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Abstract

We study the effect of disclosure requirements in environments where experts publicly acquire
private information before engaging in a persuasion game with a decision maker. In contrast
to settings where private information is exogenous, we show that disclosure requirements never
change the set of equilibrium outcomes regardless of the players’ preferences.
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1 Introduction

In many settings of economic interest, informed experts choose how much of their private infor-

mation to disclose to a decision-maker (DM) who will take an action that affects the payoffs of all

the players. Often, the disclosed information is verifiable, meaning that the claims made by the

experts might be more or less informative but cannot be false.1 A large literature establishes condi-

tions under which all private information will be disclosed in equilibrium.2 A key insight from this

literature is that when experts’ preferences are suitably monotonic in DM’s beliefs or sufficiently

opposed, full disclosure is an equilibrium. With a single expert who has monotonic preferences, full

disclosure is the unique equilibrium outcome.

Models in this literature typically take the experts’ initial private information as exogenous. This

is a suitable assumption in many settings. There are other settings, however, where information

is symmetric at the outset and the experts choose how much private information to gather. For

example, a pharmaceutical company may or may not conduct clinical trials that assess whether

a drug has differential efficacy for a particular demographic group. When such information is

costless and can be covertly gathered, it is a dominant strategy to become as informed as possible.

When the acquisition of private information is public, however, becoming more informed may be

harmful in equilibrium. If the FDA knows that a pharmaceutical company conducted a clinical

trial specifically to assess a drug’s side effects in children, the failure to disclose the results of this

trial is likely to generate skepticism.

In this paper, we study disclosure when private information is endogenous. We consider ex ante

symmetric information games where n ≥ 1 experts simultaneously conduct experiments about the

state of the world. More informative experiments are (weakly) more costly to the expert. DM

observes which experiments are conducted, and each expert privately observes the outcome of his

own experiment. The experts convey verifiable messages to DM about the outcomes.3 DM then

takes an action. We focus on pure-strategy perfect Bayesian equilibria.4 The outcome of the game

is the joint distribution of the state of the world, DM’s beliefs, DM’s actions, and all the players’

payoffs.

1In the persuasion games literature, terms certifiable, verifiable, and provable are typically used interchangeably.
A separate literature initiated by Crawford and Sobel (1982) examines cheap talk communication.

2For seminal contributions, see Grossman (1981), Milgrom (1981), and Milgrom & Roberts (1986). For a recent
survey, see Milgrom (2008).

3In particular, we assume that each expert can send a message that proves what he observed.
4Related arguments can be used to analyze mixed strategy equilibria but focusing on pure strategies substantially

simplifies the exposition.
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We study the effect of requiring experts to fully disclose the results of their experiments. We

might expect such a requirement to change the equilibrium outcomes when the usual monotonicity

or opposed preferences conditions for full disclosure are not satisfied. This requirement might

benefit the decision maker if it causes more information to be revealed. It might also benefit the

experts if their inability to commit to truthful disclosure reduces their equilibrium payoffs, as can

happen in cheap talk settings.

Our main result is that disclosure requirements can have no effect on the set of equilibrium

outcomes and thus no effect on either DM’s or the experts’ payoffs. Essentially, we show that

endogenous information will always be disclosed in equilibrium; if there is an equilibrium in which

information is withheld, the outcome must be the same as in another equilibrium with truthful

disclosure. Moreover, if strictly more informative signals are strictly more costly, there is no equi-

librium where information is withheld.

The remainder of the paper is structured as follows. Section 2 covers some mathematical

preliminaries. Section 3 presents the model. The statement and the proof of the main result are in

section 4. We discuss the relationship to the existing literature in the final section.

2 Mathematical preliminaries

In this section we introduce notation and mathematical concepts that are building blocks of our

model. Both the notation and the particular way of formalizing signals are taken from Gentzkow

and Kamenica (2014).

2.1 State space and signals

Let Ω be a finite state space. A state of the world is denoted by ω ∈ Ω. A belief is denoted by µ.

The prior distribution on Ω is denoted by µ0. Let X be a random variable that is independent of

ω and uniformly distributed on [0, 1] with typical realization x. We model signals as deterministic

functions of ω and x. Formally, a signal π is a finite partition of Ω × [0, 1] s.t. π ⊂ S, where S is

the set of non-empty Lebesgue measurable subsets of Ω× [0, 1]. We refer to any element s ∈ S as

a signal realization.

