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ming with Equilibrium Constraints (MPEC), following Judd and Su (2012) and demonstrate its
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1 Introduction

Full maximum-likelihood estimation of dynamic discrete choice (DDC) models is a computationally

demanding task due to the need for solving the model for any given candidate value of the unknown

parameters. This approach leads to the so-called nested-fixed point (NFXP) algorithm as described

in Rust (1988). To reduce the computational cost Hotz and Miller (1993) developed the so-called

conditional choice probability (CCP) estimator where the usual mapping taking value functions

into CCP’s used in NFXP is replaced by a policy iteration mapping that maps CCP’s into CCP’s.

This then allows the econometrician to estimate model parameters from an initial nonparametric

estimator of the CCP’s without the need of solving the model repeatedly. The CCP estimator was

further refined and a full asymptotic analysis of it developed by, amongst others, Aguirregabiria and

Mira (2002), Aguirregabiria (2004), Kasahara and Shimotsu (2008), and Kasahara and Shimotsu

(2012).

The Hotz-Miller CCP estimator was developed under the assumption that the unobserved

state variables enter additively in the per-period utility function, which rules out utility specifica-

tions employed in, for example, labour. We here extend their estimation method to allow for the

unobserved state variable to enter non-additively and to be multivariate. This extension allows

econometricians to employ the CCP estimator in more general models so broadens the scope for

computationally simple estimation of DDC models.

As a first step, we show that the arguments Hotz and Miller (1993) and Aguirregabiria

and Mira (2002) can be extended to the above mentioned broader class of models. This involves

deriving a policy iteration mapping in our more general setting, and analyzing its properties.

The invertibility result should be of independent interest since it could be used when verifying

identification of the model as done in Magnac and Thesmar (2002), who work in the same setting as

Hotz and Miller (1993). We then proceed to show that the asymptotic arguments of Aguirregabiria

(2004), Kasahara and Shimotsu (2008), and Kasahara and Shimotsu (2012) continue to hold in

our setting. In particular, we develop an asymptotic theory for our generalized CCP estimator,

showing that the estimator is first-order equivalent to the NFXP estimator and that higher-order

improvements are obtained through iterations.

The policy iteration mapping for the generalized CCP estimator is in general not available

on closed form since it involves integrals that cannot be computed analytically. However, the

integrals are low-dimensional and, using state-of-the-art numerical integration techniques, can be

computed fast and accurately. Through various numerical exercises (TBC) we (hope to....) show

that the CCP estimator remains computationally attractive in our more general set-up, while still

yielding precise estimates that are comparable to the NFXP estimator.

We also discuss some extensions, including random-coefficien models and measurement

errors, that can be accommodated for in our framework. The remainder of the paper is organized

as follows: In the next section, we present the class of DDC models for which our generalized CCP

estimator can be applied to. In Section 3, we derive a policy iteration mapping in our setup and
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analyze its properties. The policy iteration mapping is then used to develop the generalized CCP

estimator in Section 5. Section 6 discusses various aspects of the numerical implementation of

the estimator, while Section 7 contains the results of our numerical experiments. In Section 8, we

conclude by discussing some extensions.

2 Framework

Consider a succession of periods t = 0, 1, . . . , T , with T ≤ ∞ where an individual i chooses among

J + 1 alternatives dt ∈ D = {1, . . . , J + 1}. In each period, alternative d gives per-period utility

Ud (xt, εt)

where εt is a unobserved by the econometrician whereas xt is observed. We collect the state

variables in zt = (xt, εt) which is a controlled Markov process with transition dynamics described

by Fzt+1|zt,dt(zt+1|zt, dt). An Individual chooses dt that maximises lifetime utility given the current

state,

dt = arg max
d∈D

E

[
T∑
i=0

βtUd (zt+i)

∣∣∣∣∣ zt
]
.

Conditions for the existence of a solution to the above problem are given, for example, in Bhat-

tacharya and Majumdar (1989). The corresponding value function, W (zt), solves the Bellman

equation taking the form

W (zt) = max
d∈D

{
Ud (zt+1) + β

∫
W (zt+1) dFzt+1|zt,dt(zt+1|zt, dt)

}
.

We follow the literature in assuming Conditional Independence (CI):

Assumption CI. (a) The state variables are Markovian and evolve according to

Fzt+1|zt,dt(zt+1|zt, dt) = Fεt+1|xt+1
(εt+1|xt+1)Fxt+1|xt,dt(xt+1|xt, dt). (CI)

Assumption CI restricts the dependence in the (xt, εt) process. First, xt+1 is a sufficient

statistic for εt+1 implying that any serial dependence between εt, and εt+1 is transmitted entirely

through xt+1. Second, the distribution of xt+1 depends only on xt and not on εt. In applied work,

it is typical to assume that εt is iid and independent of everything else. This assumption allows us

to express the solution to the DDC model in terms of the so-called integrated (or smoothed) value

function V (xt) defined by

V (xt) =

∫
E
W (xt, εt) dFεt|xt

(εt|xt) .

