) = Pr(q′|θ).
The essence of our approach is to find a map that pushes forward Hθ(x, ε) to Pθ(x, ε).

Recall that q is a random variable distributed according to Hθ(x, ε) and that q′ is a random

variable distributed according to Pθ(x, ε). Then we seek a map f that satisfies the following

specification:

q′ = f(q), where q ∼ Hθ(x, ε) and q′ ∼ Pθ(x, ε).

Equivalently, we seek a map f which pushes forwardHθ(x, ε) to Pθ(x, ε). The map necessarily

depends on the data and the form of the likelihood function. If the independence condition is

satisfied, an identity map would suffice; otherwise more complicated functions are necessary.

By using the conditional updating argument (Bayes’ rule), the posterior is

p̃θ(q
′) =

L(θ; q′)pθ(f(q))´
L(θ; q′)pθ(f(q))dθ

where pθ(f(q)) emphasizes that q′ = f(q). Recall that the transformed density pθ(f(q))

should be equal to hθ(q) at θ = θ0 such that pθ(f(q)) = hθ(q). On the other hand, the

optimal transportation argument says that hθ(q) can be transformed into the probability

density pθ(f(q)) by the forward push function f(·). Thus we can setup the following argument

at θ = θ0:

h(θ) = L(θ; q′)pθ(f(q))/c

where c =
´
L(θ; q′)pθ(q

′)dθ is a constant for any θ. This argument defines an alternate

criterion for W (θ).

At θ = θ0, pθ(f(q)) = hθ(q) for any q. This condition means that the ratio pθ(f(q))/hθ(q)

is one or equivalently log pθ(f(q)) − log hθ(q) = 0 when θ = θ0. Thus, we can consider the

following criterion

min
θ,f

n∑
i=1

{
log hθ(qi)− logL(θ; q

′

i)− log pθ(f(qi))
}
.

Although this criterion function has a simpler representation, it may not as tractable as

W (θ) in practice due to the unknown function f . The transportation function f belongs
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to a unknown functional class. Without further restriction of this class, it is infeasible to

select the optimal f in the above argument. The following example is to show that with a

Gaussian restriction, the push forward function f is attainable.

Example: The Linear Gaussian Case Suppose that the discrepancy between q′ and

q is additive: q′ = A(θ) + q. In this case, the map would thus depend on the data q′, the

forward model A(·), and the distribution of the observational q.

A common further assumption is that q is Gaussian, zero-mean, and independent of

the model parameters, i.e., q ∼ N (0,Σn), leading to the following form for the likelihood

function:

L(θ; q′) =
1

(2π)
m
2 (detΣ)

1
2

exp

(
−1

2
‖A(θ)− q′‖2

Σn

)
where ‖u‖Σ := ‖Σ− 1

2u‖, for any positive symmetric matrix Σ.

Let A(θ) = Aθ. Because q is distributed as a Gaussian variable and Aθ is an additive

term, q′ has the Gaussian distribution as well. Thus pθ(q
′) is from Gaussian family. Without

loss of generality, we can set q′ − q ∼ N (0,ΣM). Then the criterion function becomes:

n∑
i=1

{
log hθ(qi)− logL(θ; q

′

i)− log pθ(f(qi))
}

∝
{
−1

2
‖Aθ − q′‖2

Σn
+ ‖θ‖2

ΣM

}
∝
{
−1

2

(
‖θ‖2

Σn + θT (ATΣ−1
n A+ Σ−1

M )θ − 2(q
′
)TΣ−1

n Aθ
)}

∝
{
−1

2

(
‖θ‖2

Σn + θTΣθ − 2µTΣ−1θ
)}

where Σ = (ATΣ−1
n A + Σ−1

M )−1 is the updated covariance matrix and µ = ΣATΣ−1
n q’ is the

updated mean. Then the optimal transportation mechanism is equivalent to the optimal

information updating for a posterior.

7 Conclusion

In this paper we considered estimation and inference in semiparametric simultaneous equa-

tion models where the observable variables are separable of the unobserved errors. We con-

sider estimation using a model based on the independence condition that induces a minimum
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distance between a joint cumulative distribution function and the product of its marginal

distribution functions. We developed a new minimum integrated distance estimator which

generalizes BW approach by using Kantorovich’s formulation of the optimal transportation

problem. This generalization is important because it allows for estimating the weighted

measure nonparametrically, and hence does not impose a priori structure on the weighting

measure. Moreover, the proposed methods do not require knowledge of the reduced form of

the model. The estimation also provides greater generality by dealing with probability mea-

sures on compact metric spaces without assuming existence of densities. We establish the

asymptotic properties of the estimator, and show that the asymptotic statistics of empirical

estimates have standard convergent results and are provided for different statistical analyses.

The proposed estimator is more efficient than its competitors. In addition, we provided a

tractable implementation for computing the estimator in practice.
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A Mathematical Preliminary

Definition. (Commutative algebra) A commutative algebra A is a vector space equipped with an

additional associative + : A×A → A and commutative multiplication · : A×A → A such that

x · (y + z) = x · y + x · z, λ(x · y) = (λx) · y

holds for all x, y, z ∈ A and λ ∈ R. An important algebra is the space C(X ) of all continuous

functions f : X → R on the compact metric space (X ,d) endowed with the supremum norm

‖f‖∞ := sup
x∈X
|f(x)|.

The following approximation theorem states that certain sub-algebras of C(X ) generate the

whole space. This is the starting point of representing our dual distance Ŵ (θ).

