Policy Implications of Economic Complexity and Complexity Economics

Towards a Systemic, Process-Based, Long-Run, Frame-Setting, and Interactive (Learning, Adaptive) Policy Conception for a Complex Economy

ASE@ASSA Meetings, Boston, January 2015
Session “Policy Options in an Age of Uncertainty”
Jan. 5, 2015

Wolfram Elsner
University of Bremen, Faculty of Business Studies and Economics
iino – Institute of Institutional and Innovation Economics
welsner@uni-bremen.de
www.iino.de/elsner
Structure

0. General reference
1. The message: Simplistic vs complex economics and policies
3. Social evaluation: Modern Meritorics, and the negotiated economy
4. A simple example of an Interactive/Institutional Policy approach: Frame-setting for institutional emergence in PD-supergames (Axelrod)
5. Policy implications of (evolutionary) game theory: Target areas and instruments
6. Conclusions
0. General reference

W. Elsner, T. Heinrich, H. Schwardt,
The Microeconomics of Complex Economies,
1. The message: Simplistic vs complex economics and policies

- **Economic mainstream policy**
 - Neoclassically based mainstream policy recommendations usually are normative prescriptions, mostly in favor of a neoliberal “market” economy, in a perspective of “T-i-n-a” to “more market”.
 - They are simplistic, based on a simplistic, deterministic model with a unique, allegedly “optimal” benchmark equilibrium, thus in a teleological vein, coercive, crypto-normative, methodologically naïve.
 - Thus, it is based on an untenable methodology and epistemology.
 - It displays no appropriate understanding of collectivity, commonality, proactive policy, participation or democracy.
 - With the slightest alteration of assumptions of a GE model, however, the available next “Second Best” would require more violations of “optimality conditions” (Lipsey and Lancaster 1956). If the benchmark “optimum” disappears, there is no piecemeal policy definable to re-approach the “optimum”.
 - Public Choice: Arrow Paradox used against any collective rationality and policy. But no process or endogenous preference change considered (Sen 1970).
1. The message: Simplistic vs complex economics and policies

• Economic complexity/Complexity economics – A sketch
 – **Structures**: Complexity economics is based on complex models of (an even more) complex economic reality, with multiple and heterogeneous agents, directly interacting, in different, more or less intricate structures of decision problems (different coordination, anti-coordination, non-coordination/zero-sum, and social-dilemma incentive structures, or: game types), with (initial) strong strategic uncertainty, on different network topologies (neighborhoods, different social/geographical distance; hierarchies, stars, circles, complete networks, meshes, “small-worlds”, scale-free networks ...).
1. The message: Simplistic vs complex economics and policies

- Economic complexity/Complexity economics – A sketch

 - Processes: Complexity economics deals with continuing tensions among agents and between individualistic and collective solutions, unintended consequences and fallacies of aggregation, non-optimality and lock-in; with non-linear and recursive relations; recurrence, open-ended, path-dependent, cumulative and often idiosyncratic (unpredictable) process (non-ergodicity); with learning and adaptation; with multiple equilibria, often instable and only transitory; differential replication in populations, and, thus, evolutionary process, with potential structural (institutional) emergence (dissipative structures), but also collapse; further with problem-solving (instrumental) vs. ceremonial dominance and encapsulation (institutional lock-in – Veblen, Ayres; see Bush 1987; Hayden 2006; also: David 1985); in dynamic populations usually the survival of the first, the fattest, or of all (i.e., non-”optimal”; Nowak 2006).
1. The message: Simplistic vs complex economics and policies

• Policies towards complex economies: Complex policies

 – **Information theory/cybernetics**: Generally, the complexity (e.g., the number of possible states, degrees of freedom) of a political control system needs to be at least as high as the complexity of the system to be controlled (“Ashby’s Law”; Ashby 1956) (in order to shift the controlled system into an aimed-at area of outcome values) – as “only variety can absorb variety”: A complex control system to reduce the complexity and deal with avoidance and evasions (of the agents) of the controlled system (homeostasis/equifinality properties of complex systems). But this is impossible with a neoliberal minimalist (and run-down) state.

