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Abstract
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mer temperatures depress growth, and ii) rising Fall temperatures increase economic
growth. However, Summer temperatures are expected to increase at a faster pace
relative to that of Fall temperatures. Thus, in a “horse race,” the Summer effect
dominates. Our estimation implies that, in net, rising temperatures can decrease
the growth rate of US GDP by as much as one third, thus resulting in large welfare
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1 Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC (2014)) has

warned that global temperatures are expected to increase by as much as 4 degrees Cel-

sius over the next 100 years. In light of these projections, economists and policy makers

face an increasing need to quantify the impact of rising temperatures on economic activ-

ity. In this paper, we estimate the effect of temperature on the growth rate of US GDP

using a panel of US states. Our estimates suggest that if the current trend in rising

temperatures does not change, then a drop of economic growth by up to one third could

occur.

There is a large empirical literature that analyzes the relationship between tempera-

tures and aggregate economic activity (see the survey by Dell, Jones and Olken (forth-

coming)). The typical finding of this literature is that warmer temperatures and increas-

ing droughts have significant effects in developing economies. For example, Dell, Jones

and Olken (2012) study a large cross-section of 125 countries (including both developing

and developed economies, such as the U.S.) between 1950 and 2003, and find a negative

effect of higher temperature on growth, but only in emerging economies.1 Our contribu-

tion relative to this literature lies in our ability to quantify the impact of climate related

variables directly for the U.S., the largest developed economy.

Our empirical analysis is informative for a growing body of literature focused on In-

tegrated Assessment Models (henceforth IAMs). These models constitute the basis of

many policy recommendations regarding regulation of greenhouse gas emissions (see,

for example, Golosov, Hassler, Krusell and Tsyvinski (2014), Acemoglu, Aghion, Bursz-

tyn and Hemous (2012), Bansal and Ochoa (2011), and Bansal, Ochoa and Kiku (2014)).

The fundamental component of these models is a climate “damage function,” which spec-
1These findings are consistent with other area-based analyses by Hsiang (2010), who focus on 28

Caribbean-basin countries, and Barrios, Bertinelli and Strobl (2010), who focus on countries in Sub-
Saharan Africa.
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ifies how temperatures (or other weather related variables) affect aggregate economic

activity (such as the total factor productivity). In the absence of specific estimates for

the U.S., the parameters of this damage function are generally calibrated to match cross-

country estimates (for example, see Nordhaus and Sztorc (2013)).2 US policymakers

may be less inclined to adopt policies that curb greenhouse gas emission that are not

based on estimates specific to the United States (or other developed countries). In this

respect, our analysis helps bridge the gap between the economics literature and policy

recommendations.

Our paper provides novel evidence that warmer temperatures have statistically and

economically significant effects on U.S. GDP growth. We arrive at this conclusion by col-

lecting a large dataset of daily temperature, precipitation, and snowfall across 135 U.S.

weather stations. We aggregate weather data at a county level by weighting each station

by the inverse of the distance to each county’s centroid. We construct a dataset for state

and country-level weather, which is obtained by weighting each county in proportion to

its share of total area or population. We combine this dataset with a panel of state GDP,

or Gross State Product (henceforth GSP), for the entire cross-section of US states. This

allows us to estimate an econometric model which exploits both the cross-sectional and

the time-series dimensions.

As a consequence, a number of key results emerge from our panel regressions of GSP

growth rates on weather related variables. First, by using annual data aggregated to

the country-level, we find no evidence to support the view that temperature affects the

growth rate of GSP. This finding is in line with the literature that has typically pointed

out the difficulty in identifying the relationship between rising temperatures and ag-

gregate economic activity in developed economies (see Dell et al. (2012) and Dell et al.

(forthcoming)).
2In a recent survey of IAMs, Pindyck (2013) writes “the choice of values for these parameters [for the

climate damage function] is essentially guesswork”.

2



Second, we show that by breaking down annual temperature into its seasonal compo-

nents, we can establish the existence of an effect of temperature on economic growth.3

Our results indicate that rising summer temperatures decrease GSP growth, although

the opposite is true for Fall temperatures. Specifically, while the estimated coefficients

on Summer and Fall have opposite signs, their absolute magnitudes are very similar.

This suggests that the annual aggregation of temperature may mask the heterogeneous

effects of different seasons, thus explaining the difficulty the literature has had so far in

providing any conclusive evidence using annual temperatures.

We investigate the quantitative relevance of these results in terms of climate change.

From historical weather data, we document that Summer temperatures are expected to

rise by almost twice as much as Fall temperatures, a finding that is broadly consistent

with the analysis by Hansen, Sato and Ruedy (2012). This means that even if the effect

of Summer and Fall on economic growth is comparable on an annual basis, their com-

pounded effects over longer time horizons will differ substantially. Our findings indicate

that the projected increase in seasonal temperatures over the next 100 years may result

in a drop of GSP growth of up to one-third. This magnitude is economically significant

and it reverberates with the argument by Dell et al. (forthcoming) that “growth effects,

which compound over time, have potentially first-order consequences for the scale of

economic damages over the longer run, greatly exceeding level effects on income, and

are thus an important area for further modeling and research.”

Last but not least, we compute the welfare costs associated with climate change. This

exercise has a long tradition in the macroeconomic literature on quantifying the wel-

fare cost of business cycle fluctuations (see, for example, Lucas (1987)). More recently,

Bansal et al. (2014) have extended this framework to investigate the social cost of cli-

mate change. Our analysis differs from the existing literature in that we rely on the

actual estimates from our empirical analysis. We document that for a reasonably cali-
3We define the seasons as Winter, Spring, Summer, and Fall each corresponding to a three months

period starting with January.
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brated economy, an agent would be willing to accept a reduction of up to 0.3% in the level

of her consumption, and of up to 14% in the growth rate of her consumption in order to

live in an economy in which temperature does not have an impact on economic growth.