Theorem 11. (Stone-Weierstrass Theorem) Let (X , d) be a compact metric space and A ⊂ C(X )

be an algebra. Then A is dense in C(X ) if the following conditions hold.

1. A does not vanish such that there is no f(x) = 0 for any x ∈ X .

2. A separates points such that for all x, y ∈ X with x 6= y there exists an f ∈ A with

f(x) 6= f(y).

Definition. (Feature maps and Feature Spaces) A kernel on (X , d) is a function k : X × X → R.

There exists a Hilbert space H and a map Φ : X → H with

k(x, y) = 〈Φ(x),Φ(y)〉

for all x, y ∈ X . Φ is called a feature map and H is called a feature space of k. Note that both H
and Φ are far from being unique.7 A function f : X → R is induced by k if there exists an element

y ∈ H such that f = 〈y,Φ(·)〉. The definition of this inner product is independent of Φ and H.

Theorem 12. (Moore-Aronszajn) Let (X ,d) be a compact metric space and k is a kernel on

X . Suppose k induces a dense set of C(X ). Then for all compact and mutually disjoint subsets

X1, . . . ,Xn ⊂ X , all α1, . . . , αn ∈ R and any ε > 0, there exists a function g induced by k with

‖g‖∞ ≤ maxi |αi|+ ε such that ∥∥∥∥∥g|∪ni=1Xi −
n∑
i=1

αi1{Xi}

∥∥∥∥∥
∞

≤ ε,

7However, for a given kernel, there exists a canonical feature space which is called the reproducing kernel
Hilbert space (RKHS).
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where g|X denotes the restriction of g to X .

B Probabilistic Preliminary

Definition. (Weak topology, weak convergence) Weak topology on a space of probability measures

P := {P : P is a probability measure} is the weakest topology such that the map P →
´
Q fdP

is continuous for all P ∈ Cb(Q) where Cb(Q) is the space of all bounded continuous functions. A

sequence of Pn is said to converge weakly to P, Pn  P, if and only if
´
Q fdPn →

´
Q fdP for every

f ∈ Cb(Q).

A metric d(·, ·) on P is said to metrize the weak topology if the topology induced by d(·, ·)
coincides with the weak topology, which is defined as follows: If {P1,P2, . . . } ∈P and

Pn  P is equivalent to d(Pn,P)→ 0 as n→∞,

then the topology induced by d(·, ·) coincides with the weak topology.

Definition. (Compact metric space) We denote the closed ball with radius r and center x by

Bd(P, r) := {P ′ ∈P : d(P,P ′) ≤ r}. The covering numbers of P are defined by

N((P,d), r) := min {n ∈ N ∪∞ : ∃P1, . . . ,Pn with P ⊂ ∪ni=1Bd(Pi, r)}

for all r > 0. The space (P,d) is pre-compact if and only if N((P,d), r) is finite for all r > 0. If

the space (P,d) is complete, then P is compact if and only if P is pre-compact.

Based on this argument, throughout the paper, we only consider pre-compact space (P,d)

over Hilbert spaces (complete spaces). In other words, the covering numbers of P are finite and

distance d(·, ·) metrizes P by a Hilbertian type metric. The space (P,d) is a compact metric

space.

C Proof of Main Theorems

C.1 Proof of Theorem 3

Proof. Consider the family

P(Q) :=

{
P :

ˆ
Q

√
k(q, q)dP(q) <∞

}
.
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Let T : H → R be a linear functional defined as T [h] :=
´
Q h(q)dP(q) with

‖T‖ = sup
h∈H,h6=0

|T [h]|
‖h‖H

.

Now we have

|T [h]| =
∣∣∣∣ˆ
Q
hdP(q)

∣∣∣∣ ≤ ˆ
Q
|h|dP(q) =

ˆ
Q
| 〈h,k(·, q)〉H |dP(q)

≤
ˆ
Q

√
k(q, q)‖h‖HdP(q).

It implies ‖T‖ <∞, for any P ∈P(Q). Then we know T is a bounded linear functional on H. By

Riesz representation theorem (Theorem II.4, Reed and Simon, 1980), for each P ∈ P, there exists

a unique λP ∈ H such that T [h] = 〈h, λP〉H, for any h ∈ H.

Let h = k(·, u) ∈ BH for some u ∈ Q. Then

T [k(·, u)] = Pk = 〈k(·, u), λP〉H = λP(u).

Replace Hθ(x, ε) and Pθ(x, ε) with arbitrary P ∈ P in the expression, then we have∣∣∣∣ˆ
Q
hdHθ(q)−

ˆ
Q
hdPθ(q)

∣∣∣∣ =
∣∣〈h, λHθ〉H − 〈h, λPθ〉H∣∣ =

∣∣〈h, λHθ − λPθ〉H∣∣ .
This implies WH(θ) define a norm

WH(θ) := sup
‖h‖H≤1

∣∣∣∣ˆ
Q
hdHθ(q)−

ˆ
Q
hdPθ(q)

∣∣∣∣
= sup

k∈BH

∣∣〈k(·, u), λHθ〉H − 〈k(·, u), λPθ〉H
∣∣

= sup
u
|λHθ(u)− λPθ(u)| = ‖λHθ − λPθ‖H = ‖Hθk− Pθk‖H

The second equality uses the fact that any {h : ‖h‖H ≤ 1} can be represented by k ∈ BH

C.2 Proof of Theorem 4

Proof. When (Q, ρ) is separable, we replace the general distance function d in (7) with dk, then

W (θ) has the following form (p.420, Dudley, 2002)

W (θ) := inf
γ∈Γ(Hθ,Pθ)

{ˆ
dk(q, q′)dγ(q, q′) : q ∼ Hθ(x, ε) and q′ ∼ Pθ(x, ε)

}
.