 – Thus, policies towards complex economic systems need to be themselves **complex, system- and process-oriented** (not just neoliberal “order”-policy), with a long-run learning and adaptation perspective (e.g., Pelikan 2003; Hayden 2006).
1. The message: Simplistic vs complex economics and policies

- **The Hayekian fallacy:**
 - **Not just any interventionism/No “road to serfdom”:** Systemic, complex, learning and adaptive steering avoids cumulatively increasing, isolated single interventions – Hayek’s alleged “road to serfdom”, “stagflation”, and other specters, the alleged results of “Keynesian” welfare-state interventions (1960s/70s), in fact, an over-complexity for the political/parliamentary/party system and for a non-qualified public administration (for a recent Hayekian policy argument, s. Lewin 2014).
 - **Self-organization capacities of complex systems do not redundantize policy:** The capability of complex economic systems of some self-organization (structural emergence, dissipation) – based on openness and an increasing metabolism with, and exploitation of, the social and natural systems (Georgescu-Roegen 1966; Kapp 1950) –, indeed requires such systemic policy intervention because of emergence’s often long duration, fragility, and non-optimality, given under real-world intricate conditions for individualistic decision-making.
1. The message: Simplistic vs complex economics and policies

- “Meritorics” and “Interactive/Institutional Policy”

 - Interactive/Institutional Policy: A new kind of private-public interrelation then is to be established: Interactive or Institutional Policy relates to the interaction system of the private agents, sets its frame for easier, faster and more stable coordination/cooperation, but leaves it free to adapt to the conditions politically set (Elsner 2001; Section 4 below).

 - Intervention areas: Political target areas then include the (1) incentive structures, (2) network sizes and structures (topologies), (3) awareness of interdependence, and (4) futurity. Policy then may (i) initiate, (ii) accelerate, and/or (iii) stabilize coordination and cooperation among the private agents for their different “commons”, and, thus, for economic improvement.

- Policy recommendations of complexity economics are less certain and less apodictic, more “inductive”, prepared for evasive reactions, and acting on the temporal dimension; degrees of freedom and some undecidability require a basic “change in the (mechanistic, deterministic – W.E.) worldview that is currently dominant in policy circles” (Velupillai 2007).

- Although complexity economics is more calculating, policy measures cannot be determined on the basis of calculating the system (Velupillai); “nonalgorithmic” measures need to move the system into a basin of attraction (aimed-at outcome values) (see also on the theory of the Second Best above).

- System stabilization includes complexity reduction through institutions building (not so much complete “design”, but guided process), collective self-commitment/self-binding towards earlier decisions; further, control of “idiosyncratic volatility” through reduction of firm size, centrality, and concentration (power-law distrib.; Gallegati, Kirman, Palestrini 2007).
3. Social evaluation: Modern *Meritorics*, and the *negotiated economy*

- Self-organization, under realistic complexity, may easily be **uncertain to realize**/**blocked at all**, highly **time-consuming**, and **fragile/prone to backslides**.
- The outcomes of a spontaneous, decentralized process, thus, need to be **evaluated**, according to some “higher” collective rationality, with the criteria: degree of **uncertainty** of emergence, **time requirement** for emergence, and **degree of fragility** of emergence.
- The original (neoclassical) **collective good**, infeasible through private production, then assumes the character of a **“private” good** in the sense of its potential emergence in a complex decentralized system, and then becomes a **merit good** (Musgrave 1959, 1987; Ver Eecke 1998, 2008), now socially evaluated not mainly after price and quantity, but uncertainty, time consumption, and fragility (Elsner 2001).
- Public policy then is to be targeted to **unlock/de-block**, **accelerate**, and **stabilize** cooperation and, thus, the emergence **(production process)** of the common good.
4. A simple example of an Interactive/Institutional Policy approach: Frame-setting for institutional emergence in PD-supergames (Axelrod)
Or: “Single-Shot Solution” – A Designer’s Perspective

- The PD:

\[
\begin{array}{cc}
 a, a & d, b \\
 b, d & c, c \\
\end{array}
\]
with \(b > a > c > d\), and \(a > (d + b)/2\).

\[
P_{\text{ALL } C/\text{ALL } C} = P_{\text{TFT/TFT}} = a + \delta a + \delta^2 a + ...
\]

\[
a = \frac{a}{1 - \delta}
\]

\[
P_{\text{ALL } D/\text{TFT}} = b + \delta c + \delta^2 c + ...
\]

\[
c = \frac{c}{1 - \delta} + b - c
\]
4. A simple example of an Interactive Policy approach: Frame-setting for institutional emergence in PD-supergames (Axelrod) Or: “Single-Shot Solution” – A Designer’s Perspective

- The invasion/evolutionary-stability perspective with the Single-Shot Solution: Can a population of TFT-co-operators be invaded by defectors and thus be an evolutionarily stable strategy? (C in a SG \rightarrow TFT, not ALL-C.) One of the ESS conditions:

$$P_{TFT/TFT} > ! P_{ALL\ D/TFT}$$

$$a/(1-\delta) > ! c/(1-\delta)+b-c$$

$$\rightarrow \delta > ! (b - a) / (b - c) ,$$

the deterministic and static logical condition in terms of δ and the payoffs, for the institution of (conditional) cooperation (e.g., TFT) to emerge in the population (i.e., to be superior).