More specifically, the Bellman equation can be rewritten as

V (xt) = Γ (V ) (xt) , (1)
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where Γ is the smoothed Bellman operator defined as

Γ (V ) (xt) =

∫
E

max
dt∈D

{
Ud (xt, εt) + β

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, dt)

}
dFεt|xt(εt|xt). (2)

We can then write the decision problem as

dt = arg max
d∈D

[Ud(xt, εt)− UJ+1(xt, εt) + β∆d(xt)],

where

∆d (xt) =

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, d)−

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, J + 1) (3)

is the choice-specific relative expected value function. Notice here that ∆J+1(xt) = 0. The optimal

decision rule dt induces CCP’s defined as

Pd (x) := P (dt = d|xt = x) = Qd (∆|x) ,

where Q (∆|x) = [Qd (∆|x)]Jd=1 is the CCP mapping defined as

Qd (∆|x) ≡ P (Ud(x, ε) + β∆d(x) ≥ Uj(x, ε) + β∆j(x), j ∈ D) . (4)

Consider now a parameteric specification of the utility function and the state dynamics,

Ud(zt; θ) and Fzt+1|zt,dt(zt+1|zt, dt; θ), where θ contains the unknown parameters. Given observations

(dit, xit), i = 1, ..., n and t = 1, ..., T , of n individuals acros T periods, the NFXP estimator og θ is

then defined as the maximizer of the likelihood function that takes the form

LnT (θ) = Πn
i=1ΠT

t=1Qdit (∆θ|xit; θ) fxt|xt−1,dt−1
(xit|xit−1, dit−1; θ).

Here, fxt|xt−1,dt−1
is the density w.r.t. Fxt|xt−1,dt−1

while ∆θ is given by eq. (3) with V = Vθ being

the fixed point to Vθ = Γθ (Vθ). As we search for the maximizer of the likelihood, the MLE, we

need to solve the programme in terms of Vθ repeatedly in order to compute Qd (∆θ|xit; θ), leading

to a so-called nested fixed algorithm as outlined in Rust (1988). This can be computationally

very costly, and often only an approximate version of Vθ. Furthermore, for a given (approximate)

solution, one in general also needs to approximate Qd (∆θ|xit; θ) by simulation (e.g., Keane and

Wolpin (1997)). Using this estimate we can obtain an estimate for the likelihood function which,

once maximised, will give a Simulated Maximum Likelihood estimator (or SMM as in Pakes (1986)).

In this case, the simulated version of Qd (∆θ|xit; θ) will typically be non-smooth so a non-gradient

based optimisation method (Nelder-Meade, simulated annealing, genetic algorithms, etc.) needs

to be employed or the objective function needs to be smoothed out (somehow) (Kristensen and

Schjerning (2014)).

It is nevertheless possible to reduce the computational burden above using an insight from

Hotz and Miller (1993) who considered models with additively separable utility and choice-specific

scalar unobservables,

Ud (zt) = Ud (xt) + εdt with εt = (ε1t, ..., εJ+1t)
′ . (AS)
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This assumption (together with Extreme Value Type 1 residuals) is also employed by Rust (1987), to

obtain the likelihood function numerically. Hotz and Miller (1993) show that, with two alternatives

(J = 1) for simplicity1, that the CCP mapping can be expressed as

Q1 (∆θ|xit) = Fε2t−ε1t|xt(U1(xt)− U2(xt)− β∆1(xt)|xt),

which is invertible such that

∆1(xt) =
(
F−1
ε2t−ε1t|xt

(P1 (xt) + U2(xt)− U1(xt)
)
/β.

Under Extreme Value Type 1 distributed residuals, for example,

∆1(xt) = ln
P1 (xt) + U2(xt)− U1(xt)

1− P1 (xt)− U2(xt) + U1(xt)

/
β

The existence and computation of the inversion is not so transparent with more than two alterna-

tives and general distributions for the residuals but can be done. The invertibility is established in

Proposition 1 of Hotz and Miller (1993). This result was then used to derive an estimator of θ that

bypassed the need for solving the model for each putative value of θ required for the implementation

of the NFXP estimator.

Assumption AS, though adequate in a few settings and convenient for some of the estimation

strategies, is not always desirable or employed (e.g., Todd and Wolpin (2006)). In this case, the

usual strategy so far has been to implement the NFXP estimator described above. The goal of this

paper is to generalize the results of Hotz and Miller (1993) to the above more general framework

where errors are allowed to enter the utility function non-additively and the choice-specific errors

may not be scalar: In the next two sections, we first establish that under certain conditions on the

utility function, Q (∆|x) defines an invertible mapping between the CCP’s and the relative value

functions, and that Vθ can be expressed as a functional of the CCP’s. We then show how these two

mappings allow us to bypass solving the model in order to learn about the parameters from data,

and so lead to a computationally simpler and faster estimator of θ.

3 Policy Iteration Mapping

In this section, we show that there exists a mapping Ψ (P) for which the CCP’s is a unique fixed

point, P =Ψ (P). As a first step in deriving this mapping and establishing the fixed-point result, we

analyze the properties of Q. For notational simplicity, we suppress any dependence on the model

parameters θ in the following.

