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The goal of much of empirical economics
is to learn about the causal or structural ef-
fect of economically interesting objects such as
prices or government interventions on the be-
havior of economic agents. Estimating such
structural effects is complicated by the fact
that economic variables are rarely randomly as-
signed and are often endogenously determined
with the outcome of interest. To overcome this
difficulty, empirical economists employ clever
quasi-experimental approaches which rely on
isolating variation in the economic variable of
interest that can be argued to be exogenous rel-
ative to the outcome of interest. Many applica-
tions employ instrumental variables (IV) estima-
tion, conditional on observables estimators for
treatment effects such as ordinary least squares
(OLS) including control variables, or a combi-
nation of the two. A key input into such ap-
proaches is the selection of what variables to in-
clude as controls and which instruments to use.

Here we offer one approach to estimating
structural parameters in the presence of many
instruments and controls based on methods for
estimating sparse high-dimensional models. We
use these high-dimensional methods to select
both which instruments and which control vari-
ables to use. The approach we take extends Bel-
loni et al. (2012), which covers selection of in-
struments for IV models with a small number
of controls, and extends Belloni, Chernozhukov
and Hansen (2014), which covers selection of
controls in models where the variable of inter-
est is exogenous conditional on observables, to
accommodate both a large number of controls
and a large number of instruments. We illustrate
the approach with a simulation and an empirical
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example. Technical supporting material is avail-
able in a supplementary appendix.

I. Model and Estimation Approach

Consider the linear IV model

yi = αdi + x ′iβ + εi ,(1)

di = x ′iγ + z′iδ + ui ,(2)

with E[(z′i , x ′i )
′εi ] = E[(z′i , x ′i )

′ui ] = 0. di is the
scalar endogenous variable and α the coefficient
of interest, xi is a px

n -vector of exogenous con-
trol variables, zi is a pz

n-vector of instruments, n
is the sample size, and px

n � n and pz
n � n are

allowed. Extension to the case where di is a vec-
tor is straightforward and omitted for simplicity.
We may have that zi and xi are correlated so that
zi are only valid instruments after controlling for
xi ; specifically, we let zi = 5xi + ζi , for 5 a
pz

n × px
n matrix and ζi a pz

n-vector of unobserv-
ables with E[xiζ

′

i ] = 0. Substituting this expres-
sion for zi as a function of xi into (2) and then
further substituting into (1) gives a system for yi
and di that depends only on xi :

yi = x ′iθ + r y
i ,(3)

di = x ′iϑ + rd
i ,(4)

with E[xir
y
i ] = 0 and E[xird

i ] = 0. This model
includes the many instruments and small num-
ber of controls case by setting px

n � n and
can accommodate the exogenous case by setting
pz

n = 0 and imposing the additional condition
E[diεi ] = 0.

Because the dimension of η = (θ ′, ϑ ′, γ ′, δ′)′

maybe larger than n, informative estimation and
inference about α is impossible without impos-
ing restrictions on η. For simplicity, we provide
discussion under the assumption of exact spar-
sity and present a generalization to approximate
sparsity in the supplemental material. Specifi-
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cally, we assume that

‖η‖0 ≤ sn, s2
n log(pz

n + px
n )

3/n→ 0,

where ‖η‖0 denotes the number of non-zero el-
ements of a. That is, sparsity requires that,
among the px

n+ pz
n observed variables, the num-

ber of variables with non-zero coefficients is
small relative to the sample size. This assump-
tion then reduces the problem of estimating α
to a problem of finding which instruments and
controls to use in equations (1) and (2).

The problem that arises is that variable selec-
tion techniques are not perfect and are prone
to making selection mistakes. There are two
kinds of selection mistakes: A variable may be
deemed relevant when in fact it has a zero coef-
ficient and thus has no true explanatory power,
or a variable may be dropped from the model
despite having a non-zero coefficient. Both
types of mistakes may detrimentally affect post-
model-selection estimators and inference for α.
When irrelevant variables are spuriously in-
cluded after being deemed predictive from look-
ing at the data, overfitting occurs and impor-
tantly the spuriously included variables are those
most correlated to the noise in the sample due to
data-snooping which introduces a type of “en-
dogeneity” bias. When relevant x variables are
excluded, one is left with standard omitted vari-
ables bias. When relevant z variables are ex-
cluded, one loses identification power. This last
concern can be dealt with through appropriate
use of weak identification robust inference as in
Belloni et al. (2012).

