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Abstract

This paper studies a DSGE model with endogenous financial asset supply and
ambiguity averse investors. An increase in uncertainty about financial conditions leads
firms to substitute away from debt and reduce shareholder payout in bad times when
measured risk premia are high. Regime shifts in volatility generate large low frequency
movements in asset prices due to uncertainty premia that are disconnected from the
business cycle.

1 Introduction

This paper studies a DSGE model with endogenous financial asset supply and ambiguity

averse investors. Firms face frictions in debt and equity markets and decide on capital struc-

ture and net payout. Investors perceive time varying uncertainty about real and financial

technology. Uncertainty shocks lead firms to reoptimize capital structure as relative asset

prices such as risk premia change. In an estimated model that allows for both smooth changes

in ambiguity and regime shifts in volatility, concerns about financial conditions generates low

frequency movements in asset prices that are disconnected from the business cycle.

We model ambiguity aversion by recursive multiple priors utility. When agents evaluate

an uncertain consumption plan, they use a worst case conditional probability drawn from

a set of beliefs. A larger set indicates higher uncertainty. In our DSGE context, beliefs

are parameterized by the conditional means of innovations to real or financial technology.

Conditional means are drawn from intervals centered around zero. The width of the interval
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measures the amount of ambiguity. It can change either smoothly with the arrival of intan-

gible information or it can jump discretely across regimes with different stochastic volatility.

Both types of change in uncertainty work like a drop in the conditional mean and hence have

first order effects on decisions.

Time variation in ambiguity leads econometricians to measure time varying premia in

asset markets. Indeed, when investors evaluate an asset as if the mean payoff is low, then

they are willing to pay only a low price for it. To an econometrician, the return on the asset

– actual payoff minus price – will then look unusually high. The more ambiguity investors

perceive, the lower is the price and the higher is the subsequent return. An econometrician

who runs a regression of return on price (normalized by dividends) will thus find a positive

coefficient. If interest rates are stable – say because bonds are less ambiguous than stocks –

then the price-dividend ratio helps forecast excess returns on stocks, that is, there are time

varying risk premia on stocks. A convenient feature of our model is that asset premia are

due to perceptions of low mean, and therefore appear in a standard loglinear approximation

to the equilibrium.

Our model determines investment, production and financing choices of the US nonfinan-

cial corporate sector. It is driven by shocks to real production technology as well as shocks

to financial technology. Equity and corporate debt are priced by a representative agent. The

supply of equity and debt, and hence leverage, is endogenously determined. Firms face an

upward sloping marginal cost curve for debt: debt is cheaper than equity at low levels of

debt, but becomes eventually more expensive as debt increases. Firms also have a preference

for dividend smoothing. To maximize shareholder value, they find interior optima for lever-

age and net shareholder payout. Firm decisions are sensitive to ambiguity since shareholder

value incorporates uncertainty premia. In particular, an increase in ambiguity about real or

financial technology leads firms to substitute away from debt and reduce leverage.

We estimate the model with postwar US data on five observables. We include three key

quantities chosen by the nonfinancial corporate sector: investment growth, net payout to

shareholders relative to GDP and market leverage. We also include the value of nonfinancial

corporate equity relative to GDP. We thus also consider the corporate price/payout ratio,

which behaves similarly to the price-dividend ratio. Finally, we include the real short term

interest rate. In sum, we ask our model to account for the price and quantity dynamics of

equity and debt, along with real investment.

Estimation delivers two main results. First, regime shifts in volatility help understand

jointly the heteroskedasticity of quantities and the low frequency movements in asset prices.

When we allow for two regimes for stochastic volatilities with symmetric priors, we identify

a low and a high volatility regime. The latter dominates a prolonged period of time from
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the early ’70s to the beginning of the ’90s, when financial variables were volatile and the

price/payout ratio was low. A switch from the low volatility regime to the high volatility

regime determines a drop in stock prices of around 60% on impact that is followed by a

further drawn out decline that can last for decades. This is because higher volatility increases

ambiguity and generates a substantial price discount.1

The second result is that financial quantities depend relatively more on uncertainty shocks

than real variables. In particular, changes in uncertainty about future financial conditions are

important for understanding the positive comovement of debt and net payout to shareholders.

Those changes also help our model account for the excess volatility of stock prices. Indeed,

since financing costs affect corporate cash flow relatively more than consumption, uncertainty

about financing costs moves stock prices more than bond prices. Moreover, the model can

generate movements in stock prices that are somewhat decoupled from the business cycles.

Importantly, both dividends and prices are endogenously determined in our model as optimal

responses to uncertainty shocks.

Relative to the literature, the paper makes three contributions. First it introduces a

class of linear DSGE models that accommodate both endogenous asset supply and time

varying uncertainty premia. Second, it shows how to extend that class of models to allow

for first order effects of stochastic volatility. Finally, the results suggest a prominent role for

uncertainty shocks in driving jointly asset prices and firm financing decisions.

There are a number of papers that study asset pricing in production economies with

aggregate uncertainty shocks. Several authors have studied rational expectations models

that allow for time variation in higher moments of the shock distributions. The latter can

take the form of time varying disaster risk (Gourio (2012)) or stochastic volatility (Basu and

Bundick (2011), Caldara et al. (2012), Malkhozov and Shamloo (2012)). Another line of

work investigates uncertainty shocks when agents have a preference for robustness (Cagetti

et al. (2002), Bidder and Smith (2012), Jahan-Parvar and Liu (2012)). Most of these papers

identify equity with the value of firm capital or introduce leverage exogenously. In contrast,

our interest is in how uncertainty shocks drive valuation when leverage responds optimally

to those shocks.

Recent work has explored whether the interaction of uncertainty shocks and financial

frictions can jointly account for credit spreads and investment. Most of this work considers

changes in firm-level volatility (Arellano et al. (2010), Gilchrist et al. (2010), Christiano et al.

(2013)). Gourio (2013) incorporates time varying aggregate risk and thus allows risk premia

to contribute to spreads. In contrast to our paper, this line of work does not focus on the

1If the economy happens to revert to the low volatility regime, a symmetric pattern occurs, with a stock
market boom followed by a slow return to the low volatility conditional steady state.
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determination of equity prices.

We also build on a recent literature that tries to jointly understand financial flows and

macro quantities. Jermann and Quadrini (2012) and Covas and den Haan (2011, 2012)

develop evidence on the cyclical behavior of debt and equity flows. Their modeling exercises

point out the importance of shocks to financial technology, a finding that is confirmed by

our results. We also emphasize, however, the role of uncertainty about financial conditions.

The latter is essential in order for our estimated model to account for time variation in risk

premia on equity.

Glover et al. (2011) and Croce et al. (2012) study the effects of taxation in the presence

of uncertainty shocks. Their setups are similar to ours in that they combine a representative

household, a tradeoff theory of capital structure and aggregate uncertainty shocks (in their

case, changes in stochastic volatility under rational expectations). While their interest is in

quantifying policy effects, our goal is to assess the overall importance of different uncertainty

shocks.

The paper is structured as follows. Section 2 presents the model. Section 3 uses first

order conditions for households and firms to explain the effect of uncertainty shocks on firm

asset supply and asset prices. Section 4 describes our solution and estimation strategy, and

then discusses the estimation results.

2 Model

Our model determines investment, production and financing choices of the US nonfinancial

corporate sector as well as the pricing of claims on that sector by a representative household.

Firms are owned by the infinitely-lived representative household who maximizes shareholder

value.