3.1 Invertibility of CCP Mapping

We here show that the CCP mapping Q (∆|d) is invertible w.r.t. the vector of relative expected

value function, ∆(xt) = (∆1(xt), ...,∆J(xt)), defined in eq. (3). To establish the invertibility result,

we adopt the following Random Utility (RU) Assumption:

1With more alternatives, this expression will involve multiple integrals over the space of unobservables.
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Assumption RU. The conditional distribution of the random utility functions

Ut := (U1(xt, εt), ..., UJ+1(xt, εt))

given xt = x, has a continuous distribution FUt|xt (u|x) with rectangular support on RJ+1.

Assumption RU is implied by the following more primitive conditions that covers the case

of a scalar alternative-specific unobservable:

Lemma 1 Assumption RU holds under the following conditions: (i) εt = (ε1t, ...., εJ+1t) and

Ud(xt, εt) = Ud(xt, εdt); (ii) Ud(x, ·) is strictly increasing for every x; (iii) Fεt|xt (εt|xt) is abso-

lutely continuous with rectangular support.

Proof. Under (i)-(ii), the mapping εt 7→ U(xt, εt) = (U1(xt, ε1t), ..., UJ+1(xt, εJ+1t)) is one-to-one.

Furthermore, (ii) implies that Ud(x, ·) is differentiable (Lebesgue-)almost everywhere (though not

necessarily everywhere). We can therefore employ the theorem regarding differentiable transforma-

tions of continuous random variables to obtain that Ut|xt has a density given by

fUt|xt (u|x) = fεt|xt
(
U−1(x, u)|x

) ∣∣∣∣∂U−1(x, u)

∂u

∣∣∣∣ ,
where U−1(x, u) =

(
U−1

1 (x, u1), ..., U−1
J+1(x, uJ+1)

)
is the inverse of U(x, ε) w.r.t. ε. Finally, given

that εt|xt has rectangular support and εdt 7→ Ud(xt, εdt) is strictly increasing, then Ut|xt must also

have rectangular support.

Another specification that falls within the framework of Assumption RU is random coefficient-

type models. Consider, for example, the following utility specification:

Ud(xt, εt) = θ′txt + ηdt, (5)

where εt = (θt, ηt) with ηt = (η1t, ..., ηJ+1t) and θt being random coefficients that vary across

individuals.

Lemma 2 Assumption RU holds for the random coefficient specification in eq. (5) if {θt} ⊥ ηt|xt
with θt|xt and ηt|xt being continuously distributed with rectangular supports.

Proof. Under (i)-(ii), Ut|xt has a continuous distribution with density

fUt|xt (u|x) =

∫
Θ
fηt|xt

(
u− θ′x|x

)
fθt|x (θ|x) dθ.

Since θt|xt and ηt|xt has rectangular support and vary independently of each other, Ud,t = θ′xt+ηt

also has rectangular support.

We now derive an expression for the CCP mapping Q (∆|x) under Assumption RU. To this

end, observe that alternative d is chosen whenever

Ud(xt, εt)− Uj(xt, εt) + β(∆d(xt)−∆j(xt)) ≥ 0⇔ Ud(xt, εt) + β(∆d(xt)−∆j(xt)) ≥ Uj(xt, εt)
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for all j ∈ D. Thus, Qd(∆|x), ∆ ∈ RJ , as defined in eq. () can be expressed as

Qd(∆|x) =

∫ ∞
ud=−∞

∫ ud+β(∆d−∆1)

u1=−∞
. . .

∫ ud+β∆d

uJ+1=−∞
dFUt|xt (u|x) (6)

=

∫ ∞
ud=−∞

∂dFUt|xt
(ud + β(∆d −∆1), . . . , ud, . . . , ud + β∆d|x)dud,

with ∂d denoting the partial derivative with respect to the d-th argument, ud; this derivative is

well-defined due to the assumption of FUt|xt being absolutely continuous. It is noteworthy that Qd

depends on β, U and x.

We are now in shape to establish the following result:

Theorem 3 Under Assumptions CI and RU, for any x ∈ X , ∆ 7→ Q(∆|x) ≡ [Qj(∆|x)]Jj=1 is

continuously differentiable and invertible.

Proof. For any j ∈ D, Qj(∆|x) is the integral of the function ∂jFUt|xt(uj+β(∆j−∆1), . . . , uj , . . . , uj+

β∆j |x) with respect to uj . Since this function is positive and integrable, the Dominated Conver-

gence Theorem allows us to express the derivative of Qj with respect to ∆k as the integral of the

derivative of that function with respect to ∆k. Moreover, because Qj ∈ [0, 1], its derivative with

respect to ∆k is finite almost-everywhere, and the Jacobian of Q(∆|x) (with respect to ∆) is given

by D(∆|x) = [Djk(∆|x)]Jj,k=1 where

Djj(∆|x) =
∑
k 6=j

hjk, Djk(∆|x) = −hjk for j 6= k,

with

hjk := β

∫ ∞
uj=−∞

∂2
jkFUt|xt(uj + β(∆j −∆1), . . . , uj , . . . , uj + β∆j |x)duj

for k 6= j, and

hjj :=

∫ ∞
uj=−∞

∂2
jjFUt|xt(uj + β(∆j −∆1), . . . , uj , . . . , uj + β∆j |x)duj .