The first type of mistake, the spurious in-
clusion of irrelevant variables, can be avoided
through the use of modern, principled data-
mining methods. For example, we use the Lasso
with tuning parameters chosen as in Belloni
et al. (2012), and many other options are avail-
able. These methods differ from the unprinci-
pled data-snooping that many economists asso-
ciate with the term data-mining. Specifically,
modern data-mining denotes a principled search
for true predictive power that guards against
false discovery and overfitting, does not erro-
neously equate in-sample fit to out-of-sample
predictive ability, and accurately accounts for
using the same data to examine many different
hypotheses or models.

Of course, guarding against the first type of

error comes at the cost of needing to acknowl-
edge that the exclusion of relevant variables is
likely to occur. While sensible approaches such
as Lasso will accurately find strong predictors,
one can show that such procedures have non-
negligible probability of missing predictors with
small but non-zero coefficients. Exclusion of
such predictors can have substantive impacts on
inference for parameters of interest such as α in
our model; see, for example, Leeb and Pötscher
(2008). To overcome this difficulty, one needs
to base estimation and inference on procedures
that are robust to this type of model selection
mistake. One such approach relies on using es-
timating equations that are locally insensitive to
this type of mistake, termed orthogonal moment
functions in Belloni et al. (2014b) who provide
a general treatment.

In the IV model with many instruments and
controls, such a moment condition is given by

M(α; η) = 0,(5)

where M(α̃, η̃) := E
[
(r̃ y

i − r̃d
i α̃)ṽi

]
for η̃ :=

(θ̃ ′, ϑ̃ ′, γ̃ ′, β̃ ′)′, r̃ y
i := yi − x ′i θ̃ , r̃d

i := di − x ′i ϑ̃ ,
and ṽi := x ′i γ̃ + z′i δ̃− x ′i ϑ̃ . When we set η̃ = η,
we have r̃ y

i = r y
i = yi − x ′iθ , r̃d

i = rd
i = di −

x ′iϑ , and ṽi = vi := x ′iγ + z′iδ − x ′iϑ = ζ
′

i δ.
We can see that small selection errors will

have relatively little impact on estimation of α
by noting that the following orthogonality con-
dition holds:

∂

∂b
M(α, b)

∣∣∣
b=η
= 0.(6)

In other words, missing the true value of η
by a small amount does not invalidate the mo-
ment condition. Thus, estimates of α based on
this moment condition are “immunized” against
small selection mistakes. See Belloni et al.
(2014b) for a general formulation of orthog-
onal moment funtions for use in sparse high-
dimenionsal models and a number of estimation
and inference results.

Note that operationally using the empirical
version of (5) to estimate α is equivalent to
using the usual IV regression of r y on rd using
v as instruments. Based on this argument, we
suggest the following algorithm for estimating
α based on the “double-selection” strategy of
Belloni, Chernozhukov and Hansen (2014).
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Algorithm 1. (1) Do Lasso or Post-Lasso
Regression of di on xi , zi to obtain γ̂ and δ̂.
(2) Do Lasso or Post-Lasso Regression of yi
on xi to get θ̂ . (3) Do Lasso or Post-Lasso
Regression of d̂i = x ′i γ̂ + z′i δ̂ on xi to get ϑ̂ .
(4) Let r̂ y

i := yi − x ′i θ̂ , r̂d
i := di − x ′i ϑ̂ , and

v̂i := x ′i γ̂ + z′i δ̂− x ′i ϑ̂ . Get estimator α̂ by using
standard IV regression of r̂ y

i on r̂d
i with v̂i as the

instrument. Perform inference on α using α̂ and
conventional heteroscedasticity robust standard
errors.

The following result summarizes the proper-
ties of α̂ obtained from Algorithm 1.

Proposition 1. Under the stated spar-
sity and other regularity conditions, the
estimator α̂ defined in Algorithm 1 sat-

isfies
√

n(α̂ − α)
d
→ N (0, V ) where

V = E[v2
i ]−2E[ε2

i v
2
i ]. Confidence inter-

vals based on this result are uniformly valid for
inference about α over a large class of models.