To the best of our knowledge, ours is the first paper to document a negative and statisti-

cally significant relationship between rising temperatures and the aggregate economic

growth of a developed economy. In a related study, Nordhaus (2010) finds significant

effects of extreme weather events such as storms and hurricanes on level of U.S. GDP.

Several other studies have focused on specific industries in the U.S., ranging from agri-

culture (see for example, Schlenker and Roberts (2009), Fisher, Hanemann, Roberts and

Schlenker (2012), Deschênes and Greenstone (2012)) to the automobile sector (see inter

alia Cachon, Gallino and Olivares (2012)). In a related study, Zivin and Neidell (2014)

finds that warmer temperatures reduce labor supply in U.S., thus providing an economic

rationale for why climate change might affect economic activity in a developed economy.

Finally, our paper is related to Deryugina and Hsiang (2014), who also exploit within-

country variation in the U.S. and find that daily temperatures above certain thresholds

(15C and 30C) reduce the productivity level. While their study focuses on the non-linear

effects of daily temperatures on the productivity level, our paper focuses on the effects

of average seasonal temperatures on GDP growth.

The rest of the paper is organized as follows. Section 2 provides a description of the

main datasets that we employ in our analysis. Section 3 presents the main results of

our empirical investigation. Section 4 quantifies the relevance of our empirical results

for climate change and it computes the welfare costs associated with climate change.

Section 5 contains a number of robustness checks of the empirical analysis. Section 6

concludes the paper.
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2 Data

In this section we describe our data sources and the procedure that we used to aggregate

weather related data at state and country level.

Weather stations data. We collect daily station-level weather data from the website of

the NOAA Northeast Regional Climate Center, http://drought.rcc-acis.org/. This dataset

reports daily data on average temperature, precipitation, and snowfall across 135 U.S.

weather stations. Temperature is the variable of main interest, but we include precipita-

tion and snowfall for robustness checks. The longest common sample across all weather

stations starts on 1869 and ends in 2012. However, we only use data between 1957 and

2012, the period for which we also have economic data. We then de-seasonalize this

data, by regressing daily weather observations on 12 dummies representing each month

of the year, and subtracting the estimated seasonal component for the corresponding

month from each observation.

ArcGIS and Census data. We collect geographical information that we use to aggre-

gate station level data to state and country level weather data. This task is implemented

by using ArcGIS, a geographic information system (GIS) for working with maps and ge-

ographic information. We obtained the coordinates for the centroid of each of the 3,144

counties and county equivalents, as well as each weather station using ArcGIS. The

country, state, and county borders used in ArcGIS are from 2013 Topographically In-

tegrated Geographic Encoding and Referencing (TIGER) shape files available from the

U.S. Census Bureau. We obtained the area and population of each county from the U.S.

Census Bureau (https://www.census.gov/econ/cbp/download/).

State aggregate data. We aggregated the station-level weather information to com-

pute measures of state-level temperature, precipitation, and snowfall. We proceeded

in two steps. First, for each county we weighted the daily temperature, precipitation,
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and snowfall of each weather station in a 500 km radius of the county’s centroid by the

inverse of the straight-line distance between the station and the county. In this way,

the closest weather stations were assigned a larger weight in determining each county’s

weather. Second, for each state we weighted the daily temperature, precipitation, and

snowfall of each county in the state in proportion to either the corresponding county’s

area or population. The first procedure assigns larger weight to larger counties, while

the second one over weights densely populated areas. The results are robust to both

weighting schemes. The same methodology can be used to construct country aggregate

data.

As an example, Figure 1 shows how the weather variables for Jefferson County (KY)

were constructed. Jefferson County is the dot roughly in the middle of Figure 1. Note

that, even though there are only 3 weather stations in Kentucky, there are 15 weather

stations in a 500 km radius of Jefferson. Each weather station receives a weight which is

inversely proportional to its distance from Jefferson. This means that Akron (OH) plays

a relatively small role in the determination of Jefferson’s weather measure relative to

Lexington (KY), which is in close proximity to Jefferson. Once daily temperature, pre-

cipitation, and snowfall are calculated for all Kentucky’s counties, data are aggregated

at state level by weighting in proportion to each county’s population and area.

GDP by state data. We use data of nominal gross domestic product (GDP) by state

(also known as gross state product, or GSP) between 1957 and 2012. By definition, the

GDP of a state is the value added in production by the labor and capital of all industries

located in that state. Data for 1957-1962 comes from the U.S. Census Bureau Bicenten-

nial Edition Bureau (1975), and data for 1963-2012 comes from the U.S. Department of

Commerce’s Bureau of Economic Analysis (BEA). We obtain the combined dataset from

usgovernmentspending.com.
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Figure 1: An illustration of the interpolation technique. The county represented by the dot
is Jefferson County. Each triangle denotes a weather station located in a 500 km radius of
Jefferson County. The length of each line represents the distance between Jefferson County and
the associated weather station.

3 Empirical Analysis

In this section we report the results of our empirical analysis. We proceed in two steps.

First, we report the results of time-series regressions at the whole country level. Then,

we document the improvements that can be obtained in the context of our panel regres-

sions.

Baseline: Time series regressions for aggregate country-level data. Table 1 re-
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Table 1: Time Series Regressions on Aggregate US Data

Whole Year Winter Spring Summer Fall
−0.396 −0.071 −0.027 −0.414 0.042
(0.382) (0.179) (0.334) (0.385) (0.287)

Notes - The first column reports the estimated coefficient on average annual temperature of a
regression of US GDP growth rate on its lag and average annual temperature. Columns 2-5 re-
port the estimated coefficients on each of the four seasonal temperature averages. The numbers
in parenthesis are standard errors. The sample is 1957-2012.

ports the results of time series regressions of aggregate U.S. GDP growth on average

aggregate country-level temperature. The first lag of GDP growth rate is included as a

control variable. The first column of the table documents the well established difficulty

of identifying the effect of temperature on economic activity. The next four columns

break down the annual average temperature into the four seasonal average tempera-

tures.

