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Abstract

We study a generalization of the treatment e¤ect model in which an observed discrete clas-

si�er indicates in which one of a set of counterfactual processes a decision maker is observed.

The other observed outcomes are delivered by the particular counterfactual process in which the

decision maker is found. Models of the counterfactual processes can be incomplete in the sense

that even with knowledge of the values of observed exogenous and unobserved variables they

may not deliver a unique value of the endogenous outcomes. We study the identifying power of

models of this sort that incorporate (i) conditional independence restrictions under which un-

observed variables and the classi�er variable are stochastically independent conditional on some

of the observed exogenous variables and (ii) marginal independence restrictions under which

unobservable variables and a subset of the exogenous variables are independently distributed.

We use random set theory methods to characterize the identifying power of these models for

fundamental structural relationships and probability distributions and for interesting function-

als of these objects, some of which may be point identi�ed. In one example of an application,

we observe the entry decisions of �rms that can choose which of a number of markets to enter

and we observe various endogenous outcomes delivered in the markets they choose to enter.

1 Introduction

In the classical treatment e¤ect model, pioneered in Rubin (1974) and Rosenbaum and Rubin

(1983), a discrete classi�er indicates which one of a list of counterfactual outcomes is observed.

The counterfactual outcomes and the discrete classi�er may not be independently distributed be-

cause decision makers with beliefs about the counterfactual outcomes strive to end up in desirable

situations. The classical model imposes a conditional independence restriction, namely that coun-

terfactual outcomes and the classi�er are independently distributed conditional on some known
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list of observed variables. Under some additional restrictions the resulting model point identi�es

the marginal distributions of the counterfactual outcomes and thus Average Treatment E¤ects and

Quantile Treatment E¤ects, as in for instance Imbens and Newey (2009).

In this paper we extend the scope of the treatment e¤ect model. The counterfactual outcomes

of the classical model are replaced by counterfactual unobservable variables. These unobservables

produce stochastic variation in counterfactual processes which deliver the values of outcomes that

the econometrician observes.

The econometrician observes each decision maker engaging in one and only one of the counter-

factual processes and observes only the realizations of the endogenous outcomes delivered by that

process. Some exogenous variables are also observed. Wary of basing inference on highly restric-

tive models, the econometrician may come to data with incomplete models of the counterfactual

processes. It is this case that is center stage in this paper.

We consider the following types of covariation restriction placed on unobservable variables.

1. Conditional independence restrictions. The unobservable variables appearing in the counter-

factual processes and the classi�er are independently distributed conditional on the observed

exogenous variables. This is the sort of condition that appears in the classical treatment e¤ect

model.

2. Marginal independence restrictions. The unobservable variables appearing in the counterfac-

tual processes and a possibly vector-valued function of the exogenous variables are stochasti-

cally independent. In the absence of selection this would be a common restriction in nonlinear

incomplete models.

The models we study contain a blend of conditional and marginal independence restrictions.

Our analysis brings together strands from structural econometrics and analysis of causal inference.

A contribution of the paper is to provide a characterization of the (sharp) identi�ed sets delivered by

models which may be incomplete and embody conditional and marginal independence restrictions.

Here are examples of cases in which the results of this paper can be applied

1. Some unemployed workers participate in a training programme, others do not. Subsequently

the workers engage in one of two counterfactual labor market processes, corresponding to

whether or not training was received, and endogenous outcomes such as unemployment du-

ration and wage on re-employment, job tenure and so forth are observed.

2. In a generalization of the Roy model, individuals decide in which of a number of occupa-

tions to work whereupon we observe multiple endogenous outcomes that arise in the chosen

occupation.1

1The Roy Model presumes that each individual chooses the alternative (here the occupation) that delivers the
highest value of one of the observed outcomes variables. Our model allows alternative criteria for selection among
the alternatives.
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3. Firms decide whether or not to operate in markets distinguished by regulatory regimes and

various endogenous outcomes that ensue are observed.

The research reported here is a �rst step on the way to the study of a broad class of incomplete

models that involve a blend of conditional and marginal independence restrictions. The models

studied in this paper impose few restrictions on the determination of the state in which individuals

are found. There is just a conditional independence restriction requiring unobservable variables

and the classi�er variable to be independently distributed conditional on some observed exogenous

variables. The way in which the classi�er variable is determined is not speci�ed in the models

studied in this paper.