Notice that since Qj is infinite, then hj1, . . . , hjJ must be finite almost-everywhere. Furthermore,

|Djj | =
∑

i=1,...,J,i 6=j |Dji|+hjJ+1 >
∑

i=1,...,J,i 6=j |Dji|. This implies that D has a dominant diagonal

(see McKenzie (1959), p. 47). Because it is also equal to its diagonal form (see McKenzie (1959),

p. 60), all its principal minors are positive (see McKenzie (1959), Theorem 4’ on p. 60). Then, D

is a P-matrix (i.e., all its principal minors are positive) (see Gale and Nikaidô (1965), p. 84). Since

Q is defined on the support of Ut|xt = x, which is rectangular, we can then apply Theorem 4 in

Gale and Nikaidô (1965) which states that Q is univalent (i.e., invertible).

The result above establishes that one can travel from CCP’s to (relative) value functions.

This generalises the results of Hotz and Miller (1993) (Proposition 1) to the non separable case:

Hotz and Miller (1993) imposes the assumption of Additive Separability (AS). The proof consists
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of two steps: (i) showing local invertibility using the Inverse Function Theorem; and (ii) showing

that the inversion holds globally. Our proof uses (global) univalence results typically used in the

general equilibrium literature. Alternatively, one could also prove the invertibility using the results

in Pallais (1959) (after mapping the conditional choice probabilities into the whole Euclidean space

as in Chiappori, Komunjer, and Kristensen (2013)), which provides conditions for a given mapping

of RJ onto RJ to be a diffeomorphism or those in Berry, Gandhi, and Haile (2013).2

We end this section by observing that Q (∆|x) also induces a functional Λ (V ) that maps

the integrated value function into CCP’s. With M (V ) = [Md (V )]Jd=1 defined as

Md (V ) (xt) :=

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, d)−

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, J + 1), (7)

d = 1, ..., J , we obtain from eqs. (3) and (4) that

P =Λ (V ) := Q (M (V )) . (8)

3.2 Policy Valuation Operator

The next step in order to extend the results of Aguirregabiria and Mira (2002) to our more general

set-up is to show that there also exists an invertible mapping ϕ (P) taking the first J CCP’s, P (x)

into the the intergrated value function V , V = ϕ (P). As a first step towards establishing the

existence of ϕ, we first note that the smoothed value function V (x) solves eq. (1). The smoothed

Bellman operator Γ (V ) is a contraction mapping under the following condition, c.f. Theorem 1 in

Rust, Traub, and Woznikowski (2002):

Assumption CO. The vector of state variables, xt, has compact support.

More general conditions for the contraction property to hold, allowing for unbounded state

space, can be found in Bhattacharya and Majumdar (1989); see also Norets (2010). We here main-

tain Assumption CO since this facilitates some of the more technical arguments in the following.

The potentially costly step in solving the Bellman equation in (1) is solving a large number

of maximization problems. As noted by Hotz and Miller (1993) and Aguirregabiria and Mira

(2002), an alternative Bellman operator can be expressed in terms of the choice probabilities P.

This alternative Bellman operator, which we denote as Γ∗ (V,P) maps integrated value functions

into integrated value functions. Note that we explicitly state Γ∗’s dependence on P. As in eq. (5)

of Aguirregabiria and Mira (2002), using that the data-generating CCP’s Pd(xt) are induced by the

optimal decision rule, Γ∗ can be written as a functional of (V,P),

Γ∗ (V,P) (xt) =
∑
d∈D

Pd(xt)
{
Ud (P) (xt) + β

∫
X
V (xt+1) dFxt+1|xt,d(xt+1|xt, d)

}
. (9)

2Arguments similar to those provided in Proposition 1 from Hotz and Miller (1993) could also be adapted to

the nonseparable case. Nevertheless, as pointed out in Berry, Gandhi, and Haile (2013), that proof establishes only

local invertibility. In addition, under certain restrictions on the distribution of unobservables and preferences, the

contraction mapping used in Berry, Levinsohn, and Pakes (1995) could also be used to demonstrate injectivity.
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where Ud (P) (xt) := E [Ud(xt, εt)|xt, d] denotes expectations w.r.t. εt conditional on the optimal

decision rule. Given that P is optimal from the discussion above, we have that P = Q(∆|x). As a

result, in our setup Ud satisfies

Ud (P) (xt) =

∫
E
Ud(xt, εt)Id(P) (xt, εt) dF εt|xt (εt|xt) /Pd (xt) (10)

where the function Id is an indicator that equals one if choice d is optimal,

Id(P) (xt, εt) = I {Ud (xt, εt)− Uj (xt, εt) + β (∆d(P)(xt)−∆j(P)(xt)) ≥ 0 : ∀j} . (11)

Here, ∆(P)(xt) ≡ Q−1 (P) (xt) is well-defined due to Theorem 3.

The operator Γ∗ is is a contraction w.r.t. V for any given P. As a result, it has a unique

fixed point and the optimal value function is the unique solution to the above integral equation.

Since Γ∗ has been expressed as an operator w.r.t. (V,P), its fixed point V can be expressed as a

functional of P, V = ϕ (P). The functional ϕ (P) is implicity defined by

ϕ (P) = Γ∗ (ϕ (P) ,P) . (12)

Note that the above definition of ϕ (P) implicitly makes use of Theorem 3 since we have employed

that ∆ = Q−1 (P) in its derivation.