Condition C10 means that (Q, ρ) is bounded.
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Lower bound: For any γ ∈ Γ(Hθ, Pθ), we have∣∣∣∣ˆ
Q
fd(Hθ − Pθ)

∣∣∣∣ =

∣∣∣∣ˆ
Q×Q

(
f(q)− f(q′)

)
dγ(q, q′)

∣∣∣∣
≤
ˆ
Q×Q

∣∣f(q)− f(q′)
∣∣ dγ(q, q′)

=

ˆ
Q×Q

∣∣〈f, k(·, q)− k(·, q′)
〉
H
∣∣ dγ(q, q′)

≤‖f‖H
ˆ
Q×Q

∥∥k(·, q)− k(·, q′)
∥∥
H dγ(q, q′).

The first equality uses the property of marginal probability of γ(q, q′). After taking supremum over

f ∈ BH, we have

WH(θ) = sup
f∈BH

∣∣∣∣ˆ
Q
fd(Hθ − Pθ)

∣∣∣∣ ≤ ˆ
Q×Q

dk(q, q′)dγ(q, q′)

for any γ ∈ Γ(Hθ, Pθ). Thus after taking the infimum over γ, we have WH(θ) ≤W (θ).

Upper bound: W (θ) distance is bounded as follows:

W (θ) = inf
γ∈Γ(Hθ,Pθ)

ˆ
Q×Q

‖k(·, q)− k(·, q′)‖Hdγ(q, q′)

≤
ˆ
Q×Q

‖k(·, q)− k(·, q′)‖HdHθ(q)dPθ(q
′)

(1)

≤
[ˆ
Q×Q

‖k(·, q)− k(·, q′)‖2HdHθ(q)dPθ(q
′)

] 1
2

(2)

≤
[ˆ
Q

k(q, q)d(Hθ + Pθ)(q)− 2

ˆ
Q×Q

k(q, q′)Hθ(q)dPθ(q
′)

] 1
2

(3)

≤
√

2C +WH(θ)

(1)

≤ follows Jensen’s inequality.
(2)

≤ follows

[ˆ
Q×Q

〈
k(·, q)− k(·, q′) , k(·, q)− k(·, q′)

〉
H dHθ(q)dPθ(q

′)

] 1
2

=

[ˆ
Q

k(q, q)dHθ(q) +

ˆ
Q

k(q′, q′)dPθ(q
′)− 2

ˆ
Q×Q

k(q, q′)Hθ(q)dPθ(q
′)

] 1
2

≤
[ˆ
Q

k(q, q)d(Hθ + Pθ)(q)− 2

ˆ
Q×Q

k(q, q′)Hθ(q)dPθ(q
′)

] 1
2

.
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(3)

≤ follows

ˆ
Q

k(q, q)d(Hθ + Pθ)(q)− 2

ˆ
Q×Q

k(q, q′)dHθ(q)dPθ(q
′)

≤
ˆ
Q

k(q, q)d(Hθ + Pθ)(q) +

[ˆ
Q×Q

k(q, q′)(dHθ(q)− dPθ(q′))2

]
≤Hθk + Pθk +

[ˆ
Q

k(q, q)d(Hθ − Pθ)(q)
]2

≤2C +

[
sup
f∈BH

ˆ
Q
fd(Hθ − Pθ)

]2

= 2C +WH(θ)

where we set C = max{‖Hθk‖H, ‖Pθk‖H}.

C.3 Proof of Theorem 6

Proof. In order to maintain simple expressions, without loss of generality the kernel functions

k(q, qi) is expressed by f(qi) = k(q, qi) for any q.

The upper bound of ŴH(θ)−WH(θ) follows

∣∣∣ŴH(θ)−WH(θ)
∣∣∣ =

∣∣∣∣∣ sup
f∈BH

Hθf − Pθf − sup
f∈BH

(
1

m

m∑
i=1

f(qi)−
1

n

n∑
i=1

f(q
′
i)

)∣∣∣∣∣
≤ sup
f∈BH

∣∣∣∣∣Hθf − Pθf −
1

m

m∑
i=1

f(qi) +
1

n

n∑
i=1

f(q
′
i)

∣∣∣∣∣︸ ︷︷ ︸
∆(Hθ,Pθ,q,q′)

.

We can provide an upper bound on the difference between ∆(Hθ, Pθ, Q,Q
′) and its expectation.

Changing either of (xi, εi) ∼ Hθ or (x
′
i, ε
′
i) ∼ Pθ in ∆(Hθ, Pθ, Q,Q

′) results in changes in magnitude

of at most 2C
1/2
k /m or 2C

1/2
k /n, respectively. We can then apply Theorem 13

Pr
{

(∆(Hθ, Pθ,q,q
′)− E[∆(Hθ, Pθ,q,q

′)]) > ε
}
< exp

(
− ε2mn

2Ck(m+ n)

)
(20)

where the denominator in the exponent comes from

m

(
2C

1
2
k /m

)2

+ n

(
2C

1
2
k /n

)2

= 4Ck

(
1

m
+

1

n

)
= 4Ck

n+m

mn
.