With each signal π we associate an S-valued random variable that takes value s ∈ π when

(ω, x) ∈ s. Let p(s|ω) = λ ({x| (ω, x) ∈ s}) and p (s) =
∑

ω∈Ω p (s|ω)µ0 (ω) where λ (·) denotes the

Lebesgue measure. For any s ∈ π, p (s|ω) is the conditional probability of s given ω and p (s) is
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the unconditional probability of s.

2.2 Lattice structure

The formulation of a signal as a partition induces an algebraic structure on the set of signals. This

structure allows us to“add”signals together and thus easily examine their joint information content.

Let Π be the set of all signals. Let D denote the refinement order on Π, that is, π1 D π2 if every

element of π1 is a subset of an element of π2. The pair (Π,D) is a lattice. The join π1 ∨ π2 of two

elements of Π is defined as the supremum of {π1, π2}. For any finite set (or vector) P we denote

the join of all its elements by ∨P . We write π ∨ P for π ∨ (∨P ). Note that π1 ∨ π2 is a signal that

consists of signal realizations s such that s = s1 ∩ s2 for some s1 ∈ π1 and s2 ∈ π2. Hence, π1 ∨ π2

is the signal that yields the same information as observing both signal π1 and signal π2. In this

sense, the binary operation ∨ “adds” signals together.

2.3 Distributions of posteriors

A distribution of posteriors, denoted by τ , is an element of ∆ (∆ (Ω)) that has finite support.5

Observing a signal realization s s.t. p (s) > 0 generates a unique posterior belief6

µs (ω) =
p (s|ω)µ0 (ω)

p (s)
for all ω.

We write 〈π〉 for the distribution of posteriors induced by π. It is easy to see that τ = 〈π〉 assigns

probability τ (µ) =
∑
{s∈π:µs=µ} p (s) to each µ.

3 The model

3.1 The baseline game

The decision maker (DM) has a continuous utility function u (a, ω) that depends on her action

a ∈ A and the state of the world ω ∈ Ω. There are n ≥ 1 experts indexed by i. Each expert i has

a continuous utility function vi (a, ω) that depends on DM’s action and the state of the world. All

experts and DM share the prior µ0. The action space A is compact.

5The fact that a distribution of posteriors has finite support follows from the assumption that each signal has
finitely many realizations. The focus on such signals is without loss of generality under the maintained assumption
that Ω is finite.

6For those s with p (s) = 0, set µs to be an arbitrary belief.
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The timing in this baseline game is as follows:

1. Each expert simultaneously chooses a signal πi, the choice of which is not observed by the

other experts.

2. Each expert privately observes the realization si of his own signal.

3. Each expert simultaneously sends a message mi ∈M (si) to DM.

4. DM observes the signals chosen by the experts and the messages they sent.

5. DM chooses an action.

Function M (·) specifies the set of messages that are feasible upon observing a given signal re-

alization. Let M = ∪s∈SM (s) denote the set of all possible messages. For each m ∈ M , let

T (m) = {s ∈ S|m ∈M (s)}. We say that message m verifies s if T (m) = {s}. We assume that for

each s ∈ S there exists a unique message that verifies it.7

For each expert i, let ci : Π→ R̄+ denote the cost of each signal.8 Expert i’s payoff in state ω

is thus vi (a, ω) − ci (π) if he chooses signal π and the decision-maker takes action a. We assume

that more informative signals are more expensive: π D π′ ⇒ ci (π) ≥ ci (π′) for any π, π′ ∈ Π and

any i. This is an important assumption that is absolutely necessary for our result. If an expert

can save money by becoming more informed and then withholding the additional information, full

disclosure will not always happen in equilibrium and thus disclosure requirements will change the

set of equilibrium outcomes.

Let σi =
(
πi, (γ

π
i )π∈Π

)
denote expert i’s strategy, and σ denote a strategy profile. A strategy

for expert i consists of a signal πi ∈ Π and a feasible messaging policy9 γπi : S → ∆ (M) following

each signal π.10 Let µ̃ (π,m) ∈ ∆ (Sn) denote DM’s belief about the signal realizations observed

by the experts given the observed signals π and messages m. The structure of the information

sets requires DM’s belief about expert i’s signal realization to have support in T (mi) (the set of

signal realizations for which mi was an available message). Since DM knows the experts’ choices

of signals, each belief about the signal realizations implies a unique belief about ω. Throughout

the paper we assume that DM has a unique optimal action at any given belief about ω, i.e.,

7Assuming that this message is unique is not needed for our result. It simplifies our notation, however, by making
the truthful messaging policy unique.

