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Abstract

We study the implications of uncertainty about risk loadings for mutual fund in-

vestors’ capital allocation decisions. We show that the signal-to-noise ratio is higher

and rational investors give more weight to performance signals when market returns are

moderate, compared to times of very high or low market returns. Consistent with the

model predictions, the flow-performance relation is about twice as steep in moderate

times, and the difference is larger for types of funds with more uncertainty about risk

loadings. The model-implied degree of parameter uncertainty is consistent with direct

estimates of parameter uncertainty from fund holdings and daily returns.
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1 Introduction

How do investors allocate capital to risky investments when they are uncertain about both the

projects’ future cash flows and their risk exposure? For example, how do mutual fund investors

evaluate a manager’s performance if they do not precisely know how much systematic risk the

manager took to generate the reported returns? The existing mutual fund literature posits that

investors learn about the fund manager’s skill from risk-adjusted performance, implicitly assuming

that the fund’s risk loading is known to investors (Berk and Green, 2004). However, in practice, even

if investors make efficient use of all available information on fund returns and reported portfolio

holdings, substantial uncertainty remains about mutual funds’ exposure to systematic risk.1 Such

uncertainty makes the inference about managerial skill more complicated: at any given point in time,

investors simply do not exactly know what risk loading they should use to compute risk-adjusted

returns. This paper provides a theoretical model and empirical analysis to show that uncertainty

about risk loadings has first-order implications for investors’ reaction to fund performance – i.e.,

the flow-performance sensitivity (FPS).

The model’s mechanics are simple. Investors are uncertain both about managers’ ability to

generate risk-adjusted performance (alpha) and the funds’ risk loading (beta). Their goal is to

update beliefs about alpha, using realized returns as a signal. The signal is polluted by two sources

of noise: one is idiosyncratic risk, also considered in the existing literature. The other is the product

of the market-wide risk factor realization and investors’ beliefs about the fund’s risk factor loading.

Therefore, given uncertainty about risk loadings, the realization of the risk factor affects the signal-

to-noise-ratio, which is the weight that investors put on a given observation, and thus the speed of

learning. Specifically, when the factor realization is close to zero, the risk uncertainty is multiplied

by a small number and, therefore, it is a less important obstacle to inference. As a result, investors

1One reason is that holdings are reported only quarterly and intra-quarter portfolio changes are hidden from
investors (Kacperczyk, Sialm, and Zheng, 2008). Another is that the well-known Merton (1980) result derives its
power from a quasi-continuous observation of returns, but mutual fund returns are available at most at a daily
frequency.
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put more weight on the observation, and more capital is reallocated. By contrast, during times of

extreme market movements in either direction, the uncertainty about risk loadings is compounded

by a large risk-factor realization, so that investors’ inference about managerial skill is obstructed by

more noise. As a result, for a given risk-adjusted performance signal, rational investors reallocate

less capital when markets make large moves up or down and inefficient allocations persist longer.

We test both the qualitative and quantitative predictions of the model. First, we study whether

mutual funds’ FPS depends on risk-factor realizations, which we proxy with the return of the

market portfolio in excess of the risk-free rate. We find that the FPS is 50% to 130% larger in

“moderate” times (quarterly excess market returns between -5% and +5%) compared to “extreme”

times with larger absolute market returns. These results confirm the main qualitative prediction of

our model and reject the null hypothesis of a constant FPS across market states, which is implied

by existing models that do not allow for uncertain risk exposure.

According to the theory, such FPS-variation across market states should be unique to funds

with uncertain risk loadings. Index funds, which minimize the tracking error with respect to their

benchmark, do not require learning about manager’s skill and risk loading, and should therefore

not exhibit FPS-variation across market states. Indeed, no such difference exists for index funds.

Table 1 summarizes these key findings.

To strengthen the identification of our model beyond this simple difference across market states,

we test more subtle model predictions as well. Specifically, the difference in FPS across market states

should be more pronounced for types of active funds that display a higher relative uncertainty in

betas (that is, a higher ratio of risk uncertainty to skill uncertainty). We draw inspiration from

two papers in the literature to identify such funds. Cremers and Petajisto (2009) label funds as

“Concentrated” if they deviate more than the median fund from their benchmark in terms of both

stock selection (active share) and market timing (tracking error). Indeed, we find that Concentrated

funds are characterized by higher beta uncertainty, indicating that investors in such funds have more

difficulty inferring the fund’s beta from its benchmark. Relatedly, Kacperczyk, Sialm, and Zheng
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Table 1: The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual

fund unexpected returns (flow-performance sensitivity, FPS) for Extreme and Moderate times. We compute quarterly flows as

the quarterly change in assets under management minus the dollar return on assets under management over the quarter and

expressed as a fraction of prior-quarter assets. Unexpected returns are the average of daily returns (in excess of the risk-free

rate) minus the daily beta times the daily realization of the market return (this variable is then expressed as a quarterly

return, scaling it by the number of days in a quarter). We estimate daily betas by combining information on reported holdings

at the end of the prior quarter and daily changes in a set of conditioning variables. The regressions include the following

controls: total flows into funds with the same CRSP objective code; the total expense ratio of the fund; the logarithm of assets

under management; the fund turnover ratio; return volatility over the prior 12 months; fund age computed as the number of

quarters since the first appearance in CRSP; one-quarter lagged flows. Moderate times are defined as the quarters in which the

realizations of the CRSP value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme quarters

are all other quarters. The sample ranges from 1998:Q3 to 2012:Q2. T-statistics are reported in parentheses. ***, **, and *

represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Extreme Moderate Moder. minus Extr.

Panel A: Active Funds

Flow-Performance Sensitivity 0.332*** 0.518*** 0.186***
t-stat (8.462) (10.968) (3.026)

Panel B: Index Funds

Flow-Performance Sensitivity 0.009 0.003 0.006
t-stat (0.064) (0.013) (-0.025)

(2008) rank funds by their return gap, which is the difference between the reported fund return and

the return on a portfolio that invests in the previously disclosed fund holdings. Our data confirm

that high-return-gap funds display higher beta uncertainty than their complements, consistent with

the idea that for these fund it is harder to infer beta from the reported portfolio. We contrast the

FPS-difference across “moderate” and “extreme” times for Concentrated versus other funds, and for

funds with high versus low return gaps. The difference in FPS across market states is significantly

higher for the types of funds with higher beta uncertainty, and the difference-in-differences is highly

statistically significant in both cases. Thus, the qualitative predictions of the model enjoy strong

empirical support.

Yet, is the degree of uncertainty about risk loadings consistent with the magnitude of the
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variation of the FPS across market states? To approach this question, we use non-linear econometric

techniques that not only provide additional support for the model’s qualitative predictions, but also

help gauge their quantitative plausibility. We first fit the predicted non-monotonic shape of the

FPS-market-state relationship to the data and extract the ratio of beta uncertainty relative to skill

uncertainty, as well as the ratio of idiosyncratic noise to skill uncertainty. These two ratios, implied

by investor behavior, characterize the dependence of the FPS on the risk-factor realization in the

model. Confirming the qualitative predictions and results above, we reject the null hypothesis that

the FPS does not depend on the market state, which would be the case if uncertainty about risk

loadings was negligible. Importantly, the hump-shaped function that this parametric test assumes

also obtains when the FPS-market-state relation is estimated non-parametrically. We conclude that

the non-monotonic shape of the relation between FPS and market returns is a robust feature of

the data.

To test the quantitative predictions, we contrast the “implied estimates” of parameter uncer-

tainty obtained from the non-linear parametric estimation to “direct estimates” of relative un-

certainty about beta from holdings and returns data. The purpose is to assess whether even an

investor that uses all available information faces a large enough level of uncertainty to explain the

estimated variation in FPS across states. (A less-than perfectly informed investor will face even

greater uncertainty.) Both sources of information need to be considered to establish a lower bound

for parameter uncertainty, because an investor that forms beliefs about beta can make use of fund

returns, but also of a fund’s reported holdings, which is reported at a quarterly frequency.2 We

develop a technique to estimate mutual fund betas at the daily frequency that combines the infor-

mation in reported holdings with daily fund returns. The resulting “direct estimates” of uncertainty

about skill and risk exposure fall within the confidence intervals of the “implied estimates” from the

non-linear estimation. We conclude that the model’s quantitative predictions are consistent with

realistic degrees of parameter uncertainty.

2Because a higher data frequency reduces the error in the estimation of second moments (Merton, 1980), rational
investors should sample returns at the highest possible frequency.
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It is difficult to reconcile the evidence with alternative theories without introducing ad-hoc

parametrizations of the model or without generating counterfactual predictions. For example, dif-

ferences in parameter distributions across good and bad market states can also lead to variations

of the FPS. However, higher return volatility in bad market states would predict a lower FPS in

such states compared to good states – a linear relation – but it would not yield the non-monotonic

and mostly symmetric relationship that we find. Second, even if parameter distributions differed

across extreme and moderate times in a way that reproduces the documented variation in FPS, it

would not be obvious why that variation in parameters should be stronger for Concentrated and

high return gap funds than for their complements. In fact, an alternative theory based on state-

dependent volatility would require a parameter configuration that changes in each of the four terms

of the double-differences that we compute. By contrast, the model proposed in this paper derives

the variation across market states endogenously, without varying parameters across states. Third,

we provide robustness tests that explicitly control for the effect of state-dependent volatility on the

FPS, and find that the conclusions are unchanged. Of course, the difference in investor behavior

across market states could also be ascribed to a “behavioral” theory. We do not attempt to make

a claim as to the rationality of the observed investor behavior - we merely point out that the data

can be conveniently described with a parsimonious rational theory.

Both the model and the empirical results are robust to whether the flow-performance relation

is convex or linear – a long-dating question (Chevalier and Ellison, 1997; Sirri and Tufano, 1998)

recently reinvestigated by Spiegel and Zhang (2012). Specifically, the theoretical model can be

combined with participation costs, which generate convexity (Lynch and Musto, 2003; Huang, Wei,

and Yan, 2007), and our empirical results hold in both linear and convex specifications.

The problem of confounding variation in mutual fund risks and risk premia has been recognized

at least since Jensen (1972); however, the literature has focused on the inference problem relating

to time variation in risks and risk premiums (Ferson and Schadt, 1996). In contrast, we focus on

the impact of cross-sectional variation in fund risks. Our model differs from Kacperczyk, Nieuwer-
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burgh, and Veldkamp (2012) in that it contains no asymmetric information and we do not assume

that parameter distributions or risk aversion vary exogenously as the state of the economy changes.

All variation in the FPS across market states arises endogenously in our model. The model also

abstracts away from how exactly managers generate excess returns, a question examined by Kacper-

czyk, Van Nieuwerburgh, and Veldkamp (2013) and how they allocate their attention Kacperczyk,

Nieuwerburgh, and Veldkamp (2012), but focuses on the reduced-form analysis investors make if

they care about risk-adjusted returns. Importantly, the level of skill of the manager, or variation

across market states of that level of skill as documented by these authors, does not have an effect

on the variation of the FPS across market states in our analysis. Our model also does not take a

stand on whether the parameter distributions are the result of strategic choice by managers or the

result of a matching process as modeled in Gervais and Strobl (2013) – we take the parameters as

given. In computing our direct measures of skill uncertainty, we borrow from Pástor, Stambaugh,

and Taylor (forthcoming)’s estimation of decreasing returns to scale and we draw inspiration from

Berk and van Binsbergen (2012)’s approach for the estimation of managerial skill. Other authors

have estimated daily risk loadings for managed portfolios (see Patton and Ramadorai (2013) for an

application to hedge funds). However, to the best of our knowledge, this paper is the first to de-

velop a methodology combining information from daily returns with quarterly holdings to estimate

mutual fund risk loadings at the daily frequency.3

3Several other important papers are less closely related. Huang, Wei, and Yan (2012) derive cross-sectional pre-
dictions on the FPS in an economy in which Bayesian and performance-chasing investors coexist. Like these authors,
we exploit heterogeneity in parameter uncertainty across funds to identify our model. By contrast, our theory re-
lies on rational investors alone and focuses on the implications of parameter uncertainty on the dependence of the
flow-performance relation on both fund types and market states. Li, Tiwari, and Tong (2013) develop a model with
ambiguity-averse investors who receive multiple signals of unknown precision about fund performance. By contrast,
our model only features uncertainty, but no ambiguity. Outside of the mutual fund literature, the present paper is
related to Schmalz and Zhuk (2014), who study how equilibrium asset prices’ reaction to low-frequency fundamental
news depends on the market state when asset-specific cash-flow parameters are uncertain. An important distinction
is that in their context, investors react more strongly in downturns than in upturns, as opposed to moderate versus
extreme times. That is, they predict and find a strongly asymmetric relationship between reaction to news and market
states, whereas the present paper predicts and finds a symmetric relationship. Adrian and Franzoni (2009) also postu-
late that investors learn about unobservable risk-factor loadings for stocks and show that this mechanism can explain
part of the value premium under specific conditions on the learning process. Similarly, Gerakos, Linnainmaa, and
Daniel (2013) split the SMB and HML factors into priced and unpriced factors, thus dissecting investors’ inference
problem. For an optimal contracting problem involving managerial risk choice see also Iovino (2011). The distinction
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The paper proceeds as follows. Section 2 presents the model. Section 3 describes our method-

ology, including the new technique to estimate betas from reported holdings and daily returns.

Section 4 describes the data. Section 5 gives the empirical results. Section 6 concludes.

2 Model

This section develops a model of learning about manager skill from observable fund-level returns

and market-wide risk-factor realizations. The key distinction from Berk and Green (2004) is that

we explicitly model the dependence of fund returns on the realization of an observable risk factor,

while we let the risk-factor loading be unobservable. Technically, this assumption introduces a

second parameter in investors’ inference problem.

2.1 Setup

There are N funds to which investors can allocate their capital. The cash flow that fund i

returns at time t from each dollar invested at time t − 1 is denoted Y i
t . Although the true return

process may have different drivers, the returns can be decomposed in reduced form4 as

Y i
t = 1 + αi + βi · ft −

1

η
Sit−1 + εit, (1)

where αi is a fund-specific, time-fixed performance parameter indicating a manager’s skill to gen-

erate excess returns over a benchmark net of fees; βi is a fund-specific, time-fixed exposure to a

of our paper from Edelen and Warner (2001) is that we investigate the impact of market returns on fund-level flows,
rather than the impact of aggregate flows on market returns.