In work in progress we extend our analysis to cover more widely applicable models with some

of the following features.

1. Economic restrictions on the determination of the process in which an individual is engaged,

for example a model of choice.

2. A continuum of processes rather than the discrete classi�cation considered here.

3. Conditional independence restrictions involving multiple endogenous variables as in control

function models.

2 Structures, Models and Data

This Section introduces notation and constructs employed in the rest of the paper.

Throughout Y denotes a list of endogenous variables, Z denotes a list of observed exogenous

variables and U denotes a list of unobserved exogenous variables. Each of these variables may

be vector-valued and the observable variables may be discrete or continuous. The variables have

support RY ZU on a subset of Euclidean space. Lower case y, z and u denote values of these

variables. For any random vectors A;B, RAjb denotes the support of A conditional on B = b. For
random variables A and B, A k B indicates that A and B are independently distributed.

With M counterfactual processes there are M components in U , thus: U = (U1; : : : ; UM ) with

only Um delivering stochastic variation in the mth counterfactual process.

Some econometric selection models impose the restriction U1 = � � � = UM . Examples are given
in Heckman and Robb (1985). A number of papers study econometric selection models without

this restriction. Such models are described in Heckman, Urzua, and Vytlacil (2008) as models

with �essential heterogeneity�. Examples can be found in Heckman and Vytlacil (2007) and the

references therein. In these econometric selection models it is common to �nd a discrete choice

speci�cation of the determination of the classi�er variable and instrumental variable restrictions,

see for example Heckman and Vytlacil (2005).
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In this paper we study models which have no detailed speci�cation of the determination of

the classi�er variable. In this respect, like classical treatment e¤ect models, they are incomplete,

and as in those models there is a conditional independence condition. Our models also allow

incompleteness in the speci�cation of the processes that deliver counterfactual outcomes, and this

speci�cation may include instrumental variable restrictions.

2.1 Structural functions

A model speci�es M structural functions, hm(y; z; u) : RY ZU ! R where R denotes the real line.2

The variable u = (u1; : : : ; uM ) and each function hm is invariant with respect to changes in u�m
where u�m denotes u with the element um omitted. This representation of structural functions,

used in Chesher and Rosen (2013a), is convenient when models of counterfactual processes are

incomplete.

One element of Y , denoted Y�, is discrete taking values in f1; : : : ;Mg. This classi�er variable is
the �treatment�or �selection�indicator. A realization of (Y; Z) delivered by themth counterfactual

process is observed if and only if Y� has the realized value m.

Associated with each of the M structural functions are level sets as follows.

Y(u; z;hm) � fy : hm(y; z; u) = 0g

U(y; z;hm) � fu : hm(y; z; u) = 0g

9>=>; ; m 2 f1; : : : ;Mg

The level set Y(u; z;hm) contains the values of Y that arise in the mth counterfactual process

when Z = z and U = u. Every element y 2 Y(u; z;hm) has y� = m and the set Y(u; z;hm) is
invariant with respect to changes in u�m.

The level set U(y; z;hm) gives the values of u that can give rise to the value y of Y when Z = z
in the mth counterfactual process. This set comprises all vectors u 2 RU with mth component um
such that hm(y; z; u) = 0, each such value coupled with every possible value of u�m.

Without any restriction placed on the selection of theM counterfactual processes, the structural

function for the composite process is.

h(y; z; u) =

MX
m=1

1[y� = m]� hm(y; z; u).

Models that place restrictions on selection among the counterfactual M processes incorporate fur-

ther information from the particular value of y� observed. For example, in the Roy Model, the

observed value of y� corresponds to that value of m that achieves the maximum payo¤ or utility

2Note that for any m, hm(�; �; �) will be in general invariant with respect to various components of its arguments.
Thus hm(�; �; �) de�ned as a mapping on RY ZU for each m is unrestrictive.
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among the M available alternatives. For now we do not employ further conditions on the selection

process, but such additional restrictions may be added.

There are associated zero-level sets of the composite structural function, h. Given a value (u; z)

any one of the sets Y(u; z;hm), m 2 f1; : : : ;Mg may be observed so the y-level set of the composite
structural function is the union of the y-level sets of the structural functions of the counterfactual

processes:

Y(u; z;h) � fy : h(y; z; u) = 0g =
M[
m=1

Y(u; z;hm).