We consider time varying uncertainty about two sources of shocks. The first is “real”

technology. Ilut and Schneider (2011) showed that uncertainty about TFP can lead to large

fluctuations in labor input over the business cycle in a model with nominal frictions. Building

on this result, we model the “real” shock here as a joint change in marginal product of capital

today and uncertainty perceived about the marginal product of capital in the future. This

approach allows us to accommodate business cycle implications of uncertainty shocks without

explicitly modeling nominal frictions.

The second source of shocks is financial – it reflects the cost of restructuring in the

corporate sector. The key feature of this “financial technology” shock is that it affects

firm cash flow without affecting production. To assess the relative importance and possible

interaction of real and financial uncertainty, we then allow uncertainty perceived about both
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real and financial technology to move over time.

2.1 Technology and accounting

There is a single perishable good that serves as numeraire.

Profits and production

The corporate sector produces numeraire from physical capital Kt according to the pro-

duction function

Yt = ZtK
α
t ξ

(1−α)t (1)

where ξ is the trend growth rate of the economy and α is the capital share. The shock Zt to

the marginal product of capital accounts for fluctuations in variable factors. In particular,

it can reflect the effects of uncertainty shocks on labor input.

Capital is produced from numeraire and depreciates at rate δ

Kt+1 = (1− δ)Kt +

[
1− S

′′

2
(It/It−1 − ξ)2

]
It, (2)

Capital accumulation is thus subject to adjustment costs that are convex in the growth rate

of investment It, as in Christiano et al. (2005). This functional form captures the idea that

the scale of investment affects the organization of the firm. For example, investing at some

scale It requires allocating the right share of managerial effort to guiding expansion rather

than overseeing production. Moving to a different scale entails reallocating managerial effort

accordingly.

Financing

In addition to investment, shareholders choose firms’ net payout and their level of debt.

Two types of frictions are relevant here. First, there are costs of restructuring the corporate

sector. Every period, shareholders pay an adjustment cost

φ (Dt, Dt−1) = ftξ
t +

φ′′ξt

2
(Dt/Dt−1 − ξ)2 (3)

where ft is random. The idea here is that the corporate sector consists of many firms

that are managed independently, for example because of limited managerial span of control.

Shareholders determine the ownership structure of those firms through mergers and spinoffs.

In addition, they choose net aggregate payout.

The fixed component of the restructuring cost reflects changes in financial market condi-

tions that affect the cost of restructuring measures such as mergers and spinoffs. The variable
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component is motivated by costs that occur as the scale of payout is changed, analogously to

(2). For example, paying out at a large positive scale (continually repurchasing many shares

or paying dividends at a high rate) requires shareholders to pressure managers to relinquish

cash flow. In contrast, paying out at a large negative scale (continually raising a lot of new

capital) requires the firm to focus more on maintaining relationships with primary investors.

In both cases, refocusing the firm quickly is difficult.

The second friction arises in in the credit market. Firms issue one period noncontingent

debt. Let Qb
t denote the price of a riskless short bond. Suppose the corporate sector issues

Qb
t−1B

f
t−1 worth of bonds at date t− 1. At date t, it not only repays Bf

t to lenders, but also

incurs the financing cost

κ
(
Bf
t−1

)
=

Ψ

2

1

ξt

(
Bf
t−1

)2

The marginal cost of issuing debt is thus upward sloping. This feature naturally arises if

there is a idiosyncratic risk at the firm level and costly default. When firms choose capital

structure, they trade off this cost against the tax advantage of debt.

Consider the firm’s cash flow statement at date t. Denoting the corporate income tax

rate by τk, we can write net payout as

Dt = αYt − It − κ(Bf
t−1)− φ (Dt, Dt−1)− (Bf

t−1 −Qb
tB

f
t ) (4)

− τk
[
αYt −Bf

t−1

(
1−Qb

t−1

)
− δQk

t−1Kt−1 − It
]

The first line records cash flow in the absence of taxation: payout equals revenue less in-

vestment, restructuring and financing costs as well as net debt repayment. The second line

subtracts the corporate income tax bill: the tax rate τk is applied to profits, that is, income

less interest, depreciation and investment.

Household wealth

We denote the price of aggregate corporate sector equity by Pt. In addition to owning

the firm, the household receives an endowment of goods πξt and government transfers trξ
t.

We assume a proportional capital income tax. Moreover, capital gains on equity are taxed

immediately at the same rate. The household budget constraint is then

Ct + Ptθt +Qb
tB

h
t = (1− α)Yt + πξt + trξ

t +Bh
t−1 + (Pt +Dt) θt−1 (5)

− τl
[
(1− α)Yt + (1−Qb

t−1)Bh
t−1 +Dtθt−1 + (Pt − Pt−1)θt−1 + πξt

]
− τcCt

The first line is the budget in the absence of taxation: consumption plus holdings of equity

and bonds – equals labor and endowment income plus the (cum dividend) value of assets.
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The second line subtracts the tax bill. The income tax rate applies to labor income, interest,

dividends as well as capital gains. The consumption tax rate if denoted τc.

We do not explicitly model the government, since we do not include observables that

identify its behavior in our estimation. To close the model, one may think of a government

that collects taxes based on the rates τl, τc, τk and uses lump sum transfers to follow a

Ricardian policy of stabilizing its debt. The market clearing condition then states that

Bf
t = Bh

t . The model is thus consistent with households owning not only corporate debt but

also government debt.

2.2 Uncertainty and preferences

We denote information that becomes available to agents at date t by a vector of random

variables εt and write εt = (εt, εt−1, ...) for the entire information set as of date t. Agents

perceive ambiguity about real and financial technology shocks. The dynamics of these shocks

can be written as

logZt+1 = z̃
(
εt
)

+ µ∗t,z + σ̃t,zε
z
t+1 + vzt+1 (6)

log ft+1 = f̃
(
εt
)

+ µ∗t,f + σ̃t,fε
f
t+1

where εzt+1, ε
f
t+1 and vzt+1 are iid with εit+1 ∼ N (0, 1), i = z, f and where µ∗t,z and µ∗t,f

are deterministic sequences.2 The decomposition of the innovations into deterministic and

a random components serves to distinguish between ambiguity and risk, respectively. In

particular, changes in risk are modeled in the usual way as changes in realized volatility. We

assume throughout that the volatilities are bounded away from zero.

Consider the ambiguous components µ∗t,i. We assume that agents know the long run

empirical moments of the sequences µ∗i ; in particular, they know that the long empirical

distribution of µ∗t,i is iid normal with mean zero and variance σ2
iµ that is independent of the

shocks εit and vzt . However, when making decisions at date t, agents do not know the current

µ∗t,i. In fact, it is impossible for the agent (or an econometrician) to learn the sequences µ∗t,i

in (6), even with a large amount of data: the sequence µ∗t,i cannot be distinguished from the

realization εit.

In our econometric work below, we resolve this uncertainty probabilistically: we work

below with volatility processes σ2
t,i = σ̃2

t,i+σ
2
i,µ and an iid innovation process, that is, µ∗t,i = 0.

However, the probability we use is not the only one that is consistent with the data – there are

2Allowing for a nonnormal innovation vzt+1 in addition to εzt+1 is helpful for a more flexible specification
of business cycle risk below.
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many others corresponding to different sequences µ∗t,i. Agents in the model treat uncertainty

as ambiguity: they do not resolve uncertainty about µ∗i,t by thinking in terms of a single

probability.

Uncertainty shocks and changes in confidence

Based on date t information, agents contemplate an interval of conditional means µt,i ∈
[−at,i, at,i] for each component i. They are not confident enough to further integrate over

alternative forecasts (and so in particular they do not use a single forecast). The vector

at = (at,z, at,f )
′ summarizes ambiguity perceived about Z and f given date t information. It

can be thought of as an (inverse) measure of confidence. If at,i is low, then agents find it

relatively easy to forecast the fundamental shock i and their behavior is relatively close to

that of expected utility maximizers (who use a single probability when making decisions).

