How Destructive is Innovation?

Daniel Garcia-Macia1 Chang-Tai Hsieh2 Pete Klenow3

1Stanford University
2University of Chicago and NBER
3Stanford University and NBER

January 5, 2015 — ASSA Meetings
Polar models in the endogenous growth literature:

- Creative destruction
- Creation of new varieties
 - Romer (1990)
- Own-variety improvements
Literature

- Polar models in the endogenous growth literature:
 - Creative destruction
 - Creation of new varieties
 - Romer (1990)
 - Own-variety improvements

- Empirical literature with accounting decompositions:
 - Baily et al. (1992), Foster et al. (2001)
Literature

- Polar models in the endogenous growth literature:
 - Creative destruction
 - Creation of new varieties
 - Romer (1990)
 - Own-variety improvements

- Empirical literature with accounting decompositions:
 - Baily et al. (1992), Foster et al. (2001)

We consider all three channels in an exogenous growth model and try to infer their contribution from data on U.S. manufacturing plants.
Research Question

- How important is creative destruction as a proximate source of innovation?
Research Question

- How important is creative destruction as a proximate source of innovation?

- Use plant-level data to infer the contribution of these types of innovation:

<table>
<thead>
<tr>
<th>Innovation Type</th>
<th>Entrants</th>
<th>Incumbents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative destruction of existing varieties</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Creation of new varieties</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Own-variety improvements</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Why do we care?

- Optimal innovation policy depends on knowledge spillovers vs. business stealing, which differ across channels.
Research Question

- How important is creative destruction as a proximate source of innovation?

- Use plant-level data to infer the contribution of these types of innovation:

<table>
<thead>
<tr>
<th></th>
<th>entrants</th>
<th>incumbents</th>
</tr>
</thead>
<tbody>
<tr>
<td>creative destruction of existing varieties</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>creation of new varieties</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>own-variety improvements</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

- Why do we care?
 - optimal innovation policy depends on knowledge spillovers vs. business stealing, which differ across channels.
Method

Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements.
Method

- Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements.

Method

- Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements

- To infer the forces driving plant growth, match model and data moments:
 - growth rate of aggregate TFP
 - exit rate by age
 - employment by age
 - growth in the number of plants
 - exit rate by size (employment)
 - distribution of employment growth
 - distribution of employment
Main findings

- In terms of their contributions to aggregate TFP growth:
Main findings

- In terms of their contributions to aggregate TFP growth:

 1. incumbents \gg entrants
Main findings

In terms of their contributions to aggregate TFP growth:

1. incumbents ≫ entrants
2. quality improvements ≫ new varieties
Main findings

In terms of their contributions to aggregate TFP growth:

1. incumbents ≫ entrants
2. quality improvements ≫ new varieties
3. own innovation > creative destruction
Model: innovation channels

quality level

q

firm j (3 initial varieties)

M_t
Model: innovation channels

- Quality level: q
- Firm j (3 initial varieties)
- s_q
- Own improvements

Diagram showing the quality level and the initial varieties for firm j.
Model: innovation channels

- Own improvements
- Creative destruction

Graph showing quality level q on the y-axis and Mt on the x-axis, with three initial varieties for firm j.
Model: innovation channels

- own improvements
- creative destruction
- new varieties

Quality level q

Firm j (3 initial varieties)

M_{t+1}
Model: innovation channels

- Own improvements
- Creative destruction
- New varieties

Entrant firms

Quality level q vs. $M_t + 1$
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities \(q \)
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \geq 1$
 - \Rightarrow endogenous exit of firms: decreasing in the number of varieties
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \geq 1$
 \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \geq 1$
 \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents
 - Only factor of production is labor
Model: built on KK

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \geq 1$
 \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents
 - Only factor of production is labor
 - Monopolistic competition, CES σ
 \Rightarrow employment, profits and revenues proportional to sum of $q^{\sigma-1}$ for a firm
 \Rightarrow employment growth is proportional to innovation
Model: production

- Variety-level:
 \[y_j = l_j \]
Model: production

- Variety-level:
 \[y_j = l_j \]

- Firm-level:
 \[Y_f = \frac{\sum_{j=1}^{M_f} p_j y_j}{P} \]
Model: production

- Variety-level:
 \[y_j = l_j \]

- Firm-level:
 \[Y_f = \frac{\sum_{j=1}^{M_f} p_j y_j}{P} \]

- Aggregate:
 \[Y = \left[\sum_{j=1}^{M} (q_j y_j)^{1-1/\sigma} \right]^{\sigma \over \sigma-1} \]
We add creation of new varieties and own-variety improvements:

<table>
<thead>
<tr>
<th>channel</th>
<th>probability</th>
<th>step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>own-variety improvements by incumbents</td>
<td>λ_i</td>
<td>$s_{\lambda} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by entrants</td>
<td>δ_e</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by incumbents</td>
<td>δ_i</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>new varieties from entrants</td>
<td>κ_e</td>
<td>s_{κ}</td>
</tr>
<tr>
<td>new varieties from incumbents</td>
<td>κ_i</td>
<td>s_{κ}</td>
</tr>
</tbody>
</table>
Model: innovation channels

- We add creation of new varieties and own-variety improvements:

<table>
<thead>
<tr>
<th>channel</th>
<th>probability</th>
<th>step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>own-variety improvements by incumbents</td>
<td>λ_i</td>
<td>$s_{\lambda} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by entrants</td>
<td>δ_e</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by incumbents</td>
<td>δ_i</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>new varieties from entrants</td>
<td>κ_e</td>
<td>s_{κ}</td>
</tr>
<tr>
<td>new varieties from incumbents</td>
<td>κ_i</td>
<td>s_{κ}</td>
</tr>
</tbody>
</table>

Note 1: Exogenous innovation rates.
Model: innovation channels

- We add creation of new varieties and own-variety improvements:

<table>
<thead>
<tr>
<th>channel</th>
<th>probability</th>
<th>step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>own-variety improvements by incumbents</td>
<td>λ_i</td>
<td>$s_{\lambda} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by entrants</td>
<td>δ_e</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>creative destruction by incumbents</td>
<td>δ_i</td>
<td>$s_{\delta} \geq 1$</td>
</tr>
<tr>
<td>new varieties from entrants</td>
<td>κ_e</td>
<td>s_{κ}</td>
</tr>
<tr>
<td>new varieties from incumbents</td>
<td>κ_i</td>
<td>s_{κ}</td>
</tr>
</tbody>
</table>

Note 1: Exogenous innovation rates.

Note 2: For stationarity, potentially directed creative destruction (ρ_i and ρ_e).
Model: innovation channels

Incumbent variety: q
Model: innovation channels

Incumbent variety: q

λ_i -> improved: $s_{\lambda}q$

$1 - \lambda_i$
Model: innovation channels

- Incumbent variety: q
- Improved: $s\lambda q$
- Stolen: $-\delta_e - \delta_i$
- Retained: q

λ_i and $1 - \lambda_i$ distribute the variety among improved, stolen, and retained options.
Model: innovation channels

- **Incumbent variety:** q
 - **Improved:** $s_\lambda q$
 - **Stolen:** $-$
 - **Retained:** q

- **Steal existing variety:** $s_\delta q'$
- **New variety:** $s_\kappa q''$

Equations:

- λ_i and $\delta_e + \delta_i$
- $1 - \lambda_i$
- $1 - (\delta_e + \delta_i)$
Model: innovation channels

Entrant firm

\[\delta_e \rightarrow \text{steal existing variety: } s_\delta q' \]

or

\[\kappa_e \rightarrow \text{new variety: } s_\kappa q'' \]
Simulation algorithm

1. Simulate life paths for same # of plants as in the data ($\sim 350k$)
Simulation algorithm

1. Simulate life paths for same # of plants as in the data (\sim350k)

2. In each period, probability of each type of innovation
Simulation algorithm

1. Simulate life paths for same # of plants as in the data ($\sim 350k$)

2. In each period, probability of each type of innovation

3. Iterate until the size distribution converges to a steady state
Simulation algorithm

1. Simulate life paths for same # of plants as in the data ($\sim350k$)

2. In each period, probability of each type of innovation

3. Iterate until the size distribution converges to a steady state

4. Iterate on parameter values to minimize distance between the simulated moments and the data moments
Results: parameters

<table>
<thead>
<tr>
<th>channel</th>
<th>probability</th>
<th>step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>own-variety improvements by incumbents</td>
<td>29.0%</td>
<td>1.058</td>
</tr>
<tr>
<td>creative destruction by entrants</td>
<td>6.2%</td>
<td>1.010</td>
</tr>
<tr>
<td>creative destruction by incumbents</td>
<td>76.6%</td>
<td>1.010</td>
</tr>
<tr>
<td>new varieties from entrants</td>
<td>0.5%</td>
<td>1.000</td>
</tr>
<tr>
<td>new varieties from incumbents</td>
<td>0.0%</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Model: contributions to growth

- Aggregate Productivity:

\[
\frac{Y_t}{L_t} = M_t^{\frac{1}{\sigma-1}} \left[\frac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma-1}}{M_t} \right]^{\frac{1}{\sigma-1}}
\]
Model: contributions to growth

- Aggregate Productivity:

\[
Y_t/L_t = M_t^{1/(\sigma-1)} \left[\frac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma-1}}{M_t} \right]^{1/(\sigma-1)}
\]

- Aggregate growth rate:

\[
1 + g_{Y/L} = [(1 + \kappa_e + \kappa_i)(1 + g_q)]^{1/(\sigma-1)}
\]
Model: contributions to growth