Given a value (y; z) one and only one of the sets U(y; z;hm) is observed, which one being determined
by the value y� of the treatment indicator variable, so

U(y; z;h) � fu : h(y; z; u) = 0g = U(y; z;hy�),

where y� is the value of the element of y that is the selection or classi�er variable.

Example 1. Treatment e¤ects. The binary treatment e¤ect model of Rosenbaum and Rubin

(1983) has counterfactual outcomes U1 and U2 and a binary indicator Y2 equal to 1 if U1 is observed

and equal to 2 if U2 is observed so that

Y1 = 1[Y2 = 1]� U1 + 1[Y2 = 2]� U2

is the observed outcome. This simple (binary) treatment e¤ect model has classi�er variable Y� = Y2
and

hm(y; z; u) = y1 � um; m 2 f1; 2g

with singleton y-level sets:

Y(u; z;h1) = f(u1; 1)g,

Y(u; z;h2) = f(u2; 2)g,

and non-singleton u-level sets:

U(y; z;h1) = f(y1; u2) : u2 2 RU2g ,

U(y; z;h2) = f(u1; y1) : u1 2 RU1g .

Exogenous variables are excluded from the counterfactual structural functions which involve neither

unknown parameters nor unknown functions. There is the following composite structural function:

h(y; z; u) = 1[y2 = 1]� (y1 � u1) + 1[y2 = 2]� (y1 � u2).
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Example 2. Supermarket choice and demand. A household is observed to shop in one of

M supermarkets. In a household�s supermarket of choice the endogenous variables: share of total

expenditure on food, Y1, and log total expenditure, Y2, are observed. For each supermarket, indexed

by Y3 2 f1; : : : ;Mg, there is an incomplete linear model with structural functions as follows.

hm(y; z; u) = y1 � �m � �my2 � mz1 � um; m 2 f1; : : : ;Mg

De�ne U = (U1; : : : ; UM ). There may be exogenous variables Z2 and a restriction U k (Z1; Z2) and
a conditional independence restriction U k Y3jZ where Z � (Z1; Z2; Z3). There are level sets as

follows for each m 2 f1; : : : ;Mg:

Y(u; z;hm) = f(�m + �my2 + mz1 + um; y2;m) : y2 2 RY2g ,

U(y; z;hm) = fu 2 RU : um = y1 � �m � �my2 � mz1g .

The classi�er variable Y� = Y3 and there is the following composite structural function:

h(y; z; u) =
X

m2f1;:::;Mg
1[y3 = m]� (y1 � �m � �my2 � mz1 � um) .

�

Example 3. Training and labor market processes. An unemployed worker either does

(Y3 = 1), or does not (Y3 = 2), take part in a training program. A binary outcome Y1 is observed,

equal to one if employment is found within one year and zero otherwise. For each state there are

incomplete threshold crossing-type models for this binary outcome with structural functions:

hm(y; z; u) = y1 jum � gm(y2; z1)j� + (1� y1) jum � gm(y2; z1)j+ ; m 2 f1; 2g

where jcj� and jcj+ are respectively the negative and positive part of c.3 Here y2 is an possibly

endogenous binary variable, for example an indicator of receipt of unemployment bene�t, and z1 is

a component of a vector z whose elements are values of observed exogenous variables.4 There are

y-level sets:

3 jcj� = �min(c; 0), jcj+ = max(c; 0).
4State-speci�c threshold crossing models such as this can arise using mixed proportionate hazard models of un-

employment duration (see Example 1 in Chesher (2009)) with state-speci�c heterogeneity and baseline hazards.
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Y(u; z;hm) = f(y1; y2) 2 RY1Y2 : (y1 = 1 ^ um � gm(y2; z1))

_(y1 = 0 ^ um � gm(y2; z1))g ; m 2 f1; 2g

where RY1Y2 denotes the support of (Y1; Y2). There are u-level sets:

U(y; z;hm) =
( �

(u 2 R2 : um 2 (�1; gm(y2; z1)]
	
; y1 = 0�

(u 2 R2 : um 2 [gm(y2; z1);1)
	

; y1 = 1

)
; m 2 f1; 2g.