8R̄+ denotes the affinely extended non-negative real numbers: R̄+ = R̄ ∪ {∞}. Allowing the cost to be infinite
for some signals incorporates the cases where some expert might not have access to particular signals.

9A messaging policy γπi is feasible if Supp (γπi (s)) ⊂M (s) for all s.
10As we focus on pure-strategy equilibria, we do not introduce notation for mixed strategies in the choice of πi.
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a∗ (µ) ≡ argmaxa∈AEµ [u (a, ω)] is single-valued for all µ. By the theorem of the maximum, the

fact that a∗ (·) is single-valued implies that it is continuous.

Let Bi (σ−i, µ̃) denote the best-response correspondence for expert i, i.e., a strategy σi is in

this set if it is a best response, at every information set, to other players’ strategies σ−i and to the

belief function µ̃. Expert i’s information sets are the “initial” node where he selects a signal, and

each possible (π, s) s.t. π ∈ Π and s ∈ π. Note that this best-response correspondence does not

depend on DM’s strategy; because DM has a unique optimal action at every belief, expert i can

take her behavior (given µ̃) as fixed. A pair (σ, µ̃) is a (perfect Bayesian) equilibrium if µ̃ obeys

Bayes’ rule on the equilibrium path and σi ∈ Bi (σ−i, µ̃) for all i. We say σi is a pure strategy if it

employs a messaging policy that is deterministic on the equilibrium path (i.e., γπii is deterministic).

An equilibrium is a pure strategy equilibrium if each σi is a pure strategy. We define the outcome

of the game to be the joint distribution of the state of the world, DM’s beliefs, DM’s actions, and

all the players’ payoffs.

A pure strategy σi defines a partition π′ of Ω × [0, 1] with each mi sent in equilibrium corre-

sponding to one element of the partition. We denote this signal equivalent of σi by r (σi). Note

that if σi =
(
πi, (γ

π
i )π∈Π

)
, then πi D r (σi), which implies that ci (πi) ≥ ci (r (σi)). Given a strategy

profile σ = (σ1, ..., σn), let r (σ) denote (r (σ1) , ..., r (σn)).

3.2 Disclosure requirements

We now define an alternative game with disclosure requirements in which experts are required to

disclose their private information truthfully.

Let γ∗ denote the truthful messaging policy, i.e., γ∗ (s) places probability 1 on the message

that verifies s. Under disclosure requirements, each expert i must set γπi = γ∗ for every π ∈ Π.

Accordingly, we can represent each expert’s strategy simply as πi and let π denote a strategy profile.

Let BiDR (π−i) denote the best-response correspondence for expert i under disclosure require-

ments. A strategy profile π is a pure strategy equilibrium under disclosure requirements if and only

if πi ∈ BiDR (π−i).

4 Main result

Our main result is the following:

Theorem 1. Disclosure requirements do not change the set of pure strategy equilibrium outcomes.
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The statement of this result does not require any assumptions about the number of experts nor

about the experts’ or the decision-maker’s utility functions. Moreover, the theorem does not only

state that there exists some equilibrium of the baseline game where all information is disclosed.

Rather, it makes a stronger claim that disclosure requirements have no impact whatsoever on the

entire set of equilibrium outcomes.

The remainder of this section provides a proof of Theorem 1. Let Σπ denote the set of strategies

in the baseline game that select signal π. Let Σ∗ denote the set of strategies in the baseline game

that utilize truthful messaging on the equilibrium path, i.e., strategies of the form
(
π′, (γπ)π∈Π

)
s.t. γπ

′
= γ∗. To show that any outcome under disclosure requirements is also an outcome of the

baseline game, it will suffice to establish the following Lemma.

Lemma 1. For every π such that πi ∈ BiDR (π−i) for all i, there exist σ and µ̃ such that

(i) µ̃ obeys Bayes’ rule given σ

(ii) σi ∈ Bi (σ−i, µ̃) for all i

(iii) σi ∈ Σ∗ ∩ Σπi for all i

Proof. We begin the proof by introducing a class of auxiliary games Gi (πS , πR). There is a single

expert with utility vi and a DM with utility u. The timing is: (i) DM privately observes a signal

realization sR from signal πR; (ii) the expert privately observes a signal realization sS from signal

πS ; (iii) the expert sends a message m ∈M (sS) to DM; (iv) DM takes an action. Let γ denote the

expert’s messaging strategy and η (m) denote DM’s beliefs, given m, about sS . An equilibrium of

this game is a pair (γ, η) s.t. η obeys Bayes’ rule on the equilibrium path and, at each information

set sS , γi is the best response to η. (Since DM has a unique optimal action for every belief about

ω, we do not need to specify her behavior given η). Standard arguments ensure that, given any πS

and πR, there exists a perfect Bayesian equilibrium of Gi (πS , πR).