- Aggregate Productivity:

\[
\frac{Y_t}{L_t} = M_t^{\frac{1}{\sigma-1}} \left[\frac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma-1}}{M_t} \right]^{\frac{1}{\sigma-1}}
\]

- Aggregate growth rate:

\[
1 + \frac{g_Y}{L} = \left[(1 + \kappa_e + \kappa_i) (1 + g_q) \right]^{\frac{1}{\sigma-1}}
\]

where

\[
1 + g_q = \frac{s_k^{\sigma-1} \kappa_e + s_k^{\sigma-1} \kappa_i + 1 + (s_q^{\sigma-1} - 1) \lambda_i + (s_q^{\sigma-1} - 1) (1 - \lambda_i) (\rho_e \delta_e + \delta_i)}{1 + \kappa_e + \kappa_i}
\]
Results: contributions to growth

<table>
<thead>
<tr>
<th></th>
<th>entrants</th>
<th>incumbents</th>
</tr>
</thead>
<tbody>
<tr>
<td>creative destruction</td>
<td>2.6%</td>
<td>34.1%</td>
</tr>
<tr>
<td>creation of new varieties</td>
<td>9.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>own-variety improvements</td>
<td>-</td>
<td>53.8%</td>
</tr>
<tr>
<td>Total</td>
<td>12.1%</td>
<td>87.9%</td>
</tr>
</tbody>
</table>
Simulated models

- Sequentially depart from KK to arrive at general model:

<table>
<thead>
<tr>
<th></th>
<th>KK</th>
<th>KK 3</th>
<th>New Varieties</th>
<th>Own Innov.</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>creative destruction by entrants</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>creative destruction by incumb.</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>new varieties from entrants</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>new varieties from incumb.</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>own-variety improvements by incumb.</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>(partially) directed innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Model fit: fraction of firms by age
Model fit: employment share by age
A firm with a single variety exits if all of these things happen:

- does not improve its own variety
- loses its own variety to another incumbent or to an entrant
- does not create a brand new variety
- does not creatively destroy another firm’s variety

\[(1 - \lambda_i)(\delta_e + \delta_i)(1 - \kappa_i)(1 - \delta_i(1 - \lambda_i))\]
Model exit rate

A firm with a single variety exits if all of these things happen:

- does not improve its own variety
- loses its own variety to another incumbent or to an entrant
- does not create a brand new variety
- does not creatively destroy another firm’s variety

\[(1 - \lambda_i) (\delta_e + \delta_i) (1 - \kappa_i) (1 - \delta_i (1 - \lambda_i))\]

or

- current profits go below the overhead cost
Model fit: exit by size
Model variety vs. size
Data: distribution of employment growth
Model fit: distribution of firm size
Recap of main findings

In terms of their contributions to aggregate TFP growth:

1. incumbents \gg entrants
2. quality improvements \gg new varieties
3. own innovation $>$ creative destruction
Recap of main findings

- In terms of their contributions to aggregate TFP growth:

 - incumbents \gg entrants
Recap of main findings

In terms of their contributions to aggregate TFP growth:

1. **incumbents ≫ entrants**

2. **quality improvements ≫ new varieties**
Recap of main findings

In terms of their contributions to aggregate TFP growth:

1. incumbents ≫ entrants
2. quality improvements ≫ new varieties
3. own innovation > creative destruction
Work to be done

- Measure variety using the number of product categories
 - elasticity between 0.15 and 0.40 wrt firm size. Plants?

- Robustness to different specifications
 - correlated exit of varieties for each firm?
 - adjustment costs (especially for entrants)

- Repeat the estimation with data from China and India
 - Bigger contribution from entrants? More creative destruction?
 - In China: massive entry of private firms and exit of SOEs

- Repeat the estimation with data from other U.S. sectors
 - e.g. retail trade (Wal-Mart and Amazon)
Parameter values

<table>
<thead>
<tr>
<th></th>
<th>KK</th>
<th>KK 3</th>
<th>New varieties</th>
<th>Own innovation</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35.5%</td>
<td>43.0%</td>
</tr>
<tr>
<td>δ_e</td>
<td>2.4%</td>
<td>2.3%</td>
<td>1.9%</td>
<td>3.3%</td>
<td>3.6%</td>
</tr>
<tr>
<td>δ_i</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41.6%</td>
<td>47.0%</td>
</tr>
<tr>
<td>s_q</td>
<td>1.058</td>
<td>1.057</td>
<td>1.051</td>
<td>1.035</td>
<td>1.032</td>
</tr>
<tr>
<td>κ_e</td>
<td>-</td>
<td>-</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>κ_i</td>
<td>-</td>
<td>0.001%</td>
<td>0.001%</td>
<td>0.001%</td>
<td>0.001%</td>
</tr>
<tr>
<td>s_κ</td>
<td>-</td>
<td>1</td>
<td>1.051</td>
<td>0.980</td>
<td>0.980</td>
</tr>
</tbody>
</table>