The supplementary material provides a pre-
cise statement and proof. The theoretical results
do not depend on whether the Lasso estimator
or the Post-Lasso estimator of Belloni and Cher-
nozhukov (2013) is used. In the results reported
in this paper, we use the Post-Lasso estimator.
Note that there are other algorithms that would
yield similar asymptotic properties and may be
worth considering more systematically. For ex-
ample, one could follow the double-selection
strategy more closely by running Lasso regres-
sion of di on xi and zi , Lasso regression of di on
xi , Lasso regression of yi on xi , and then form-
ing a 2SLS estimator using instruments selected
in the first step and controlling for the union of
controls selected in the three Lasso steps.

II. Simulation Example

To illustrate the preceding discussion, we re-
port results from a small simulation experiment.
Data were generated from the model given in
Section 2 with n = 200, px

n = 300, and
pz

n = 150. Other parameter values were cho-
sen so that the infeasible, optimal instruments
are “strong”, perfect model selection is impos-
sible, and the sparse model provides a good ap-

proximation. Further details are available in the
supplementary material.

We provide results for four different estima-
tors - an infeasible Oracle estimator that knows
the nuisance parameters η (Oracle), two naive
estimators, and the “Double-Selection” estima-
tor. The first naive estimator follows Algorithm
1 but replaces Lasso/Post-Lasso with stepwise
regression with p-value for entry of .05 and p-
value for removal of .10 (Naive 1). It is well-
known that this procedure fails to control model
selection mistakes in which irrelevant variables
are included. The second naive estimator esti-
mates the high-dimensional nuisance functions
using Post-Lasso but uses the moment condition
E

[
(r y

i − rd
i α)(x

′

iδ + z′iγ )
]
= 0 (Naive 2). This

moment condition does not satisfy the orthogo-
nality condition described above, though estima-
tion and inference about α using this condition
will be valid when perfect model selection for
the regression of y on x and d on x is possible.

We report the median bias (Bias), median ab-
solute deviation (MAD), and size of 5% level
tests (Size) obtained from 1000 simulation repli-
cations for each procedure. For the Oracle,
we have Bias of .006, MAD of .095, and Size
of .043. For Naive 1, Bias, MAD, and Size
are .160, .227, and .302 respectively; and Bias,
MAD, and Size are respectively .035, .103, and
.095 for Naive 2. Finally, the Double-Selection
approach gives Bias of .035, MAD of .099, and
Size of .054.

These results correspond to the discussion in
Section I. The first naive, unprincipled proce-
dure fails to control spurious inclusion of irrel-
evant variables and performs quite poorly rel-
ative to the other three approaches. The sec-
ond naive procedure can be shown to be for-
mally valid when perfect model selection is pos-
sible and performs relatively well in terms of
MAD. However, the asymptotic approximation
under perfect model selection provides a mis-
leading approximation to the true sampling dis-
tribution as evidenced by the size distortion. Fi-
nally, we see that basing estimation and infer-
ence on a principled variable selection proce-
dure and moment conditions that are immunized
against small model selection mistakes produces
an estimator that performs well relative to the in-
feasible Oracle in terms of both estimation and
inference performance as measured by MAD
and Size.
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III. Empirical Example

We conclude with a brief empirical example
where we estimate the coefficients in a simple
model of demand for automobiles. We use the
data and basic strategy of Berry, Levinsohn and
Pakes (1995). For simplicity, we consider the
most basic specification

log(si t )− log(s0t ) = αpi t + x ′i tβ + εi t

pi t = z′i tδ + x ′i tγ + ui t

where si t is the market share of product i in mar-
ket t with product 0 denoting the outside option,
pi t is price and treated as endogenous, xi t are
observed included product characteristics, and
zi t are instruments. One could also consider
allowing random coefficients and adapting the
variable selection procedures to this setting; see
Gillen, Shum and Moon (2014).

In their basic results, Berry, Levinsohn and
Pakes (1995) use five variables in xi t : a con-
stant, an air conditioning dummy, horsepower
divided by weight, miles per dollar, and vehi-
cle size. They argue that characteristics of other
products provide valid instruments for price and
choose 10 instruments for pi t based on intuition
and an exchangeability argument. The first five
instruments are formed by deleting product i and
then summing each characteristic in x across
all remaining products produced by product i’s
firm. The other five instruments are similarly
constructed by deleting all products from prod-
uct i’s firm and then summing each character-
istic in x across all remaining products. Using
these controls and instruments, the 2SLS esti-
mate of α is -.142 with an estimated standard
error of .012. One might compare this to the
OLS estimate obtained treating price as exoge-
nous given the five controls listed above which
is -.089 with estimated standard of .004.