4The investors’ regression model should not be confused with the manager’s investment strategy. Equation (1) is
a reduced-form way of describing the cash flows that the fund generates for its investors. It does not make claims
as to the source of skill or time-varying properties of its level. In particular, αi can be generated by a manager who
successfully times the market, i.e., employs time-varying risk loadings of high βi when ft is positive and low (or
negative) βi when ft is negative. Alternatively, the manager can be good at picking underpriced stocks in all states of
the market and thus generate αi. While any combination of the two explanations can be the reason for fund manager
skill in practice, and while the two are difficult to distinguish empirically (Kacperczyk, Van Nieuwerburgh, and
Veldkamp, 2013), an investor might only care about the magnitude and timing of the returns the fund delivers. The
reduced-form way of characterizing the return-generating process is sufficient to model such an investor’s problem.
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time-varying systematic risk factor; ft is the time-t realization of a traded risk factor, which in

the empirical analysis we proxy using the market return in excess of the risk-free rate. While in

principle, more factors could be considered in (1), we limit ourselves to one factor for two reasons.

The first is that the equations of the model are notationally more simple with a one-dimensional

factor. The other, more substantial, reason is that recent work by Berk and Van Binsbergen (2013)

and Barber, Huang, and Odean (2014) indicates that mutual fund investors employ a single-factor

model (the CAPM) when assessing fund performance, as opposed to a four-factor specification

(Carhart, 1997). Sit−1 is the size of the fund resulting from the investors’ capital allocation in pe-

riod t− 1; η > 0 is an efficiency parameter, such that − 1
ηS

i
t−1 indicates decreasing returns to scale;

and εit ∼ N (0, σ2
ε) is an idiosyncratic shock. Decreasing returns to scale do not play a role in the

mechanism we describe. However, they make the model consistent with Berk and Green (2004)

and subsequent literature. The existence of a risk-free asset, whose net return is normalized to zero

without loss of generality, allows for flows into and out of the mutual fund sector.5

For simplicity, we assume overlapping generations of risk-averse investors who live for two

periods. (An alternative modeling choice leading to the same conclusions is discussed below.) In

the first period, they invest in mutual funds. In the second period, they consume the proceeds from

their investments and pass down their fund holdings to the next generation. The young investors

inherit their predecessors’ beliefs. We are interested in how Bayesian investors reallocate capital

across funds in response to learning enabled by the observation of a single cross section of fund

returns Yt = (Y 1
t , Y

2
t , ...Y

N
t ) at some time t, and a corresponding factor realization ft, given a

particular degree of parameter uncertainty at the time.

The key assumption of the model is that at any point in time t, investors are uncertain about

the precise value of both αi and βi. However, they know that both parameters are sampled from a

5We use the risk-free rate as the outside investment opportunity in the model because the risk-free rate is the
benchmark to which risk adjusted performance should be compared. Taking other asset classes as a benchmark
requires only to re-define the systematic risk factor ft as an excess return relative to this alternative benchmark. Our
main result, a hump-shaped relationship that is expressed in equation (5), is unaffected by such re-definition.
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jointly Normal distribution with known mean, variance, and covariance

N


 α̂it−1

β̂it−1

 ,

 σ̂i
2

α,t−1 σ̂iαβ,t−1

σ̂iαβ,t−1 σ̂i
2

β,t−1


 . (2)

This distribution corresponds to the prior beliefs about αi and βi that are a legacy of previous

periods’ learning. In the remainder of the paper, we omit time subscripts, fund superscripts, and

the ‘hats’ in the beliefs about second moments to simplify the notation, because the empirical

predictions are unrelated to the updating of the variance of the parameters, and would not change if

dynamics were taken explicitly into account. In sum, at any point in time t, the model takes as given

the degree of prior uncertainty about parameters characterized by equation (2). We discuss possible

dynamic extensions in a separate section below. Although the model can be solved allowing for

non-zero correlations between α and β, this generalization unnecessarily complicates the analytical

solutions, without substantially affecting the intuition. We thus assume σαβ = 0.

2.2 Timing

At each point of time t− 1, investors hold funds of equilibrium size Sit−1 that is consistent with

prior beliefs α̂it−1 and β̂it−1 about the parameters αi and βi. Returns Y i
t are realized and observed

by investors. Also, investors observe the realization of the risk factor ft. (We discuss below how

this assumption can be relaxed.) Conditioning on ft, investors then compute posterior beliefs α̂it

and β̂it and thus determine new equilibrium fund sizes Sit , as derived below. The change of fund

sizes determines the reallocation of capital across funds. The relation of these flows to performance

gives the FPS.

2.3 Equilibrium

Based on the above assumptions, the investors’ posterior belief α̂it about αi determines equilib-

rium fund sizes.
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Lemma 1. Fund i’s equilibrium size Sit, based on investors’ belief α̂it at time t about skill αi, is

given by

Sit = η · α̂it. (3)

The formal proof is in the appendix. The intuition is straightforward. Investors determine

allocations to funds so that the expected risk adjusted return from a marginal dollar in the fund

equals the outside option of the risk-free rate.6 In so doing, the expected value of fund returns based

on current beliefs, 1 + α̂it + β̂it · ft − 1
ηS

i
t , is adjusted for the fund’s estimated sensitivity to the risk

factor, β̂it, multiplied by the factor realization ft, thus canceling the β̂it · ft term.7 In other words,

investors do not care about the risk exposure of funds, because they are appropriately compensated

for the risk they are taking. The risk loading only matters in our model because uncertainty about

β affects the speed of learning about α.

2.4 Fund Flows

2.4.1 Intuition

Equation (3) combined with (1) conveys the intuition of the model. The quantity of interest is

αi, whereas investors observe Y i
t = 1 + αi + βi · ft − 1

ηS
i
t−1 + εit. That is, investors observe their

quantity of interest (plus one, plus observable fund size) plus two types of noise that do not affect

the investors’ utility but complicate their inference about the quantity of interest. The two types

of noise are the idiosyncratic realization of returns (εit) and the contribution of systematic risk to

returns (βi · ft). When ft = 0, the only noise preventing investors from directly inferring αi is

εit. The βi-related component of the noise is switched off, and uncertainty about risk loadings is

inconsequential for learning. By contrast, when |ft| > 0, an additional layer of noise obfuscates

the inference. If βi was known, investors would only need to subtract βi · ft from fund returns.

With unknown βi, however, investors do not know what exactly to subtract from any particular

6The (net) risk-free rate is normalized to zero, so the gross risk-free rate equals 1.
7Note that investors can condition on the realization of ft because we are assuming that factor realizations are

observed before investors allocate their capital.
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fund i’s return to calculate its risk-adjusted performance. Hence, they have to treat the additional

term as noise. The more uncertain they are about βi, the more noisy the observation seems to

them – in particular when |ft| is large. As a result, the signal-to-noise ratio is highest when ft = 0,

and decreases symmetrically for both higher and lower factor realizations. The speed of capital

reallocation is therefore highest for realizations of ft close to zero.

2.4.2 Formal Result

The main insight of the model is that the sensitivity λ of flows, F it , to unexpected performance,

Y i
t − Et−1[Y i

t ], depends on the factor realization, ft; that is, λ = λ(ft).

Lemma 2.

F it := Sit − Sit−1 = η · λ(ft) · (Y i
t − Et−1[Y i

t ]), (4)

where

λ(ft) =
1

1 +
σ2
β

σ2
α
f2
t + σ2

ε
σ2
α

. (5)

Recall that σ2
α and σ2

β denote the uncertainty about the parameters αi and βi, according to

equation (2). The term η ·λ(ft) gives the FPS. In particular, λ(ft) corresponds to the signal-to-noise

ratio.8

The intuition is straightforward. First, consider the case in which no uncertainty about risk

exposure is present, σ2
β = 0, as in the existing literature. Then the FPS does not depend on the

factor realization, ft. In that case, the intuition developed in Berk and Green (2004) and other

models obtains. Specifically, the more dispersed skill is believed to be, that is, the higher σ2
α is

relative to σ2
ε , the stronger the reaction to news, that is, the steeper the FPS. Intuitively, if very

8For the difference in fund sizes Sit − Sit−1 to correspond to the standard definition of net flows, it is implicitly
assumed that each fund i distributes the net return Y it −1 at the end of period t. This assumption has the counterfactual
implication of generating constant NAV pricing of mutual funds. However, similar theoretical results obtain for
alternative definitions of flows, yet have more complicated functional forms. To show that our empirical results are
not driven by any particular definition of flows, we offer several alternative specifications that make use of different
specifications of flows.

11



high and low fund returns are deemed realistic and attributable to exceptionally high or low skill,

rational investors are less prone to impute abnormal fund returns to random noise, and will therefore

react more strongly to the news. In sum, the ratio of σ2
ε to σ2

α summarizes the signal-to-noise ratio

in the case of σ2
β = 0.

Let us now introduce uncertainty about βi, σ2
β > 0, thereby making the FPS depend on factor

realizations, ft. A positive σ2
β dampens the FPS. The strength of this effect depends positively on

the absolute magnitude of the total factor realization ft. For a given performance signal Y i
t and

uncertainty about skill, σ2
α, the larger the uncertainty in beta and the larger the realization of the

factor ft, the more likely the observed performance is due to risk taking, and the less likely it is that

the observed performance is due to skill. As a result, high σ2
β combined with high |ft| attenuates

investors’ reaction to unexpected performance. The dependence of λ on ft, and the sensitivity of

this dependence on the relative degrees of uncertainty about αi and βi, is the driver of all our

empirical predictions.

2.5 Empirical Predictions

This section derives additional testable implications of the model. The first prediction, regard-

ing the variation of the FPS between “moderate” and “extreme” realizations of the factor, does

not require additional assumptions, but is directly implied by equation (5). For the difference-in-

differences predictions, we conjecture that it is possible to identify two groups of funds that can

be ranked in terms of
σβ
σα

, that is, the degree of investors’ uncertainty about beta relative to the

uncertainty about skill. (We confirm that conjecture in the empirical analysis.)

2.5.1 FPS in Extreme versus Moderate Market States

Our first prediction is that fund performance is less informative about skill when the realization

of the factor is either very high or very low, compared to fund performance when the realization

of the factor is closer to zero. As a result, fund flows are more sensitive to performance for factor
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realizations close to zero. To be able to formulate a prediction that can be tested in a linear fashion,

let us denote as “moderate” those states that correspond to realizations of the factor that are in

a neighborhood of zero which is defined by a positive constant c. Formally, λ in moderate times

is λmoderate = λ (ft) such that |ft| ≤ c. Conversely, let “extreme” states be those in which the

realizations of the factor fall outside this neighborhood: λextreme = λ (ft), such that |ft| > c.

Proposition 1. The flow-performance sensitivity is larger in moderate than in extreme states,

λmoderate − λextreme > 0.

The proof is a direct consequence of the functional form of λ (ft) in equation (5) and is provided

in the appendix. Notice that a difference in parameter distributions across booms and busts cannot

generate that same prediction. For example, higher volatility in bad times than in good times would

predict that the FPS is higher in good times than in bad times. It would not, however, predict, a

non-monotonic pattern of low FPS in both good and bad times, and a high FPS in moderate times.

2.5.2 Difference-in-Differences Prediction for the FPS

We now predict that the difference in FPS differences across market states depends positively

on the degree of relative uncertainty in beta, that is, the ratio
σβ
σα

. When differences exist in the

precision of investors’ beliefs about the degree of beta uncertainty across fund types compared to

uncertainty about skill, the sensitivity of the FPS to the market state varies across fund types. Let

us now assume that we can empirically identify two separate groups of funds that can be ranked

in terms of their relative beta uncertainty. We denote by H the funds with high relative beta

uncertainty and by L the funds with low relative beta uncertainty. Then we can state the following

result.

Proposition 2. The difference in flow-performance sensitivities between moderate and extreme
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times is larger for funds with high beta uncertainty than for funds with low beta uncertainty:

(λmoderate − λextreme)H − (λmoderate − λextreme)L > 0.

The proof is in the appendix. To understand this result, recall that uncertainty about risk

loadings relative to uncertainty about skill, drives the FPS’s dependence on factor realizations

(equation (5)). It is then intuitive that the dependence of the FPS on the state of the market is

stronger for funds for which the relative beta uncertainty is larger.

Note that the prediction in proposition 2 helps distinguish the proposed mechanism from a

number of alternative theories. For example, one might conjecture that the extreme-vs-moderate

difference obtains because volatility is higher in extreme states. However, such a theory would not

easily explain why the extreme-vs-moderate difference would vary across fund types.

2.6 Discussion

One apparent limitation of the model is that it is essentially static; that is, the dynamics of

investors’ beliefs are not explicitly developed within the model. One might suppose that after

sufficiently many observations, investors learn parameter values well enough for the FPS not to

depend on ft (because βi becomes known with certainty) and, eventually, for flows not to respond

to performance anymore (because skill αi becomes known with certainty). This logic would lead to

the counterfactual prediction that the FPS is zero in the data. To explain why in practice uncertainty

persists and the FPS is not zero, a dynamic model could be useful. In such an extension, funds

could periodically disappear and be replaced with new ones, about whose parameters less is known

(Pástor, Stambaugh, and Taylor, forthcoming). This replacement would introduce new uncertainty

and investors would never fully learn the underlying parameters. Although this extension might

make the model more realistic (and would certainly make it less tractable), it would not alter the

prediction that, for a given degree of parameter uncertainty, the reaction to performance depends
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on the state of the economy.9 This is the single key message of the present paper. For these reasons,

we choose to present the simplest model that makes accurate empirical predictions for the question

that we investigate.

Another simplifying assumption is the choice to shut down learning about the state of the econ-

omy, as featured, for example, in Veronesi (1999). The reason we abstract away from this mechanism

is that by averaging performance across a large number of funds, investors can infer the realization

of the factor in our setting. Relatedly, Jones and Shanken (2005) argue that performance of other

funds is useful information for investors’ inference about a specific fund’s alpha (see also Pástor and

Stambaugh, 2002). The present paper focuses on fund-specific performance measurement. To avoid

the additional complexity that modelling learning from other funds’ returns would entail, one can

simply assume that the outcome of this learning process is subsumed in investors’ priors, which are

inherited from the previous period.

A third simplification is that the parameters αi and βi are exogenous in the model. The most

important reason for this modeling choice is to keep the focus on uncertainty about beta as the

single driver of our results. Including managers’ choice of parameters would also come at the ex-

pense of having to make assumptions about their preferences and incentives, which would make

it more difficult to understand which part of our results comes from assumptions about investor

preferences, which from other assumptions. The model does not preclude, of course, that the pa-

rameter distributions are already the outcome of an optimization on behalf of the fund managers.

Studying the interaction of investor and manager behavior when skill αi is exogenously distributed

and known to the manager but uncertain to investors, and βi is a strategic choice of the manager

and likewise uncertain to the investor, may be an interesting subject for future research, see also

Gervais and Strobl (2013).