To construct the requisite σ and µ̃ in the statement of the Lemma, we begin by imposing

condition (iii), i.e., for each expert i we specify that σi selects πi at the initial information set and

that γπi = γ∗. We also begin the construction of µ̃ by imposing condition (i): µ̃ follows Bayes rule

given π followed by truthful messaging by all of the experts.

We next construct off-equilibrium messaging policies (γπi )π 6=πi for each expert. Consider expert

i. Given any π ∈ Π, consider the auxiliary game Gi (π,∨j 6=iπj), which has some equilibrium (γ′, η).

We set γπ to γ′ and we set µ̃ ((π,π−i) , (mi,m−i)) for equilibrium m−i as follows: DM’s belief

about signal realizations observed by other experts is already pinned down (since other experts are
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playing truthful messaging policies), and we set DM’s belief about the signal realization observed

by expert i to η (mi). We repeat this procedure for each π 6= πi. This completes the construction

of σi and specifies µ̃ on all DM’s information sets off the equilibrium path where only expert i

deviates from σi. We can then repeat this procedure expert by expert and thus construct the entire

strategy profile σ, as well as µ̃ on all DM’s information sets where only one expert deviates from

σ. We can choose an arbitrary specification of µ̃ on DM’s information sets where multiple experts

deviate from σ.

These σ and µ̃ satisfy conditions (i) and (iii) of the Lemma by construction. For any expert

i, any π 6= πi, and any s ∈ π, condition (ii) is satisfied on the information set (π, s) because γπi

is an equilibrium messaging policy of Gi (π,∨j 6=iπj). To show that condition (ii) is satisfied on

the equilibrium path (on information sets (πi, s)), we need to establish that γ∗ is an equilibrium

messaging policy of Gi (πi,∨j 6=iπj). We know Gi (πi,∨j 6=iπj) has some equilibrium, say (γ, η). It

will suffice to show that given η, expert i’s payoff from γ∗ is the same as his payoff from γ following

any s. Denote these payoffs by y∗ (s) and y (s), respectively. Since (γ, η) is an equilibrium, we know

y (s) ≥ y∗ (s) ∀s ∈ πi. (1)

Moreover, since πi ∈ BiDR (π−i), we know

∑
ω∈Ω

∑
s∈πi

y∗ (s) p (s|ω)µ0 (ω) ≥
∑
ω∈Ω

∑
s∈πi

y (s) p (s|ω)µ0 (ω) . (2)

Otherwise, under disclosure requirements expert i could profitably deviate from πi to the signal

which “garbles πi by γ”, i.e., the signal r
((
πi,
(

(γπ)π 6=πi , γ
πi = γ

)))
. (Note that r (σi) only

depends on the messaging policy σi specifies on the equilibrium path.) Combining inequalities (1)

and (2) yields y (s) = y∗ (s) ∀s ∈ πi.

It remains to show that condition (ii) is satisfied for each expert at the initial information set

where he chooses his signal. Let v̂i (µ) ≡ Eµ vi (a∗ (µ) , ω) . Let v∗i be expert i’s payoff under σ and

µ̃. Since πi ∈ BiDR (π−i), we know

v∗i ≥ E〈π∨π−i〉 [v̂i (µ)]− ci (π) ∀π ∈ Π. (3)

Suppose expert i deviates from σi =
(
πi, (γ

π
i )π
)

to σ′i =
(
π′i, (γ

π
i )π
)
. By the construction of µ̃

through η, we know the distribution of DM’s posterior must be 〈r (σ′i) ∨ π−i〉. Hence, this deviation
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yields the payoff

E〈r(σ′i)∨π−i〉 [v̂i (µ)]− ci
(
π′i
)
≤ E〈r(σ′i)∨π−i〉 [v̂i (µ)]− ci

(
r
(
σ′i
))
≤ v∗i

where the first inequality follows from the fact that π′i D r (σ′i) implies ci (π′i) ≥ ci (r (σ′i)) and the

second inequality follows from Equation (3). Since the deviation yields a weakly lower payoff than

v∗i , condition (ii) is also satisfied at the initial information set.