Main analysis: Panel regressions for disaggregate state-level data. We explore

the impact of average temperature on GDP growth rates by running the following panel

regression:

∆yi,t = γwi,t + β∆yi,t−1 + αi + αt + εi,t (1)

where wi,t denotes the average temperature in state i in year t, ∆yi,t denotes the growth

rate of GSP in state i in year t, and αi and αt denote state and year fixed effects, respec-

tively. We consider two specifications: one in which we use the entire cross-section of

U.S. states, and one in which we focus on specific regions (North, South, Midwest, and

West).4 Each state is weighted in the regressions by the proportion of its GSP relative

to the whole country (in the first specification) or the respective region (in the second

specification).

In addition, we also break down the contribution of each seasonal temperature by re-
4The four regions are defined according to the US Census Bureau. Appendix C reports the specifics of

this classification.
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gressing on the average temperatures in Winter, Spring, Summer, and Fall:

∆yi,t =
4∑
s=1

γswsi,t + β∆yi,t−1 + αi + αt + εi,t. (2)

We define Winter as January, February and March; Spring as April, May and June;

Summer as July, August and September; Fall as October, November and December.

We report the results of our analysis in Table 2. The column labeled “Whole Year” refers

to the specification reported in equation (1). The numbers seem to indicate that the

effect of average temperature at the annual level is never statistically significant. This

would seem to confirm our findings in Table 1.

However, when we break down annual temperatures into the four seasonal tempera-

tures (columns labeled “Winter,” “Spring,” etc., which correspond to the specification in

equation (2)), the results change substantially. At the country level, there are relation-

ships between Summer and Fall temperatures and economic growth rates. These effects

are both statistically and economically significant: a one degree Fahrenheit increase

in Summer temperature decreases GDP growth rates by 0.154%, while a one degree

Fahrenheit increase in Fall temperature increases GDP growth rates by 0.102%.

It is important to note that Summer and Fall affect growth rates in opposite directions.

Altough the effect of Summer temperature is negative, the effect of Fall temperature is

positive. This could partially explain the difficulty in obtaining statistically significant

estimates when using the overall annual temperatures. Even though the magnitudes of

Summer and Fall temperatures are comparable, we argue in the next section that the

negative coefficient for the Summer is relatively more important, once combined with a

steeper trend in Summer temperatures.

Furthermore, when we decompose the effect of seasonal temperatures in the four subre-

gions (North, South, Midwest, and West), we find that the South is responsible for most
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Table 2: Panel Analysis

Whole Year Winter Spring Summer Fall
Whole country 0.006 0.001 0.003 −0.154∗∗ 0.102∗

(0.111) (0.049) (0.065) (0.072) (0.055)
North 0.343 0.329∗ 0.065 0.240 −0.255

(0.339) (0.173) (0.296) (0.257) (0.233)
South 0.283 −0.087 0.152 −0.326∗∗ 0.571∗∗∗

(0.303) (0.167) (0.159) (0.163) (0.194)
Midwest −0.212 0.010 −0.158 0.043 −0.116

(0.235) (0.089) (0.144) (0.162) (0.128)
West −0.144 −0.000 −0.155 0.028 −0.006

(0.203) (0.096) (0.143) (0.154) (0.167)

Notes - In each regression, the dependent variable is the GSP growth rate of each state. The
first row reports the results for the panel analysis conducted using the entire cross-section of US
states. Each of the following rows refers to a different US region, according to the Federal clas-
sification. The first column refers to the analysis conducted using annual temperature averages
(“Whole Year”). Each of the following columns refers to the analysis conducted by regressing
jointly on the four seasonal averages. Winter is defined as the average of January, February, and
March temperatures. Spring is defined as the average of April, May, and June temperatures.
Summer is defined as the average of July, August, and September temperatures. Fall is defined
as the average of October, November, and December temperatures. The numbers in parenthesis
are standard errors. Standard errors are clustered by year. Each regression contains year and
state fixed effects as well as the lagged GSP growth rate of the corresponding state. The sample
period is 1957-2012.

of the overall Summer and Fall effects that we estimate at the whole country level (see

the last four rows of Table 2). Also notice that the estimated coefficients for the South

are three to six times larger than their whole country counterparts, indicating that this

region’s GDP growth is substantially more exposed to changes in temperatures. It is

worth pointing out that not all regions are negatively exposed to rising temperatures in

all seasons. For example, the North displays a strongly positive coefficient for Winter

temperature.

We further explore how these estimated coefficients have been evolving through time.

Specifically, we run the regression specified in equation (2) by increasing the start date

of the sample by one year at a time. We repeat this exercise until the sample starting

10



in 1990 (past this date, the sample size becomes too small to draw any statistically

meaningful conclusion from our estimation).
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Figure 2: Each panel reports the estimated coefficients of average temperature for the corre-
sponding season. Each dot corresponds to the coefficients estimated over the sample that starts
on the year reported on the horizontal axis and ends in 2012. The panel regressions are for the
entire cross-section of the U.S.. Each state is weighted by its relative GSP. Regressions include
state and year fixed effects. The grey areas represent 90% confidence intervals. Standard errors
are clustered at the year level. The solid lines are linear fits of the dots in each panel.

The results are reported in Figure 2. Several things emerge from this figure. First

of all, the findings that we reported for the longest available sample are robust to all

the sub-samples that we considered. Equivalently, Summer and Fall temperatures ap-

pear to be the only ones playing a role for economic growth. Additionally, it seems that
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the estimated coefficients for the Fall are quite stable through time, while the estimated

coefficients for the Summer become increasingly negative. This result is potentially sug-

gestive of an increased negative effect of rising Summer temperatures on U.S. economic

growth over time.