9Note also that the qualitative predictions of the model are entirely unaffected if a single agent with infinite horizon
would make the capital allocation decisions, instead of overlapping generations of agents.
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3 Empirical Methodology

In this section, we describe the empirical methodology for testing the model’s predictions. All

the testable implications concern the dependence of the flow-performance sensitivity (FPS) on the

market state. The estimation of the FPS is therefore the core of our discussion.

In order to allow for the possibility that real-world investors make efficient use of all the available

information when making inference about skill and risk loadings, we need to include past returns

and disclosed holdings in our procedure to compute risk-adjusted performance. Thus, we develop a

technique to estimate fund betas that approximates the learning process of rational investors with

unlimited information capacity. This procedure, relying on reported holdings and daily fund returns,

represents an original methodological contribution of the paper. Importantly, this methodology is

not required to obtain our empirical results and by no means do our conclusions depend on the

assumptions that investors perform a similar analysis, as shown in the robustness section. The

purpose of the procedure is only to show that the FPS varies across market states, even when

investors use the most granular information. Thus, our estimates of factor loadings and risk adjusted

performance are likely to represent a lower bound to the uncertainty about parameter distributions

that is faced by real-world investors.

3.1 Estimating the FPS

In defining the correct specification for the estimation of the FPS, we seek guidance from the

model. Equation (4), which we report here for convenience (making more explicit the conditioning

information),

F it = η · λ (ft)
(
Y i
t − E

(
Y i
t |ft, t− 1

))
,

is our starting point. Based on this equation, the FPS is given by η ·λ (f), where λ (f) = 1

1+
σ2
β

σ2α
f2t +

σ2ε
σ2α

.

Then, to estimate the FPS, the econometrician needs to regress flows, F it , on unexpected returns,
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Y i
t − E

(
Y i
t |ft, t− 1

)
.10

Unexpected returns, which we label Xi
t , can be written as

Xi
t = Y i

t − E
(
Y i
t |ft, t− 1

)
= Y i

t −
(

1 + α̂it−1 + β̂it−1ft − ηSit−1

)
= Y i

t − 1− β̂it−1ft, (6)

where the second step makes use of equation (1) and the last step follows from the equilibrium

condition α̂it−1 = ηSit−1 presented in equation (3). To compute unexpected returns as in equation

(6), one needs to use investors’ beliefs of beta, β̂i, which are not observed. To this purpose, in

the next subsection, we develop a methodology to estimate β̂i. We use these estimates of beta to

compute unexpected returns.

Our regressions are run at the quarterly frequency and the explanatory variable (unexpected

returns) is lagged by one quarter relative to the dependent variable (flows). This choice is dictated by

the need to allow investors to infer the managers performance from various sources. Specifically, fund

holdings, which are relevant for estimating betas, become known with a delay, as we explain below.

Moreover, averaging daily unexpected returns over a given quarter provides a less noisy estimate

of the performance signal that is relevant for investors. Thus, the main explanatory variable in the

FPS regressions at the quarterly frequency is the average of daily returns (in excess of the risk-free

rate) minus the daily beta times the daily realization of the risk factor,

exretiq =
D∑
d=1

(
Rid −Rf − β̂id−1R

m
d

)
,

where q denotes the quarter, d denotes days, and D is the number of days in a quarter. The daily

excess return on the market, Rmd , is used as the risk factor. Note that exretiq is expressed as a

10Note that the theoretical model is based on fund returns, not ranks. We therefore compute FPS as a function of
returns. However, we show robustness also to more traditional specifications based on performance ranks. A previous
version of this paper’s empirical analysis was entirely based on performance ranks.
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quarterly return because the average daily unexpected return is multiplied by the number of days

in a quarter.

With respect to the dependent variable in the estimation of the FPS, we provide results with

different definitions of flows. For consistency with prior studies, in the main analysis, our empirical

proxy for flows is the change in assets under management relative to the prior quarter minus the

dollar return on prior quarter assets, divided by prior quarter assets,

Flowsi,q =
TNAiq − TNAiq−1

(
1 +Riq

)
TNAiq−1

, (7)

where TNAiq is total net assets in quarter q for fund i, and Riq is fund i’s quarterly return, which is

obtained from compounding monthly returns. So, flows are expressed as a fraction of assets under

management. Yet in our model, flows are defined as the change in fund size, not scaled by assets

(see equation (4)). To show robustness of our findings to definitions of flows that are closer to

the model, we also provide results in which flows are just the change in fund size (“dollar flows”).

Further, when testing the quantitative implications of the model, we estimate the FPS in dollars

to adhere strictly to the model’s predictions.

3.2 Estimating betas

Investors’ richest information set for making their inferences about betas includes daily returns

and reported holdings of each fund. To approximate the inference of investors that make efficient

use of all data, we develop a technique that combines these two sources of information.

The first key input is reported holdings. Prior to May 2004, U.S. mutual funds were required

to report holdings semi-annually, although funds could voluntarily disclose their portfolios more

frequently. Since that date, the SEC has required mutual funds to disclose their holdings every

quarter with a delay of at most 60 days. As a result of this 60-day delay, investors have access to

reported holdings only toward the end the quarter.11 We assume that investors make use of reported

11As described above, our estimation of the FPS is carried out at the quarterly frequency in a regression of next-
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holdings in their inference, and let estimated betas at the beginning of the quarter correspond to

the beta of the portfolio holdings at the end of the previous quarter, which we label βi0.

Next, we let fund betas evolve daily. On day d, the fund beta is

βid = βi0 + ∆βi1 + ∆βi2 + . . .+ ∆βid

= βi0 +

d∑
j=1

∆βij . (8)

Drawing inspiration from Ferson and Schadt (1996) and, in particular, from Patton and Ramadorai

(2013), we further assume that fund managers modify daily betas as a linear function of changes

in a set of k conditioning variables zd:

∆βid = φ′i∆zd. (9)

In our empirical implementation, we use the excess return on the market, Rm, to proxy for the

systematic risk factor f . Thus, we start from the market model at the daily frequency to estimate

the unobservable k-vector of parameters φi:

Rid+1 = ai + βidR
m
d+1 + εid+1. (10)

Replacing equations (8) and (9) into (10), we obtain

Rid+1 = ai + βi0R
m
d+1 + φ′i

 d∑
j=1

∆zj

Rmd+1 + εid+1. (11)

Let R̃id+1 = Rid+1 − βi0Rmd+1, and let R̃md+1 =
(∑d

j=1 ∆zj

)
Rmd+1 (which is a k-vector), and then the

quarter flows on the current quarter’s unexpected performance. Hence, the fact that investors can only compute daily
betas and unexpected performance toward the end of the quarter does not constitute an obstacle for our approach.
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vector φi can be estimated in the fund-level regression:

R̃id+1 = ai + φ′iR̃
m
d+1 + εid+1. (12)

Given the estimates φ̂i, we can finally estimate daily betas β̂id using equations (8) and (9).

Other authors have estimated daily risk loadings for managed portfolios (see Patton and Ra-

madorai (2013) for an application to hedge funds). However, to the best of our knowledge, this

paper is the first to develop a methodology combining information from daily returns with quar-

terly holdings to estimate mutual fund risk loadings at the daily frequency.

In the empirical implementation, we estimate the holdings betas βi0 using reported holdings

at the end of the prior quarter along with stock-level betas. Stock betas are computed from daily

returns using at least one month and at most one year of data, in a rolling window framework,

where we let the window advance by one quarter (given that we only need end-of-quarter betas). To

account for non-synchronous trading, we proceed as in Lewellen and Nagel (2006) and regress the

daily excess return on the contemporaneous market return and four lags of this variable, imposing

the constraint that lags 2–4 have the same slope to reduce the number of parameters. Then, the

final estimate of beta is the sum of the estimates on all the lags and the comtemporaneous return.

The fund beta on the first day of the quarter is the beta of the fund’s portfolio as reported at the

end of the previous quarter.

To proxy for the manager’s conditional information, we use a set of conditioning variables that

appear in prior literature (e.g., Ferson and Schadt, 1996; Ferson and Harvey, 1999; Patton and

Ramadorai, 2013). We constrain ourselves to variables that are available at the daily frequency. As

a result, for variables in the vector ∆zd, we use (1) the daily excess return on the CRSP value-

weighted index, (2) the change in the Ted Spread, which is the difference between the three-month

LIBOR and T-Bill rates, (3) the change in the VIX index from the CBOE, and (4) the change in

the Credit Spread, which is the difference between Baa- and Aaa-rated corporate bonds (from the

Federal Reserve Bank of Saint Louis).
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Daily mutual fund data are available from September 1, 1998, which marks the beginning of

our sample. Given that our availability of the linking tables to match S12 holdings to CRSP fund

returns ends in 2012:Q1, we are able to compute daily betas up to the end of 2012:Q2. A thorough

description of our sample selection procedure is given in section 4.

The output of the beta estimation procedure is reported in Table 2 at the fund-day level. The

observations are winsorized at the 1st and 99th percentiles. Consistent with prior evidence (Fama

and French, 2010), the mean and median betas are very close to one (Panel A). However, across

fund-days, betas range from a minimum of 0.74 to a maximum of 1.25. A better gauge of the

volatility of fund-level betas comes from Panel B. The total volatility of fund-level betas, which is

on average 0.071 across 5,049 funds, is broken down into two components. One source of variation is

the standard deviation of betas within a given quarter (on average 0.029). This variation originates

from the volatility of the changes in the conditioning variables zd and the volatility of R̃id+1, which,

in turn, depends on the extent to which daily betas deviate from holdings-betas.12 The other source

of variation in fund-level betas is the volatility of holdings-betas across quarters. This volatility,

on average, amounts to 0.048, which clarifies that variation of holdings-betas across quarters is the

more important source of variation in estimated betas.

Panel A of Table 2 also provides information on the dependence of daily betas on the con-

ditioning variables. We learn that, on average, betas increase following positive market returns,

suggesting that managers do not immediately rebalance toward cash when their portfolio increases

in value. Betas also rise following an increase in the credit spread. Finally, betas decline when the

VIX and the Ted Spread increase, which suggests that managers take more defensive positions in

bad times.

To conclude, we note that this procedure is meant to approximate the type of inference made

by investors who use all the available information at the highest possible frequency. Its purpose is

to alleviate the concern that the results of this paper are driven by a failure to closely model the

12Recall that R̃id+1 = Rid+1 − βi0R
m
d+1, where βi0 is the beta computed from holdings.
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dynamics of rational investors’ expectations. It is still possible, however, that investors are much less

sophisticated in making inference about risk loadings than this procedure assumes. For example,

they could just use end-of-quarter holding betas and abstain from adjusting their expectations intra-

quarter. In such a case, our procedure fails to introduce relevant constraints on the parameters (i.e.

the slope on the conditioning variables should be zero) and it introduces unnecessary noise into

the estimates of betas, so that the estimates of beta are not efficient. To address this concern, in

the robustness section, we show that our main results remain intact when we estimate betas using

end-of-quarter holding betas, or when investors do not adjust returns for risk altogether.

4 Description of the Data

The primary data source for this study is the CRSP Survivorship Bias Free Mutual Fund

Database. These data contain fund returns, total net assets (TNA), investment objectives, and

other fund characteristics. Following the prior literature, we select domestic equity open-end mutual

funds and exclude sector funds using the CRSP objective code (which maps Strategic Insights,

Wiesenberger, and Lipper objective codes). Because the reported objectives do not always indicate

whether the fund is balanced, we exclude funds that on average hold less than 80% of their assets

in stocks. Given that the focus of this study is on actively managed mutual funds, we also exclude

index funds. Following the literature standard, we further filter funds by matching this sample to

the Thomson Financial S12 holdings database as in Kacperczyk, Sialm, and Zheng (2005).

To address the potential bias resulting from the fact that the fund incubation period is also

reported, we exclude observations whose date is prior to the reported starting date of the fund,

similar to Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013). Because incubated funds tend to

be smaller, we exclude funds before they pass the $5 million threshold for assets under management

(but we do not exclude them if they fall below $5 million).

Mutual funds in CRSP include both retail and institutional share classes. Institutional funds

are subject to a number of constraints in terms of minimum investment size, long-term investment
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agreements, and limited choice set whenever they are offered to individuals through a 401(k) plan,

which impose restrictions on fund flows that our model does not capture. These considerations

prompt us to focus our empirical analysis on mutual funds that are sold to retail investors. The

retail-fund indicator is available in CRSP starting in December 1999. For the prior period, we

backward-impute the retail indicator whenever available and we use the names of share classes to

identify institutional funds. We exclude from the sample the funds for which no information can

be gathered on whether they are retail or institutional. Nevertheless, we also show that our results

are robust to including institutional funds in the sample.

Using the quarterly net asset values and returns from CRSP, for our main analysis, we compute

net flows according to equation (7). Elton, Gruber, and Blake (2001) point out a number of errors

in the CRSP mutual fund database that could lead to extreme values of flows. For this reason, we

filter out the top and bottom 1% tails of the net flows distribution. The other variables we use

in the analysis, and for which we require availability for sample inclusion, are the expense ratio,

the portfolio turnover ratio, and return volatility, which is computed over the prior 12 months.

These variables are winsorized at the 1st and 99th percentiles. We compute fund age as the time

(in quarters) since the first appearance of the fund in the overall CRSP sample.

Our analysis uses daily returns that become available only in September 1, 1998. This availability

defines the beginning of our sample. Further, we can match S12 holdings to CRSP fund returns

only up to 2012:Q1. Then we are able to compute betas up to the next quarter. As a result, our

extended sample at the quarterly frequency ranges between 1998:Q3 and 2012:Q2. Over this period,

we have 135,832 mutual fund-quarter observations with valid information on returns and TNA in

quarter q and quarter q + 1, corresponding to 5,049 funds.13 We also present robustness results

relying only on monthly fund returns, in which case the sample starts in 1980:Q1.

Table 3 reports summary statistics for these variables. We notice that the average (median)

13Starting in the 1990s, some funds offer multiple share classes that represent claims to the same portfolio. We
abstain from aggregating multiple share classes because our purpose is to study fund flows, which differ at the
share-class level. This choice does not materially affect our results.
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fund has a size of $686 million ($78 million). The maximum fund size is about $109 billion. Fund

age ranges from five to 204 quarters. Our sample is comparable to other studies in terms of return

volatility, asset turnover, and expense ratio (see Huang, Wei, and Yan, 2007).