In contrast, when at,i is high, then agents do not feel confident about forecasting.

We allow for two sources of changes in confidence (and thus perceived ambiguity). On

the one hand, confidence can depend on observed volatility. It is plausible that in more

turbulent times agents find it harder to settle on a forecast of the future. On the other hand,

confidence can move with intangible information that is not reflected in current fundamentals

or volatility. To accommodate both cases, we let

at,i = ηt,iσt,i; i = f, z (7)

Here the ηt,is are stochastic processes that describes change in confidence due to the arrival

of intangible information. Their laws of motion, like those of the volatilities σt,i, are known

to agents. The information εt received at date t thus includes not only εzt and εft , but also

innovations to σi,t and ηi,t.

We can interpret the linear relationship in (7) as arising when allowing µt,i ∈ [−at,i, at,i]
if and only if

µ2
t,i

2σ2
t,i

≤ 1

2
η2
t,i

The left hand side is the relative entropy between two normal distributions that share the

same standard deviation σt,i but have different means µt,i and zero, respectively. The agent

thus contemplates only those conditional means that are sufficiently close to the long run

average of zero in the sense of conditional relative entropy. The relative entropy distance

captures that intuition through the fact that when σt,i increases it is harder to distinguish

different models.

Preferences
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The representative household has recursive multiple priors utility. A consumption plan

is a family of functions ct (εt). Conditional utilities derived from a given consumption plan

c are defined by the recursion

U
(
c; εt

)
= log ct

(
εt
)

+ β min
µt,i∈×i[−at,i,at,i]

Eµ
[
U
(
c; εt, εt+1

)]
, (8)

where the conditional distribution over εt+1 uses the means µt,i that minimize expected

continuation utility. If at = 0, we obtain standard separable log utility with those conditional

beliefs. If at > 0, then lack of information prevents agents from narrowing down their belief

set to a singleton. In response, households take a cautious approach to decision making –

they act as if the worst case mean is relevant.3

Given the specification of the ambiguous shocks, it is easy to solve the minimization step

in (8) at the equilibrium consumption plan: the worst case expected cash flow is low and the

worst case expected restructuring cost is high. Indeed, consumption depends positively on

cash flow and negatively on the restructuring cost. It follows that agents act throughout as if

forecasting under the worst case mean µf,t = af,t and µz,t = −az,t. This property pins down

the representative household’s worst case belief after every history and thereby a worst case

belief over entire sequences of data. We can thus also compute worst case expectations many

periods ahead, which we denote by stars. For example E∗Dt+k is the worst case expected

dividend k periods in the future.

3 Uncertainty shocks, firm financing and asset prices

In this section we describe the main tradeoffs faced by investors and firms when pricing

assets and deciding asset supply, respectively. To ease notation, we set the trend growth

rate log ξ equal to zero. The solution of the model with positive growth is provided in the

appendix.

Contingent claims prices and shareholder value

To describe t-period ahead contingent claims prices, we define random variables M t
0 that

represent prices normalized by conditional worst case probabilities. This normalization is

3In the expected utility case, time t conditional utility can be represented as as Et [
∑∞
τ=0 log ct+τ ] where

the expectation is taken under a conditional probability measure over sequences that is updated by Bayes’
rule from a measure that describes time zero beliefs. An analogous representation exists under ambiguity:
time t utility can be written as minπ∈P E

π
t [
∑∞
τ=0 log ct+τ ] . The time zero set of beliefs P can be derived

from the one step ahead conditionals Pt as in the Bayesian case, see Epstein and Schneider (2003) for details.
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convenient for summarizing the properties of prices, which are derived from households’ and

firms’ first order conditions. We also define a one-period-ahead pricing kernel as Mt+1 =

M t+1
0 /M t

0. From household utility maximization, we obtain

Mt+1 = β
Ct
Ct+1

1− τl
1− τlβE∗t [Ct/Ct+1]

The pricing kernel is the marginal rate of substitution, multiplied by a factor that corrects

for taxes. Since the qualitative effects we emphasize here do not depend on the level of

personal income taxation, we set τl = 0 for the remainder of this section.

The formulas for the bond and stock price are then standard, except that expectations

are taken under the worst case belief:

Qt = E∗t [Mt+1]

Pt = E∗t [Mt+1 (Pt+1 +Dt+1)] (9)

An increase in ambiguity makes the worst case belief worse and thereby changes asset prices.

For example, if agents perceive more ambiguity about future consumption, then the bond

price rises and the interest rate falls. Similarly, more ambiguity about dividends tends to

lower the stock price.

The firm maximizes shareholder value

E∗0

∞∑
t=1

M t
0Dt

Shareholder value also depends on worst case expectations. Indeed, state prices determined in

financial markets reflect households’ attitudes to uncertainty, as illustrated by the household

Euler equations. For example, when there is more ambiguity about future consumption then

– other things equal – cash flows are discounted less. When there is more ambiguity about

future cash flow, the firm tends to be worth less.

3.1 Payout and capital structure choice

Let λt denote the multiplier on the firm’s date t budget constraint (4), normalized by the

contingent claims price M t
0. In the presence of restructuring and financing costs, the shadow

value of funds inside the firm can be different from one. The firm’s first order equations for

debt is

Qb
tλt = E∗t [Mt+1λt+1] (1− τk

(
1−Qb

t

)
+ κ′(Bf

t )) (10)
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The marginal benefit of issuing an additional dollar of debt is the bond price multiplied

by the firm’s shadow value of funds. The marginal cost includes not only the present value of

a dollar to the firm, but also the tax advantage of debt and the marginal financing cost. The

tax advantage implies that marginal cost is typically below marginal benefit at low levels of

debt. At the optimal capital structure, the tax advantage is traded off against the financing

cost.

The firm’s first order condition for payout is

Dt (1− λt) = λtφ̃

(
Dt

Dt−1

)
− E∗t

[
Mt+1λt+1φ̃

(
Dt+1

Dt

)]
(11)

where the function φ̃ (Dt/Dt−1) := DtDt−1φ1 (Dt, Dt−1) is increasing with φ̃ (1) = 0. The

optimal payout choice thus stabilizes the growth rate of payout in uncertainty adjusted terms.

Indeed, at the steady state we have λt = 1. Near a steady state, payout will thus be set to

equate the uncertainty adjusted growth rates.

Consider now the firm’s response to an increase in uncertainty. In particular, suppose

that, under the worst case belief, future dividends are low and funds are scarce, that is,

the relative shadow value of funds E∗t [Mt+1λt+1] /λt increases. From (10), holding fixed the

riskless rate, the marginal cost of debt has increased and the firm responds by cutting current

debt Bf
t . At the same time, (11) suggests that the firm will decrease payout already at date

t in order to smooth the drop in the growth rate of payout. As a result, uncertainty shocks

make payout and debt move together.

In contrast, suppose that there is a shock to cash flow, say that temporarily lowers

dividends and makes current funds more scarce relative to funds in the future. In this case,

(10) suggests that the firm should borrow temporarily so as to cover the shortfall in funds.

Cash flow shocks thus tend to move payout and debt in opposite directions.

3.2 Asset pricing

To see how asset pricing works in our model, we consider an approximate solution that is

also used in our estimation approach. The approximation proceeds in three steps. First, we

find the “worst case steady state”, that is, the state to which the model would to converge

if there were no shocks and the data were generated by the worst case probability belief.