4 Interpreting the results

Estimation of trends in temperature. In order to quantify the relevance of the co-

efficients estimated in Table 2, we need to get a better understanding of the projected

path of temperature. To this end, we estimate the temperature process via the following

regression:

wi,t = µiw + ρiwwi,t−1 + βi · t+ σiwε
i
w,t (3)

where i indexes the four seasons. For consistency with the estimations reported in the

earlier sections, we focus on the 1960− 2012 sample period. We report the results of this

estimation in Table 3.

Several results emerge from looking at Table 3. First, there is a clear positive trend in

the average temperature that affects all the seasons across all U.S. regions. Second, the

Summer trend is roughly twice as large as the Fall trend. (It appears that the strongest

trend takes place for the Winter, followed by Spring and Summer, and ultimately by

the Fall.) Third, the estimated autoregressive coefficients are typically not statistically

significant. The only relevant exception has to do with some of the Fall coefficients (in

the North, South and Midwest), and these autoregressive coefficients are negative. This

is consistent with why the trend in Fall temperatures is only weakly increasing.

The numbers in Table 3 offer a direct quantification of the estimated coefficients of our

panel regressions. If we focus on Summer and Fall (the seasons whose coefficients were

statistically significant in Table 2), the first row of Table 3 suggests that in 100 years
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Table 3: Dynamics of Average Temperature (1960-2012)

Whole Year Winter Spring Summer Fall

C
ou

nt
ry Trend 0.041∗∗∗ 0.071∗∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.021∗∗

(0.006) (0.015) (0.010) (0.008) (0.009)
AR(1) 0.077 −0.048 0.143 0.061 −0.212

(0.149) (0.146) (0.143) (0.141) (0.139)

N
or

th

Trend 0.048∗∗∗ 0.080∗∗∗ 0.041∗∗∗ 0.035∗∗∗ 0.036∗∗∗

(0.008) (0.023) (0.011) (0.009) (0.012)
AR(1) 0.047 0.147 −0.000 −0.184 −0.328∗∗

(0.143) (0.149) (0.138) (0.132) (0.133)

So
ut

h Trend 0.040∗∗∗ 0.075∗∗∗ 0.033∗∗∗ 0.031∗∗∗ 0.019∗∗

(0.008) (0.022) (0.012) (0.009) (0.009)
AR(1) 0.160 0.200 0.070 −0.047 −0.359∗∗∗

(0.151) (0.146) (0.145) (0.140) (0.132)

M
id

w
es

t Trend 0.042∗∗∗ 0.088∗∗∗ 0.028∗ 0.031∗∗∗ 0.017
(0.011) (0.027) (0.016) (0.011) (0.013)

AR(1) 0.185 0.072 0.158 0.017 −0.247∗

(0.149) (0.148) (0.144) (0.141) (0.137)

W
es

t Trend 0.040∗∗∗ 0.064∗∗∗ 0.035∗∗∗ 0.040∗∗∗ 0.020
(0.007) (0.012) (0.013) (0.008) (0.013)

AR(1) 0.001 −0.271∗∗ 0.126 −0.024 0.003
(0.143) (0.136) (0.141) (0.143) (0.142)

Notes - Notes - The table reports the estimates of the autoregressive coefficient and of the time
trend for temperature. The column labeled “Whole Year” refers to the annual temperature es-
timation, while the columns labeled “Winter”, “Spring”, “Summer”, and “Fall” refer to the cor-
responding season. The row labeled “Whole country” reports the estimates obtained using US
aggregate temperature data, while the following rows refer to the corresponding regions. All the
regressions also include an intercept, that is not reported in the interest of space. The sample is
1960 to 2012.

seasonal temperatures are on average going to be 3.6 and 2.1 degrees Fareinhait higher,

respectively. This implies that rising Summer temperatures could decrease the growth

rate of U.S. GDP by 0.154% × 3.6 = 0.554%. This effect would be partially mitigated by

rising Fall temperatures (by a factor of 0.102% × 2.1 = 0.214%). Equivalently, assum-

ing no change in the way in which seasonal temperatures affect economic growth, the

positive trends in Summer and Fall temperature are on average going to reduce U.S.

growth by 0.33% in the next 100 years. Given an average growth rate of about 2%, rising

temperatures could reduce growth by as much as one-third.

Welfare analysis. Is this section, we address the question of how much would an agent
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be willing to pay in order to reduce the impact of climate change on economic growth.

We answer this question by computing the permanent reduction of consumption that

would make an agent indifferent between living in an economy, which evolves according

to the growth and temperature parameters estimated in Tables 2 and 3, and another

economy in which rising temperatures affect growth to a smaller extent.5

Formally, we consider the problem of an agent that ranks consumption profiles according

to the following recursive preferences:

Ut = (1− δ) log(Ct) + δθ logEt

[
exp

{
Ut+1

θ

}]

where θ = 1/(1 − γ), γ denotes risk aversion, and δ is the subjective discount factor.

This utility function was introduced by Hansen and Sargent (1995) and it corresponds

to Epstein and Zin (1989) preferences for the case in which the intertemporal elasticity

of substitution is equal to 1. There is now an extensive literature in economics and

finance that employs this utility function (see, inter alia, Anderson (2005), and Bansal

and Yaron (2004)). They collapse to the standard case of time additive preferences if

θ → −∞. Tallarini (2000) used these preferences to revisit Lucas (1987)’s conclusion

concerning the welfare costs of business cycle fluctuations.

Let consumption and temperature dynamics be described by the following law of motion:

∆ct = µc +
4∑
i=1

λiwi,t + σcεc,t, (4)

wi,t = µiw + ρiwwi,t−1 + βi · t+ σiwε
i
w,t, ∀i = {1, 2, 3, 4}

where ∆ct ≡ log(ct/ct−1) is consumption growth. We assume the shocks εc,t and
{
εiw,t
}4

i=1

are orthogonal, i.i.d., and distributed as standard normals. If we interpret wi,t as the
5A full IAM model, whose climate damage function is calibrated to match our estimates of the effects

of rising temperatures on U.S. GDP growth is outside of the scope of this paper, and is left for future
research.
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average temperature in season i, then λi corresponds to the marginal impact of a one

degree increase in temperature on economic growth. Similarly, βi and ρiw reflect the

trend and the autocorrelation in the average temperature in season i.