Part of our analysis makes use of data on active share and tracking error, which are defined

as in Cremers and Petajisto (2009) and Petajisto (2013).14 These variables are constructed using

information on portfolio composition of mutual funds as well as their benchmark indexes. The

stock holdings of mutual funds come from the S12 database provided by Thomson Financial. The

authors currently make their data available between 1980:Q1 and 2009:Q3. As a consequence, in

the analysis using these data, our sample ranges between 1998:Q3 and 2009:Q3. In other parts of

our study, we make use of data on the return gap from Kacperczyk, Sialm, and Zheng (2008). These

authors construct the return gap as the difference between the reported fund return and the return

on a portfolio that invests in the previously disclosed fund holdings. Using the code made available

by the authors through WRDS, we update their sample through 2012:Q2.

5 Empirical Results

In this section, we carry out the empirical tests of the model’s predictions. First, we test the

qualitative prediction that the FPS varies across market states. Also, we show that this prediction

holds more strongly for funds that a priori are expected to be characterized by more uncertainty in

betas. (This is a test of the difference-in-differences prediction.) Next, we assess the validity of the

model in terms of describing the quantitative properties of the data. In this context, we estimate

the model-implied uncertainty about beta using non-linear techniques. We then compare this esti-

mate to direct measures of beta uncertainty to gauge the plausibility of the model’s quantitative

predictions.

14We are grateful to Antti Petajisto for making the data available on his website: www.petajisto.net.
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5.1 The FPS in Moderate and Extreme Market States

In section 3, we motivate our estimation of the FPS from a regression of quarterly flows on

lagged unexpected returns,

Flowsiq+1 = a+ b · exretiq + εiq, (13)

where flows are measured as a fraction of lagged assets under management. As in a Fama and

MacBeth (1973) approach, we estimate this regression every quarter and report the average of the

quarterly b coefficients. The t-statistics are then computed using the standard error of the mean

coefficients. In a later section, we show robustness along a few dimensions. We estimate equation

(13) using pooled fund-quarter data and double-cluster standard errors by fund and quarter. Sim-

ilar results obtain.15 Also, we show that the results do not depend on risk-adjusted returns as

explanatory variable, as they are robust to using performance ranking within a quarter for funds

in the same style category. Finally, the conclusions remain intact if we use the change in market

share instead of flows as dependent variable, as advocated by Spiegel and Zhang (2012).

Proposition 1 refers to a comparison between the FPS across periods with moderate and extreme

realizations of the factor. Throughout our empirical application, we use the market return as the

empirical counterpart of the systematic factor. Also, we define as extreme the quarters in which the

excess return on the CRSP value-weighted index is below -5% or above 5%.16 Table 4 provides the

results. In the first column, we estimate the FPS for the 56 quarters of the sample and unsurprisingly

find a positive and significant relation between flows and lagged performance. In columns (2) and

(3), the FPS is estimated only in the extreme and moderate states, respectively. As Proposition

1 predicts, the FPS is larger in moderate than in extreme states. In fact, the FPS is more than

15A related concern is a potential time trend in the FPS. We verify that no significant time trend is present in the
FPS in our sample, however.

16In our sample, the -5% cutoff represents the 25th percentile of the distribution of quarterly market returns. Then,
because of the negative skewness in the distribution of the market return, choosing the symmetric 5% cutoff leaves
leaves to its right more than 25% of the observations. In the end, about 59% of the quarters are defined as extreme
and the remaining ones are moderate. The robustness analysis subsection provides results with other choices of the
cutoff, which do not affect the conclusions.
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twice as large in moderate times than in extreme times. At the bottom of the table, we report

the results of a small-sample test that rejects the hypothesis that the two coefficients are equal. In

the next three columns, we replicate the analysis introducing all the controls suggested by Spiegel

and Zhang (2012). These variables are the aggregate flows in quarter q + 1 into the funds that

have the same objective as fund i (flows style), the total expense ratio (fee), the logarithm of TNA

(logsize), the portfolio turnover ratio (turn ratio), the return volatility computed as the standard

deviation of fund returns over the prior 12 months (vol), and the logarithm of the fund’s age

(logage).17 The difference between extreme and moderate states is only slightly muted and remains

highly statistically significant. The sign and significance of the coefficients on the control variables

conform to intuition and to the results in prior literature.

The economic magnitude of the effect is large. Based on the specifications including controls

reported in columns (5) and (6), given the standard devision of flows of 0.106, a one-standard-

deviation rise in unexpected returns in extreme times (0.047) increases flows by about 14.7% of

a standard deviation (0.047*0.332/0.106= 0.147), whereas the same event during moderate times

leads to a 23.0% increase in flows in standard deviation units (0.047*0.518/0.106=0.230). Simply

taking the ratio of the coefficients (.518/.332) reveals that flows are 57% higher for the same change

in returns in moderate than in extreme times. Overall, the analysis validates the main qualitative

prediction of the model that the FPS is larger in states of the world in which the realizations of

the factor are smaller in absolute value.

Table 5 shows that the effect is not driven by either up markets or down markets alone. In fact,

the effect is quite symmetric with respect to zero market returns. The FPS in the left tail and the

right tail of the market return distribution is approximately 0.31 to 0.35, respectively, whereas in

moderate times, the FPS is 0.754 (without controls) and 0.518 (with controls).

17Recall that excess returns in the model are net of fees, as are the fund returns reported by CRSP. We conjecture
that cross-sectional variation in fees does not have a first-order effect on FPS-variation across market states. Moreover,
the “fee” control should soak up any FPS-variation across market states related to variation across states and funds
in fees. Indeed, running the analysis using gross of fees returns leaves the point estimates and significance of the
specifications without controls almost unchanged. The point estimates and significance of the specifications with
controls are perfectly unchanged.
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In equation (13), we are constraining flows to be a linear function of performance. Yet a large

body of literature (starting with Ippolito (1992), Gruber (1996), Chevalier and Ellison (1997),

and Sirri and Tufano (1998)) identifies a convex flow-performance relation. More recently, other

authors (Spiegel and Zhang, 2012) argue that convexity originates from a misspecified empirical

model, and that the relation between flows and performance is truly linear. This paper does not

intend to contribute to this debate, given that our predictions on the state dependency of the

flow-performance relation can be derived for any monotonic shape of this relation. Still, to assess

the robustness of our predictions to alternative empirical specifications of the flow-performance

relation, we provide further analyses allowing for a piecewise linear relation:

Flowsi,q+1 = a+ b1 · bottom exretiq + b2 ·mid exretiq + b3 · top exretiq + εiq, (14)

where bottom exretiq is equal to exretiq if exretiq is in the first tercile of the distribution of unexpected

returns in the quarter, and zero otherwise; mid exretiq is equal to exretiq if exretiq is in the second

tercile of the distribution of unexpected returns in the quarter, and zero otherwise; top exretiq is

equal to exretiq if exretiq is in the third tercile of the distribution of unexpected returns in the

quarter, and zero otherwise.

Table 6 reports the Fama and MacBeth (1973) estimates of equation (14). In the first column,

we find support for the convexity of the FPS as the slope at the bottom of the return distribution is

significantly flatter than the slope in the rest of the distribution. More relevant for our purposes, the

results in the second and third columns indicate that the prediction of Proposition 1 holds also for

a convex specification of the FPS. In fact, in each of the three ranges of the distribution of returns,

the slope is significantly larger in moderate than in extreme states. This result holds also when we

include the controls (columns (5) and (6)). At the bottom of columns (2) and (3), as well as (5)

and (6), we report p-values from a chi-squared test for the equality of the three slopes b1, b2, and b3

between extreme versus moderate market states. The test rejects the null hypothesis that the slopes

are jointly equal. (Unreported results reveal that this rejection occurs also when the test is carried
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out for each slope individually.) We conclude that the result that FPS is steeper in moderate than in

extreme market states is robust to a piecewise linear empirical specification. Given the consistency

of the conclusions between Tables 4 and 6, we feel legitimized to use the linear specification in the

analysis that follows. Doing so allows us to more easily test the difference-in-differences predictions

of the model in the following subsection.

To conclude this part of the analysis, we wish to further comment on the economic magnitude

of the variation in the FPS between moderate and extreme states. The results in Table 4, columns

(2) and (3), suggest that the FPS more than doubles between extreme and moderate quarters.

Including controls (columns (5) and (6)), attenuates this variation, but leaves it at a sizable 57%.

Because of its popularity in the existing literature, the convexity of the FPS may provide a relevant

benchmark to understand whether this magnitude is economically important. The estimates in

Table 6 suggest the slope increases by about 48% between the bottom and the top range in the

return distribution (column (5)). We conclude that the variation in the FPS between extreme and

moderate states is at least as large as the magnitude of the convexity, which has attracted much

attention thus far.

5.2 Difference-in-Differences Results

The next step is to test the difference-in-differences prediction given in Proposition 2. The pre-

diction arises from the heterogeneity in the degree of ex-ante uncertainty about a fund’s parameters

(captured by the model parameters σα and σβ). In particular, we expect types of funds for which

the relative uncertainty in beta is higher to exhibit larger variation in the FPS between moderate

and extreme states. (As introduced in the model section, by relative uncertainty, we refer to the

ratio of uncertainty in beta to the uncertainty in alpha:
σβ
σα

.)

We draw on the mutual fund literature to identify funds for which relative uncertainty in beta

is a priori larger. Cremers and Petajisto (2009) and Petajisto (2013) study the degree of active

management in mutual funds. They point out two dimensions of active management. The first is
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a fund’s active share, which measures the deviation of a fund’s portfolio from the holdings of its

benchmark. The second is tracking error, which is the traditional measure of benchmark timing. In

their study, “Concentrated” funds rank high (above the median) along both dimensions, whereas

“Other” funds are the complement set. We conjecture that relative uncertainty in beliefs about beta

is higher for these funds because investors have more difficulty inferring their beta from the beta

of their benchmark.18 Hence, our first test of the difference-in-differences prediction of Proposition

2 contrasts Concentrated funds with Other funds. (In section 5.4 and Table 10, where we compute

direct estimates of uncertainty in beta and alpha, we provide evidence confirming the a priori

conjecture that relative beta uncertainty is higher for Concentrated and high-return-gap funds

than for their counterparts.)

Table 7 reports the results of estimating the FPS separately for the two groups of funds through

an interaction between a dummy for Concentrated and unexpected returns. From column (1), we

learn that Concentrated funds have slightly higher FPS unconditionally. The test of Proposition 2

emerges from the comparison of columns (2) and (3). Concentrated funds display a higher incre-

ment in FPS than Other funds in moderate times compared to extreme times. The difference-in-

differences estimate for the FPS is 0.424 ( = 0.372 - (-0.052)). The results of the statistical tests

at the bottom of these two columns allow us to reject the hypothesis that this double-difference

in the FPS is equal to zero. Adding the standard controls does not alter that conclusion (columns

(4) through (6)). (The theory makes no claim as to whether differences across fund types dur-

ing extreme or moderate times drive the difference-in-differences. The non-linear analysis below

illustrates why.)

Another relevant dimension of cross-sectional heterogeneity in mutual funds that we can use to

measure ex-ante uncertainty about parameters is the “return gap.” Kacperczyk, Sialm, and Zheng

(2008) define the return gap as the difference between the reported fund return and the return on

a portfolio that invests in the previously disclosed fund holdings. The return gap matters in our

18Note that the level of skill or risk exposure does not affect learning in any way. Only the degree of uncertainty
about the two parameters does.
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context because reported holdings can be used as a source of information to learn about beta. If a

fund’s returns deviate substantially from the holding portfolio returns, investors have more difficulty

reconstructing the fund’s beta from the beta of its holdings. Consequently, we conjecture and verify

that funds with high (above the median) return gaps in absolute value are characterized by higher

relative beta uncertainty, see Table 10. We then test Proposition 2 for high- vs. low-return-gap

funds.

In Table 8, we allow for a different FPS between the two groups by interacting unexpected

returns with a dummy for high-return-gap funds. The relevant information comes from the com-

parison of the slopes on the interaction between moderate and extreme times. The p-value is 0.025

for the double difference. The statistical significance is retained with the additions of controls in

columns (5) and (6) (p-value = 0.023).

Overall, the evidence is consistent with the predictions of Proposition 2. Funds with a priori

higher relative uncertainty in betas display a higher increase in the FPS in moderate time, relative

to extreme times.

5.3 Extracting Investors’ Beliefs from the FPS

Given the parametric restrictions imposed by the model on the FPS, we can use the empirical

estimates of the FPS to back out the uncertainty of investors’ beliefs about relative uncertainty

in beta, that is, the ratio of σβ to σα. We then compare these model-based estimates to direct

estimates of parameter uncertainty from realized returns and fund size to assess the plausibility of

the model’s quantitative predictions.

Recall that the model’s expression for the FPS is

FPSt = η · λ (ft) ,
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where

λ (ft) =
1

1 +
σ2
β

σ2
α
f2
t + σ2

ε
σ2
α

.

Combining these two equations yields the expression

FPSt
η

=
1

1 +
σ2
β

σ2
α
f2
t + σ2

ε
σ2
α

, (15)

which provides restrictions on the parameters of interest.

Our goal is to estimate equation (15) using non-linear techniques. To construct the left-hand-

side variable, we use estimates of the FPS from the quarterly regressions described in section 3.1.

In the model, flows are computed as changes in the dollar size of the fund. Hence, to test the

quantitative predictions of the model, we need to estimate parameters in units that are consistent

with the model. We thus compute flows in dollars, as opposed to expressing them as a fraction of

assets under management.

Next, we need an estimate for the coefficient η. To this purpose, we draw on recent research by

Pástor, Stambaugh, and Taylor (forthcoming) who develop a methodology for unbiased estimates

of decreasing returns to scale.19 The parameter β in their equation (1) corresponds to − 1
η in our

equation (1). We take their estimate of fund-level decreasing returns to scale, β, of −0.22 × 10−6

from their Table 3 and compute an estimate of η accordingly.20 Thus, we have all the elements to

construct the empirical counterpart of the left-hand side of equation (15) at the quarterly frequency

as

Lq =
F̂PSq
η̂

.

19Previous estimates of returns to scale in the industry include Chen, Hong, Huang, and Kubik (2004) and Edelen,
Evans, and Kadlec (2007).

20The authors’ estimate of η is derived at the monthly frequency; hence, we multiply it by 3 to obtain a quarterly
figure. The multiplication with 10−6 is necessary because they express mutual fund size in million of dollars (at the
end of 2011).
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Based on equation (15), we estimate the following non-linear regression:

Lq =
1

1 +
(
σβ
σα

)2
R2
M,q +

(
σε
σα

)2 + uq. (16)

Notice that the three parameters (σα, σβ, and σε) are not separately identified, so we express

the estimated equation in terms of the ratios
σβ
σα

and σε
σα

. As in the previous analyses, we use the

excess market return as the empirical counterpart of the factor f . The squared market return at

the quarterly frequency is the right-hand-side variable in the non-linear regression.