The classi�er variable is Y� = Y3 and the structural function for the composite process is

h(y; z; u) = 1[y3 = 1]�
�
y1 ju1 � g1(y2; z1)j� + (1� y1) ju1 � g1(y2; z1)j+

�
+ 1[y3 = 2]�

�
y1 ju2 � g2(y2; z1)j� + (1� y1) ju2 � g2(y2; z1)j+

�
.

�

2.2 Distributions of unobservables

Conditional on Z = z the unobserved random variables U � (U1; : : : ; UM ) have joint probability

distribution GU jZ (�jz) and marginal distributions GUmjz (�jz), m 2 f1; : : : ;Mg. There are collec-
tions of conditional probability distributions as follows:

GU jZ � fGU jZ (�jz) : z 2 RZg,

and

GUmjZ � fGUmjZ (�jz) : z 2 RZg; m 2 f1; : : : ;Mg.

Here RZ denotes the support of the observed exogenous variables and for any set S � RU jz,
GU jZ(Sjz) denotes the probability mass placed on the set S by the conditional probability distrib-
ution GU jZ(�jz).

Each counterfactual process is characterized by a counterfactual structure
�
hm;GUmjZ

�
and the

complete process is characterized by a composite structure (h;GU jZ).
Models comprise restrictions which limit the set of admissible structures. In the models of

counterfactual processes studied here there are restrictions on structural functions and two types

of restrictions on the probability distribution of unobservable variables. Recall Y� is the element of

Y which has the role of selection or classi�er variable. This is Y2 in Example 1 and Y3 in Examples

2 and 3.

1. Conditional independence restrictions. U k Y�jZ.
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2. Marginal independence restrictions. There is a function e(�) such that U k e(Z).

The function e(Z) is brought into play because one will typically want conditional independence

to hold conditional on one set of exogenous variables and marginal independence to involve a

di¤erent set of exogenous variables. One reason why this is likely to be desirable is that restricting

U k Y�jZ and U k Z (that is e(Z) = Z) implies Y� k U which, in many cases, will not capture

essential features of a problem. Specifying e(Z) = Z1, a selection of the elements of Z, may be a

common choice.5

In Example 1 it is common to impose U k Y2jZ. In Example 2 one might have reason to
impose the conditional independence restriction U k Y3jZ and the marginal independence restriction
U k (Z1; Z2) where Z = (Z1; Z2; Z3).

2.3 Data

We consider cases in which realizations of (Y; Z) are obtained via an observation process such that

the joint distribution of these variables, FY Z , is identi�ed. Of particular importance will be the con-

ditional distributions of Y given Z and Y given (Y�; Z). For any set T � RY jz, FY jZ (T jz) denotes
the probability mass placed on the set T by the conditional probability distribution FY jZ (�jz) and
FY jY�Z (T jy�; z) denotes the probability mass placed on the set T by the conditional probability

distribution FY jY�Z (�jy�; z). The cumulative distribution function of Y given Z = z evaluated at a

point t is

P[Y � tjZ = z] = FY jZ(fy : y � tg jz).

Likewise

P[Y � tjY� = y� ^ Z = z] = FY jY�Z(fy : y � tg jy�; z).

3 Identi�cation

We ask: what characterizes the set of structures (h;GU jZ) admitted by a model,M, that can deliver

the joint distribution of FY Z? This set, denoted M�(FY Z), is the identi�ed set delivered by the

model when presented with FY Z . We obtain characterizations of identi�ed sets under conditional

and marginal independence restrictions building on the results in Chesher and Rosen (2013a),

henceforth CR2013.6 Our analysis employs random set theory, also used for partial identi�cation

analysis in Beresteanu, Molchanov, and Molinari (2011, 2012), Chesher, Rosen, and Smolinski

5There is the possibility that conditional independence could be conditional on some function of Z, d(Z), but that
is not considered here.

6We use the term identi�ed set to refer to the collection of all structures
�
h;GUjZ

�
2 M that can generate the

joint distribution FY Z . This set is sharp in that there is no structure
�
h;GUjZ

�
belonging to the identi�ed set that

can be distinguished from one generating FY Z on the basis of modeling restrictions and observed data.
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(2013), and Chesher and Rosen (2012a, 2012b, 2013b). This is the �rst paper explicitly applying

these tools in models with conditional independence restrictions. Moreover, we are unaware of

previous papers featuring the combination of conditional and marginal independence restrictions

with regard to the joint distribution of unobserved heterogeneity with observed variables in the

class of models considered.