Second, we linearize the model around the worst case steady state. Finally, we derive the

true dynamics of the system, taking into account that the exogenous variables follow the
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data generating process (6).4

Linearization around the worst case steady state

At the worst case steady state, the Euler equations (9) imply that the bond price is β

and the price dividend ratio is β/ (1− β). These values are the same as in the deterministic

perfect foresight steady state. However, the level of consumption and dividends as well as

other variables will be lower than in a perfect foresight steady state. This is because they

are computed using the worst case mean productivity Z̄e−āz and restructuring cost f̄ eāf .

We mark log deviations from the worst case steady state by both a hat (for log deviation)

and a star (to indicate that the perturbation is around the worst caset steady state). The

loglinearized pricing kernel and the household Euler equation for bonds and equity are

m̂∗t+1 = ĉ∗t − ĉ∗t+1

q̂∗t = E∗t [m̂t+1]

p̂∗t = E∗t

[
m̂t+1 + βp̂∗t+1 + (1− β) d̂∗t+1]

]
(12)

The short term interest rate is r̂∗t = −q̂∗t = −E∗t m̂∗t+1. Linearization implies that asset

prices do not reflect risk compensation. However, they still reflect uncertainty premia since

expectations are computed under the worst case mean.

Stock price and interest rate volatilities

We can use the loglinearized Euler equations to understand the relative volatility of

stock prices and interest rates in a model with ambiguity shocks. Substituting into the Euler

equation for stocks, the price dividend ratio, or more precisely the price payout ratio, can

be written as

p̂∗t − d̂∗t = −r̂∗t + E∗t

[
β(p̂∗t+1 − d̂∗t+1) + d̂∗t+1 − d̂∗t ]

]
(13)

The first line expresses the price dividend ratio as the worst case expected payoff relative

to dividends, discounted at the riskless interest rate. In general equilibrium, an increase

in uncertainty can move both the payoff term (if cash flow becomes more uncertain), and

the interest rate (if consumption becomes more uncertain). In the data, interest rates are

relatively stable whereas the price dividend ratio moves around a lot. As a result, the first

effect must dominate the second if uncertainty shocks are to play an important role.

We can solve forward to express the price dividend ratio as the present value of future

4The worst case steady used in steps 1 and 2 should be viewed a computational tool that helps describe
agents’ optimal choices. Agents choose conservative policies in the face of uncertainty, and this looks as if
the economy were converging to the worst case steady state.
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growth rates in the dividend-consumption ratio

p̂∗t − d̂∗t = E∗t

[
β(p̂∗t+1 − d̂∗t+1) + (d̂∗t+1 − ĉ∗t+1)−

(
d̂∗t − ĉ∗t

)]
= E∗t

∞∑
τ=1

βτ−1
(

(d̂∗t+τ − ĉ∗t+τ )−
(
d̂∗t − ĉ∗t

))
(14)

If dividends are proportional to consumption, then the price dividend ratio is constant – with

log utility, income and substitution effects cancel. In contrast, if dividends are a small share

of consumption (as in the data), then uncertainty about dividends will tend to dominate

and an increase in uncertainty can decrease the price dividend ratio. The formula also shows

that the price dividend ratio reflects expected worst case growth rates. If firms smooth these

growth rates in response to uncertainty shocks, this tends to contribute to price volatility.

Zero risk steady state and unconditional premia

Unconditional premia predicted by the model depend on the average amount of ambiguity

reflected in decisions. Suppose all shocks are equal to zero, but agents still use decision rules

that reflect their aversion to ambiguity. In particular, agents perceive constant ambiguity,

as in the worst case steady state. We can study this “zero risk” steady state using decision

rules derived by linearization around the worst case steady state. From this perspective, the

true steady state productivity and restructuring cost (Z̄, f̄) look like a positive deviation

from steady state summarized by the vector (−āz, āf ). Mechanically, we are looking at the

steady state of a system in which technology is always at (−āz, āf ), but in which agents act

as if the economy is on an impulse response towards the worst case steady state.

Consider the impulse response that moves from the zero risk steady state log consump-

tion and dividend,
(
C̄, D̄

)
say, to their worst case counterparts

(
C̄∗, D̄∗

)
. We work with

loglinearized impulse responses and write c̄ = log C̄ − log C̄∗. Along the linearized impulse

response, the Euler equations (12) hold deterministically. For example, the steady state log

bond price is

Q̄ = β exp (q̄) = β exp (c̄− ĉ1) ,

where ĉ1 is the first value along the impulse response. If there is ambiguity about consump-

tion we would expect the impulse response to decline towards the worst case. In this case,

the bond price is higher than β, the worst case (as well as rational expectations) steady

state bond price. In other words, ambiguity about consumption lowers the interest rate – a

precautionary savings effect.

Consider now the steady state price dividend ratio. The log deviation p̄∗ − d̄∗ of from

the worst case value β/ (1− β) is given by (13), where the sum is over the consumption
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and dividend path along the linearized impulse response. For example, if the dividend-

consumption ratio declines along the impulse response – say because there is a lot of average

ambiguity about dividends and dividends are a small share of consumption – then p̄∗ − d̄∗

is negative, that is, the steady state price dividend ratio P̄ /D̄ is below β/ (1− β) . The

presence of ambiguity thus induces a price discount.

Combining the bond and stock price calculations, the equity premium at the zero risk

steady state is5

log
(
P̄ + D̄

)
− log P̄ + log Q̄ = (1− β)

(
d̄∗ − p̄∗

)
− (c̄− ĉ1)

Ambiguity can generate a steady state equity premium positive for two reasons. First,

the average stock return can be higher than under rational expectation because the price

dividend ratio is lower. This is the first term. Second, the interest rate can be lower. The

second effect is small if dividends are a small share of consumption and ambiguity is largely

about dividends. We emphasize the role of the first effect: it says that average equity returns

themselves are higher than in the rational expectations steady state. Ambiguity need not

simply work through low real interest rates.

Predictability of excess returns

A standard measure of uncertainty premia in asset markets is the expected excess return

on an asset computed from a regression on a set of predictor variables. The log excess stock

return implied by our model can be approximated as

xet+1 = log(pt+1 + dt+1)− log pt − log(it)

≈ βp̂∗t+1 + (1− β) d̂∗t+1 − p̂∗t + q̂∗t

= β
(
p̂∗t+1 − d̂∗t+1 − E∗t [p̂∗t+1 − d̂∗t+1]

)
+ d̂∗t+1 − E∗t d̂t+1

Here the second line is due to loglinearization of the return around the worst case steady

state. The third line follows from the household Euler equation for stocks.

Consider now an econometrician who attempts to predict excess stock returns in the

model economy. Suppose for concreteness that he has enough predictor variables to actually

recover theoretical conditional expectation of payoff next period given the state variables

5The log stock return at the zero risk steady state is

log
(
P̄ + D̄

)
− log P̄ ≈ (1− β)

(
d̄− p̄

)
− log β

where we are using the fact that all asset returns are equal to − log β at the worst case steady state.
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of the model. With a large enough sample, he will measure the expected excess return

Etx
e
t+1, where the expectation is taken with the conditional mean µ∗t = 0.6 Using the above

expression, we can write the measured risk premium as

Etx
e
t+1 = β(Et − E∗t )[p̂∗t+1 − d̂∗t+1] + (Et − E∗t )[d̂∗t+1 − E∗t d̂t+1],

where (Et − E∗t ) represents the difference between the expectation under µ∗t = 0 and the

worst case expectation. This is a term that is proportional to ambiguity at. This expression

suggests an interesting approach to quantify ambiguity in a linear model. Since risk premia

must be due to ambiguity, it is possible to learn about ambiguity parameters up front from

simple linear regressions without solving the DSGE model fully.