The solution of (12) cannot be written explicitly since the operator Γ∗ is not available in

closed form. Thus, in general, numerical approximations must be employed, see Srisuma and Linton

(2012). However, when xt ∈
{
x1, ...xM

}
has discrete support, the solution is easily computed. In

that, case the operator equation is a matrix equation and can be easily inverted as discussed in

Section 5.

The benefit of this representation is that solution of the Bellman equation using maximiza-

tion over a high dimensional state space is replaced with inversion of a linear operator equation.

In effect, data on P are used to compute optimal behaviour obviating the need to solve the maxi-

mization problem repeatedly.

3.3 Policy Iteration Mapping

In previous subsections we showed that the choice probabilities can be written as a functional Λ

of the integrated value function V , and that V can also be written as a functional ϕ of the choice

probabilities, where Λ and ϕ are defined in eq. (8) and (12), respectively. We now combine the two

mappings Λ and ϕ to obtain that P must satisfy

P =Ψ (P) , Ψ (P) := Λ (ϕ (P)) . (13)

The mapping Ψ defines our policy iteration mapping. The following theorem is a generalization

of Propositions 1-2 in Aguirregabiria and Mira (2002) (see also Proposition 1 in Kasahara and

Shimotsu (2008)) stating some important properties of the policy iteration mapping:
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Theorem 4 Let Ψ and ϕ be defined in eqs. (13) and (12), respectively. Under Assumptions CI,

RU and CO:

(a) P 7→ Ψ (P) has a unique fixed point at P.

(b) The Frechet derivatives of ϕ (P) and Ψ (P) w.r.t. P are zero at the fixed point P.

Proof. Let V0 and P0 denote the value function and choice probabilities induced by the optimal

decision rule.

The proof of (a) follows along the same lines as the proof of Proposition 1(a) in Aguirre-

gabiria and Mira (2002): First note that the integrated Bellman operator V 7→ Γ (V ) is a contraction

mapping. Suppose now that P is some fixed point of Ψ (P) = Λ (ϕ (P)). That is, P = Λ (ϕ (P)) and

so, using eq. (9) and the definition of ϕ,

Γ (ϕ (P)) =
∑
d∈D

Λd (ϕ (P))
{
Ud (Λ (ϕ (P))) + βFdϕ (P)

}
=

∑
d∈D

Pd
{
Ud (P) + βFdϕ (P)

}
= ϕ (P) .

We conclude that if P is a fixed point of Ψ, then ϕ (P) is a fixed point of Γ. Now, suppose

that P1 and P2 are both fixed points of Ψ. Then ϕ (P1) and ϕ (P2) are both fixed points of Γ and

so ϕ (P1) = ϕ (P2) since Γ is a contraction. But then P1 = Λ (ϕ (P1)) = Λ (ϕ (P2)) = P2. Thus, Ψ

has a unique fixed point which is P0.

Part (b) follows by the same arguments as in the proof of Proposition 1 in Kasahara and

Shimotsu (2008): They consider the case of additively separable utility on the form ud (xt) + edt

where ud (xt) and et denote the observed and unobserved component of the utility. Now, set

ud (xt) := 0 and edt := Udt = Ud(xt, εt) and recall that the random utilities Ut = (U1t, ..., UJt) ∈ U
has conditional distribution FUt|xt

(u|x) satisfying Assumption RU. Thus, edt, as defined above,

satisfies the conditions of Kasahara and Shimotsu (2008) and their arguments apply. For example,

Ūd (P) (x) = E [Udt|xt, dt]

=

∫
U
UdtI

{
Udt − Ujt + β

[
Q−1
d (P) (xt)−Q−1

d (P) (xt)
]
≥ 0 : j ∈ D

}
dFUt|xt

(Ut|xt),

and we can recycle the arguments in the proof of Lemma 1 of Aguirregabiria and Mira (2002) to

obtain that
∂
[∑

j∈D PjŪj (P)
]

∂P
= Q−1 (P) .

It now easily follows by the same arguments as in Kasahara and Shimotsu (2008) that the Frechet

derivatives of ϕ (P) and Ψ
(
P, Q−1 (P)

)
are zero at the fixed point.

The above properties will prove important when analyzing the CCP estimator in the next

section. In particular, they ensure that the first-step estimation of P, will not affect the first-order

properties of the resulting estimator of θ.
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4 Generalized CCP Estimator

Having derived the policy iteration mapping Ψ, we are now in a position to extend the CCP-

based estimator of Hotz and Miller (1993) and Aguirregabiria and Mira (2002) to our more general

framework. Let fxt+1|xt,dt , fεt+1|xt+1
and Ud(·) be indexed by parameter vectors θ1, θ2 and θ3

respectively. We collect these in θ = (θ1, θ2, θ3). Given the policy iteration mapping Ψ that we

derived in the previous section, we can now rewrite the likelihood function in terms of the CCP’s,

Ln,T (θ) = Πn
i=1ΠT

t=1Pdit (xit; θ) fxt+1|xt,dt(xit|xit−1, dit−1, θ1)

subject to P (x; θ) solving the fixed point problem

P (x; θ) = Ψ(P (·; θ)) (x; θ) . (14)

Maximizing Ln,T (θ) with respect to θ corresponds to the NFXP algorithm, except that we now

express the fixed-point problem in terms of CCP’s instead of value functions. As before, computing

Ln,T (θ) for a putative value of θ requires solving eq. (14) w.r.t. P (x; θ); this involves repeated

computation of Ψ(P) as we search for the solution in the space of CCP’s.