3.1 Restrictions

We impose Restrictions A1 - A3 throughout. These are as in CR2013 where they are presented

and discussed in Section 3 of that paper.7 Restriction A4 below extends Restriction A4 of CR2013

to the particular cases considered in this paper.

Restriction A1: (Y; Z; U) are random vectors de�ned on a probability space (
;F ;P), endowed
with the Borel sets on 
. The support of (Y; Z; U) is a subset of Euclidean space. �
Restriction A2: The joint distribution of (Y; Z), FY Z , is identi�ed by the sampling process. �
Restriction A3: There is an F-measurable function h (�; �; �) : RY ZU ! R such that

P [h (Y; Z; U) = 0] = 1

and there is a collection of conditional distributions

GU jZ �
�
GU jZ (�jz) : z 2 RZ

	
where for all S � RU jz, GU jZ (Sjz) � P [U 2 Sjz]. �
Restriction A4: The pair

�
h;GU jZ

�
belongs to a known set of admissible structures M. The

model M contains restrictions as follows. One element of Y , denoted Y�, only takes values in

f1; : : : ;Mg and U has M components, U = (U1; : : : ; UM ), each of which may be vectors. The

structural function has the form

h(y; z; u) =
MX
m=1

1[y� = m]� hm(y; z; u)

where for m 2 f1; : : : ;Mg, hm(�; �; �) : RY ZU ! R is continuous in its �rst and third arguments
7Restriction A2 in CR2013 requires that a collection of conditional distributions

FY jZ �
�
FY jZ (�jz) : z 2 RZ

	
is identi�ed by the sampling process. The identi�cation of conditional distributions FY jZ (�jz) for all z 2 RZ is
equivalent to identi�cation of the joint distribution of Y and Z.
In this paper conditional independence restrictions will require conditioning on components of Y together with Z

in places, rather than only conditional on Z. This makes the statement of Restriction A2 as it appears here more
natural in the present context.
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and invariant with respect to variation in those elements of u not contained in um. �

With regard to Restriction A3, the collection of admissible distributions speci�ed may include

restrictions on conditional distributions GU jY�Z (�jy; z), each (y�; z) 2 RY�Z , where for all S �
RU jy�z, GU jY�Z (Sjy�; z) � P [U 2 Sjy�; z]. In this case the components of GU jZ are restricted to be
such that there exists for each z 2 RZ conditional distributions GU jY�Z (�jy�; z) satisfying

GU jZ (�jz) =
Z

y�2RY�

GU jY�Z (�jy�; z) dFY�jZ (y�jz) .

Notation

GU jY�Z �
�
GU jY�Z (�jy�; z) : (y�; z) 2 RY�Z

	
is used to denote a collection of such conditional distributions where required.

Restriction A4 places restrictions on structural functions hm (�; �; �) through the speci�cation
of admissible pairs

�
h;GU jZ

�
, which may include parametric or shape restrictions. There will in

general also be restrictions on the covariation of observable and unobservable exogenous variables

embodied in admissible GU jZ . Continuity of the structural functions hm (�; �; �) in their �rst and
third arguments is a su¢ cient condition to ensure that the sets Y(u; z;hm) and U(y; z;hm) are
closed.

It should be noted that Restriction A4 places no restriction on the determination of y� from the

M counterfactual processes. For now we leave this selection process completely unspeci�ed, noting

that additional restrictions may be added through subsequent restrictions.

3.2 Identi�cation: foundation results from CR2013

This Section extends results proved in CR2013 in order to provide the basis for the identi�cation

analysis to follow.8 The distinguishing features of the results contained here stems from the need

to work with conditional independence restrictions of the sort U k Y�jZ. This requires results
to be stated conditional on realizations of exogenous variables Z as well as the classi�er variable

Y�, rather conditional on Z alone as in CR2013. All of these results apply to the class of models

considered in this paper when Restrictions A1 - A3 hold.

Our �rst result, Theorem 1, proven in the Appendix, builds on Theorem 2 of CR2013. This

Theorem gives a characterization of identi�ed sets in terms of a selectionability property of the

distributions of unobservable variables admitted by a model. The random set U(Y; Z;h) which
8Theorem 1 uses the concept of selectionability. The probability distribution, FA, of a point valued random

variable is selectionable with respect the probability distribution of a random set, A, if (i) there exists a random
variable, A, distributed FA, (ii) there exists a random set A� with the same probability distribution as A, such that
P[A 2 A�] = 1.
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appears in the theorem is de�ned as

U(Y; Z;h) � fu 2 RU : h(Y; Z; u) = 0g.