4 Estimation

4.1 Dynamics of shocks, volatility and ambiguity

We now present functional forms for shocks to real and financial technology as well as

uncertainty about those shocks. In other words, we fill in the details of the dynamics in (6)

and (7) above.

Volatility and ambiguity regimes

To parsimoniously model correlated changes in uncertainty, and to account for nonlinear

dynamics in uncertainty, we use finite state Markov chains. The standard deviations σt,z and

σt,f in (6) are driven by a two-state Markov chain sσt with transition matrix Hσ. Each state

in sσt represents a ”volatility regime”; a regime switch simultaneously moves both standard

deviations. The regime is known at date t so that volatility is known one period in advance.

Movements in confidence due to intangible information, denoted by ηt,i also depend on the

realization of a two-state Markov chain. This chain, denoted sηt , is independent from sσt

and is governed by a transition matrix Hη. As for the volatility regimes, each state in sηt

simultaneously changes both levels ηt,z and ηt,f .

To derive a loglinear approximation to equilibrium in the presence of stochastic volatility,

it is helpful to write the chains as VARs. For example, sσt can be written as[
eσ1,t

eσ2,t

]
= Hσ

[
eσ1,t−1

eσ2,t−1

]
+

[
vσ1,t

vσ2,t

]
(15)

6Indeed, since all unconditional empirical moments converge to those of a process with µ∗t = 0 by con-
struction, the same is true for conditional moments.
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where eσj,t = 1sσt =j is an indicator operator if the volatility regime sσt is in place, and the

shock vσt is defined such that Et−1 [vσt ] = 0. A similar VAR representation is available for sηt .

Financial technology

Financial technology is modeled as a persistent AR(1) process in logs, with ambiguity

driven by the regimes:

f̃
(
εt
)

= log f̄ + ρf
(
log ft − log f̄

)
,

at,f = ηf (s
η
t )σf (s

σ
t ), (16)

In the first line, f̃ is the mean function used in (6) and f̄ is the constant steady state

restructuring cost. The second line shows that ambiguity about financial technology follows

a four-state Markov chain.

Real technology

Real technology is handled differently because we view Zt as incorporating the response

of variable inputs to an underlying uncertainty shock. We model shocks to Zt as a joint

change in marginal product of capital today and ambiguity perceived about the marginal

product of capital in the future.7 This requires two extensions to the functional form (16).

On the one hand, the current shock should depend (negatively) on the current uncertainty

regime. Here is where we use the nonnormal shock vzt+1 introduced in (6). We define

z̃
(
εt
)

= log Z̄ + ρz
(
logZt − log Z̄

)
− κEt

[
ηz(s

η
t+1)σz(s

σ
t+1)|sηt , sσt

]
vzt+1 = −κ

(
ηz(s

η
t+1)σz(s

σ
t+1)− Et

[
ηz(s

η
t+1)σz(s

σ
t+1)|sηt , sσt

])
(17)

On the other hand, ambiguity should move continuously (negatively) with the shock.

To this effect, we introduce an AR(1) component of at with innovations that are perfectly

negatively correlated with those to logZt :

at,z = ηz(s
η
t )σz(s

σ
t ) + ãct,z

ãct,z = ρaã
c
t−1,z − σaσz(sσt−1)εzt (18)

7In particular, Ilut and Schneider (2012) show that an increase in ambiguity about total factor produc-
tivity makes firms and households act cautiously so that hours worked and economic activity can contract
even if current labor productivity did not change. We capture similar effects here by making the innovations
to real technology negatively correlated with the current innovation to ambiguity about it.
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4.2 Markov-switching VAR representation of the equilibrium

We can write the equilibrium representation of our DSGE model as a Markov-switching

VAR. The interval of one-step ahead conditional means given by [−at,i, at,i] for each shock i is

affected by the product at,i = ηt,iσt,i of the two sources of ambiguity. Both uncertainty chains

sηt and sσt linearly affect at,i and hence the worst-case conditional expectation. Moreover,

the chains are stationary and ergodic and their dynamics are the same under the true and

worst case dynamics. The worst case steady state depends on their long run averages ηi and

σi. As intangible ambiguity ηt,i or volatility σt,i fluctuate around their respective longrun

means, there are ”shocks” to ambiguity at,i and therefore shifts in the constants of the VAR

representation.

Formally, we define the vector of linear deviations of the product ηi(s
η
t )σi(s

σ
t ) for i = z, f

from its ergodic values of ηiσi as following a four-state Markov chain, which is obtained by

mixing the two independent chains sηt and sσt . We can then write the VAR representation of

this composite Markov chain as
eησ1,1,t

eησ1,2,t

eησ2,1,t

eησ2,2,t

 = Hησ


eησ1,1,t−1

eησ1,2,t−1

eησ2,1,t−1

eησ2,2,t−1

+


υησ1,t

υησ2,t

υησ3,t

υησ4,t

 (19)

where eησm,n,t = 1sηt=m,sσt =n is an indicator operator if at time t the intangible ambiguity regime

m and the volatility regime n are in place, where m,n ∈ {1, 2}. The realizations of the shock

υησt are such that Et−1 [υησt ] = 0. The transition matrix is Hησ = Hη ⊗Hσ.

For each shock i and the four m,n combinations we can define ai(m,n) ≡ ηi(s
η
t =

m)σi(s
σ
t = n) − ηiσi. For example, when the intangible information regime 1 and volatility

regime 1 are in place, eησ1,1,t = 1 and the rest of the three eησm,m,t = 0. This means that our

system of equations will load ai(1, 1)eησ1,1,t = ai(1, 1) and put zero weight on the other three

realizations ai(1, 2), ai(2, 1) and ai(2, 2). In this case, the realization of the υησt shock such

that eησ1,1,t = 1 makes the linear deviation ηi(s
η
t = 1)σi(s

σ
t = 1) − ηiσi hit the economy as a

discrete shock. By augmenting our DSGE state vector with the vector eησt we control for the

first order effects of the shifts in intangible ambiguity and volatility.

Given these first-order shifts, we can then proceed to linearize the rest of equilibrium

conditions of the model. We then use an observational equivalence result according to

which our economy behaves as if the agent maximizes expected utility under the worst-case

belief. Given this equivalence, we use standard perturbation techniques that are a good

approximation of the nonlinear decision rules under expected utility. We then obtain a VAR
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representation of the linearized DSGE model. The uncertainty regimes produce Markov-

switching constants in that VAR. Further details on the representation are presented in

Appendix 5.1.

4.3 Estimates

For our estimation we include five observables based on US data: investment growth, dividend

to GDP ratio, equity price to GDP ratio, the short term real interest rate, and firm debt

to equity value ratio. The time period is 1959Q1 to 2011Q3. We estimate the model using

Bayesian methods.8 Because we only have two continuously distributed shocks but we have

five observables, to avoid stochastic singularity we need to introduce three observation errors.

We set these errors on the dividend to GDP ratio, real interest rate, and the firm debt to

equity value ratio. real interest rate, and firm debt to equity value ratio.

There are two key differences from a standard Bayesian estimation of a homoskedastic

linear DSGE model. First, we have to account for heteroskasticity in the shocks of our model,

as in the literature on regime-switching volatilities. Second, differently from that literature,

the volatility regimes, as well as the intangible ambiguity ones, have first order effects on the

endogenous variables of our linear model.