We can sidestep the calculation of P (x; θ) for each putative parameter value θ as we search

for a MLE by utilizing that the choice probabilities should satisfy eq. (13): First obtain an initial

estimator of the CCP’s, say, P̂(0). This could, for example, be the nonparametric estimator given

by

P̂(0)
d (x) =

n∑
i=1

T∑
t=1

I {dit = d, xit = x} / (nT ) ,

when xt has discrete support. We will, however, not restrict our attention to this particular

estimator and will, for example, allow for kernel smoothed CCP estimators for the case when xt

has continuous support as in Linton and Srisuma (2012). We then use P̂(0) to define the following

pseudo-likelihood function,

L̂n,T (θ) = Πn
i=1ΠT

t=1Ψdit(P̂
(0)) (xit; θ) fxt+1|xt,dt(xit|xit−1, dit−1, θ1). (15)

Maximizing L̂n,T (θ), instead of Ln,T (θ), entails computational gains since it does not involve solving

eq. (14) w.r.t. P (x; θ) for a putative parameter value θ.

We discuss in more detail how the PMLE that maximizes L̂n,T (θ) can be implemented in

the next section. We would however already here like to point out that the evaluation of Ψ(P) (x; θ)

is complicated by the fact that it involves computing the inverse Q−1 (P; θ), which enters Ψ(P) (x; θ)

through Id(P) (xt, εt) as defined in eq. (11). The numerical inversion of Q can be time consuming,

and so one may wish to avoid this issue. This can be done by redefining Id(P) (xt, εt) as an operator

w.r.t. both P and ∆,

Id(P,∆) (xt, εt) = I {Ud (xt, εt)− Uj (xt, εt) + β (∆d(xt)−∆j(xt)) ≥ 0 : ∀j} , (16)
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and the letting Ψdit(P,∆) be the corresponding policy iteration mapping. Instead of maximizing

L̂n,T (θ), we can then estimate θ by maximizing

L̃n,T (θ,∆) = Πn
i=1ΠT

t=1Ψdit(P̂
(0),∆) (xit; θ) fxt+1|xt,dt(xit|xit−1, dit−1, θ1) (17)

w.r.t. (θ,∆) subject to ∆ satisfying

P̂(0) (x) = Q (∆) (x; θ) . (18)

By formulating the problem in this way, we sidestep the need for computing Q−1. Moreover,

Proposition 1 in Judd and Su (2012) gives that the two PML estimators are equivalent if we ignore

the numerical issues involved in maximizing either of the two likelihoods and inverting Q. We will

therefore in the statistical analysis not differentiate between the two estimators. It should be noted

though that the above constrained optimization problem involves maximizing over the space for ∆

which in general is an infinite-dimensional function space when xt is continuous. However, if xt is

discrete then ∆ lies in a Euclidean space which facilitates solving the above maximization problem.

If one does not have many observations, one drawback of the PMLE is its reliance on non-

parametric estimation of the CCP’s. But we can use iterations to improve its efficiency properties

as in Aguirregabiria and Mira (2002). Starting with the initial estimate P̂(0), we take as input in

iteration K ≥ 1 an estimator P̂(K) and then let θ̂(K+1) maximize

L̂n,T (θ) = Πn
i=1ΠT

t=1Ψdit(P̂
(K)) (xit; θ) fxt+1|xt,dt(xit|xit−1, dit−1, θ1). (19)

We use these estimates to update the CCP’s that are then used in the next step,

P̂(K+1) = Ψ
(
P̂(K); θ̂(K+1)

)
.

This iterative process follows the suggestion in Aguirregabiria and Mira (2002). One could alterna-

tively employ one of the modified versions proposed in Kasahara and Shimotsu (2008). Similarly,

one can develop an iterative version of the alternative maximization problem defined in eqs. (17)-

(18).

Finally, to further facilitate implementation, one can use the following two-step procedure

in each iteration: First compute

θ̂1 = arg max
θ1∈Θ1

Πn
i=1ΠT

t=1fxt+1|xt,dt(xit|xit−1, dit−1, θ1),

and then

(θ̂2, θ̂3) = arg max
θk∈Θk,k=2,3

∆

Πn
i=1ΠT

t=1Ψdit(P̂
(K))(xit; θ̂1, θ2, θ3).

Again, there will in general be a loss of statistical efficiency from doing so, but this may be off-set

by computational gains.

To analyze the properties of the (iterative) PMLE, we will assume that the initial CCP

estimator satisfies:
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Assumption P. For some γ > 0, P̂(0)(x) = P(x) + oP (n−γ) uniformly in x ∈ X .

Assumption P allows for a broad class of intial estimators, including nonparametric kernel

smoothers when xt is continuously distributed. Under Assumption P, we will establish convergence

rate of the estimator and show that the PMLE is first order equivalent (that is, up to an error term

of order oP (1/
√
n)) to the MLE.