Theorem 1 Let Restrictions A1-A3 hold. Then the identi�ed set of structuresM�(FY Z) are those�
h;GU jZ

�
admitted by the model M such that for almost every z 2 RZ and each y� 2 f1; :::;Mg

there exist conditional probabilities GU jY�Z (�jy�; z) de�ned on measurable subsets of RU such that

1. GU jZ (�jz) =
Z

y�2RY�

GU jY�Z (�jy�; z) dFY�jZ (y�jz).

2. GU jY�Z (�jy�; z) is selectionable with respect to the conditional distribution of random set U (Y; Z;h)
given (Y� = y� ^ Z = z) induced by the distribution of Y conditional on (Y� = y� ^ Z = z) as given
by FY Z .

The following Corollary gives an alternative characterization of the identi�ed set in terms of mo-

ment inequalities. This result follows from using Artstein�s (1983) Inequality which gives necessary

and su¢ cient conditions for selectionability in terms of containment functionals of random sets.

This result is the analog of Corollary 1 in CR2013, which uses Artstein�s Inequality to produce

moment inequalities conditional on realizations of Z rather than on realizations of both Y� and

Z. The proof is a straightforward consequence of the selectionability statement in Theorem 1 and

Corollary 1 of CR2013 and is omitted.

Corollary 1 Under Restrictions A1-A3 the identi�ed set can be written

M� (FY Z) �

8>>>>><>>>>>:

�
h;GU jZ

�
2M : 9GU jY�Z s.t. 8S 2 F (RU ) ,

C (S; hjy�; z) � GU jY�;Z (Sjy�; z) a.e. (y�; z) 2 RY�Z ,

and GU jZ (Sjz) =
Z

y�2RY�

GU jY�Z (Sjy�; z) dFY�jZ (y�jz) a.e. z 2 RZ

9>>>>>=>>>>>;
, (3.1)

where F (RU ) denotes the collection of all closed subsets of RU and

C (S; hjy�; z) � P [U (Y; Z;h) � Sjy�; z]

is the conditional containment functional of the random set U (Y; Z;h) when the conditional distri-
bution of Y given (Y� = y� ^ Z = z) is as given by FY Z .

The collection of sets F (RU ) is too large to inspect in practice. Theorem 2 below provides a

smaller collection of core-determining sets, a concept introduced in Galichon and Henry (2011).

Again where CR2013 provided results conditional on exogenous variables Z, we provide results

conditional on Z and the discrete classi�er Y�, as required for consideration of core-determining

11



sets under conditional independence restrictions involving Y� and Z. This turns out to be a simple

generalization of Theorem 3 of CR2013, with a formal statement given in Theorem 2. The proof of

this Theorem and its Corollary are identical to those of CR2013 Theorem 3 and its Corollary upon

substituting �y�; z�for z in that paper and are therefore omitted.

First to state the results it is necessary to de�ne two collections of sets, U (h; y�; z): the condi-

tional support of the random set U (Y; Z;h) given (Y� = y� ^ Z = z) and U� (h; y�; z): the collection
of the unions of these sets.

De�nition 1 Under Restrictions A1-A3, the conditional support of random set U (Y; Z;h)
given (Y� = y� ^ Z = z) is

U (h; y�; z) �
�
U � RU : 9y 2 RY jy�z such that U = U (y; z;h)

	
.

The collections of all sets that are unions of elements of U (h; y�; z) is denoted

U� (h; y�; z) �
�
U � RU : 9Y � RY jy�z such that U = U (Y; z;h)

	
.

In the de�nition of U� (h; y�; z) we employ the notation

8Y � RY , U (Y; z;h) �
[
y2Y

U (y; z;h) ,

In the statement of Theorem 2 we use the notation.

H �
�
h :
�
h;GU jZ

�
2M for some GU jZ

	
.

We also de�ne for any set S � RU and any (h; y�; z) 2 H �RY� �RZ ,

US (h; y�; z) � fU 2 U (h; y�; z) : U � Sg ,

which are those sets on the support of U (Y; Z;h) given (Y� = y� ^ Z = z) that are contained in S.