Consider the case in which λi, βi and ρiw can be proportionally reduced by ∆λ, ∆β, and

∆ρ. In this case, consumption growth evolves according to:

∆c̃t = µc +
4∑
i=1

(
1−∆λ

)
λiw̃i,t + σcεc,t (5)

w̃∆
i,t = µiw + (1−∆ρ) ρiww̃i,t−1 +

(
1−∆β

)
βi · t+ σ̃iwε

i
w,t, ∀i = {1, 2, 3, 4}.

We can think of a reduction in λi’s by ∆λ as reflecting adaptation to climate change,

while reductions in ρiw’s by ∆ρ and βi’s by ∆β can be interpreted as mitigation of the

dynamics of climate related variables.

It is apparent that an agent would prefer to live in an economy in which consumption

dynamics evolve according to (5) as opposed to the baseline case in (4). We assess the

welfare cost of climate change by computing the permanent reduction in the level of

consumption, ∆0, and the permanent reduction in the growth rate of consumption, ∆1,

that makes the agent indifferent between (a) living in an economy in which consumption

growth evolves according to ∆c̃t, and (b) living in an economy in which consumption

evolves according to ∆ct.6 The values of ∆0 and ∆1 are computed by equalizing the

expected discounted utilities associated to the two consumption profiles:

Et

[
U
(
{Cj}∞j=t

)]
= Et

[
U

({
C̃j · exp (∆0 + ∆1 · j)

}∞
j=t

)]
, ∀t. (6)

6To see this, define the consumption profile on the right hand side of equation (6) as C∆
t . Then:

logC∆
t = log C̃t + ∆0 + ∆1 · t,

From this equation, it can be seen that ∆0 denotes the permanent change in the level consumption, and
∆1 denotes the change in the growth rate of consumption (because ∆c∆t = ∆c̃t + ∆1). We need to take into
account a reduction in both the level and the growth rate of consumption, because the assumed dynamics
of consumption include a time trend.
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Table 4: Welfare Analysis with Trend in Temperature (Whole Country)

Panel A: permanent reduction of the level (∆0)
∆β

0% 20% 40% 60% 80% 100%

∆
λ

0% 0.0 −0.1 −0.1 −0.2 −0.2 −0.3
20% −0.1 −0.1 −0.1 −0.2 −0.2 −0.3
40% −0.1 −0.1 −0.2 −0.2 −0.2 −0.3
60% −0.2 −0.2 −0.2 −0.2 −0.3 −0.3
80% −0.2 −0.2 −0.2 −0.3 −0.3 −0.3
100% −0.3 −0.3 −0.3 −0.3 −0.3 −0.3

Panel B: permanent growth rate reduction (∆1/µc)
∆β

0% 20% 40% 60% 80% 100%

∆
λ

0% 0.0 −2.8 −5.6 −8.4 −11.2 −14.0
20% −2.8 −5.0 −7.3 −9.5 −11.8 −14.0
40% −5.6 −7.3 −9.0 −10.6 −12.3 −14.0
60% −8.4 −9.5 −10.6 −11.8 −12.9 −14.0
80% −11.2 −11.8 −12.3 −12.9 −13.4 −14.0
100% −14.0 −14.0 −14.0 −14.0 −14.0 −14.0

Notes - Panel A reports the permanent reduction in the level of consumption that makes an
agent indifferent between living in an economy with the estimates of β and λ reported in Tables 2
and 3 and an economy in which β and λ have been reduced by the percentage reported in the
corresponding row and column. Panel B reports the permanent reduction in the growth rate of
consumption that makes an agent indifferent between living in an economy with the estimates
of β and λ reported in Tables 2 and 3 and an economy in which β and λ have been reduced by the
percentage reported in the corresponding row and column. The analysis is performed assuming
δ = 0.9879 and γ = 10.

We document in the Appendix A that the amounts ∆0 and ∆1 are equal to:

∆0 = A− A∆ − δ

1− δ
(D −D∆)

∆1 = D −D∆
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where

A =
δ

1− δ

[∑
i

λi
1− δρiw

(
µiw +

βi
1− δ

+
λi(σ

i
w)2

2θ(1− δρiw)

)]

A∆ =
δ

1− δ

[∑
i

(
1−∆λ

)
λi

1− δ (1−∆ρ) ρiw

(
µiw +

(
1−∆β

)
βi

1− δ
+

(
1−∆λ

)
λi(σ

i
w)2

2θ(1− δ (1−∆ρ) ρiw)

)]

D =
δ

1− δ
∑
i

βiλi
1− δρiw

D∆ =
δ

1− δ
∑
i

(
1−∆β

)
βi
(
1−∆λ

)
λi

1− δρiw
.

We calibrate the preference parameters by following the long-run risks literature (see,

for example, Bansal and Yaron (2004) and Colacito and Croce (2011)). Specifically, we set

the coefficient of risk aversion, γ, to be equal to 10 and the subjective discount factor, δ,

to 0.9879. Since the losses associated with climate change are small over short horizons,

but large over long horizons, the results of our welfare analysis depend on how patient

agents are. We discipline our choice of the subjective discount factor by targeting a

risk-free interest rate of 1.5%.

The parameters in the system of equation (4) are set to mimic our estimates for the

whole country analysis reported in the first row of Table 2. The parameters λ1 and

λ2 are assumed to be equal to zero, while λ3 = −0.0015 and λ4 = 0.0010. This choice

implies that Winter and Spring weather (whose associate coefficients are λ1 and λ2) do

not affect economic growth, while Summer (λ3) and Fall (λ4) have opposite effects on

growth. We set the time trend coefficients β3 = 0.03584 and β4 = 0.0206 to reflect that

Summer temperature is expected to rise at a faster rate relative to Fall temperature.