We estimate equation (16) using non-linear least squares. The estimates of
σβ
σα

and σε
σα

are

reported in Table 9 (first two columns). They are both positive and significant, consistent with the

model’s prediction. In particular, the statistical significance of
σ̂β
σα

confirms that the FPS depends

on the factor realizations because of risk uncertainty, which is the main claim of the paper.

Figure 1 uses these estimates to plot the fitted values from equation (16).21 Importantly, the

hump shape is strongly consistent with the model’s main prediction. Note that although the para-

metric estimation imposes the model-predicted functional form, the data can still reject the hypoth-

esis of the dependence of the FPS on the state of the market. If the model’s prediction had been

rejected, the shape in Figure 1 would have looked closer to a straight line, reflecting an estimated(
σβ
σα

)
about equal to zero . Further, the fact that the FPS as a function of the market excess return

first increases and then decreases rules out several alternative explanations of our results. For ex-

ample, one could argue that the dispersion of skill in bad times is higher than the dispersion of skill

in good times, or that σε is greater in bad times than in good times. These alternative conjectures

predict a monotonic behavior of FPS as a function of the market excess return, which is at odds

with our finding of a non-monotonic shape. Moreover, such explanations cannot easily explain why

any FPS-difference between extreme and moderate times should be greater for Concentrated than

21The confidence intervals for the fitted values are computed conditioning on the realization of RM,t. Also, we use
the asymptotic normality of the estimators and the result that a non-linear function of a random variable X tends
to the same class of distributions as X (Proposition 7.4 in Hamilton (1994)).
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for Other funds, or for funds with a large return gap relative to funds with a small return gap.

We can impose even less structure on the data by estimating the shape of the FPS non-

parametrically. We fit a local polynomial smoother to Lt, using the Epanechnikov (1969) kernel with

optimal bandwidth chosen with a rule-of-thumb estimator as described in Fan and Gijbels (1996).22

The independent variable is again the excess market return. The resulting non-parametric function

is plotted in Figure 2, along with its 95% confidence interval. The non-parametric plot mimics

the hump-shaped plot of the fitted values from the parametric estimation (Figure 1). We conclude

that the model’s prediction fits the data even when we do not impose a functional form upon the

estimation procedure.

We now repeat the non-linear estimation of the parameters in equation (16) separately for

Concentrated and Other funds and report the results in Table 9 (columns (3) through (6)). The

estimate of
σβ
σα

, which governs the dependence of the FPS on the aggregate factor, is statistically

significant only for Concentrated funds. This finding provides further corroboration for the model’s

predictions. Investors’ inference is exposed to the noise from the factor realization only in the case

of funds for which relative uncertainty about beta is sufficiently large. As a result, only for these

funds does the FPS depend on the market state. Figure 3 provides a graphical representation of

these results. Note that the hump-shape is pronounced only for Concentrated funds (thick red line).

By contrast, the thin black line corresponding to Other funds is not statistically distinguishable

from a flat line.

Finally, Table 9 (columns (7) through (10)) and Figure 4 replicate the analysis for high- and

low-return-gap funds. Analogously to the previous case, only the funds that are conjectured to have

higher beta uncertainty (high-return-gap funds) display a significantly non-monotonic dependence

of the FPS on the market realization. For low-return-gap funds, the FPS is markedly flatter across

market states, as is apparent in Figure 4 (thin line).

22This procedure is implemented in Stata using the lpoly command.
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5.4 Verifying the Model’s Quantitative Predictions

Next, we assess the validity of the model’s quantitative predictions. In particular, we obtain

direct estimates of the parameters σα and σβ from realized returns, fund size, and holdings and

compare them to the model-implied estimates from section 5.3. The question we intend to address

is whether the amount of model-implied parameter uncertainty is of the same order of magnitude

as the uncertainty that real-world investors face. If it is, the plausibility of the channel that we

propose as an explanation for our findings – uncertainty about risk loadings – will be strengthened.

The procedure described in section 3.2 makes use of the information that is available to investors

in estimating fund betas. In particular, it exploits data on fund holdings, daily returns, and daily

state variables. As a result, it likely approximates investors’ filtering process. We use the betas re-

sulting from this procedure as proxies for unobserved investors’ beliefs. For each fund, we compute

the standard deviation of the daily betas and use this value as an estimate of the fund-level uncer-

tainty on beta (σβ). To obtain a unique value across funds, we take the mean standard deviation of

fund-level betas (0.071, see Panel B of Table 2. For convenience, we report this estimate in Table

10, Panel A, as well.)

We follow the spirit of Berk and van Binsbergen (2012) in using fund size multiplied by the

efficiency parameter η as a measure of managerial skill. This choice is also motivated by equation

(3) in our model. For each fund, at the quarterly frequency, we compute α̂it as η · Sit , drawing the

estimate of η from Pástor, Stambaugh, and Taylor (forthcoming). (Computing alpha before fees

does not alter the conclusions because the focus is on the volatility of alpha at the fund level,

while fees are mostly constant over time at the fund level.) Then, to estimate investors’ uncertainty

about skill (σα), we take the fund-level standard deviation of α̂it. The average measure of uncertainty

across funds is 1.29 × 10−4 (Table 10). Note that our regressions directly control for flows in and

out of the sector; as a result, variation stemming from aggregate flows does not affect our empirical

results.

Table 10 also reports the ratio between the estimates of σβ and σα. This ratio amounts to
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552.002. We are now in the position to compare the model’s implied estimate of
σ̂β
σα

from Table 9

with the direct estimates of investors’ uncertainty
σ̂β
σ̂α

reported in Table 10. We note that the direct

estimate at 552.002 is remarkably similar to the parametric estimate in Table 9 (648.501) and is

well within the 95% confidence interval of this coefficient, which is (399.614; 897.387). Formally, we

cannot reject the hypothesis that the model-implied parametric estimates of relative uncertainty

about beta coincide with a direct estimate of the same quantity from holdings and returns data.

We conclude that the quantitative predictions of the model appear plausible.

Using the same methodology, we compute direct estimates of parameter uncertainty separately

for Concentrated and Other funds and report them in Panel B of Table 10. First, we note that the

estimate of
σ̂β
σ̂α

for Concentrated funds is more than twice as large as for Other funds. This evidence

justifies our conjecture used in the OLS tests that the relative uncertainty in betas is higher for

Concentrated funds. Then we validate the quantitative predictions of the model by observing that

the direct estimates of relative beta uncertainty for both Concentrated (700.734) and Other funds

(307.011) are very close to the parametric estimates in Table 9 (660.624 and 322.124, respectively)

and fall within the 95% confidence intervals for these estimates, which are (61.168; 1260.079) and

(-166.547; 810.795), respectively.

Finally, we repeat the same estimation for funds ranked by return gap, and report the results in

Panel C of Table 10. Although to a smaller extent than the previous case, we find evidence support-

ing our conjecture that high-return-gap funds are characterized by larger relative uncertainty in

betas than low-return-gap funds (the estimated relative uncertainty ratios are 346.174 and 315.724,

respectively). The corresponding 95% confidence intervals for the parametric estimates reported in

Table 9 are (363.482; 1065.724) and (-18.076; 890.399), respectively.

This exercise concludes the tests of the model’s quantitative predictions. The data confirm the

predicted shape of the relation between the FPS and the state of the market. Moreover, the amount

of uncertainty in investors’ beliefs that, within the model, generates this relation appears broadly

consistent with direct estimates of parameter uncertainty from holdings and daily return data.
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5.5 Robustness Analysis

In this last subsection, we provide robustness checks for several dimensions of the empirical

modeling choices. The results are in Tables 11 through 13.

First, we investigate the extent to which changes in residual volatility (σ2
ε) across market states

affect the estimated variation of FPS across market states. This test addresses the concern that our

main results could be driven by variation in the parameter distributions across states rather than

by the noise introduced by extreme factor realizations. Because the FPS is the regression coefficient

of flows on performance, to examine this question, we have to introduce as a control the interaction

between performance and residual volatility. By doing that, we explicitly model the dependence

of the FPS on residual volatility. We compute residual volatility in each quarter as the standard

deviation of the difference between daily excess returns minus the alpha, which is estimated as in

section 5.4. The question is whether the effect on the non-interacted performance variable (exret)

continues to vary across market states after the introduction of this control. The results in Table

11 indicate that the answer is a clear “yes.” Both before and after the introduction of the standard

controls, the FPS is much higher in moderate than extreme states, and the differences are highly

statistically significant in both cases. We conclude that state-dependent residual volatility is not a

key driver of our results.

Next, as mentioned with regard to the estimation of the parameters of the FPS, flows in the

model are expressed in dollars. In our main results on the estimation of the FPS, we follow the

literature standard and measure flows as a fraction of prior-period assets under management. Here,

we provide specifications that are more literally corresponding to their theoretical counterparts.

In columns (1) and (2) of Table 12, flows are expressed in dollars (percentage flows multiplied

by prior-period assets). The estimates confirm the main results in Table 4 (columns (1) and (2)),

because the FPS in moderate times is still more than twice as large as that in extreme times, and

the difference in slopes is statistically significant. To be even closer to the model’s formulation, in

columns (3) and (4), we express flows as the change in size between two quarters (measured in $
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millions). Again, this modification of the dependent variable does not affect the main conclusions.

Our main estimation of the FPS relies on quarterly Fama and MacBeth (1973) regressions,

which account for cross-sectional correlation of the residuals. At the fund level, the residuals can

still be correlated over time. To account for this possibility, as in Huang, Wei, and Yan (2012),

we pool the fund-quarter observations and estimate a unique regression with time fixed effects and

standard errors that are clustered along both the time and fund dimensions. The difference in slopes

between moderate and extreme times is tested via an interaction term between unexpected returns

and a dummy for moderate periods. The estimates in columns (5) and (6) show that this change

does not affect the main results: the FPS in moderate times is roughly twice as large as in extreme

times, and the difference is statistically significant also in this specification.

In our sample selection procedure, we excluded institutional funds because of restrictions in

their asset selection that our model does not capture. (Institutions establish long-term relations

with mutual funds, which may limit the need for learning and to some extent constrain the fund

manager’s behavior.) In the specifications reported in columns (7) and (8) of Table 12, we extend

the sample to include institutional funds. Again, the main results remain unchanged in terms of

both magnitude and statistical significance.

The distribution of returns might change across moderate and extreme times in a way that

affects the estimation of the FPS. This issue is a concern as long as returns are not rescaled to have

equal distribution across quarters. Then, following the prior literature (e.g., Huang, Wei, and Yan

(2007)), we redefine our main explanatory variable in terms of a fund’s fractional rank within the

quarter relative to funds with the same CRSP objective code. That is, mutual funds’ unexpected

returns are ranked within the group of funds with the same objective in the same quarter. Then

we use as an explanatory variable in the FPS estimation a fund’s ranking scaled to range between

0 and 1. Columns (9) and (10) of Table 12 show that this choice of performance variable does not

impact the main inference. The FPS is still significantly larger in moderate than in extreme times.

We test the robustness of the results in Table 4 to the choice of the cutoff for the definition
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of moderate and extreme states, which is ±5% in the main results. In columns (11) and (12) of

Table 12, the cutoff for the quarterly market return is 2.5%. That is, moderate times are those in

which the quarterly market return in excess of the risk-free rate is above -2.5% and below 2.5%.

According to this definition, 11 quarters are moderate and 45 quarters are extreme. In columns

(13) and (14), the cutoff is 7.5%, so that 30 quarters are moderate and 26 are extreme. In both

cases, the main conclusions are unchanged. In both specifications, the FPS is significantly larger in

moderate times and about twice as high. The results are fully consistent with Proposition 1, which

holds for any positive constant c.

Finally, we replicate the main analysis on a sample of index funds, which are identified using the

CRSP flag variable. The theory that we propose hinges on uncertainty about skill and risk loadings.

Index funds, because they track a benchmark, are not expected to generate abnormal returns. Also,

their betas are known because they correspond to the benchmark’s betas. Consequently, the model

predicts no variation in the FPS between moderate and extreme times. The results in columns (15)

and (16) provide full support for this prediction.

In Table 13, we show robustness with respect to three dimensions: the time range of the sample,

the choice of the explanatory variable, and the choice of the dependent variable. The sample in the

main analysis is constrained to start in 1998:Q3 by the availability of the daily returns, which we

use to compute daily betas. Abstaining from the computation of daily betas allows us to let the

sample start in 1980:Q1, which conforms with the literature standard. The estimation procedure

follows Fama and MacBeth (1973).

In the top four rows of Table 13, the dependent variable is next quarter flows, the same as

in our main analysis. In the first specification, we address the concern that our methodology for

estimating betas is potentially inefficient and can lead to noise in risk adjusted performance. Thus,

we estimate fund betas using only the end-of-quarter holdings, and keep the beta constant for

the entire next quarter in adjusting returns for risk. The estimates suggest that this choice of

explanatory variable does not affect our main conclusions. The second specification involves an
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even more radical simplification, as the explanatory variable is raw returns with no adjustment for

the risk factor realization. It appears that our conclusions do not depend on the chosen methodology

to compute betas. In the third specification, the explanatory variable is the fund’s return ranking

relative to funds in the same style category, where we use CRSP objective code to define styles.

The ranking is normalized to range between 0 and 1. Also in this case, the conclusions are not

impacted by the choice of the explanatory variable. In the fourth row, we follow Spiegel and Zhang

(2012) and measure fund performance by the asset-under-management-weighted return of the funds

in the same vigintile. Funds are ranked by quarterly returns and grouped so that in each vigintile

there is about one-twentieth of the assets under management in a given quarter. Again, the main

conclusions remain intact.

In the next four rows of Table 13, the dependent variable is the change in a fund’s market

share. This choice of the dependent variable is advocated by Spiegel and Zhang (2012) who argue

that the standard controls are not sufficient to capture variation in FPS across funds that is due,

for example, to fund age or aggregate flows. The four specifications mirror the top four rows in

terms of explanatory variables.23 Using this alternative dependent variable does not affect our main

empirical conclusion: investors’ sensitivity to fund performance is significantly larger in moderate

than in extreme market states.

Finally, all the estimates in Table 13 are obtained using the long sample ranging between

1980:Q1 and 2012:Q3. The conclusion, therefore, is that our main result holds true also in this

extended sample.