We then apply the symmetrization technique again to attain the upper bound of ∆(Hθ, Pθ,q,q
′).

The procedure called the ghost sample approach, i.e. a second set of observations drawn from the

same distribution, follows van der Vaart and Wellner (p.108, 1996). Denote Q̃ ∼ Hθ an i.i.d sample
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of size m drawn independently of Q, similarly denote Q̃ ∼ Pθ in the same way.

E[∆(Hθ, Pθ,q,q
′)]

=E sup
f∈BH

∣∣∣∣∣Hθf − Pθf −
1

m

m∑
i=1

f(qi) +
1

n

n∑
i=1

f(q
′
i)

∣∣∣∣∣
(a)
=E sup

f∈BH

∣∣∣∣∣E
(

1

m

m∑
i=1

f(q̃i)

)
− E

(
1

n

n∑
i=1

f(q̃
′
i)

)
− 1

m

m∑
i=1

f(qi) +
1

n

n∑
i=1

f(q
′
i)

∣∣∣∣∣
(b)

≤E sup
f∈BH

∣∣∣∣∣ 1

m

m∑
i=1

f(q̃i)−
1

n

n∑
i=1

f(q̃
′
i)−

1

m

m∑
i=1

f(qi) +
1

n

n∑
i=1

f(q
′
i)

∣∣∣∣∣
(c)
=E sup

f∈BH

∣∣∣∣∣ 1

m

m∑
i=1

σi (f(q̃i)− f(qi)) +
1

n

n∑
i=1

σi

(
f(q̃

′
i)− f(q

′
i)
)∣∣∣∣∣

(d)

≤E sup
f∈BH

∣∣∣∣∣ 1

m

m∑
i=1

σi (f(q̃i)− f(qi))

∣∣∣∣∣+ E sup
f∈BH

∣∣∣∣∣ 1n
n∑
i=1

σi

(
f(q̃

′
i)− f(q

′
i)
)∣∣∣∣∣

(e)

≤2
[
Rm(BH, Q,Hθ) +Rn(BH, Q′, Pθ)

] (f)

≤ 2
[
(Ck/m)

1
2 + (Ck/n)

1
2

]
.

(a)
= follows the ghost sample argument,

(b)

≤ follows Jensen’s inequality,
(c)
= follows the symmetrization

technique,
(d)

≤ follows the triangle inequality,
(e)

≤ and
(f)

≤ follow Theorem 14.

Substitute above result into (20), we have

Pr
{

∆(Hθ, Pθ,q,q
′)− 2

[
(Ck/m)

1
2 + (Ck/n)

1
2

]
> ε
}
≤ exp

(
− ε2mn

2Ck(m+ n)

)
.

Substitute this bound into the upper bound of
∣∣∣ŴH(θ)−WH(θ)

∣∣∣, then we get the result.

C.4 Proof of Theorem 7

Proof. If Θ is compact, take K = Θ. Apply the bound in Hoeffding (p. 25 1963) to Theorem 6:

Pr
{
ŜH(θ)− SH(θ) > ε

}
≤ exp

(
−ε2n
8C2

k

)
.

Note the SH(θ0) = 0. It follows that

Pr{ŜH(θ∗) ≥ ε} = Pr

n−2
∑
i 6=j

h(qi, qj) ≥ ε

 ≤ exp

(
−ε2n
8C2

k

)
.

Note that if ε→ 0 and ε2n→∞, exp
(
−ε2n/8C2

k

)
→ 0.
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If Θ is not compact, we do the following step. For fixed ε > 0, take Bθ0 to be the open interval

centered at θ0 of length 2ε. Since K \ Bθ0 is a compact set, and {Bθ : θ ∈ K \ Bθ0} is an open

cover, we may extract a finite sub-cover, say, Bθ1 , . . . , Bθk . For notational simplicity, rename Kc

and these sets as Θ1, . . . ,Θm, so that Θ = Bθ0 ∪ (
⋃m
s=1 Θs) and h(θ|Θs) > 0.

Write cs = h(θ|Θs). Then by Theorem 6, at this θ

1

n2

n∑
i 6=j

h(qi, qj)→ cs, with probability 1 for each s.

Let As denote the set of data sequences for which this convergence holds and set A =
⋂m
s=1As.

Then Pr(A) = 1 and n−2
∑

i 6=j h(qi, qj) → cs > 0 for all q = (q1, q2, . . . , ) ∈ A. If “i.o.” stands for

“infinitely often,” then we have:

{
q : lim sup

n→∞
|θ∗(q1, . . . , qn)− θ0| ≥ ε

}
⊆

m⋃
s=1

{
q : θ∗(q1, . . . , qn) ∈ Θs i.o.

}
⊆

m⋃
s=1

{
q : inf

θ∈Θs

1

n

∑
i 6=j

h(qi, qj) > 0 i.o.
}

⊆
m⋃
s=1

{
q : ĥ(θ∗|Θs) > 0 i.o.

}
⊆

m⋃
s=1

Acs.

Since the last set is Ac and Pr(Ac) = 0, the result (15) follows.

C.5 Proof of Theorem 8

Proof. The proof follows the procedure in Serfling (Section 5.5.2, 1980). Under θ0, by the definition

of k̃(xi, xj), we have

Exk̃(x, xj) : = Exk(x, xj)− Ex
[
Ex′k(x, x′)

]
− Exk(x, xj) + Ex,x′k(x, x′)

= −Ex
[
Ex′k(x, x′)

]
+ Ex,x′k(x, x′) = 0.