The autocorrelation coefficients ρi are set equal to zero to reflect our finding that the

persistence of temperature is not statistically different from zero, once we control for the

time trend. The intercepts of the seasonal weather processes, µiw, are set equal to 0, since

our estimates deal with mean-zero, de-seasonalized series. The conditional volatilities of
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Winter and Spring temperatures (σ1
w and σ2

w) are set equal to zero, while the coefficients

for Summer and Fall are calibrated to the point estimates of our estimation (σ3
w = 0.78

and σ4
w = 1.16). We calibrate the average annual growth rate of the economy, µc, to 0.02.

Table 4 reports the results of our analysis for various combinations of values for ∆λ and

∆β. We abstract from performing the analysis with respect to ∆ρ, since the correspond-

ing parameters are set equal to zero in our benchmark case. The top panel documents

that the permanent reduction of the level of consumption associated with any degree

of mitigation of and adaptation to climate change is quite modest, typically varying

between 0 and 0.3%. The bottom panel, instead, shows that an agent living in this econ-

omy would be willing to accept a permanent reduction in the growth rate of up to 14% to

eliminate the negative impact of climate change on the economy.

Focusing on some of the intermediate cases, our results in Table 4 indicate that an

agent would be willing to sacrifice 8.4% of the current growth rate of the economy in

order to live in an economy in which the pace of temperature increase is reduced by

60%, while leaving the extent of impact of temperature on the economy unaltered. A

reduction of the temperature’s trend is likely to be accompanied by a reduced impact of

climate related events on economic growth. Our results suggest that an additional 20%

reduction of such effect would be equivalent to a permanent reduction of consumption

growth of 9.5%. Taken together, these results indicate that there are substantial welfare

losses associated with inaction to climate change.

5 Robustness and Additional Results

In this section we document the robustness of our results to different specifications of

our main regression analysis. Table 5 reports the results obtained from using different
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Table 5: Other weighting schemes

Whole Year Winter Spring Summer Fall
GSP (varying) 0.010 0.008 −0.008 −0.148∗ 0.105∗

(0.119) (0.051) (0.067) (0.077) (0.058)
Area 0.054 0.018 0.012 −0.098 0.079

(0.123) (0.062) (0.074) (0.066) (0.063)
Population 0.057 0.028 −0.025 −0.132∗ 0.131∗∗

(0.123) (0.053) (0.069) (0.071) (0.061)

Notes - In each regression, the dependent variable is the GSP growth rate of each state. The
first row reports the results for the panel analysis conducted using the entire cross-section of US
states. Each of the following rows refers to a different US region, according to the Federal clas-
sification. The first column refers to the analysis conducted using annual temperature averages
(“Whole Year”). Each of the following columns refers to the analysis conducted by regressing
jointly on the four seasonal averages. Winter is defined as the average of January, February, and
March temperatures. Spring is defined as the average of April, May, and June temperatures.
Summer is defined as the average of July, August, and September temperatures. Fall is defined
as the average of October, November, and December temperatures. The numbers in parenthesis
are standard errors. Standard errors are clustered by year. Each regression contains year and
state fixed effects as well as the lagged GSP growth rate of the corresponding state. The sample
period is 1957-2012.

weighting schemes for the cross-section of U.S. states. Specifically, we consider the cases

of population, area, and time varying GSP weighting. The latter is used to take into ac-

count possible changes in the relative distribution of GSP across U.S. states. The results

indicate that the signs of the estimated coefficients are generally aligned with our base-

line case. The statistical significance of Summer and Fall temperatures is preserved in

all cases, with the exception of area weighting.

In Tables 6 and 7 we include respectively average precipitation and temperature volatil-

ity in our main specification. We find that controlling for these two additional set of con-

trol variables does not alter our main set of conclusions regarding the role of Summer

and Fall temperatures on U.S. economic growth.
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6 Concluding Remarks

We have provided evidence of a statistically and economically significant relationship

between rising temperatures and economic growth. Our analysis reveals the importance

of studying this relationship using seasonal temperatures. Rising temperatures in the

Summer depress growth, while rising temperatures in the Fall increase growth, with

both effects particularly strong in the South. However, after taking into account the

different trends in Summer and Fall temperatures, we conclude that the Summer effect

dominates. In net, rising temperatures can depress U.S. GDP growth by up to a third,

and are associated with significant welfare losses. Our analysis is informative for the

calibration of the “climate damage function” in general equilibrium models, which are

used to form prescriptions for optimal climate policies.
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Table 6: Controlling for Precipitation

Whole Year Winter Spring Summer Fall
USA Temp. 0.004 0.003 0.008 −0.169∗∗ 0.093∗

(0.113) (0.047) (0.069) (0.077) (0.056)
Prec. −0.012 −0.050 −0.044 0.006 0.037

(0.056) (0.033) (0.032) (0.032) (0.028)
North Temp. 0.366 0.333∗ 0.103 0.122 −0.256

(0.348) (0.189) (0.302) (0.272) (0.263)
Prec. −0.063 −0.118 −0.098 0.061 0.161

(0.175) (0.106) (0.083) (0.091) (0.116)
Midwest Temp. −0.232 0.009 −0.164 −0.014 −0.112

(0.239) (0.091) (0.142) (0.168) (0.122)
Prec. −0.076 0.025 −0.047 −0.013 −0.015

(0.117) (0.064) (0.044) (0.059) (0.086)
South Temp. 0.323 −0.091 0.214 −0.402∗∗ 0.561∗∗∗

(0.325) (0.164) (0.188) (0.162) (0.195)
Prec. 0.056 0.019 −0.083∗ 0.017 0.058

(0.125) (0.055) (0.049) (0.061) (0.056)
West Temp. −0.142 0.006 −0.124 0.045 −0.006

(0.204) (0.095) (0.144) (0.159) (0.170)
Prec. 0.133∗ 0.020 0.092 0.080∗ 0.003

(0.072) (0.041) (0.082) (0.045) (0.033)