In addition to Assumption P, we also need to impose some regularity conditions on the

model to ensure identification and smoothness:

Assumption PML. {(dit, xit) : t = 1, ..., T}, i = 1, ..., n, are i.i.d.; the true parameter value θ0 =

(θ0,1, θ0,2, θ0,3) lies in the interior of a compact parameter space Θ such that fxt|xt−1
(x′|x, d; θ1) =

fxt|xt−1
(x′|x, d; θ0,1), Pd(x, θ) = Pd(x) and Ψd (P)(x; θ) = Pd (x) implies θ = θ0; θ̂1 =

θ0,1 + OP (1/
√
n); the MLE satisfies

√
n(θ̂MLE − θ0) →d N

(
0, I−1

)
; Ψd (P)(x, ; θ) is three

times Frechet-differentiable w.r.t. P and is strictly positive for all (d, x,P; θ); the sth Frechet

derivative DsΨd (P)(x; θ) w.r.t. P satisfies E
[
supθ∈Θ ‖DsΨd (P)(xt; θ)‖2

]
< ∞, s = 1, 2, 3;

Ψd (P)(x, ; θ) is three times continuously differentiable w.r.t. θ, and its derivatives are uni-

formly bounded and Lipschitz continuous.

The above conditions are identical to the ones in Assumption 4 of Kasahara and Shimotsu

(2008). These are high-level conditions, and could be replaced by more primitive conditions involv-

ing the underlying utility function and transition densities for (xt, εt) as in Rust (1988). We will

not pursue this here though.

We first analyze the effects from replacing the true set of choice probabilities, P, with an

estimator, P̂(K), and how this effect evolves as the number of iterations K increases. Following

the arguments of Kasahara and Shimotsu (2008), we obtain the following higher-order expansion

showing how the first-step estimation of the CCPs and the number of iterations affect the PMLE:

Theorem 5 Under Assumptions CI, RU, CO, P and PML, as n→∞,∥∥∥θ̂(K) − θ̂
∥∥∥ = OP

(
n−1/2

∥∥∥P̂(K−1) − P
∥∥∥)+OP

(∥∥∥P̂(K−1) − P
∥∥∥2
)
,∥∥∥P̂(K) − P

∥∥∥ = OP

(∥∥∥θ̂(K) − θ̂
∥∥∥) ,

where θ̂ is the MLE.

Proof. The proof is identical to the one of Proposition 2 of Kasahara and Shimotsu (2008) except

that their Proposition 1 is replaced by our Theorem 4. The proof in Kasahara and Shimotsu (2008)

also relies on their Lemmas 7-8, but by inspection it is easily seen that these lemmas remain valid

in our setting by the same arguments as employed in the proof of Theorem 4: They consider the

case where the per-period utility is additively separable. That is, it takes the form ud (xt) + edt,

where we use ud (xt) and et to denote the observed and unobserved component of the utility as
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imposed their work. Setting ud (xt) := 0 and edt := Ud(xt, εt), our assumptions CI and RU now

imply Assumptions 1-3 of Kasahara and Shimotsu (2008). Furthermore, our Assumption PML

implies their Assumption 4.

One particular consequence of the above result is that if the convergence rate γ > 1/4, then

the PMLE is first-order equivalent to the exact MLE:

Corollary 6 Under Assumptions CI, RU, CO, P and PML,
∥∥∥θ̂(K) − θ̂

∥∥∥ = OP
(
n−K/2−2γ

)
for

K = 1, 2, .... In particular, if γ > 1/4 in Assumption P then for any fixed K ≥ 1,

√
n(θ̂(K) − θ0)→d N

(
0, I−1

T (θ0)
)
,

where IT (θ) is the T -period asymptotic information matrix,

IT (θ) = −
T∑
t=1

E

[
∂2 logP (dt|xt, θ)

∂θ∂θ′
+
∂2 log fxt+1|xt,dt(xit|xit−1, dit−1, θ)

∂θ∂θ′

]
.

The above result shows that asymptotically, the PMLE is first-order equivalent to the

MLE when the initial CCP estimator converges with rate oP
(
n−1/4

)
in which case the first-step

estimation of P has no impact on the estimation of θ. However, as Theorem 5 shows, the higher-

order properties of the PMLE and the MLE will in general not be identical and so we recommend

to that the bootstrap procedure as proposed in Kasahara and Shimotsu (2008) is implemented in

order to get a better approximation of the finite-sample distribution of the PMLE.

5 Numerical implementation

Here we will discuss the numerical implementation of the CCP estimator developed in the previous

section.

5.1 Computation of Q

Recall that in general

Qd(∆|x) =

∫ ∞
ud=−∞

∂dFUt|xt(ud + β(∆d −∆1), . . . , ud, . . . , ud + β∆d|x)dud,

which requires knowledge of ∂dFUt|xt . Under the conditions of Lemma 1, where Ud(x, ε) = Ud(x, εd),

we obtain

Qd(∆|x) =

∫ ∞
εd=−∞

∂dFεt|xt(U
−1
1 (x, Ud(x, εd) + β(∆d −∆1)), . . . , εd, . . . ,

U−1
J+1(x, Ud(x, εd) + β∆d)|x)dεd.

Assuming ∂dFεt|xt is available on analytical form, this can be computed using numerical integration.
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5.2 Computation of PMLE

This section will describe our numerical implementation of the estimator.