To show that any outcome of the baseline game is also an outcome under disclosure requirements,

we begin with the following Lemma.

Lemma 2. Suppose (σ, µ̃) is a pure strategy equilibrium of the baseline game. Then, r (σi) ∈

BiDR (r (σ−i)) for all i.

Proof. Consider any expert i. His equilibrium strategy is some σi = (πi, (γ
π)π). Let v∗ denote

his equilibrium payoff. Given (σ−i, µ̃), for every signal π′ ∈ Π, let vπ′ denote his payoff if he

deviates to strategy (π′, (γπ)π), and let v∗π′ denote his payoff if he deviates to strategy (π′, (γ∗)π).

Since (σ, µ̃) is an equilibrium, we know: (i) v∗ ≥ vπ′ for all π′ (by the fact that σi was the best

response at the initial information set); and (ii) vπ′ ≥ v∗π′ for all π′ (by the fact that σi was the best

response at each information set (π′, s)). Finally, if expert i deviates to strategy (r (σi) , (γ
∗)π),

his payoff under this deviation must also be v∗, so v∗r(σi) = v∗. Combining this with inequalities

(i) and (ii) we obtain v∗r(σi) ≥ v∗π′ for all π′. Since for all π′, v∗π′ = E〈π′∨r(σ−i)〉 [v̂i (µ)], this implies

r (σi) ∈ BiDR (r (σ−i)).

This Lemma shows that, given any equilibrium of the baseline game, there is an equilibrium

under disclosure requirements that induces the same joint distribution of the state of the world,

DM’s beliefs, DM’s actions, and DM’s payoffs. It only remains to add experts’ costs of signals to

this list. These costs could only be different if in the equilibrium of the baseline game some expert

i were utilizing a strategy σi =
(
πi, (γ

π
i )π
)

s.t. ci (πi) > ci (r (σi)). But this could not happen since

it would then be profitable for expert i to deviate to a strategy in Σr(σi) ∩ Σ∗.

This completes the proof of Theorem 1.
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5 Related Literature

5.1 Persuasion games with verifiable types

As mentioned in the introduction, a large literature examines disclosure of exogenous private infor-

mation in persuasion games, i.e., settings where informed expert(s) can send verifiable messages.

Milgrom (1981) shows that full disclosure is a unique equilibrium outcome when there is a single

expert who can send any verifiable message and whose preferences are monotonic (i.e., whether the

expert, who knows the true state is ω∗, prefers DM to believe the state is ω or ω′ does not depend

on ω∗). Since this early contribution, this literature has evolved along three distinct dimensions.

Weakening monotonicity. Seidmann and Winter (1997), Giovannoni and Seidmann (2007), and

Mathis (2008) show that existence of a fully revealing equilibrium can be guaranteed if we replace

the monotonicity assumption with a somewhat weaker single-crossing property: if the expert, when

he knows the true state is ω∗, prefers DM to believe the state is ω rather than ω′ ≤ ω, the expert

also has this preference when he knows the true state is ω∗∗ > ω∗). Moreover, if (in addition)

the preference conflict is “stable” (e.g., at any ω∗, expert’s ideal action by DM is always greater

than DM’s ideal action), then the fully revealing equilibrium is unique. Hagenbach et al. (2014)

introduce a general model that encompasses much of this literature and establish a simple condition

that is both necessary and sufficient for existence of a fully revealing equilibrium.

Weakening verifiability. Milgrom (1981) assumes that set of messages is the power set of the

experts’ type. Okuno-Fujiwara et al. (1990) and others point out that other message spaces can be

assumed and that full revelation can remain the unique outcome even if the expert cannot always

verify his type. For example, it would not matter if the expert could not prove that he is a “low”

type. In spirit of these results, we put limited structure on sets M (s) and only impose the key

assumption that for each s there is a message that verifies it.

Introducing multiple experts. In all of the aforementioned papers, full revelation is driven by

some version of the “unraveling argument” – if some types pool, at least one of them is “better” than

the “average” and will prefer to reveal himself. When there are multiple experts, however, there are

other forces that can lead to full revelation.11 If for each state there is some expert who wishes to

disclose the state to DM so as to avoid her default action, full revelation is an equilibrium (Milgrom

and Roberts 1986). Also, Lipman and Seppi (1995) establish that, as long as DM knows experts

11Okuno-Fujiwara et al. (1990) and Hagenbach and Koessler (2011) apply arguments related to unraveling in
settings with multiple experts.
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have conflicting preferences, there is a full revelation equilibrium, even under limited verifiability.