Notes - In each regression, the dependent variable is the GSP growth rate of each state. The
first row reports the results for the panel analysis conducted using the entire cross-section of US
states. Each of the following rows refers to a different US region, according to the Federal clas-
sification. The first column refers to the analysis conducted using annual temperature averages
(“Whole Year”). Each of the following columns refers to the analysis conducted by regressing
jointly on the four seasonal averages. Winter is defined as the average of January, February, and
March temperatures. Spring is defined as the average of April, May, and June temperatures.
Summer is defined as the average of July, August, and September temperatures. Fall is defined
as the average of October, November, and December temperatures. The numbers in parenthesis
are standard errors. Standard errors are clustered by year. Each regression contains year and
state fixed effects as well as the lagged GSP growth rate of the corresponding state. The sample
period is 1957-2012.
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Table 7: Controlling for Temperature Volatility

Whole Year Winter Spring Summer Fall
Whole country Mean 0.004 −0.009 −0.013 −0.138∗ 0.106∗

(0.111) (0.050) (0.062) (0.071) (0.055)
Vol −0.002 0.002 −0.001 0.002 −0.000

(0.002) (0.002) (0.001) (0.002) (0.001)
North Mean 0.324 0.363∗∗ 0.113 0.189 −0.201

(0.340) (0.176) (0.296) (0.251) (0.214)
Vol −0.004 −0.004 0.001 −0.003 −0.003

(0.006) (0.005) (0.004) (0.004) (0.003)
Midwest Mean −0.212 0.009 −0.177 0.047 −0.117

(0.236) (0.085) (0.149) (0.154) (0.121)
Vol −0.001 0.004 0.002 0.003 −0.001

(0.003) (0.005) (0.003) (0.002) (0.002)
South Mean 0.273 −0.121 0.135 −0.280∗ 0.580∗∗∗

(0.299) (0.173) (0.154) (0.154) (0.208)
Vol −0.005 0.002 0.006∗ 0.003 −0.004

(0.005) (0.003) (0.003) (0.005) (0.003)
West Mean −0.146 −0.004 −0.148 0.040 −0.031

(0.204) (0.099) (0.144) (0.155) (0.181)
Vol −0.000 −0.001 −0.000 0.002 −0.001

(0.003) (0.002) (0.002) (0.003) (0.002)

Notes - In each regression, the dependent variable is the GSP growth rate of each state. The
first row reports the results for the panel analysis conducted using the entire cross-section of US
states. Each of the following rows refers to a different US region, according to the Federal clas-
sification. The first column refers to the analysis conducted using annual temperature averages
(“Whole Year”). Each of the following columns refers to the analysis conducted by regressing
jointly on the four seasonal averages. Winter is defined as the average of January, February, and
March temperatures. Spring is defined as the average of April, May, and June temperatures.
Summer is defined as the average of July, August, and September temperatures. Fall is defined
as the average of October, November, and December temperatures. The numbers in parenthesis
are standard errors. Standard errors are clustered by year. Each regression contains year and
state fixed effects as well as the lagged GSP growth rate of the corresponding state. The sample
period is 1957-2012.
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Deschênes, Olivier and Michael Greenstone, “The economic impacts of climate
change: Evidence from agricultural output and random fluctuations in weather:
Reply,” The American Economic Review, 2012, 102 (7), 3761–3773.

Epstein, Larry G. and Stanley E. Zin, “Substitution, Risk Aversion, and the Tem-
poral Behavior of Consumption and Asset Returns: A Theoretical Framework,”
Econometrica, 1989, 57 (4), 937–969.

23



Fisher, Anthony C, W Michael Hanemann, Michael J Roberts, and Wolfram
Schlenker, “The economic impacts of climate change: evidence from agricultural
output and random fluctuations in weather: comment,” The American Economic
Review, 2012, 102 (7), 3749–3760.

Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski, “Optimal Taxes
on Fossil Fuel in General Equilibrium,” Econometrica, 2014, 82 (1), 41–88.

Hansen, James, Makiko Sato, and Reto Ruedy, “Perception of climate change,”
PNAS, 2012, pp. E2415–E2423.

Hansen, L. and T. J. Sargent, “Discounted linear exponential quadratic gaussian con-
trol,” IEEE Trans. Automatic Control, 1995, 40(5), 968–971.

Hsiang, Solomon M, “Temperatures and cyclones strongly associated with economic
production in the Caribbean and Central America,” Proceedings of the National
Academy of Sciences, 2010, 107 (35), 15367–15372.

IPCC, “Climate Change 2014: Impacts, Adaptation, ad Vulnerability,” 2014.

Lucas, Robert, “Models of Business Cycles,” Oxford: Blackwell, 1987.

Nordhaus, W and Paul Sztorc, “DICE 2013R: Introduction and User’s Manual, 2nd
Edition,” http://dicemodel.net 2013.

Nordhaus, William D, “The economics of hurricanes and implications of global warm-
ing,” Climate Change Economics, 2010, 1 (01), 1–20.

Pindyck, Robert S, “Climate change policy: What do the models tell us?,” Journal of
Economic Literature, 2013, 51 (3), 860–872.

Schlenker, Wolfram and Michael J Roberts, “Nonlinear temperature effects indi-
cate severe damages to US crop yields under climate change,” Proceedings of the
National Academy of sciences, 2009, 106 (37), 15594–15598.

Tallarini, Thomas, “Risk-Sensitive Real Business Cycles,” Journal of Monetary Eco-
nomics, 2000, 45, 507–532.

Zivin, Joshua Graff and Matthew Neidell, “Temperature and the allocation of time:
Implications for climate change,” Journal of Labor Economics, 2014, 32 (1), 1–26.

24



Appendix

A Computation of Welfare Equivalents

The economy is populated by a representative agent with recursive preferences:

Ut = (1− δ) log(Ct) + δθ logEt

[
exp

{
Ut+1

θ

}]

where θ = 1/(1 − γ), γ denotes risk aversion, and δ is the subjective discount factor.