(21)

Step 1: To prove that the kernel k̃(xi, xj) function has the following form:

k̃(xi, xj) =
∞∑
l=1

λ
(1)
l ψl(xi)ψl(xj), (22)
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where λ
(1)
l and ψl are eigenvalues and basis function of the eigenvalue equation

ˆ
Q

k̃(x, x′)ψl(x)dF (x) = λ
(2)
l ψl(q

′).

Note that a Hilbert subspace endowed with an inner product over k̃(·, ·) such that 〈f(·), k̃(·, x′)〉 =

f(x′) for all f ∈ BH and 〈k̃(·, x), k̃(·, x′)〉 = k̃(x, x′). Let ψl be basis for BH and Bl be i.i.d. N (0, σ2
l )

with σl ↓ 0 as l→∞. We will construct Karhunen-Loeve expansion in the following fashion. Sup-

pose for any x ∈ X ,

f(x) =
∞∑
l=1

Blψl(x).

Note that E[f(x)] = 0 while the covariance kernel function is

k̃(x, x′) =EB

[ ∞∑
l=1

Blψl(x)Blψl(x
′)

]

=
∞∑
l=1

σ2
l ψl(x)ψl(x

′)

The covariance function k̃ of zero mean Gaussian vectors completely characterizes the space BH.

On the other hand, suppose we fix q. Then from Theorem 2, for continuous function, k̃(x, ·) =∑∞
i=1 αi(x) for some basis functions αi uniformly. Now fix q′ and we have

k̃(x, x′) =

∞∑
i=1

αi(x)

∞∑
j=1

βj(x
′) =

∞∑
i,j=1

αi(x)βj(x
′)

Again, βj are basis functions. For finite numbers of the basis α1, · · · , αL and β1, · · · , βL, it can be

representable as a linear combination of orthogonal basis ψ using the Gram-Schmidt orthogonal-

ization. So we have

k̃(x, x′) = lim
L→∞

L∑
l=1

λ
(1)
l ψl(x)ψl(x

′).

For continuous centered kernel k̃, define linear operator 〈·, k̃〉 : BH → BH as

〈f(·), k̃(·, x′)〉 =

ˆ
k̃(x, x′)f(x) dF (x) = f(x′).

This is a compact self-adjoint operator8 which yields unique countable eigenvalues λi and orthonor-

8An operator T is compact if the closure of T (close ball) is compact and it is self-adjoint if 〈Tf, g〉 =
〈f, Tg〉.
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mal eigenfunctions ψi such that9

´
k̃(x, x′)ψl(x)dF (x) = λ

(1)
l ψl(x

′),

´
ψi(x)ψj(x)dF (x) = δij =

1 if i = j

0 otherwise

(23)

with λ∞ = 0. We will order them such that λ0 > λ1 > λ2 > · · · . Hence identifying λi = σ2
i .

Similarly, we can obtain the results for k̃(εi, εj) =
∑∞

l=1 λ
(2)
l ψl(εi)ψl(εj).

Step 2: To prove that

nŜH(θ∗) :=
1

n

n∑
i 6=j

h(qi, qj) =
1

n

n∑
i 6=j

[
k̃(xi, xj) + k̃(εi, εj)− k̃(xi, εj)− k̃(εi, xj)

]
 
∞∑
l=1

λl
[
z2
l − 1

]
.

Firstly, consider the limit of n−1
∑n

i 6=j k̃(xi, xj). With the result in (22), we have

1

n

∑
i 6=j

k̃(xi, xj) =
1

n

∑
i 6=j

∞∑
l=1

λ
(1)
l ψl(xi)ψl(xj)

(a)
=

1

n

∞∑
l=1

λ
(1)
l

( n∑
i=1

ψl(xi)

)2

−
n∑
i=1

ψ2
l (xi)


(a)
= comes from (

∑
i ai)

2 =
∑

i ai(ai +
∑

i 6=j aj) =
∑

i a
2
i +

∑
i 6=j aiaj .

For any finite l, taking expectation over (23) gives

λ
(1)
l Ex[ψl(x)] =

ˆ
Exk̃(x′, x)ψl(x

′)dF (x′) = 0

by the result of (21). Hence Ex[ψl(x)] = 0 because λl 6= 0 if l 6=∞. Also, from (23), we know that

Cov(ψi(x), ψj(x)) = δij . By the Lindeberg-Levy CLT,

n−1/2
n∑
i=1

ψl(xi) N (0, 1).

9This eigenequation is called a Fredholm equation of the first kind. Given covariance function, there is a
numerical technique for estimating λi and ψi numerically.
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From (23), it is also known that Ex[ψ2
l (x)] = 1 for any l. Then strong LLN gives

n−1

(
n∑
i=1

ψ2
l (xi)

)
p→ 1.

Hence

1

n

∞∑
l=1

λ
(1)
l

( n∑
i=1

ψl(xi)

)2

−
n∑
i=1

ψ2
l (xi)

 ∞∑
l=1

λ
(1)
l

[
z2
l − 1

]
where z2

l is a standard normal random variable.

Secondly, consider the limit of n−1
∑n

i 6=j k̃(εi, εj). Following the previous procedure, we can

derive

1

n

∑
i 6=j

k̃(εi, εj) =
1

n

∞∑
l=1

λ
(2)
l

( n∑
i=1

ψl(εi)

)2

−
n∑
i=1

ψ2
l (εi)

 ∞∑
l=1

λ
(2)
l

[
z2
l − 1

]
.