Theorem 2 Let Restrictions A1-A3 hold. Fix (h; y�; z) 2 H � RY� � RZ and a distribution

function GU jY�Z (�jy�; z). Let Q (h; y�; z) � U� (h; y�; z), such that for any S 2 U� (h; y�; z) with
S =2 Q (h; y�; z), there exist nonempty collections S1;S2 2 US (h; y�; z) with S1 [ S2 = US (h; y�; z)
such that

S1 �
[
T 2S1

T , S2 �
[
T 2S2

T , and GU jY�Z (S1 \ S2jy�; z) = 0, (3.2)

with S1;S2 2 Q (h; y�; z). Then C (S; hjy�; z) � GU jY�Z (Sjy�; z) for all S 2 Q (h; y�; z) implies that
C (S; hjy�; z) � GU jY�Z (Sjy�; z) holds for all S � RU , and in particular for S 2 F (RU ), so that
the collection of sets Q (h; y�; z) is core-determining.
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Finally, Corollary 2 gives conditions under which a core determining set delivers a moment

equality rather than a moment inequality.

Corollary 2 De�ne

QE (h; y�; z) �
�
S 2 Q (h; y�; z) : 8y 2 RY jy�z either U (y; z;h) � S or U (y; z;h) \ S = ;

	
.

Then, under the conditions of Theorem 2, the collection of equalities and inequalities

C (S; hjy�; z) = GU jY�Z (Sjy�; z) , all S 2 Q
E (h; y�; z) ,

C (S; hjy�; z) � GU jY�Z (Sjy�; z) , all S 2 Q
I (h; y�; z) � Q (h; y�; z) nQE (h; y�; z) .

holds if and only if C (S; hjy�; z) � GU jY�Z (Sjy�; z) for all S 2 Q (h; y�; z).

A consequence of Corollary 2 is that all members of a collection Q(h; y�; z) deliver equalities

when the structural function h is such that either (i) every set on the conditional support of

Y(U;Z;h) is singleton and/or (ii) every set on the conditional support of U(Y; Z;h) is singleton.

3.3 Moment inequalities absent restrictions on selection of Y�

A further simpli�cation of the core determining sets obtains when, in addition to Restrictions A1-

A3, Restriction A4 is also imposed, absent further restrictions on the determination of Y�. Without

such restrictions, all sets U of the form U (y; z;h) for some (y; z) 2 RY Z are such that for all

components m 2 f1; :::;Mg with m 6= y�, Um = RUm . To state this formally, we de�ne

Um (y; z;h) �
�
u�m 2 RUmjz : 9u s.t. um = u

�
m ^ h (y; z; u) = 0

	
as the projection of U (y; z;h) onto its mth component. Then we have the simpli�cation that

8m 6= y�, Um (y; z;h) = RUm . (3.3)

The conditional support of the random set Um (Y; Z;h) conditional on (Y� = m ^ Z = z) is

Um (h; z) �
�
Um (y; z;h) : y� = m ^ y 2 RY jy�z

	
.

The projection of any set S onto its mth component is

Sm � fu�m 2 RUm : 9u 2 S s.t. um = u�mg .

From Theorem 2 we have that all core determining sets, S 2 Q (h; y�; z) are unions of sets on the

13



support of U (y; z;h). Thus from (3.3) all core-determining sets S 2 Q (h; y�; z) satisfy

8m 6= y�, Sm = RUm . (3.4)

Consideration of the conditional containment functional applied to such sets then gives

C (S; hjm; z) � P [U (Y; Z;h) � SjY� = m; z] = P [Um (Y; Z;h) � SmjY� = m; z] , (3.5)

which is the probability, conditional on (Y� = m ^ Z = z), that the projection of U (Y; Z;h) onto
its mth component is contained in the projection of S onto its mth component. Consequently,

the identi�ed set M� (FY Z) can be succinctly characterized through inequalities involving only

containment functionals for projection level sets Um (Y; Z;h) applied to projections of test sets S.
We thus de�ne containment functionals for projections of level sets for any test set Sm � RUm as

Cm (Sm; hjy�; z) � P [Um (Y; Z;h) � Smjy�; z] . (3.6)

Likewise we have from (3.4) that

8S 2 Q (h; y�; z) , GU jY�Z (Sjm; z) = GUmjY�Z (Smjm; z) . (3.7)