Our approach achieves identification of the volatility and intangible ambiguity regimes

through two channels: on the one hand, since they enter as a product in the linearized

model, both these uncertainty regimes shift the constant of the Markov-switching VAR. On

the other hand, the two types of regimes can be differentiated through the properties of

the fundamental shocks. While the intangible information regime sηt leaves unaffected the

moments of the shocks, the volatility regime sσt shows up as changes in the second moment

of the next period innovations. Through the use of the Kalman smoother, the estimation

can then identify how likely it is that a shift in the constant is due to the high volatility or

the high intangible ambiguity regime.

Choosing ambiguity parameters

The regime-switching dynamics of risk and ambiguity are governed by the Markov chains

sηt and sσt . There we estimate directly the corresponding two values of σt,i and ηt,i together

with the transition matrices Hσ and Hη. We are then left with choosing parameters σa, ρa

and κ. In order for the set [−at,z, at,z] to be well-behaved we need the process for at,z to

remain nonnegative. Similarly to the parametrization used in Ilut and Schneider (2011), we

8Details about the estimation strategy are contained in Bianchi (2012).
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then set

3σa = ηz,L
√

1− ρ2
a (20)

where ηz,L is the value for ηz in the low ambiguity regime. This ensures that even in the low

ambiguity regime, the probability that ηt,z becomes negative is .13%, and any negative ηt,z

will be small.

The second consideration is that we want to bound the lack of confidence by the measured

variance of the shock that agents perceive as ambiguous. Ilut and Schneider (2011) argue

that a reasonable upper bound for at,i is given by 2σt,i. We can impose this bound directly

on the two values for ηf by making them lower than 2.9 However, for the ambiguity on the

real technology, we cannot enforce the bound exactly. Here we assume that it is violated

with probability .13% even in the high ambiguity regime

ηz,H + 3
σa√

1− ρ2
a

≤ 2. (21)

We satisfy the constraints in (20) and (21) by imposing that both value ηz,L and ηz,H are

lower than 1. Finally, we set the proportionality factor κ in (17) equal to σ−1
a . This means

that the negative effect on the current ẑt of one unit increase in ãct,z is the same as that of

ηz(s
η
t )σz(s

σ
t ). We then are left with estimating the values ηz,L, ηz,H and ρa as we can then

infer σa from (20).

Parameter estimates

We estimate a subset of the parameters, with values reported Table 1. The other pa-

rameters are fixed, as reported in Table 2, to values relatively standard in the literature,

or calibrated to match some key ratios from the NIPA accounts. Further details are in

Appendix 5.2.1.

4.4 Results

In this subsection we describe the economic forces identified by our estimation through a

series of figures.

The role of measurement error

Figure 1 shows our five observables together with their smoothed model implied coun-

terparts. The model exactly matches investment and the equity-gdp-ratio. For the three

series where we include measurement error, the latter is small especially for leverage and the

9As shown in Table 1, we impose a Beta prior on 0.5ηf .
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dividend-gdp ratio. The model generates movements in those variable both at low frequency

and business cycle frequencies. It misses some of the low frequency movements in the real

interest rate in the 1970s and 80s. However, the model implied real interest rate is not very

volatile, consistent with the data.

Regime shifts

There are four sources of exogenous variation: the two shocks Zt and ft as well as the

regimes for volatility and intangible ambiguity. The top and bottom panels of Figure 2

display, for each sample date, the conditional probabilities that a high volatility or a high

ambiguity regime was in place. The high volatility regime was most likely in place from the

mid 1970s to the late 1980s. Table 1 shows that its main effect is an increase in the volatility

of restructuring costs. The high ambiguity regime is characterized by a lower confidence

in both the real technology Zt and the restructuring costs ft, with a stronger effect in the

latter. In terms of time-variation, our model suggests that there were pronounced increases

in confidence, especially towards the end of recent booms such as in the late 1980s and again

in the late 1990s. Our estimation interprets the last 5 years as a period of higher econometric

uncertainty over which ambiguity regime dominated. There is some evidence that the drop

in prices associated with the last recession is associated with a loss of confidence and that

the bounceback following that is a return to a high confidence regime. However, inference

at the end of the sample is weak. We interpret this as an effect of the lack of significant

evidence to separate the end-of-sample movements in stock prices into uncertainty premia

or measured cash-flow changes.

Real uncertainty and the business cycle

Movements in business cycle quantities are mostly accounted for by the joint shock to

real technology and uncertainty Zt. Figure 3 shows the contributions of different sources

of variation to year-on-year investment growth. Each panel focuses on a different source of

exogenous variation: the top panel looks at Zt, the middle panel at the restructuring cost

ft. and the bottom panel at the regime shifts. For each source of variation, its panel shows

the data series as a red dash-dotted line. The solid blue line is what the model would predict

if all variation came from the source considered in the panel. The bulk of the variation in

investment is clearly due to movements in Zt, although shifts in regimes also play a role.

Intuitively, movements in Zt have two effects. On the one hand, they move the marginal

product of capital. It is natural that a decrease in Zt lowers output and investment, as it

would in a standard RBC model. On the other hand, the change in the current marginal

product of capital comoves negatively with ambiguity about future capital. This further

lowers the return on investment. In addition, it induces ambiguity about future consumption
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and lowers real interest rate.

Figure 4 shows the contribution of Zt to the other observables. In addition to its cyclical

effect on investment, it also plays an important role for dividends and the real interest

rate. In particular it helps account for sharp drops in the real interest rate in both recent

recessions. This effect would not occur if Zt were purely a TFP shock: mean reversion in

TFP would then tend to raise interest rates in recessions. While the real uncertainty shock

matters for real quantities, its effect on the stock price is relatively small.

Uncertainty about financial conditions

Figure 5 displays the impulse response to a boost in confidence due to intangible infor-

mation, that is, a regime shift in the ηt,is. This type of shift affects mostly confidence about

financial conditions; the estimation suggests it took place for example in the late 1980s and

1990s. The figure plots not only our five observables, but adds also the ratio of debt to GDP

so as to make the effects on capital structure more transparent. In each panel, the model

is initially in the steady state for the high ambiguity regime. It then experiences a regime

shift to the low ambiguity regime in period 20.

A boost in confidence leads to a joint increase in payout and debt (see the middle panels

in the top and bottom rows). At the same time, the stock market rises. The price effect is

strong enough that leverage of the corporate sector falls even as debt expands. An initial

drop in investment – accompanied by a short term upward spike in the interest rate – quickly

turns into an investment boom.

The intuition for the comomevent of financial quantities follows from the firm’s optimal

policies discussed in subsection 3.1. Shareholders would like to issue debt to exploit the

tax advantage, but they worry that an increase in restructuring costs might make internal

funds scarce. When they become more confident that funds will be cheap, they effectively

substitute away from equity financing by issuing debt and paying dividends to themselves.

The increase in the equity-gdp ratio is stronger than that of the dividend-gdp ratio (see

the first two panels in the top row). In other words, the boost in confidence increases the

price dividend ratio. As discussed in subsection 3.2, this is due in part because a decline in

ambiguity reduces the uncertainty premium on stocks. The stock market boom is not due

to a decline in interest rates – in fact the real rate rises as confidence goes up.

Figures 6 displays the impulse response to an increase in volatility. The effect on financial

quantities and the stock price are essentially the opposite as in Figure 5. This is to be ex-

pected since the increase in volatility affects decision rules by increasing ambiguity. Another

similarity is that the effects are quite drawn out over time. This raises the question of what

a sequence of regime changes contributes to our interpretation of the data.