Finally, consider the limit of n−1
∑n

i 6=j

[
k̃(xi, εj) + k̃(εi, xj)

]
. Because by independence con-

dition, at θ0, x and ε are independent. Hence Cov(ψi(x), ψj(ε)) = 0 for all i, j. Then we can

conclude
1

n

n∑
i 6=j

[
k̃(xi, εj) + k̃(εi, xj)

]
→ 0.

Combine these three limit forms, the result follows.

C.6 Proof of Theorem 10

Proof. The proof uses some properties of Hellinger distance function. With C14, a Hellinger dis-

tance can be approximately represented as

lim
‖θ−θ0‖→0

d2
H(Hθ, FGθ) = lim

‖θ−θ0‖→0

1

2

ˆ (√
hθ(q)wθ(q)−

√
pθ(q)wθ(q)

)2
dq

= lim
‖θ−θ0‖→0

1

2

ˆ (√
hθ(q)−

√
pθ(q)

)2
wθ(q)dq

= lim
‖θ−θ0‖→0

1

2

ˆ (
(θ − θ0)T∆w(q)

) (
(θ − θ0)T∆w(q)

)T (wθ(q)
k(q)

)
dq + op(1)

≈1

2
(θ − θ0)T

ˆ
(ιθ0(q))d(Hθ − Pθ)

[ˆ
(ιθ0(q))d(Hθ − Pθ)

]T
(θ − θ0)T

where ιθ0(q) = (logDθ(q)wθ(q))
′|θ=θ0 .
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Step 1: By definition, (θ∗,k) is the minimizer of ŴH(θ) such that

(θ∗,k) = arg min
θ

max
f∈H

∣∣∣∣ˆ f(q)dHθ −
ˆ
f(q)dPθ

∣∣∣∣ ,
then (θ∗, wθ∗) satisfies the following inequalities√

4

ˆ (√
hθ∗(q)−

√
pθ∗(q)

)2
wθ∗(q)dq︸ ︷︷ ︸

:=2
√

2d2
H(Hθ∗ ,FGθ∗ )

(a)

≥

√ˆ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣2wθ∗(q)dq

×

√ˆ ∣∣∣√hθ∗(q) +
√
pθ∗(q)

∣∣∣2wθ∗(q)dq
(b)

≥
ˆ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣ ∣∣∣√hθ∗(q) +

√
pθ∗(q)

∣∣∣wθ∗(q)dq
(c)
=

ˆ
|hθ∗(q)− pθ∗(q)|wθ∗(q)dq

(d)

≥
∣∣∣∣ˆ hθ∗(q)wθ∗(q)dq −

ˆ
pθ∗(q)wθ∗(q)dq

∣∣∣∣
where

(a)

≥ comes from

4

ˆ (√
hθ∗(q)−

√
pθ∗(q)

)2
wθ∗(q)dq ≥

ˆ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣2wθ∗(q)dq+ˆ ∣∣∣√hθ∗(q) +
√
pθ∗(q)

∣∣∣2wθ∗(q)dq
≥
ˆ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣2wθ∗(q)dq×ˆ ∣∣∣√hθ∗(q) +

√
pθ∗(q)

∣∣∣2wθ∗(q)dq
by using the properties

∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣ < 1 and 0 <
´ ∣∣∣√hθ(q)−√pθ(q)∣∣∣2wθ(q)dq < 1;

(b)

≥
follows from Cauchy–Schwarz inequality√ˆ

|a(q)|2wθ∗(q)dq ×
ˆ
|b(q)|2wθ∗(q)dq ≥

ˆ
|a(q)| |b(q)|2wθ∗(q)dq

where a(q) =
√
hθ∗(q)−

√
pθ∗(q) and b(q) =

√
hθ∗(q)+

√
pθ∗(q);

(c)
= is from |a(q)|·|b(q)| = |a(q)b(q)|;

(d)

≥ follows from Hı̈¿œlder’s inequality.
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On the other hand, we have

max
F

√
SH(θ∗) =

√ˆ
|hθ∗(q)− pθ∗(q)|2 k(q)dq

(a)

≥

√ˆ
|hθ∗(q)− pθ∗(q)|2wθ∗(q)dq

(b)

≥
ˆ
|hθ∗(q)− pθ∗(q)|wθ∗(q)dq

(c)
=

ˆ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣wθ∗(q)dq×ˆ ∣∣∣√hθ∗(q) +
√
pθ∗(q)

∣∣∣wθ∗(q)dq
(d)

≥
ˆ (√

hθ∗(q)−
√
pθ∗(q)

)2
wθ∗(q)dq︸ ︷︷ ︸

:=2d2
H(Hθ∗ ,FGθ∗ )

where
(a)

≥ comes from the condition C14

min
θ

max
wθ∈F

ˆ
|hθ(q)− pθ(q)|2wθ(q)dq ≥ min

θ

ˆ
|hθ(q)− pθ(q)|2wθ(q)dq

for any wθ ∈ F ;
(b)

≥ is from Hı̈¿œlder’s inequality;
(c)
= is from |a(q)| · |b(q)| = |a(q)b(q)|;

(d)

≥ is from∣∣∣√hθ∗(q) +
√
pθ∗(q)

∣∣∣ ≥ ∣∣∣√hθ∗(q)−√pθ∗(q)∣∣∣ for non-negative hθ∗(q) and pθ∗(q).