It is interesting to note that Berry, Levinsohn
and Pakes (1995) state, “The choice of which
attributes to include in the utility function is,
of course, ad hoc” (p. 872). They similarly
note that one could have considered additional
instruments such as higher order terms (Berry,
Levinsohn and Pakes 1995, p. 861). The high-
dimensional methods outlined in this paper of-
fer one strategy to help address these concerns
which complements the well-founded economic
intuition motivating the authors’ choices. We

apply our outlined methods in two scenarios. In
the first, we apply the method using just the orig-
inal five controls and 10 instruments. In the sec-
ond, we augment the set of potential controls
with a time trend, quadratics, and cubics in all
continuous variables, and all first order interac-
tions and then use sums of these characteristics
as potential instruments following the original
strategy. These additions give a total of 24 x-
variables and 48 potential instruments. We in-
clude the intercept in all models and select over
the remaining variables.

In both cases, the results suggest demand is
more elastic than indicated in the baseline re-
sults. After selection using only the original
variables, we estimate the price coefficient to be
-.185 with an estimated standard error of .014.
In this case, all five controls are selected in the
log-share on controls regression, all five con-
trols but only four instruments are selected in
the price on controls and instruments regression,
and four of the controls are selected for the price
on controls relationship. The difference between
the baseline results is thus largely driven by the
difference in instrument sets. The change in the
estimated coefficient is consistent with the wis-
dom from the many-instrument literature that in-
clusion of irrelevant instruments biases 2SLS to-
ward OLS.

With the larger set of variables, our post-
model-selection estimator of the price coeffi-
cient is -.221 with an estimated standard error
.015. Here, we see some evidence that the orig-
inal set of controls may have been overly par-
simonious. In the log-share on controls regres-
sion, we have that eight control variables are se-
lected; and we have seven controls and only four
instruments selected in the price on controls and
instrument regression. We also have that 13 vari-
ables are selected for the price on controls rela-
tionship. The selection of these additional vari-
ables suggests that there is important nonlinear-
ity missed by the baseline set of variables.

Finally, we note that in terms of own-price
elasticities, the results become more plausible
as we move from the baseline results to the re-
sults based on variable selection with a large
number of controls. Recall that facing inelastic
demand is inconsistent with profit maximizing
price choice within the present context, so the-
ory would predict that demand should be elas-
tic for all products. However, the baseline point
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estimates imply inelastic demand for 670 prod-
ucts. Using the variable selection results pro-
vides results closer to the theoretical predic-
tion. The point estimates based on selection
from only the baseline variables imply inelas-
tic demand for 139 products, and we estimate
inelastic demand for only 12 products using the
results based on selection from the larger set of
variables. Thus, the new methods provide the
most reasonable estimates of own-price elastic-
ities. Of course, the simple specification above
suffers from the usual drawbacks of the logit de-
mand model, but the example illustrates how the
application of the methods outlined in this note
may be used in estimation of structural parame-
ters in economics and add to the plausibility of
the resulting estimates.

IV. Conclusion

A great deal of empirical economic research
aiming to estimate causal or structural effects
depends on using the right set of controls and
instruments. The need for formal methods that
perform this model selection and inference pro-
cedures that remain valid following model selec-
tion is likely to increase in importance as data
sets become richer. We have outlined one sim-
ple approach that can be used in an instrumen-
tal variables model with many instruments and
controls that extends Belloni et al. (2012) and
Belloni, Chernozhukov and Hansen (2014). The
approach relies on an approximate sparsity as-
sumption and the use of high-quality variable se-
lection procedures coupled with the use of ap-
propriate moment functions. These ideas fol-
low from the general framework considered in
Belloni et al. (2014b). For more applications
of similar ideas in economics, see also Bai and
Ng (2009), Belloni, Chernozhukov and Hansen
(2010); Gautier and Tsybakov (2014); Belloni,
Chernozhukov and Hansen (2013); and Belloni
et al. (2014a) and references therein.
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