Figure 7 starts the model at the ergodic steady state and then shocks it with a sequence
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of regime changes. In particular, we construct a deterministic sequence of regimes from the

estimates reported in Figure 2 by assuming that a regime occurs if its probability is larger

than one half. The constructed sequence is shown in the bottom right panel of Figure 7. The

other panels report the contribution of the regimes to financial quantities, investment and

prices. The resulting movement are sizable and account for a large chunk of the comovement

in stock prices, debt and dividends.
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5 Appendix

5.1 Solution method for a model with ambiguity and MS volatility

Here we describe our approach to solve the model with regime switching ambiguity and

volatility. The steps of the solution are the following:

1. Describe the law of motion for the shocks

(a) The perceived law of motion for the continuous shocks:

ẑt+1 = ρz ẑt − κηz(sηt+1)σz(s
σ
t+1) + µ∗t,z + σz(s

σ
t )εzt+1

f̂t+1 = ρf f̂t + µ∗t,f + σf (s
σ
t )εft+1

where each element i in the vector µt belongs to a set

µt,f ∈ [−ηf (sηt )σf (sσt ), ηf (s
η
t )σf (s

σ
t )] (22)

µt,z ∈ [−ηt,zσz(sσt ), ηt,zσz(s
σ
t )] (23)

(b) Volatility follows a two-state Markov chain sσt with transition matrix Hσ.

(c) There is an independent two-state Markov chain sηt that governs intangible am-

biguity for financial technology. For the real technology, ambiguity follows the

process

at,z = ηz(s
η
t )σz(s

σ
t ) + ãct,z

ãct,z = ρaã
c
t−1,z − σaσz(sσt−1)εzt

2. Guess and verify the worst-case scenario. As discussed in detail in Ilut and Schneider

(2011), the solution to the equilibrium dynamics of the model can be found through a

guess-and-verify approach. To solve for the worst-case belief that minimizes expected

continuation utility over the i sets in (8), we propose the following procedure:

(a) guess the worst case belief µ0

(b) solve the model assuming that agents have expected utility and beliefs µ0.

(c) compute the agent’s value function V

(d) verify that the guess µ0 indeed achieves the minima.
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The following steps detail the point 2.b) above. Here we use an observational equiva-

lence result saying that our economy can be solved as if the agent maximizes expected

utility under the belief µ0. Given this equivalence, we can use standard perturbation

techniques that are a good approximation of the nonlinear decision rules under ex-

pected utility. In particular, we will use linearization. When we refer to the guess

below, we use µ∗z = −az and µ∗f = af .

3. Compute worst-case steady states

(a) Compute the ergodic values ηi and σi.

(b) Based on the guess above compute the worst-case steady states for the shocks,

denoted by τ = (z, f).

(c) Compute the worst-case steady state Y of the endogenous variables. For this, use

the FOCs of the economy based on their deterministic version in which the one

step ahead expectations are computed under the guessed worst-case belief.

4. Dynamics:

(a) Linearize around Y and τ by finding the coefficient matrices from linearizing the

FOCs. Here use that

at,i − ηiσt,i = ηt,iσt,i − ηiσi

and define a composite Markov-chain for the product ηt,iσt,i as in equation (19).

The linearized FOCs can be written in the canonical form of solving rational

expectations models as:

Γ̃0S̃t = Γ̃1S̃t−1 + Ψ̃
[
ε′t, υ

ησ′
t

]′
+ Πωt

where St is the DSGE state.

(b) Given that the shock vt is defined such that Et−1 [υησt ] = 0, a standard solu-

tion method to solve rational expectations general equilibrium models can be

employed. The solution can then be rewritten as a MS-VAR with stochastic

volatility in which the constant is also time-varying:

S̃t = Ct + T S̃t−1 +Rσ(sσt−1)εt (24)

The changes in the constant arise from the first order effects of the composite

regimes of stochastic volatility and ambiguity. Notice that the solution in (24) is
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expressed in terms of the original DSGE state variables as the regime variables

eησ1,1,t, e
ησ
1,2,t, e

ησ
2,1,t, and eησ2,2,t have been replaced with the MS constant Ct.

(c) Verify that the guess µ0 indeed achieves the minima of the time t expected con-

tinuation utility over the sets in (8).

5. Equilibrium dynamics under the true DGP. The above equilibrium was derived under

the worst-case beliefs. We need to characterize the economy under the econometrician’s

law of motion. There are two objects of interest: the zero-risk steady state of our

economy and the dynamics around that steady state.

(a) The zero-risk steady state, denoted by Y ∗. This is characterized by shocks, in-

cluding the volatility regimes, being set to their ergodic values under the true

DGP. Y ∗ can then be found by looking directly at the linearized solution, adding

Rzηzσz and substracting Rfηfσf :

Y ∗ − Y = T
(
Y ∗ − Y

)
+Rzηzσz −Rfηfσf (25)

where Rz and Rf are the equilibrium response to positive innovations to ẑt and

f̂t respectively.

(b) Dynamics. The law of motion in (24) needs to take into account that expectations

are under the worst-case beliefs which differ from the true DGP. Then, defining

Ŝt ≡ St − S∗ and using (24) together with (25) we have:

Ŝt = Ct + T Ŝt−1 +Rσ(sσt−1)εt +Rz(ηz(s
η
t−1)σz(s

σ
t−1)− ηzσz + ãct−1,z)−

−Rf

(
ηf (s

η
t−1)σf (s

σ
t−1)− ηfσf

)
5.2 Equilibrium conditions for the estimated model

Here we describe the equations that characterize the equilibrium of the estimated model in

Section 4. To solve the model, we first scale the variables in order to induce stationarity.

The variables are scaled as follows:

ct =
Ct
ξt
, yt =

Yt
ξt
, kt =

Kt

ξt
, it =

It
ξt

Financial variables:

pt =
Pt
ξt
, dt =

Dt

ξt
, bit =

Bi
t

ξt
; i = f, h
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The borrowing costs:

κ
(
Bf
t−1

)
ξt

= ft +
Ψ

2

1

ξ2

(
bft−1

)2

;
φ (Dt, Dt−1)

ξt
=
φ′′ξ2

2

(
dt
dt−1

− 1

)2

We now present the nonlinear equilibrium conditions characterizing the model, in scaled

form. The expectation operator in these equations, denoted by E∗t , is the one-step ahead

conditional expectation under the worst case belief µ0. According to our model, the worst

case is that future zt+1 is low, and that the financing cost ft+1 is high.

The firm problem is

maxE∗0
∑

M f
0.tDt

subject to the budget constraint

dt = (1− τk)

[
αyt −

bft−1

ξ

(
1−Qb

t−1

)
− φ′′ξ2

2

(
dt
dt−1

− 1

)2

− it

]
− (26)

− ft −
Ψ

2

1

ξ2

(
bft−1

)2

+ δτkq
k
t−1

kt−1

ξ
−
bft−1

ξ
Qb
t−1 + bftQ

b
t

and the capital accumulation equation

kt =
(1− δ)kt−1

ξ
+

[
1−

(
S

′′

2

itξ

it−1

− ξ
)2
]
it (27)

Let the LM on the budget constraint be λtM
f
0.tεt and on the capital accumulation be

µtM
f
0.tεt. Then the scaled pricing kernel is

mf
t+1 ≡Mt+1

ξt+1

ξt
= β

ct
ct+1

1− τl
1− τlβE∗t [ct/ (ct+1ξ)]

. (28)

The FOCs associated with the firm problem are then:

1. Dividends:

1 = λt

[
1 + (1− τk)φ′′ξ2 1

dt−1

(
dt
dt−1

− 1

)]
− Etmf

t+1λt+1

[
(1− τk)φ′′ξ2dt+1

d2
t

(
dt+1

dt
− 1

)]
(29)