Step 2: Information in d2
H(Hθ∗ , Pθ∗).

Consider an expansion of 2d2
H(Hθ∗ , Pθ∗) around θ0.

2d2
H(Hθ∗ , Pθ∗) =

ˆ (√
hθ∗(q)−

√
pθ∗(q)− (

√
hθ0(q)−

√
pθ0(q))

)2

wθ∗(q)dq︸ ︷︷ ︸
(I)

+

ˆ (√
hθ0(q)−

√
pθ0(q)

)2

wθ∗(q)dq︸ ︷︷ ︸
(II)

−2

ˆ (√
hθ∗(q)−

√
pθ∗(q)

)(√
hθ0(q)−

√
pθ0(q)

)
wθ∗(q)dq︸ ︷︷ ︸ .

(III)

Term (I) has the following properties

(I) ≥
∣∣∣∣ˆ (hθ∗(q)− pθ∗(q))wθ∗(q)dq

∣∣∣∣− ∣∣∣∣ˆ (hθ0(q)− pθ0(q))wθ0(q)dq

∣∣∣∣
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and

(I) ≤
ˆ
|hθ∗(q)− pθ∗(q)|k(q)dq +

ˆ
|hθ0(q)− pθ0(q)|k(q)dq ≤

√
SH(θ∗) +

√
SH(θ0),

and term (II) is 2d2
H(Hθ0 , Pθ0) follows the bounds∣∣∣∣ˆ (hθ0(q)− pθ0(q))wθ0(q)dq

∣∣∣∣ ≤ (II) ≤
ˆ
|hθ0(q)− pθ0(q)|k(q)dq ≤

√
SH(θ0),

and term (III) by condition C14 has the following representation

(III) = 2(θ∗ − θ0)T
ˆ
∆w(q)k−1/2(q)(

√
hθ0(q)−

√
pθ0(q))wθ∗(q)dq + o(‖θ∗ − θ0‖)

= (θ∗ − θ0)T
ˆ
∆w(q)

(
wθ∗

wθ0k

)
d(Hθ0 − Pθ0)(q) + o(‖θ∗ − θ0‖)

by using the fact that w
1/2
θ0

(q)dq = d
(√

Hθ0 −
√
Pθ0
)

= (
√
hθ0(q)−

√
pθ0(q))−1d(Hθ0 − Pθ0)/2.

As θ∗
p→ θ0,

0 = lim
θ∗

p→θ0
WH(θ∗) ≥

∣∣∣∣ˆ (hθ∗(q)− pθ∗(q))wθ∗(q)dq
∣∣∣∣

and SH(θ∗)→ 0 ensure that (I) and (II) are ignorable and the representation

(θ∗ − θ0)T
ˆ
∆w(q)

(wθ0
k

) 1
2
d(Hθ0 − Pθ0)(q)

in (III) gives the information score function at θ0

ˆ
∆w(q)

(wθ0
k

) 1
2
d(Hθ0 − Pθ0)(q).

From the result of Delta method on minimum distance estimator, see i.e. proof of Therem 3.3

(iii) in BW, it is known that

θ∗ = θ0 − 2V−1

ˆ
∆w(q)

(wθ0
k

) 1
2
d(Hθ0 − Pθ0)(q) + o(1)

where V is the derivative of SH(θ) assumed in condition C13. Then the covariance term is

[ˆ (
∆w(q)

(wθ0
k

) 1
2

(q)

)
d(Hθ0 − Pθ0)(q′)

] [ˆ (
∆w(q)

(wθ0
k

) 1
2

(q′)

)
d(Hθ0 − Pθ0)(q′)

]T
.
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Because wθ ∈ F , k := arg maxf∈F
´
fd(Hθ − Pθ)(q) and ‖k(q)‖ ≤ 1, we can see

ˆ (
∆w(q)

(wθ0
k

) 1
2

)
d(Hθ0 − Pθ0)(q) ≤

ˆ (
∆w(q)

(
wθ0
f

) 1
2

)
d(Hθ0 − Pθ0)(q)

for any f ∈ F . Thus (θ∗,k) attains the optimal information.

D Proof of Other Statements

D.1 Proof of Corollary 1

Proof. By the definition of metrization, we need to show that for {P1, P2, . . . } ⊂ P, Pn  P if

and only if ‖Pnk− Pk‖H → 0 as n→∞.

(⇒) Because k is bounded and continuous, so it is obvious that Pn  P implies ‖Pnk− Pk‖H →
0 as n→∞.

(⇐) H induces a dense set in BH ⊂ C(Q). For the space of continuous bounded functions, any

k ∈ FH and any every ε > 0, there exists a g ∈ FH such that sup |k− g| ≤ ε. Therefore∣∣∣∣ˆ kdPn −
ˆ

kdP

∣∣∣∣ =

∣∣∣∣ˆ kdPn −
ˆ
gdPn +

ˆ
kdP −

ˆ
gdP +

ˆ
gdPn −

ˆ
gdP

∣∣∣∣
≤
∣∣∣∣ˆ kdPn −

ˆ
gdPn

∣∣∣∣+

∣∣∣∣ˆ kdP −
ˆ
gdP

∣∣∣∣+

∣∣∣∣ˆ gdPn −
ˆ
gdP

∣∣∣∣
≤2ε+

∣∣∣∣ˆ gdPn −
ˆ
gdP

∣∣∣∣ ≤ 2ε+ ‖g‖H‖Pnk− Pk‖H.