- Cooperation feasible only as an institution, a social rule plus endogenous sanction, non-hyper-rational, but habituated and “semi-conscious”, rule-following, based on a trigger strategy ...
4. A simple example of an Interactive Policy approach: Frame-setting for institutional emergence in PD-supergames (Axelrod) Or: “Single-Shot Solution” – A Designer’s Perspective

- **A general management and policy** perspective of the solution of a social dilemma: Trigger the Pareto-superior behavior by a general political assurance that other agents will also do the “right” thing as well, e.g., through a contrat social or general-trust building (“assurance” game, A. Sen 1967).

- A more **specific designer’s or policy perspective** (“institutional design”): Increase future expectations “to meet the same again” (δ↑) and/or weaken the fierceness of the dilemma (b↓, a↑), so that the single-shot condition (inequality) will hold with greater probability:

 \[\delta \uparrow \Rightarrow [(b\downarrow - a\uparrow) \downarrow / (b\downarrow - c\downarrow \downarrow) \uparrow] \downarrow . \]

- **Interpretable and accessible to policy** measures and strategies! (Axelrod; Elsner 2001).

- δ↑ – „enlarging the shadow of the future“ (Axelrod).
4. A simple example of an Interactive Policy approach:
Frame-setting for institutional emergence in PD-supergames (Axelrod)
Or: “Single-Shot Solution” – A Designer’s Perspective

• $\delta \uparrow >! [(b \downarrow- a \uparrow) \downarrow / (b \downarrow- c \downarrow \downarrow) \uparrow] \downarrow$ needs to be qualified algebraically, transforming it into an equation:

$$\delta_{\text{min}} = (b - a)/(b - c) = 1 - [(a - c)/(b - c)] = (b - a) \frac{1}{(b - c)} \cdot$$

with marginal conditions:

$$\frac{\partial \delta_{\text{min}}}{\partial (b-a)} = \frac{1}{(b - c)} > 0,$$

$$\frac{\partial \delta_{\text{min}}}{\partial (b-c)} = -(b - a)/(b - c)^2 < 0,$$

$$\frac{\partial \delta_{\text{min}}}{\partial b} = (a - c)/(b - c)^2 > 0,$$

$$\frac{\partial \delta_{\text{min}}}{\partial a} = 1/(c - b) < 0,$$ and

$$\frac{\partial \delta_{\text{min}}}{\partial c} = (b - a)/(b - c)^2 > 0.$$
4. A simple example of an Interactive Policy Approach:
Frame-setting for institutional emergence in PD-supergames (Axelrod)
Or: “Single-Shot Solution” – A Designer’s Perspective

Again: \(\frac{\partial \delta_{\text{min}}}{\partial (b-a)} > 0, \frac{\partial \delta_{\text{min}}}{\partial (b-c)} < 0, \frac{\partial \delta_{\text{min}}}{\partial b} > 0, \frac{\partial \delta_{\text{min}}}{\partial a} < 0 \), and \(\frac{\partial \delta_{\text{min}}}{\partial c} > 0 \).

- **Specific Policy implications:** (1) reduce the “opportunity costs of common cooperation”, \((b-a)\), so that the requirement, in terms of futurity (\(\delta_{\text{min}}\)), for the dilemma to be solved through the superiority of cooperation decreases as well, thus, the probability that the dilemma will be solved by the agents (as cooperation will be the more paying) increases. The requirement \(\delta \) (\(\delta_{\text{min}}\)) for a solution then could even be reduced, c.p., and the problem solved anyway.

Similarly: (2) increase the “opportunity cost of common defection”, \((b-c)\), or: increase the frustration for defecting agents.

Similarly, and more obviously: (3) decrease \(b\), (4) increase \(a\), and (5) reduce \(c\), rewarding cooperation
in order to support the agents in their learning to solve the social dilemma.
Further policy implications for the *deep structures of socio-economies*:

- **Identify the collective good** common to the agents involved/Identify the **relevant interaction arena** (e.g., common location factors of regional firms).
- **Identify the incentive structure** at work/the type of game (PD, stag hunt, strong/intricate or soft structure).
- **Identify the public interest** in the (merit) good, which the private may generate in their interaction process, in a proper participative process.
- **Identify the payoffs agents get for the solution**, their own interest in the solution. Do not generate the collective good in lieu of the private (as in classical collective-good theory), **call them in to contribute** according to their own interest. Also, do **not subsidize** cooperative behavior so much as to **dissolve the social dilemma** (may be too expensive, also static and trivial).
Further policy implications for the *deep structures of socio-economies*:

- Do **not** work mainly with **pecuniary incentives** (subsidies) but with qualitative incentives (e.g. preferential information, jointly used **soft infrastructures** as club goods, ...).