2. Bonds:

Qb
tλt = E∗tm

f
t+1λt+1

1

ξ

[
1− τk

(
1−Qb

t

)
+

Ψ

ξ
bft

]
(30)
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3. Investment:

1 =
qkt

(1− τk)

[
1− S

′′

2
ξ2

(
it
it−1

− 1

)2

− S ′′
ξ2

(
it
it−1

− 1

)
1

it−1

]
+ (31)

+ E∗tm
f
t+1

λt+1

λt
qkt+1S

′′
ξ2 i

2
t+1

i2t

(
it+1

it
− 1

)
where

qkt ≡
µt
λt

4. Capital:

1 = E∗tm
f
t+1

λt+1

ξλt
RK
t+1 (32)

Rk
t+1 ≡

(1− τk)α
(
kt
ξ

)α−1

L1−α + (1− δ)qkt+1

qkt
+ δτk

The household problem is as follows:

maxE∗0
∑

βt log ct

(1 + τc)ct + ptθt = (1− τl)
[
(1− α)yt + π + dtθt−1 +

bht−1

ξ

(
1−Qb

t−1

)]
+ (33)

+ ptθt−1 − τl(pt −
1

ξ
pt−1)θt−1 +

bht−1

ξ
Qb
t−1 − bhtQb

t + tr

Thus, the FOCs associated to the household problem are:

1. Bond demand:

Qb
t = βE∗t

ct
ξct+1

[
1− τl

(
1−Qb

t

)]
(34)

2. Equity holding:

pt = βE∗t
ct
ct+1

[
(1− τl) (pt+1 + dt+1) +

τl
ξ
pt

]
(35)

The market clearing conditions characterizing this economy are:

bht = bft (36)

ct + it +
φ′′ξ2

2

(
dt
dt−1

− 1

)2

+ ft +
Ψ

2

1

ξ2

(
bft−1

)2

= yt + π (37)

θt = 1
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corresponding to the market for bonds, goods and equity shares, respectively.

Thus, we have the following 11 unknowns:

kt, it, b
f
t , b

h
t , Q

b
t , pt, ct, dt, q

k
t , λt,m

f
t

The equations (27), (28), (29), (30), (31), (32), (34), (35), (36),(37) give us 10 equations. By

Walras’ law, we can then use one out of the two budget constraints in (26) and (33) (using

θt = 1). This gives us a total of 11 equations.

5.2.1 Parametrization

Rescaling and calibrating parameters

For the steady state calculation of the model it is helpful to rescale some parameters.

Specifically, denote by ygdp the worst-case steady state measured GDP, i.e. total goods yt+π

minus financing costs. Then, define the following ratios:

fy =
f

ygdp
; Ψy =

Ψ

ygdp
; πy =

π

ygdp
, ty =

tr
ygdp

where t is the steady state level of transfers.

We estimate a subset of the parameters, with values reported in Table 1. The other

parameters are fixed, as reported in Table 2, to values relatively standard in the literature.

The constant L of hours worked only scales the economy. Parameters are calibrated to

match some key ratios from the NIPA accounts. First, total measured GDP in our model,

denoted here by ygdp, corresponds to the non-financial corporate sector (NFB) output plus

goods produced by the other productive sectors- financial, non-corporate and household. We

associate the firm in our model with the NFB sector and thus πy equals goods produced by

other productive sectors divided by ygdp. The tax parameters are computed as follows: τl

equals total personal taxes and social security contributions divided by total income, where

the latter is defined as total wages plus dividends. τk equals NFB taxes divided by NFB

profits and τc equals NFB sales taxes divided by NFB output. The government spending

ratio g equals government net purchases from other sectors plus net exports divided by

ygdp. The ratio ty equals government transfers (including social security and medicare) plus

after-tax government wages divided by ygdp.
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Figure 1: Variables used for estimation. Red line is the smoothed model-implied path
substracting the estimated observation error. The blue line represents the data.
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Figure 2: Smoothed regime probabilities. Top panel refers to volatility regime number 2,
which we refer to as the High volatility regime. Bottom panel refers to intangible ambiguity
regime number 2, which we refer to as the High ambiguity regime. Estimates for the values
across regimes are shown in Table 1.

31



1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.2

−0.1

0

0.1

Production Technology Shock

 

 

Model

Data

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.2

−0.1

0

0.1

Financial Technology Shock

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.2

−0.1

0

0.1

Uncertainty Regimes

Figure 3: Contribution of different sources of variation on the year-on-year investment
growth. Blue line is the counterfactual model-implied evolution based only on that source.
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Figure 4: Contribution of the real technology shock to different financial variables. The blue
line is the model-implied counterfactual evolution based only on that shock.
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Figure 5: Impulse response for a switch from a high ambiguity-low volatility regime to a low
ambiguity-low volatility regime. The switch occurs in period 20.
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Figure 6: Impulse response for a switch from a high ambiguity-low volatility regime to a
high ambiguity-high volatility regime. The switch occurs in period 20.
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Figure 7: Evolution induced by the typical regime sequence based on the smooth probabilities
of Figure 2.
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Parameter Mode Mean 5% 95% Type Mean Std

ηz (1) 0.8176 0.8138 0.8031 0.8212 B 0.5 0.2
0.5ηf (1) 0.0334 0.0294 0.0260 0.0352 B 0.5 0.2
ηz (2) 0.8667 0.8579 0.8463 0.8677 B 0.5 0.2

0.5ηf (2) 0.0995 0.0836 0.0768 0.0999 B 0.5 0.2
σz (1) 0.0171 0.0175 0.0171 0.0178 IG 0.05 0.05
σf (1) 0.6172 0.6129 0.6056 0.6198 IG 0.05 0.05
σz (2) 0.0170 0.0174 0.0168 0.0178 IG 0.05 0.05
σf (2) 1.0788 1.0806 1.0685 1.0962 IG 0.05 0.05
100fy 0.1687 0.1737 0.1638 0.1861 B 0.3 0.2
φ′′ 0.0058 0.0053 0.0045 0.0061 G 0.1 0.08
Ψy 0.0027 0.0027 0.0026 0.0028 G 0.005 0.004

100 (ξ − 1) 0.6070 0.6056 0.5820 0.6265 G 0.3 0.05
δ 0.0193 0.0179 0.0169 0.0199 B 0.025 0.003
S ′′ 0.9260 0.9020 0.7420 0.9394 G 2 1
α 0.2934 0.2828 0.2770 0.2989 B 0.35 0.05

100 (β−1 − 1) 0.8880 0.9004 0.8636 0.9369 G 0.3 0.2
ρz 0.9542 0.9570 0.9534 0.9610 B 0.5 0.15
ρf 0.9881 0.9882 0.9875 0.9887 B 0.5 0.15
ρa 0.8968 0.9093 0.8901 0.9199 B 0.5 0.15
Hσ

11 0.9993 0.9995 0.9993 0.9997 D 0.9048 0.0626
Hσ

22 0.9985 0.9986 0.9983 0.9989 D 0.9048 0.0626
Hη

11 0.9853 0.9796 0.9636 0.9895 D 0.9048 0.0626
Hη

22 0.9360 0.9515 0.9308 0.9638 D 0.9048 0.0626
100σoe,D/Y 18.07 17.26 17.10 18.47 IG 5.05 1.01

100σoe,Debt/P 3.27 3.27 3.09 3.47 IG 1.39 0.28
100σoe,RIR 0.45 0.45 0.42 0.47 IG 0.05 0.01

Table 1: Modes, means, 90% error bands, and priors of the DSGE parameters.

τl τk τc πy ty g
0.189 0.193 0.09 0.3 0.21 0.05

Table 2: Calibrated parameters
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