If ‖Pnk − Pk‖H → 0 as n → ∞ and ε is arbitrary, |Pnk − Pk| → 0 for any k ∈ BH or say

Pn  P .

D.2 Proof of Lemma 1

Proof. ( ⇐ ) Suppose a finite non-zero signed Borel measure P satisfies Condition (I) and (II) in

Lemma 1. By Jordan decomposition theorem (Theorem 5.6.1, Dudley, 2002), there exist unique

positive measure P+ and P− such that P = P+ − P− and P+⊥P−. By Condition (II) in Lemma

1, we have P+(Q) = P−(Q) =: α. Let Hθ = α−1P+ and Pθ = α−1P−. Thus, Hθ 6= Pθ. (Or one

can set Pθ = α−1P+ and Hθ = α−1P−.) Then, by

W 2
H(θ) = ‖Hθk− Pθk‖2H = 〈Hθk− Pθk, Hθk− Pθ(q)〉

=

〈ˆ
Q

k(·, q)dHθ(q),

ˆ
Q

k(·, q′)dHθ(q
′)

〉
+

〈ˆ
Q

k(·, q)dPθ(q),
ˆ
Q

k(·, q′)dPθ(q′)
〉
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− 2

〈ˆ
Q

k(·, q)dHθ(q),

ˆ
Q

k(·, q′)dPθ(q′)
〉

=

ˆ
Q×Q

k(q, q′)dHθ(q)dHθ(q
′) +

ˆ
Q×Q

k(q, q′)dPθ(q)dPθ(q
′)

− 2

ˆ
Q×Q

k(q, q′)dHθ(q)dPθ(q
′)

=

ˆ
Q×Q

k(q, q′)d(Hθ − Pθ)(q)d(Hθ − Pθ)(q′) = 0.

The last equality is set by Condition (I) in Lemma 1.

( ⇒ ) Suppose there exists Hθ 6= Pθ such that WH(θ) = 0. Let P = Pθ−Hθ. Then P is a finite

non-zero signed Borel measure that satisfies P(Q) = 0. Note that

W 2
H(θ) =

ˆ
Q×Q

k(q, q′)d(Hθ − Pθ)(q)d(Hθ − Pθ)(q′) = 0.

Thus Condition (I) in Lemma 1 satisfies.

D.3 Proof of Corollary 2

Proof. By the property of Lagrange multipliers ui, vj , the problem (18) can be rewritten as a

minimax problem:

V = min
γi,j(θ)∈Γ(Hnθ,Pnθ)

max
ui,vj

∑
i,j

γi,j(θ)Ci,j +
∑
i

ui −
∑
i,j

uiγi,j(θ) +
∑
j

vj −
∑
i,j

vjγi,j(θ)

= min
γi,j(θ)∈Γ(Hnθ,Pnθ)

max
ui,vj

∑
i

ui +
∑
j

vj +
∑
i,j

γi,j(θ) (Ci,j − ui − vj) .

By the saddlepoint argument, we have

V = max
ui,vj

min
γi,j(θ)∈Γ(Hnθ,Pnθ)

∑
i

ui +
∑
j

vj +
∑
i,j

γi,j(θ) (Ci,j − ui − vj) .

Consider γi,j(θ) as the Lagrange multipliers associated to ui + vj ≥ Ci,j . Hence, we have the dual

formulation

max
ui,vj

∑
i

ui +
∑
j

vj

s.t. ui + vj ≥ Ci,j .

The result follows.
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E Auxiliary Results

E.1 Large Deviation Bounds

Theorem 13. (McDiarmid’s inequality) Let c(·) : Qm → R where Qm = Q × · · · × Q. For all

i ∈ {1, . . . ,m}, there exists Ci <∞ such that

sup
(q1,...,qm)∈Qm,q̃∈Q

|f(q1, . . . , qm)− f(q1, . . . , qi−1, q̃, qi+1, . . . , qm)| ≤ Ci.

Then for all probability measures p and every ε > 0,

Pr {(f(q1, . . . , qm)− E[f(q1, . . . , qm)]) > ε} < exp

(
− 2ε2∑m

i=1C
2
i

)
where the expectation is defined for (q1, . . . , qm).

Theorem 14. (Rademacher symmetrization) Let BH is the unit ball in the Hilbert space H on a

compact domain Q. The associated kernel is bounded such that 0 ≤ k(q, q′) ≤ Ck. Let Q be an

i.i.d. sample of size m drawn according to a probability measure Hθ(q) on Q, and let σi be i.i.d

random variable taking values in {−1, 1} with equal probability. The Rademacher average

Rm(BH, Q,Hθ) := EHθ,σ sup

∣∣∣∣∣ 1

m

m∑
i=1

σif(qi)

∣∣∣∣∣ ≤√(Ck/m)

where the expectation is taken w.r.t. Q ∼ Hθ and σ jointly.
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Figure 1: Point clouds of q ∼ Hnθ and q′ ∼ Pnθ0 .
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Figure 2: Point clouds of q′ ∼ Pnθ are pushed towards to q′ ∼ Pnθ0 .
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Figure 3: A matrix plot of γi,j(θ
∗).
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Figure 4: Density plots of dHnθ∗ and dPnθ∗ .
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Figure 5: Measure γi,j(θ
∗) as an optimal action.
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