6 Conclusion

We provide a model of capital allocation by Bayesian investors to projects that are character-

ized by uncertainty about their exposure to a risk factor. We cast the interpretation of the model

within the framework of flows to mutual funds and show that it explains first-order empirical regu-

23We winsorize the change in market share at the 5th and 95th percentiles to obtain a well-behaved distribution.
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larities that existing models leave unexplained. In particular, we predict and find a non-monotonic

relationship between the flow-performance sensitivity (FPS) and the state of the market, with the

highest FPS when markets move sideways and lower FPS when market returns are either very

high or very low. Indeed, the flow-performance relation is approximately twice as steep following

moderate market realizations than following extreme market returns. Second, the FPS-difference

between moderate and extreme times is larger for funds about whose risk loadings investors are

more uncertain; no such difference exists for index funds. These findings, combined with the non-

monotonicity of the relationship, are more difficult to reconcile with alternative explanations of the

FPS-difference across market states.

The paper provides insights for both researchers of individual investor behavior and researchers

with interests in macroeconomics. First, our results indicate that individual investors react much

more strongly to news about their investments in some market states than in others. Interestingly,

such differences in their reactivity are easily explained by a simple rational model. Second, uncer-

tainty about project risks can be an important factor inhibiting capital reallocation decisions; given

such uncertainty, reallocation is more effective at times when investors’ inference is not obfuscated

by large swings in aggregate factor realizations. The benefits of macroeconomic moderation may

thus include a more efficient allocation of capital across investment projects.
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A Proofs

It is useful to derive an additional lemma before proving Lemma 1.

Lemma 3. Based on current beliefs, investors value each dollar invested in the fund according to

pit = 1 + α̂it −
1

η
Sit . (17)

Proof of Lemma 3 (Fund Value)

Recall that ft is the traded risk factor in mutual fund returns, and it is an excess return.

Based on standard results in asset pricing (e.g., Cochrane (2001)), the factor f can be priced using

investors’ stochastic discount factor mt+1:

Et [mt+1ft+1] = 0. (18)

The cash flows from fund i are valued according to

pit = Et
[
mt+1Y

i
t+1

]
= Et

[
mt+1

(
1 + αi + βift −

1

η
Sit + εit+1

)]
= 1 + α̂it −

1

η
Sit ,

where α̂it and β̂it are the time-t beliefs for αi and βi. The last step follows from equation (18) and

the fact that Et [mt+1] = 1 given that the net risk-free rate is normalized to 0. �

Proof of Lemma 1 (Fund Size)

The equilibrium condition is that the value from the last dollar invested in each project must

be equal to the value invested in the risk-free asset. Because the net risk-free rate is normalized to

zero, the value of a dollar invested in each fund i must be one dollar. Combining this equilibrium
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condition with Lemma 3, pit = 1 + α̂it − 1
ηS

i
t = 1 immediately yields the result. �

Proof of Lemma 2 (Fund Flows)

Given our assumptions of normally distributed parameters, beliefs about fund returns condi-

tional on the market shock ξt are normally distributed as well. As a result, the standard formulas

for Bayesian updating of beliefs apply. Bayesian updating occurs according to

α̂it = α̂it−1 + cov
[
αi, Y i

t |ft
] (Y i

t − E[Y i
t ]
)

var[Y i
t |ft]

with

var[Y i
t |ft] = σ2

α + σ2
βf

2
t + σ2

ε ,

cov
[
α, Y i

t |ft
]

= σ2
α.

The updating formula essentially replicates investors’ learning from past performance, that is,

regressing alpha on innovations in returns. Next, recall from the previous lemma that

Sit = η · α̂it.

Flows, or changes in fund size, are then implied by how much is learned about skill, αi:

Sit − Sit−1 = η · (α̂it − α̂it−1)

= η · cov
[
α, Y i

t |ft
] (Y i

t − E[Y i
t ]
)

var[Y i
t |ft]

= η · σ2
α

σ2
α + σ2

βf
2
t + σ2

ε

.
(
Y i
t − E[Y i

t ]
)
,
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which yields the desired expression for λ(ft). �

Proof of Propositions 1 and 2

Let us start from equation (5), which states that λ(ft) = 1

1+
σ2
β

σ2α
f2t +

σ2ε
σ2α

. Without loss of generality,

let x denote a realization of ft in extreme times and let 0 be a realization of ft in moderate times.

Further, to simplify notation, let r =
σ2
β

σ2
α

and s = σ2
ε
σ2
α

. We can then write

λmoderate − λextreme =
1

1 + s2
− 1

1 + r2x2 + s2

=
r2x2

(1 + s2) (1 + r2x2 + s2)
> 0.

This completes the proof of proposition 1. Moreover, let us label funds with high relative uncertainty

in beta; that is, higher r =
σβ
σa

, with H and funds with low relative beta uncertainty with L. That

is, rH > rL. Then we can compute the difference in differences as

(λmoderate − λextreme)H − (λmoderate − λextreme)L =

r2
Hx

2

(1 + s2)
(
1 + r2

Hx
2 + s2

) − r2
Lx

2

(1 + s2)
(
1 + r2

Lx
2 + s2

) .
We want to prove that the double difference is positive:

r2
Hx

2

(1 + s2)
(
1 + r2

Hx
2 + s2

) − r2
Lx

2

(1 + s2)
(
1 + r2

Lx
2 + s2

) > 0.

The inequality is equivalent to

r2
Hx

2

(1 + s2)
(
1 + r2

Hx
2 + s2

) > r2
Lx

2

(1 + s2)
(
1 + r2

Lx
2 + s2

) ,
r2
H(

1 + r2
Hx

2 + s2
) > r2

L(
1 + r2

Lx
2 + s2

) .
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Because the denominator on the left side of the inequality is larger than the denominator on the

right side, the inequality can only hold if r2
H > r2

L, which holds trivially because it is assumed that

rH > rL.

�
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Figure 1: Parametric plot of the FPS.
The figure plots the fitted values from the non-linear estimation of the flow-performance sensitivity (FPS) along with 95%

confidence intervals. The estimated functional form is Lq = 1

1+
(
σβ
σα

)2
R2
M,q+

(
σε
σα

)2 + uq, where Lq =
F̂PSq
η̂

. FPSq is

the slope from quarterly cross-sectional regressions of quarterly flows on prior-quarter mutual fund unexpected returns and

RM,q is the quarterly excess return on the CRSP value-weighed index. Quarterly flows are computed as the quarterly change

in assets under management minus the dollar return on assets under management over the quarter and expressed as a fraction

of prior-quarter assets. Unexpected returns are the average of daily returns (in excess of the risk free rate) minus the daily beta

times the daily realization of the risk factor (this variable is then expressed as a quarterly return, scaling it by the number of

days in a quarter). Daily betas are estimated combining information on reported holdings at the end of the prior quarter and

daily changes in a set of conditioning variables. η̂ is an estimate of the parameter capturing decreasing returns to scale and it

is computed using results in Pástor, Stambaugh, and Taylor (forthcoming). Confidence intervals are computed using the delta

method. The sample ranges from 1998:Q3 to 2012:Q2.
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Figure 2: Non-parametric plot of the FPS.
The figure plots the fitted values from a local polynomial smoother applied to Lq =

F̂PSq
η̂

, along with 95% confidence intervals.

The independent variable is the excess return on the CRSP value-weighted index. The smoother uses the Epanechnikov (1969)

kernel with optimal bandwidth chosen with a rule-of-thumb estimator as described in Fan and Gijbels (1996). FPSq is the

slope from quarterly cross-sectional regressions of quarterly flows on prior-quarter mutual fund unexpected returns. Quarterly

flows are computed as the quarterly change in assets under management minus the dollar return on assets under management

over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of daily returns (in

excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable is then expressed as

a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated combining information on reported

holdings at the end of the prior quarter and daily changes in a set of conditioning variables. η̂ is an estimate of the parameter

capturing decreasing returns to scale and it is computed using results in Pástor, Stambaugh, and Taylor (forthcoming). The

sample ranges from 1998:Q3 to 2012:Q2.
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Figure 3: Parametric plot of the FPS for Concentrated and Other funds.
The figure plots the fitted values from the non-linear estimation of the flow-performance sensitivity (FPS) along with 95%

confidence intervals for Concentrated (thick red lines) and Other funds (thin black lines). The estimated functional form is

Lq = 1

1+
( σβ
σα

)2
R2
M,q

+
(
σε
σα

)2 + uq , where Lq =
F̂PSq
η̂

. FPSq is the slope from quarterly cross-sectional regressions of quarterly

flows on prior-quarter mutual fund unexpected returns and RM,q is the quarterly excess return on the CRSP value-weighed

index. Quarterly flows are computed as the quarterly change in assets under management minus the dollar return on assets

under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of

daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable

is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated combining

information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables. η̂ is an

estimate of the parameter capturing decreasing returns to scale and it is computed using results in Pástor, Stambaugh, and

Taylor (forthcoming). Concentrated funds are those that in each quarter rank above the median both in terms of tracking error

and active share, as defined by Cremers and Petajisto (2009). Other funds are defined as the complement. Confidence intervals

are computed using the delta method. The sample ranges from 1998:Q3 to 2009:Q3.
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Figure 4: Parametric plot of the FPS for high- and low-return-gap funds.
The figure plots the fitted values from the non-linear estimation of the flow-performance sensitivity (FPS) along with 95%

confidence intervals for high (thick red lines) and low-return-gap funds (thin black lines). The estimated functional form is

Lt = 1

1+
( σβ
σα

)2
R2
M,t

+
(
σε
σα

)2 + ut, where Lt = F̂PSt
η̂

. FPSt is the slope from quarterly cross-sectional regressions of quarterly

flows on prior-quarter mutual fund unexpected returns and RM,t is the quarterly excess return on the CRSP value-weighed

index. Quarterly flows are computed as the quarterly change in assets under management minus the dollar return on assets

under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of

daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable

is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated combining

information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables. η̂ is an

estimate of the parameter capturing decreasing return to scales and it is computed using results in Pástor, Stambaugh, and

Taylor (forthcoming). High-return-gap funds are those that in each quarter rank above the median in terms of the quarterly

return gap, as defined by Kacperczyk, Sialm, and Zheng (2008). Confidence intervals are computed using the delta method.

The sample ranges from 1998:Q3 to 2012:Q2.
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Table 2: Summary statistics (beta estimation).
Panel A reports summary statistics for daily betas and for the coefficients on the changes in conditioning variables in the

estimation of beta. Daily betas are estimated combining information on reported holdings at the end of the prior quarter and

daily changes in a set of conditioning variables. The changes in conditioning variables are (1) the daily excess return on the

CRSP value-weighted index, (2) the change in the Ted Spread, which is the difference between the three-month LIBOR and

TBill rates, (3) the change in the VIX index from the CBOE, and (4) the change in the Credit Spread, which is the difference

between Baa- and Aaa-rated corporate bonds (from the Federal Reserve Bank of St. Louis). Daily betas are estimated between

September 1, 1998, and June 30, 2012. Panel B reports statistics on the fund-level standard deviation (volatility) in daily betas.

The total standard deviation is broken down into fund-level intra-quarter volatility and across-quarter volatility. To compute

across-quarter volatility at the fund level, only the first observation in each quarter is used. This observation corresponds to the

beta of the reported holdings at the end of the previous quarter. Hence, across-quarter volatility corresponds to the volatility

of the holding-betas.

Panel A: Summary Statistics of Betas and Coefficients on Conditioning Variables

N Mean SD Min p25 Median p75 Max

Beta 8,452,791 0.998 0.082 0.745 0.953 0.997 1.040 1.250
Coeff. on Market Return 8,452,791 0.039 1.070 -13.400 -0.381 0.100 0.563 12.200
Coeff. on Ted Spread 8,452,791 -1.080 18.300 -496.000 -3.760 -1.270 1.040 380.000
Coeff. on VIX 8,452,791 -0.097 0.840 -13.400 -0.390 -0.002 0.292 13.000
Coeff. on Cred. Spread 8,452,791 2.040 27.500 -408.000 -3.240 0.859 5.550 667.000

Panel B: Fund-Level Volatility of Beta Estimates

N Mean SD Min p25 Median p75 Max

Total volatility 5,049 0.071 0.033 0.006 0.047 0.064 0.087 0.233
Intra-quarter volatility 5,049 0.029 0.024 0.001 0.013 0.021 0.036 0.168
Across-quarter volatility 5,049 0.048 0.024 0.000 0.033 0.045 0.061 0.172
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Table 3: Summary statistics (FPS estimation).
The table reports summary statistics for the variables that are used in the estimation of the flow-performance sensitivity (FPS)

at the quarterly frequency: the fund’s quarterly unexpected return, which is the average of daily returns (in excess of the

risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable is then expressed as a quarterly

return, scaling it by the number of days in a quarter; daily betas are estimated combining information on reported holdings

at the end of the prior quarter and daily changes in a set of conditioning variables.); assets under management in $ millions

(TNA); the total expense ratio; the fund turnover ratio; return volatility over the prior 12 months; fund age computed as the

number of quarters since the first appearance in CRSP; and quarterly flows computed as the quarterly change in assets under

management minus the dollar return on assets under management over the quarter and expressed as a fraction of prior-quarter

assets. The sample ranges from 1998:Q3 to 2012:Q2.