1. Estimate P0.

2. Estimate θ1 of data on (xt, dt).

3. Guess (θ, V,∆).

4. Compute Λ(dit|xit, V, θ) and the gradient with respect to (θ, V ). This requires us to compute

a J dimensional numerical integral using methods based on Genz and Bretz (2009).

5. Compute constraint (??) and its gradient: V − Γ∗(V,P0,∆). This step merely requires com-

putation of several sums and simple integrals.

6. Compute inversion constraint P0 −Q(∆, xit). This step requires computation of a J dimen-

sional numerical integral as above.

It should be noted that when xt is discrete valued then there are a finite number of con-

straints. If xt is continuous, we will approximate V =
∑

k αvkBk(x). In this latter case the

maximization is over (θ, αv). Recall also that Γ∗ depends implicitly on the inverse ∆ = Q−1(P).

We first discuss the case where the support of xt is discrete and then the case where it is continuous.

5.2.1 Discrete xt

Let X = {x1, ...xM} be the discrete support of xt. Then P can be expressed as a (J ×M)-matrix,

P := (P1, . . . ,PJ)> ∈ RJ×M .

5.2.2 Continuous xt

As in Linton and Srisuma (2012).

6 Numerical Results

TBC

7 Extensions

7.1 Wages

Consider an occupational choice model where the econometrician observes the wages received at the

chosen occupation. In this case, suppose that the utilty in occupation d is given by U(wd; γ), where
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wd is the wage in that sector and U(·; γ) is increasing (e.g., U(wd; γ) = w1−γ
d /(1− γ) or simply wd

as in Keane and Wolpin (1997)). For simplicity, we omit the parameter γ in what follows. Assume

in addition that

lnwd = x>θd + εd

as is common. Notice that the probability density function for lnwd given that sector d is chosen

and given x is

∂dFεt|xt
(U−1

1 (x, Ud(x, εd) + β(∆d −∆1)), . . . , εd, . . . , U
−1
J+1(x, Ud(x, εd) + β∆d)|x)

Pd(d|x)

∣∣∣∣∣
εd=lnwd−x>θd

.

Then, the analysis proceeds as before with the estimator (in iteration K) obtained by maximizing

L̂n,T (θ) = Πn
i=1ΠT

t=1Ψdit(P̂(K)) (xit; θ) flnwd|x,d(lnwiditt|xit, dit)×

fxt+1|xt,dt(xit|xit−1, dit−1, θ1)

7.2 Types

If there are L time-invariant types indexed by l ∈ {1, ..., L} (which do not affect the transition law

for the state variables), the pseudo-likelihood now becomes:

Ln,T (θ, π) = Πn
i=1

L∑
l=1

πlΠ
T
t=1Ψdit(P̂

(K) (l)) (xit; θ, l) fxt+1|xt,dt(xit|xit−1, dit−1, θ1),

that we maximize w.r.t. θ. Notice that now all the appropriate functions are conditional on the

type l. Once initial values for the (type specific) conditional choice probabilities, we can proceed

as before (see Aguirregabiria and Mira (2007)). Alternatively, in each iteration we can follow

Arcidiacono and Miller (2011) and, letting P̂(K) ≡ (P̂(K)(1), . . . , P̂(K)(L)) be the k-th iteration

type-specific CCPs, use a sequential EM algorithm that:

1. (E-Step) Given current estimates (θ̂K , π̂Kl ), calculate

P̂K+1
dnt

(
l, x−nt

)
=

π̂Kl
∏T
t=1 Ψdnt(P̂(K) (l))

(
x−nt; θ̂

K , l
)

∑
s′ π̂

K
l′
∏T
t=1 Ψdnt(P̂(K) (l))

(
x−nt; θ̂

K , l′
)

which follows from Bayes’ rule;

2. (M-Step) Update the estimate to θ̂K+1 by maximizing the likelihood function above substi-

tuting P̂K+1
dnt

(
l, x−nt

)
for πl. This would be done using MPEC.

3. (M-Step) Update π̂K+1
s as

1

N

N∑
n=1

P̂K+1
dnt

(
l, x−nt

)
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4. Update the type-specific CCPs using:

P̂K+1
1

(
l, x−nt

)
=

∑
n

∑
t dntPK+1(ln = l|dnt, x−nt; θ̂K , π̂K , P̂K)1(xnt = x)∑

n

∑
t PK+1(ln = l|dnt, x−nt; θ̂K , π̂K , P̂K)1(xnt = x)

The value at which one initializes P̂(0) should be immaterial (in the limit) in either case.

Arcidiacono and Miller (2011) mention that “[n]atural candidates for these initial values

come from estimating a model without any unobserved heterogeneity and perturbing the

estimates” (p.1848). Aguirregabiria and Mira (2002) show that their estimator (without

types) converges to a “root of the likelihood function” if initialized at arbitrary CCPs (and

is consistent if initialized at a consistent estimator of the CCPs). Arcidiacono and Miller

(2011) claim that (if identified) their estimator is consistent (but the proof is not in the main

text). (Arcidiacono and Miller (2011) allow the type to be time-varying.) An alternative is

to obtain estimates for the CCPs from the suggestions in Kasahara and Shimotsu (2009) or

Bonhomme, Jochmans, and Robin (2014). One will also need to say something about the

initial conditions problem.
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