Consumption growth evolves according to the following law of motion:

∆ct = µc +
4∑
i=1

λiwi,t + σcεc,t

where

wi,t = µiw + ρiwwi,t−1 + βi · t+ σiwε
i
w,t, ∀i = {1, 2, 3, 4}

and the shocks εc,t and
{
εiw,t
}4

i=1
are orthogonal and i.i.d. distributed as standard nor-

mals. Denote the logarithm of the utility-consumption ratio as Vt:

Vt = Ut − log(Ct)

= δθ logEt exp

{
Vt+1 + ∆ct+1

θ

}
.

Guess that the solution for Vt is linear in {wi,t}4
i=1 and t

Vt = A+
∑
i

Biwi,t +D · t,

25



and find the coefficients A, {Bi}4
i=1, and D that verify the proposed solution:

Vt = δθ logEt exp

{
1

θ

[
A+D · t+D +

∑
i

(Bi + λi)
(
µiw + ρiwwi,t + βi · t+ σiwε

i
w,t+1

)
+ µc + σcεc,t+1

]}

= δ

[
A+

∑
i

(Bi + λi)µ
i
w +

∑
i

βi (Bi + λi) +D + µc

]
+

δ

2θ

[
σ2
c +

∑
i

(Bi + λi)
2

(σiw)2

]

+δ
∑
i

(Bi + λi) ρ
i
wwi,t + δ

[∑
i

βi (Bi + λi) +D

]
· t

Matching the coefficients, we get

A =
δ

1− δ

[∑
i

(Bi + λi)µ
i
w +

∑
i

βi (Bi + λi) +D + µc +
σ2
c

2θ
+
∑
i

(Bi + λi)
2 (σiw)

2

2θ

]

Bi =
δ

1− δρiw
λiρ

i
w, ∀i = {1, 2, 3, 4}

D =
δ

1− δ
∑
i

βi (Bi + λi) .

Note that

Bi + λi =
λi

1− δρiw
,

∑
i

λi
1− δρiw

βi +D =
1

1− δ
∑
i

λiβi
1− δρiw

which allows to rewrite A and D as

A =
δ

1− δ

[∑
i

λi
1− δρiw

(
µiw +

βi
1− δ

+
λi(σ

i
w)2

2θ(1− δρiw)

)
+
σ2
c

2θ
+ µc

]

D =
δ

1− δ
∑
i

βiλi
1− δρiw

.

Now consider an economy in which consumption growth evolves according to

∆c̃t = µc +
4∑
i=1

λ̃iwi,t + σcεc,t

wi,t = µiw + ρ̃iwwi,t−1 + β̃i · t+ σiwε
i
w,t, ∀i = {1, 2, 3, 4},
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where λ̃i = λi
(
1−∆λ

)
, and ρ̃iw = ρiw (1−∆ρ).

We shall compute the values of ∆0 and ∆1 which make the agent indifferent between

living in an economy in which consumption growth evolves according to ∆c̃t and and

economy in which consumption evolves according to ∆ct. Recall equation 6:

Et

[
U
(
{Cj}∞j=t

)]
= Et

[
U

({
C̃j · exp (∆0 + ∆1 · j)

}∞
j=t

)]
.

Define the consumption profile on the right hand side as

logC∆
t = log C̃t + ∆0 + ∆1 · t,

and note that ∆0 denotes the permanent change in the level consumption that makes

the agent indifferent, and ∆1 denotes the change in the growth rate that the agent is

willing to accept:

∆c∆
t = ∆c̃t + ∆1.

Guess that the solution of the log-utility-consumption ratio when the dynamics of con-

sumption are described by logC∆
t is of the form

Ṽt =

(
Ã+ ∆0 +

δ

1− δ
∆1

)
+
∑
i

B̃iwi,t +
(
D̃ + ∆1

)
t,

and verify that

Ã =
δ

1− δ

[∑
i

λ̃i
1− δρ̃iw

(
µ̃iw +

β̃i
1− δ

+
λ̃i(σ̃

i
w)2

2θ(1− δρ̃iw)

)
+
σ2
c

2θ
+ µc

]

Bi =
δ

1− δρ̃iw
λ̃iρ̃

i
w, ∀i = {1, 2, 3, 4}

D =
δ

1− δ
∑
i

β̃iλ̃i
1− δρ̃iw

.

27



This implies that

∆0 = A− Ã− δ

1− δ
(D − D̃)

∆1 = D − D̃.

B Properties of autoregressive process

Consider the process

wt = µw + ρwwt−1 + β · tσwεw,t,

then it follows that

Et [wt+j] = β

j∑
i=1

ρ(j−i)
w · i+ µw

j−1∑
i=0

ρiw + ρjw · wt + β

(
j−1∑
i=0

ρiw

)
· t.

Assume µw = 0, t = 0, and w0 = 0. Then:

E0 [wj] = β

j∑
i=1

ρ(j−i)
w · i ≤ β · j ⇐⇒ ρw ≤ 0

E0 [wj] = β

j∑
i=1

ρ(j−i)
w · i ≥ β · j ⇐⇒ ρw ≥ 0,

where the equality holds for the case in which ρw = 0.

C Definitions of US regions

We follow the US Census Bureau and identify 4 regions:

1. North: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Ver-
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mont, New Jersey, New York, and Pennsylvania;

2. Midwest: Illinois, Indiana, Michigan, Ohio, Wisconsin, Iowa, Kansas, Minnesota,

Missouri, Nebraska, North Dakota, South Dakota;

3. South: Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina,

Virginia, Washington D.C., West Virginia, Alabama, Kentucky, Mississippi, Ten-

nessee, Arkansas, Louisiana, Oklahoma, and Texas;

4. West: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming,

Alaska, California, Hawaii, Oregon, and Washington.
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