N Mean SD Min Median Max

Ret 135,832 0.000 0.047 -0.733 -0.001 0.567
TNA 135,832 686 3202 5 78 109073
Expense ratio 135,832 0.016 0.005 0.000 0.015 0.089
Turnover 135,832 0.862 0.808 0.000 0.670 19.800
Volatility 135,832 0.051 0.024 0.004 0.047 0.287
Age (quarters) 135,832 41.600 35.100 5.000 32.000 204.000
Flows 135,832 -0.001 0.106 -0.261 -0.021 0.734

Correlations
Ret TNA Expense Turnover Volatility Age

Ret 1.00
TNA 0.01 1.00
Expense ratio -0.01 -0.24 1.00
Turnover -0.01 -0.08 0.15 1.00
Volatility -0.04 -0.03 0.05 0.18 1.00
Age (quarters) -0.01 0.32 -0.30 -0.07 -0.03 1.00
Flows 0.14 0.00 -0.07 -0.02 0.00 -0.15
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Table 4: Flow-performance sensitivity main results (extreme vs. moderate states).
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund unexpected

returns (flow-performance sensitivity, FPS). Columns (1) and (4) are for all quarters. Columns (2) and (5) are for Extreme

quarters, and columns (3) and (6) are for Moderate quarters. Columns (4) through (6) include a set of control variables:

total flows into funds with the same CRSP objective code; the total expense ratio of the fund; the logarithm of assets under

management; the fund turnover ratio; return volatility over the prior 12 months; fund age computed as the number of quarters

since the first appearance in CRSP; one-quarter lagged flows. At the bottom of the table, we report the z-statistic and p-value

for the small-sample test of the null hypothesis that the FPSs in moderate and extreme times coincide. Quarterly flows are

computed as the quarterly change in assets under management minus the dollar return on assets under management over the

quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of daily returns (in excess of the

risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable is then expressed as a quarterly

return, scaling it by the number of days in a quarter). Daily betas are estimated combining information on reported holdings at

the end of the prior quarter and daily changes in a set of conditioning variables. Moderate times are defined as the quarters in

which the realizations of the CRSP value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme

quarters are all other quarters. The sample ranges from 1998:Q3 to 2012:Q2. T-statistics are reported in parentheses. ***, **,

and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

exret 0.502*** 0.326*** 0.754*** 0.409*** 0.332*** 0.518***
(10.687) (6.229) (14.254) (12.626) (8.462) (10.968)

flows style 0.342*** 0.404*** 0.253**
(5.841) (6.015) (2.429)

fee -1.309*** -1.177*** -1.498***
(-10.695) (-7.275) (-8.151)

logsize -0.001*** -0.001** -0.001***
(-3.984) (-2.302) (-3.909)

turn ratio 0.000 0.001 -0.000
(0.425) (0.736) (-0.438)

vol -0.152 -0.297** 0.055
(-1.385) (-2.071) (0.335)

logage -0.010*** -0.009*** -0.012***
(-12.012) (-8.842) (-8.260)

flows 0.545*** 0.563*** 0.520***
(35.280) (27.686) (22.341)

Constant -0.003 -0.003 -0.004 0.071*** 0.074*** 0.066***
(-1.250) (-0.743) (-1.089) (12.587) (8.831) (9.974)

Observations 135,832 75,563 60,269 135,832 75,563 60,269
R-squared 0.048 0.036 0.065 0.416 0.403 0.433

Number of quarters 56 33 23 56 33 23
z-stat 5.748 3.026
p-val 0.000 0.002



Table 5: Flow-Performance Sensitivity Main Results (Comparison of the FPS in the Right and Left
Tails of the Market Return Distribution).
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund unexpected

returns (flow-performance sensitivity, FPS). Columns (1) and (4) are for the “left tail” of the market return distribution

(“extreme” times with negative market returns). Columns (2) and (5) are for the “right tail” of the market return distribution

(“extreme” times with positive market returns). Columns (3) and (6) replicate “moderate” quarters from the previous table.

Columns (4) through (6) include a set of control variables: total flows into funds with the same CRSP objective code; the

total expense ratio of the fund; the logarithm of assets under management; the fund turnover ratio; return volatility over the

prior 12 months; fund age computed as the number of quarters since the first appearance in CRSP; one-quarter lagged flows.

Quarterly flows are computed as the quarterly change in assets under management minus the dollar return on assets under

management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of daily

returns (in excess of the risk free rate) minus the daily beta times the daily realization of the risk factor (this variable is then

expressed as a quarterly return scaling it by the number of days in a quarter). Daily betas are estimated combining information

on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables. Moderate times are

defined as the quarters in which the realizations of the CRSP value-weighted index in excess of the risk-free rate are above -5%

and below +5%. Extreme quarters are all other quarters. The sample ranges from 1998:Q3 to 2012:Q2. z-statistics and p-values

for differences between tails and moderate times are reported at the bottom. ***, **, and * represent statistical significance at

the 1%, 5%, and 10% levels, respectively.

Flows (t+1) Left Tail Right Tail Moderate Left Tail Right Tail Moderate

exret 0.347*** 0.311*** 0.754*** 0.307*** 0.351*** 0.518***
(4.726) (4.167) (14.254) (4.415) (7.583) (10.968)

flows style 0.525*** 0.316*** 0.253**
(4.262) (4.530) (2.429)

fee -1.275*** -1.106*** -1.498***
(-5.009) (-5.170) (-8.151)

logsize -0.001 -0.001* -0.001***
(-1.164) (-2.093) (-3.909)

turn ratio 0.001 0.001 -0.000
(0.523) (0.504) (-0.438)

vol 0.175 -0.644*** 0.055
(0.727) (-5.008) (0.335)

logage -0.008*** -0.010*** -0.012***
(-4.263) (-8.819) (-8.260)

flows 0.592*** 0.542*** 0.520***
(15.872) (24.774) (22.341)

Constant -0.002 -0.003 -0.004 0.046*** 0.095*** 0.066***
(-0.325) (-0.750) (-1.089) (3.705) (10.686) (9.974)

Observations 31,586 43,977 60,269 31,586 43,977 60,269
R-squared 0.047 0.028 0.065 0.367 0.430 0.433

Number of quarters 14 19 23 14 19 23
z-stat 4.505 4.840 2.507 2.534
p-val 0.000 0.000 0.012 0.011



Table 6: Flow-performance sensitivity main results (extreme vs. moderate states): piecewise linear
specification.
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on three variables corresponding to

three intervals in the support of prior-quarter mutual fund unexpected returns. The three intervals are determined according

to the terciles of the distribution of unexpected returns in a given quarter. Each of the the three variables equals the fund’s

unexpected return if it falls in the corresponding interval of the distribution, and zero otherwise. Columns (1) and (4) are for

all quarters. Columns (2) and (5) are for Extreme quarters, and columns (3) and (6) are for Moderate quarters. Columns (4)

through (6) include a set of control variables: total flows into funds with the same CRSP objective code; the total expense ratio

of the fund; the logarithm of assets under management; the fund turnover ratio; return volatility over the prior 12 months;

fund age computed as the number of quarters since the first appearance in CRSP; one-quarter lagged flows. At the bottom of

the table, we report p-values for the small-sample chi-square test of the null hypotheses of joint equality of the slopes between

moderate and extreme quarters. Quarterly flows are computed as the quarterly change in assets under management minus the

dollar return on assets under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected

returns are the average of daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the

risk factor (this variable is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are

estimated combining information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning

variables. Moderate times are defined as the quarters in which the realizations of the CRSP value-weighted index in excess of

the risk-free rate are above -5% and below +5%. Extreme quarters are all other quarters. The sample ranges from 1998:Q3 to

2012:Q2. T-statistics are reported in parentheses. ***, **, and * represent statistical significance at the 1%, 5%, and 10% levels,

respectively.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

bottom exret 0.431*** 0.274*** 0.655*** 0.339*** 0.283*** 0.419***
(7.994) (3.966) (10.622) (10.790) (6.609) (10.220)

mid exret 0.595*** 0.430*** 0.830*** 0.530*** 0.480*** 0.601***
(6.742) (3.833) (6.416) (7.846) (5.798) (5.260)

top exret 0.641*** 0.441*** 0.928*** 0.501*** 0.410*** 0.630***
(9.535) (6.115) (9.140) (11.289) (8.202) (8.535)

flows style 0.332*** 0.404*** 0.229**
(5.623) (6.059) (2.168)

fee -1.336*** -1.207*** -1.523***
(-10.850) (-7.300) (-8.427)

logsize -0.001*** -0.001** -0.001***
(-3.922) (-2.268) (-3.895)

turn ratio 0.000 0.001 -0.000
(0.340) (0.604) (-0.365)

vol -0.175 -0.313** 0.022
(-1.648) (-2.306) (0.136)

logage -0.010*** -0.009*** -0.012***
(-12.169) (-9.024) (-8.294)

flows 0.543*** 0.560*** 0.519***
(35.463) (27.851) (22.366)

Constant -0.005* -0.004 -0.007 0.071*** 0.075*** 0.065***
(-1.865) (-1.099) (-1.682) (12.505) (8.837) (9.884)

Observations 135,832 75,563 60,269 135,832 75,563 60,269
R-squared 0.054 0.043 0.070 0.418 0.406 0.435

Number of quarters 56 33 23 56 33 23
p-val 0.000 0.029



Table 7: Flow-performance sensitivity double-difference results: Concentrated vs. Other funds.
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund unexpected

returns and their interaction with an indicator for Concentrated funds. Columns (1) and (4) are for all quarters. Columns (2)

and (5) are for Extreme quarters, and columns (3) and (6) are for Moderate quarters. Columns (4) through (6) include a set of

control variables: total flows into funds with the same CRSP objective code; the total expense ratio of the fund; the logarithm

of assets under management; the fund turnover ratio; return volatility over the prior 12 months; fund age computed as the

number of quarters since the first appearance in CRSP; one-quarter lagged flows. At the bottom of the table, we report the

z-statistic and p-value for the small-sample test of the null hypothesis that the slopes in moderate and extreme times on the

interaction coincide. This test corresponds to a difference-in-differences test for a difference in the slope on concentrated funds

in moderate times. Quarterly flows are computed as the quarterly change in assets under management minus the dollar return

on assets under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the

average of daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor (this

variable is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated

combining information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables.

Concentrated funds are those that in each quarter rank above the median both in terms of tracking error and active share, as

defined by Cremers and Petajisto (2009). Moderate times are defined as the quarters in which the realizations of the CRSP

value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme quarters are all other quarters. The

sample ranges from 1998:Q3 to 2009:Q3. T-statistics are reported in parentheses. ***, **, and * represent statistical significance

at the 1%, 5%, and 10% levels, respectively.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

exret × concentrated 0.150* -0.052 0.372*** 0.106 -0.050 0.276**
(1.817) (-0.541) (3.061) (1.497) (-0.658) (2.429)

exret 0.542*** 0.416*** 0.679*** 0.425*** 0.414*** 0.437***
(9.819) (5.611) (9.352) (8.780) (6.843) (5.581)

concentrated 0.009** 0.008 0.011* 0.009*** 0.008** 0.010***
(2.357) (1.345) (2.019) (3.894) (2.547) (2.906)

flows style 0.387*** 0.444*** 0.326**
(3.934) (3.488) (2.111)

fee -0.711** -0.272 -1.191***
(-2.293) (-0.537) (-3.743)

logsize -0.002*** -0.002** -0.003***
(-4.246) (-2.462) (-3.791)

turn ratio 0.001 0.003 -0.002
(0.416) (0.999) (-0.723)

vol -0.295 -0.345 -0.240
(-1.553) (-1.197) (-0.965)

logage -0.009*** -0.007** -0.011***
(-5.082) (-2.637) (-4.948)

flows 0.543*** 0.576*** 0.507***
(17.791) (11.301) (16.512)

Constant 0.004** 0.007* 0.002 0.073*** 0.068*** 0.079***
(2.070) (2.066) (0.746) (6.028) (3.221) (7.077)

Observations 15,666 7,811 7,855 15,666 7,811 7,855
R-squared 0.072 0.065 0.080 0.341 0.342 0.340

Number of quarters 44 23 21 44 23 21
z-stat 2.732 2.389
p-val 0.006 0.017



Table 8: Flow-performance sensitivity double-difference results by return gap.
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund unexpected

returns and their interaction with an indicator for high-return-gap funds. Columns (1) and (4) are for all quarters. Columns

(2) and (5) are for extreme quarters, and columns (3) and (6) are for moderate quarters. Columns (4) through (6) include a

set of control variables: total flows into funds with the same CRSP objective code; the total expense ratio of the fund; the

logarithm of assets under management; the fund turnover ratio; return volatility over the prior 12 months; fund age computed

as the number of quarters since the first appearance in CRSP; one-quarter lagged flows. At the bottom of the table, we report

the z-statistic and p-value for the small-sample test of the null hypothesis that the slopes in moderate and extreme times on

the interaction coincide. This test corresponds to a difference-in-differences test for a difference in the slope on high-return-gap

funds in moderate times. Quarterly flows are computed as the quarterly change in assets under management minus the dollar

return on assets under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns

are the average of daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor

(this variable is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated

combining information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables.

High-return-gap funds are those that in each quarter rank above the median in terms of the quarterly return gap, as defined

by Kacperczyk, Sialm, and Zheng (2008). Moderate times are defined as the quarters in which the realizations of the CRSP

value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme quarters are all other quarters. The

sample ranges from 1998:Q3 to 2012:Q2. T-statistics are reported in parentheses. ***, **, and * represent statistical significance

at the 1%, 5%, and 10% levels, respectively.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

exret × high gap 0.127* -0.003 0.312** 0.111 -0.022 0.301**
(1.921) (-0.044) (2.477) (1.599) (-0.291) (2.519)

exret 0.656*** 0.486*** 0.899*** 0.532*** 0.487*** 0.597***
(9.432) (6.097) (8.349) (8.829) (6.562) (5.883)

high gap 0.008*** 0.008** 0.007* 0.004* 0.004 0.003
(2.882) (2.275) (1.730) (1.761) (1.434) (1.002)

flows style 0.306** 0.285 0.338*
(2.212) (1.455) (1.757)

fee -0.131 0.038 -0.374
(-0.381) (0.074) (-0.909)

logsize -0.001* -0.002 -0.001
(-1.757) (-1.624) (-0.778)

turn ratio -0.002 -0.003 -0.001
(-0.931) (-0.891) (-0.320)

vol -0.230 -0.316 -0.107
(-1.264) (-1.288) (-0.391)

logage -0.008*** -0.005** -0.012***
(-4.055) (-2.133) (-3.885)

flows 0.598*** 0.626*** 0.558***
(15.726) (11.253) (11.828)

Constant 0.001 0.001 0.002 0.053*** 0.050** 0.056***
(0.502) (0.223) (0.534) (3.563) (2.292) (3.123)

Observations 19,223 10,437 8,786 19,223 10,437 8,786
R-squared 0.056 0.040 0.078 0.270 0.264 0.279

Number of groups 56 33 23 56 33 23
z-stat 2.245 2.281
p-val 0.025 0.023



Table 9: Estimates of the parameters of the flow-performance sensitivity.

The table reports coefficients from the estimation of the parameters of the flow-performance sensitivity. The reported coefficients

correspond to estimates of the ratios
σβ
σα

and σε
σα

. The estimation is carried out using non-linear least squares. The estimated

functional form is Lq = 1

1+
( σβ
σα

)2
R2
M,q

+
(
σε
σα

)2 + uq, where Lq = F̂PSt
η̂

. FPSq is the slope from quarterly cross-sectional

regressions of quarterly flows on prior-quarter mutual fund unexpected returns, and RM,q is the quarterly excess return on the

CRSP value-weighed index. Quarterly flows are computed as the quarterly change in assets under management minus the dollar

return on assets under management over the quarter and expressed as a fraction of prior-quarter assets. Unexpected returns

are the average of daily returns (in excess of the risk-free rate) minus the daily beta times the daily realization of the risk factor

(this variable is then expressed as a quarterly return, scaling it by the number of days in a quarter). Daily betas are estimated

combining information on reported holdings at the end of the prior quarter and daily changes in a set of conditioning variables.