In contrast to this literature, we show that if private information is endogenous and gathered

overtly, full revelation is always an equilibrium for any number of experts and for any configura-

tion of preferences (regardless of monotonicity, single-crossing, or conflict). Moreover, given any

equilibrium, there is a full revelation equilibrium that induces the same outcomes.

In most models of verifiable communication, there is a set of experts who wish to influence a

third party (DM). That said, some papers examine environments where experts disclose private

information and then play games with each other (Okuno-Fujiwara et al. 1990, Hagenbach and

Koessler 2011, Hagenbach et al. 2014). When private information is exogenous, this distinction is

not particularly important – it does not matter whether the publicly disclosed information impacts

experts’ payoff through an action of a third-party or through the equilibrium outcome of the post-

disclosure game. Our results, however, only apply to the environments where experts seek to

influence a third party. Once experts’ information is endogenous, the publicly disclosed information

is no longer sufficient to determine the payoffs of a post-disclosure game.

Finally, existing literature considers both settings where experts are informed about a common

state of the world (e.g., Milgrom and Roberts 1986, Lipman and Seppi 1995) and settings where each

expert has private information only about his own type (Okuno-Fujiwara et al. 1990, Hagenbach

and Koessler 2011, Hagenbach et al. 2014). Our model covers both of these case. If we let ci (·) be

the same for all experts (e.g., ci (π) = 0 for all π), then all experts can become privately informed

about the “common” state ω. Alternatively, suppose that Ω = T1 × ... × Tn where Ti is the set of

possible types of expert i. Then, we can set ci (π) = ∞ for any π that is informative about types

other other than i and thus capture settings where each expert can only get information about his

own type – he cannot learn about nor disclose to DM any information about any other expert.

5.2 Competition in persuasion

Kamenica and Gentzkow (2011) analyze a game where a single expert wishes to influence DM’s

action by choosing an observable costless signal about the state the world. They focus on identifying

the conditions under which the expert benefits from the ability to generate such a signal, and on

characterizing the distribution of DM’s beliefs under the optimal signal. In the discussion of their

model, they point out that the outcome of their game would be the same if DM did not observe

the signal realizations directly but the expert could send verifiable messages. This observation is

the starting point of our analysis.
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Gentzkow and Kamenica (2014) examine a class of games where any number of experts choose

costless signals about a state of the world, DM directly observes the realizations of the signals, and

then DM takes an action that affects the welfare of all the players. One of the games they consider

is a special case of the game faced by the experts in our model under disclosure regulation.12

Theorem 1 thus implies that the set of equilibrium outcomes of the game we consider, where

experts convey verifiable messages and can withhold unfavorable information ex post, coincides

with the set of equilibrium outcomes of the game considered by Gentzkow and Kamenica (2014).13

Their paper characterizes the set of equilibrium outcome and derives comparative statics on the

informativeness of outcomes with respect to the extent of competition. Since their results are about

the set of equilibrium outcomes (rather than equilibrium strategies), Theorem 1 implies that their

comparative statics results also apply to our baseline game.

12In of the games they consider, which they call the Rich informational environment, each expert i can select a
signal whose realization (conditional on ω) is arbitrarily correlated with the realizations of other experts’ signals.
This is the case in our model if we set ci (π) = 0 for all π ∈ Π. Our model also encompasses environments, however,
where such correlation is not possible. Specifically, let Y = Y1 × ... × Yn where Yi = [0, 1] for all i and let f be a
bijection from Y to [0, 1]. Then, we could set ci (π) =∞ if there exist s, s′ ∈ π s.t. s ∩ f ((yi, y−i)) 6= s′ ∩ f (yi, y

′
−i)

for some (yi, y−i) , (yi, y
′
−i) ∈ Y . In other words, we could redefine X as an n-dimensional random variable and we

let the signal realization of expert i only depend on the ith dimension of X.
13Our proof of Theorem 1 requires that DM’s optimal action be unique at every belief, an assumption not imposed

by Gentzkow and Kamenica (2014). When this assumption is not satisfied, the equivalence of the two games can be
guaranteed by introducing a small amount of private information for DM, so that the distribution of DM’s optimal
actions is single-valued and continuous.
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