- **Increase the future expectations** of agents: Care for higher expectations “**to meet the same again** (or a knowing agent) **next interaction**”: Commit them in **overlapping projects** generating merit goods.

- A **leaner policy approach**, less expensive. A **gradual approach**: gradually improving the incentive structure or increasing the discount factor increases the probability of the cooperative/coordinated solution. Clearer definition of the private and public interests and relative responsibilities (no fuzzy PPPs).
Further policy implications for the deep structures of socio-economies:

- Develop proper arena/platform sizes: local, regional, national, global merit goods: structural (industrial, regional) policies. Meso-economics: Meso-sizes favorable, higher interaction density/frequency.

- Care for less turbulence: lower mobility, higher commitment, membership, social capital building, ... (Glaeser et al. 2002) ...

- Appropriate network structures: small-world networks with high clustering but small average path lengths; vs power-law distributions.

- Appropriate for different types of policy agents: (1) the agents involved themselves, establishing those instruments in a common discourse and commitment, (2) neutral “network” consultants, and (3) public policy agents or their intermediaries, making use of those mechanisms.

- High requirements for public policy: a qualified, “strong”, proactive, independent, non-corrupt state with reliably and sustainably clarified public goals, in a participative, bottom-up decision-making structure.
5. Policy implications of (evolutionary) game theory: Target areas and instruments

• Improving incentive (payoff) structures in favor of coordination and/or cooperation: weakening social dilemmas, making structures less intricate (in anti-coordination or non-coordination structures), creating focuses (e.g., public assurance) for superior coordination (in coordination problems; Sen 1967; Schelling 1960; more recently, e.g., McCain 2009).

• Promoting recognition of interdependence (recognized interdependence – Bush 1999), e.g., through systems of layered and overlapping meso-sized arenas (smaller arenas, networks, platforms, neighborhoods, clusters, groups) (Elsner, Schwardt 2014) ... enlightened self-interest.

• Promoting awareness of common future/enlarging the time horizon (futurity; Commons 1934; Hayden 2006; horizontal approach, Jennings 2005): another, long-run calculation rationality ... enlightened self-interest.
5. Policy implications of (evolutionary) game theory: Target areas and instruments

- Favoring equality (Hargreaves Heap 1989): symmetrical incentives structures/games easier to solve (vs battle-of-the sexes game, chicken game, zero-sum games).
- Caring for complete information, transparency (complete payoff matrices, incentive structures known), through, e.g., memorizing, monitoring, reputation building, public information and assurance.
- Reducing complexity, volatility, and turbulence through improving interactive learning, stabilizing relations, and promoting institutional emergence (through, in turn, incentive structure, futurity, equality, meso-size, recognized interdependence, transparency, smaller arenas, ...), reduced mobility (e.g., Glaeser et al. 2002), ...
5. Policy implications of (evolutionary) game theory: Target areas and instruments

- Supporting search, experimentation, behavioral innovation in favor of problem-solving cooperation or superior coordination, e.g., supporting minimum critical masses of problem-solving cooperators (e.g., Axelrod 1984/2006).

- Caring for long-distance information exchange to avoid behavioral lock-in and institutional degeneration into ceremonial dominance and encapsulation, e.g., (interactions/games on) small-world networks (Watts/Strogatz 1998) as effective systemic structures.

- Promoting break-out in critical time windows, optimizing stability/coordination (with potential collusion/lock-in) vs change (with potential volatility/turbulence), e.g., optimizing standard and information openness (Heinrich 2013).
6. Conclusions

- A fundamentally different conception of policies, politics and state ...
- Systemic, strong, reliable, long-run, adaptive, multi-dimensional interventions ...
- Complexity overshoot of policy, to reduce the over-complexity of deregulated “markets” ...
- More calculative, but also less apodictic and certain.
- Specifically and interactively related to the interaction system of the private: incentive structures, futurity, arena sizes, network structures ... thus, an Interactive Policy, focused on building instrumental institutions and preventing ceremonial institutions.
- Layered systems of overlapping and meso-sized arenas/platforms/networks.
- Further factors to frame: Settlement structures, size-distributions, mobility, turbulence/volatility ...
- A leaner/cheaper policy ...
Thank you for your patience!
References

References

References

• Nielsen, Klaus, 1992, “The mixed economy, the neoliberal challenge, and the negotiated economy,” *J. Soc. Econ*, 21, 325-351.
References

References