η̂ is an estimate of the parameter capturing decreasing return to scales and it is computed using results in Pastor, Stambaugh,

and Taylor (forthcoming). T-statistics are reported in parentheses. Columns (1) and (2) report results for the entire sample of

funds, and the sample ranges from 1998:Q3 to 2012:Q2. Columns (3) through (6) report results separately for Concentrated

and Other funds. Concentrated funds are those that in each quarter rank above the median both in terms of tracking error and

active share, as defined by Cremers and Petajisto (2009). Other funds are defined as the complement. The sample ranges from

1998:Q3 to 2009:Q3. Columns (7) through (10) report results separately for high- and low-return-gap funds. High-return-gap

funds are those that in each quarter rank above the median in terms of the quarterly return gap, as defined by Kacperczyk,

Sialm, and Zheng (2008). Low-return-gap funds are defined as the complement. The sample ranges from 1998:Q3 to 2012:Q2.

***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

All funds Active Share & Tracking Error Return Gap
Concentrated Other High Gap Low Gap

σ̂β/σα σ̂ε/σα σ̂β/σα σ̂ε/σα σ̂β/σα σ̂ε/σα σ̂β/σα σ̂ε/σα σ̂β/σα σ̂ε/σα

Estimate 648.501*** 98.200*** 660.624** 86.122*** 322.124 78.894*** 714.603*** 85.649*** 436.161 92.866***
t-stata (5.107) (18.485) (2.160) (9.799) (1.292) (8.516) (3.989) (9.858) (1.882) (10.360)

Observations 56 44 44 56 56
R-squared 0.762 0.487 0.448 0.512 0.463
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Table 10: Direct estimates of parameter uncertainty from fund holdings and daily returns.
The table reports summary statistics on fund-level measures of uncertainty in beta and skill. Uncertainty in beta is estimated as

the fund-level standard deviation in daily betas. Daily betas are estimated combining information on reported holdings at the

end of the prior quarter and daily changes in a set of conditioning variables. Uncertainty in skill is estimated as the fund-level

standard deviation in quarterly estimates of alpha. Alpha is estimated as fund size in (millions of dollars) at the end of the

quarter divided by η̂, which is an estimate of the parameter capturing decreasing returns to scale and is computed using results

in Pastor, Stambaugh, and Taylor (forthcoming). The table also reports the ratio of the mean level of uncertainty in beta to the

mean level in uncertainty in alpha. Panel A reports results for the entire sample of funds, and the sample ranges from 1998:Q3

to 2012:Q2. Panel B reports results separately for Concentrated and Other funds. Concentrated funds are those that in each

quarter rank above the median both in terms of tracking error and active share, as defined by Cremers and Petajisto (2009).

Other funds are defined as the complement. The sample ranges from 1998:Q3 to 2009:Q3. Panel C reports results separately

for high- and low-return-gap funds. High-return-gap funds are those that in each quarter rank above the median in terms of the

quarterly return gap, as defined by Kacperczyk, Sialm, and Zheng (2008). Low-return-gap funds are defined as the complement.

The sample ranges from 1998:Q3 to 2012:Q2.

Panel A: All funds
Mean SD Observations

σ̂β 0.071 0.033 5049
σ̂α 0.000 0.001 5049

σ̂β/σ̂α 552.002

Panel B: Concentrated Other
Mean SD Observations Mean SD Observations

σ̂β 0.079 0.038 743 0.054 0.031 1479
σ̂α 0.000 0.000 743 0.000 0.001 1479

σ̂β/σ̂α 700.734 307.011

Panel C: High-return-gap Low-return-gap
Mean SD Observations Mean SD Observations

σ̂β 0.071 0.035 937 0.067 0.033 930
σ̂α 0.000 0.001 937 0.000 0.001 930

σ̂β/σ̂α 346.174 315.724
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Table 11: Flow-performance sensitivity controlling for residual volatility.
The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund unexpected

returns (flow-performance sensitivity, FPS), the interaction of unexpected returns with residual volatility in the quarter, and

the level of residual volatility. Residual volatility is computed as the standard deviation of daily residual returns within the

quarter. Columns (1) and (4) are for all quarters. Columns (2) and (5) are for Extreme quarters, and columns (3) and (6)

are for Moderate quarters. Columns (4) through (6) include a set of control variables: total flows into funds with the same

CRSP objective code; the total expense ratio of the fund; the logarithm of assets under management; the fund turnover ratio;

return volatility over the prior 12 months; fund age computed as the number of quarters since the first appearance in CRSP;

one-quarter lagged flows. At the bottom of the table, we report the z-statistic and p-value for the small-sample test of the null

hypothesis that the FPSs in moderate and extreme times coincide. Quarterly flows are computed as the quarterly change in

assets under management minus the dollar return on assets under management over the quarter and expressed as a fraction of

prior-quarter assets. Unexpected returns are the average of daily returns (in excess of the risk-free rate) minus the daily beta

times the daily realization of the risk factor (this variable is then expressed as a quarterly return, scaling it by the number of

days in a quarter). Daily betas are estimated combining information on reported holdings at the end of the prior quarter and

daily changes in a set of conditioning variables. Moderate times are defined as the quarters in which the realizations of the CRSP

value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme quarters are all other quarters. The

sample ranges from 1998:Q3 to 2012:Q2. T-statistics are reported in parentheses. ***, **, and * represent statistical significance

at the 1%, 5%, and 10% levels, respectively.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

exret 0.656*** 0.491*** 0.893*** 0.480*** 0.409*** 0.581***
(10.082) (5.743) (11.345) (12.274) (7.456) (12.321)

exret × resid. vol. -14.041* -15.836* -11.465 -6.089 -7.096 -4.644
(-1.798) (-1.875) (-0.770) (-0.942) (-1.085) (-0.362)

residual volatility -0.071 -0.534 0.593 1.183*** 1.051** 1.373**
(-0.109) (-0.596) (0.622) (3.232) (2.085) (2.580)

flows style 0.295*** 0.340*** 0.231**
(5.192) (5.369) (2.202)

fee -1.539*** -1.370*** -1.781***
(-10.061) (-6.602) (-8.129)

logsize -0.001*** -0.001** -0.001***
(-4.397) (-2.570) (-4.224)

turn ratio 0.000 0.001 -0.001
(0.096) (0.512) (-0.717)

vol -0.279** -0.429*** -0.063
(-2.634) (-3.071) (-0.409)

logage -0.010*** -0.009*** -0.012***
(-11.999) (-8.880) (-8.205)

flows 0.541*** 0.557*** 0.517***
(35.590) (28.072) (22.255)

Constant -0.001 0.001 -0.005 0.077*** 0.080*** 0.072***
(-0.321) (0.229) (-0.972) (13.467) (9.405) (10.845)

Observations 135,832 75,563 60,269 135,832 75,563 60,269
R-squared 0.060 0.051 0.073 0.420 0.408 0.437

Number of quarters 56 33 23 56 33 23
z-stat 3.460 2.372
p-val 0.001 0.018



Table 12: Robustness analysis along several additional dimensions.
The table reports regressions of quarterly flows on prior-quarter mutual fund unexpected returns (flow-performance sensitivity,

FPS) in Extreme and Moderate times. At the bottom of the table, we report the z-statistic and p-value for the small-sample test

of the null hypothesis that the FPS’s in moderate and extreme times coincide. Unless differently specified, quarterly flows are

computed as the quarterly change in assets under management minus the dollar return on assets under management over the

quarter and expressed as a fraction of prior-quarter assets. Unexpected returns are the average of daily returns (in excess of the

risk-free rate) minus the daily beta times the daily realization of the risk factor (this variable is then expressed as a quarterly

return, scaling it by the number of days in a quarter). Daily betas are estimated combining information on reported holdings at

the end of the prior quarter and daily changes in a set of conditioning variables. Columns (1) and (2) report slopes from Fama

and MacBeth (1973) regressions in which flows are measured in (millions of) dollars. Columns (3) and (4) report slopes from

Fama and MacBeth (1973) regressions in which flows are measured as quarterly changes in fund size (in millions of dollars).

Columns (5) and (6) report slopes from panel regressions with quarter fixed effects and standard errors clustered by quarter and

fund. Columns (7) and (8) report slopes from Fama and MacBeth (1973) regressions in which flows are measured as a fraction

of assets under management, but the sample is extended to include institutional mutual funds. Columns (9) and (10) report

slopes from Fama and MacBeth (1973) regressions in which flows are measured as a fraction of assets under management and

the dependent variables is expressed as the fractional rank of the unexpected returns (i.e., unexpected returns are ranked in each

quarter and each fund is assigned its ranking, which is scaled to range between 0 and 1). In columns (11) and (12), moderate

times are defined as those quarters in which the realizations of the CRSP value-weighted index in excess of the risk-free rate are

above -2.5% and below +2.5%. In columns (13) and (14), moderate times are defined as those quarters in which the realizations

of the CRSP value-weighted index in excess of the risk-free rate are above -7.5% and below +7.5%. In columns (15) and (16),

the regressions are run on a sample of index funds. Unless differently specified, moderate times are defined as the quarters in

which the realizations of the CRSP value-weighted index in excess of the risk-free rate are above -5% and below +5%. Extreme

quarters are all other quarters. The sample ranges from 1998:Q3 to 2012:Q2. T-statistics are reported in parentheses. ***, **,

and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Dollar Flows Change in Size Double-clustering With Institutional Funds
(1) (2) (3) (4) (5) (6) (7) (8)

Flow (t+1) Extreme Moderate Extreme Moderate Extreme Moderate Extreme Moderate

exret 142.619*** 316.544*** 146.077*** 307.603*** 0.320*** 0.660*** 0.349*** 0.785***
(4.642) (10.531) (3.802) (6.310) (5.540) (9.511) (6.579) (14.367)

Observations 75,563 60,269 75,563 60,269 135,832 111,971 84,138
R-squared 0.007 0.011 0.017 0.016 0.393 0.029 0.052

z-stat 4.047 2.602 3.785 5.726
p-val 0.000 0.009 0.000 0.000

Fractional Rank Cutoff = 2.5% Cutoff = 7.5% Index Funds
(9) (10) (11) (12) (13) (14) (15) (16)

Flow (t+1) Extreme Moderate Extreme Moderate Extreme Moderate Extreme Moderate

exret 0.042*** 0.065*** 0.420*** 0.837*** 0.319*** 0.661*** 0.009 0.006
(5.050) (10.698) (8.710) (10.838) (6.055) (10.621) (0.064) (0.025)

Observations 75,563 60,269 105,893 29,939 59,846 75,986 12,493 8,898
R-squared 0.038 0.069 0.042 0.070 0.042 0.052 0.182 0.202

z-stat 2.274 4.573 4.192 0.0320
p-val 0.023 0.000 0.000 0.974



Table 13: Robustness analysis with respect to sample length, choice of main variables.
This table replicates the main flow-performance-sensitivity analysis extending the sample back to 1980:Q1 and using alternative

measures of both the dependent variable and the main explanatory variable. In rows 1-4, the dependent variable is quarterly fund

flows in the next quarter. In rows 5-8, the dependent variable is the change in a fund’s market share in the next quarter. In row 1,

the main explanatory variable is quarterly returns adjusted by end-of-quarter holding betas times the quarterly market return.

In row 2, the explanatory variable is raw quarterly returns. In row 3, it is the fractional rank by quarterly returns for funds in the

same style category, which ranges between 0 and 1. In row 4, the explanatory variable is the assets-under-management-weighted

return for the vigintiles formed by ranking funds according to raw returns in the quarter so that the same amount of total

assets under management is in each vigintile. Rows 5 through 8 have the same explanatory variables as the previous four rows.

Control variables (where included) are: control variables: total flows into funds with the same CRSP objective code; the total

expense ratio of the fund; the logarithm of assets under management; the fund turnover ratio; return volatility over the prior

12 months; fund age computed as the number of quarters since the first appearance in CRSP; one-quarter lagged flows. The

sample ranges from 1980:Q1 to 2012:Q2. T-statistics are reported in parentheses. ***, **, and * represent statistical significance

at the 1%, 5%, and 10% levels, respectively.

Without Controls With Controls
All Quarters Extreme Moderate p-val Mod. - Ext. All Quarters Extreme Moderate p-val Mod. - Ext.

Dep. Var.: Flows (t+1)

Quarterly beta adj. return 0.562*** 0.395*** 0.746*** 0.000 0.416*** 0.275*** 0.570*** 0.000
(13.112) (6.750) (13.772) (10.060) (6.717) (8.239)

Return 0.390*** 0.248*** 0.558*** 0.000 0.330*** 0.247*** 0.427*** 0.001
(11.897) (5.581) (14.339) (11.682) (6.380) (11.314)

Frank 0.043*** 0.029*** 0.058*** 0.000 0.034*** 0.027*** 0.043*** 0.009
(12.188) (5.832) (14.793) (11.236) (6.472) (10.116)

AUM weighted return 0.455*** 0.270*** 0.674*** 0.000 0.322*** 0.204*** 0.462*** 0.000
(10.606) (4.985) (11.843) (8.528) (4.588) (7.834)

Dep. Var.: Market Share Change (t+1)

Quarterly beta adj. return 0.011*** 0.006** 0.017*** 0.004 0.013*** 0.009*** 0.017*** 0.023
(5.549) (2.403) (5.555) (7.212) (3.919) (6.509)

Return 0.011*** 0.006** 0.018*** 0.004 0.013*** 0.010*** 0.017*** 0.036
(5.497) (2.309) (5.658) (6.883) (3.597) (6.531)

Frank 0.001*** 0.001** 0.002*** 0.003 0.001*** 0.001** 0.002*** 0.029
(5.222) (2.080) (5.443) (5.281) (2.471) (5.223)

AUM weighted return 0.028*** 0.003 0.058*** 0.000 0.030*** 0.007 0.058*** 0.000
(3.813) (0.364) (4.919) (4.130) (0.805) (5.213)


	Introduction
	Model
	Setup
	Timing
	Equilibrium
	Fund Flows
	Intuition
	Formal Result

	Empirical Predictions
	FPS in Extreme versus Moderate Market States
	Difference-in-Differences Prediction for the FPS

	Discussion

	Empirical Methodology
	Estimating the FPS
	Estimating betas

	Description of the Data
	Empirical Results
	The FPS in Moderate and Extreme Market States
	Difference-in-Differences Results
	Extracting Investors' Beliefs from the FPS
	Verifying the Model's Quantitative Predictions
	Robustness Analysis

	Conclusion
	Proofs