Implications (3.5) and (3.7) together enable us to work in a lower dimensional space, namely

that of RUm in the construction of core-determining sets, rather than RU . Speci�cally, we have
that for any (y�; z) 2 RY�Z and any test set S 2 Q (h; y�; z), the containment functional inequality

C (S; hjm; z) � GU jY�Z (Sjm; z) , (3.8)

appearing in Corollary 1 holds if and only if9

Cm (Sm; hjm; z) � GUmjY�Z (Smjm; z) . (3.9)

Lemma 1 characterizes a collection of core-determining sets on the lower dimensional space RUm
su¢ cient to guarantee (3.9) holds for all closed Sm � RUm . Before stating the lemma we require
the following de�nitions for any (h;m; z) 2 H �RY� �RZ .

U�m (h; z) � fUm � RUm : Um is a union of elements of Um (h; z)g ,
9From Sm = RUm for all m 6= y�, (3.8) )(3.9) is immediate. The reverse implication is formally proven in the

proof of Theorem 3.
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and for any set Sm � RUm ,

USm (h; z) � fU 2 Um (h; z) : U � Smg ,

which are those sets on the conditional support of Um (Y; Z;h) conditional on (Y� = m ^ Z = z)
that are contained in Sm. With this notation in hand, the proof of the following lemma is a

straightforward extension of Theorem 2 and is omitted.

Lemma 1 Let Restrictions A1-A4 hold. Fix (h;m; z) 2 H�RY� �RZ and a distribution function
GU jY�Z (�jy�; z). Let Qm (h; z) � U�m (h; z), such that for any Sm 2 U�m (h; z) with Sm =2 Qm (h; z),
there exist nonempty collections Sm1;Sm2 2 USm (h; z) with Sm1 [ Sm2 = USm (h; z) such that

Sm1 �
[

T 2Sm1

T , Sm2 �
[

T 2Sm2

T , and GU jY�Z (Sm1 \ Sm2jy�; z) = 0, (3.10)

with Sm1;Sm2 2 Qm (h; z). Then Cm (Sm; hjm; z) � GUmjY�Z (Smjm; z) for all Sm 2 Qm (h; z)

implies that Cm (Sm; hjm; z) � GUmjY�Z (Smjm; z) holds for all Sm � RUm, and in particular for
Sm 2 F (RUm), so that the collection of sets Qm (h; z) is core-determining.

The following Theorem, proven in the Appendix, uses this lemma en route to characterizing

the identi�ed setM� (FY Z) under Restrictions A1-A4 through conditional containment functional

inequalities de�ned on RUm , m 2 f1; :::;Mg.

Theorem 3 Let Restrictions A1-A4 hold, with no further restrictions imposed on the determina-
tion of the classi�er Y�. Given collection of conditional distributions GU jY�Z we have that

8S 2 F (RU ) , C (S; hjm; z) � GU jY�Z (Sjm; z) a.e. (y�; z) 2 RY�Z

if and only if

8m 2 f1; :::;Mg , 8S 2 Qm (h; z) , Cm (S; hjm; z) � GUmjY�Z (Sjm; z) a.e. (y�; z) 2 RY�Z :

Hence

M� (FY Z) =

8>>>>><>>>>>:

�
h;GU jZ

�
2M : 9GU jY�Z s.t. 8m 2 f1; :::;Mg , 8S 2 Qm (h; z) ,

Cm (S; hjm; z) � GUmjY�Z (Sjm; z) a.e. (m; z) 2 RY�Z , and

GUmjZ (Sjz) =
Z

y�2RY�

GUmjY�Z (Sjy�; z) dFY�jZ (y�jz) a.e. z 2 RZ

9>>>>>=>>>>>;
.

3.4 The identifying power of a conditional independence restriction

The models studied in this paper include a conditional independence Restriction CI.
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Restriction CI. Let Y� be the classi�er element of Y . Random variables U and Y� are indepen-

dently distributed conditional on Z = z for every z 2 RZ .
Restriction CI places restrictions on the collection of distributions GU jZ in admissible structures,

namely that for all sets S � RU jZ , the conditional distribution of U given (Y�; Z), GU jY�Z (�jy�; z)
satis�es GU jY�Z (Sjy�; z) = GU jZ (Sjz) a.e. (y�; z) 2 RY�Z . A consequence is equality of the

conditional support of unobserved heterogeneity and its components, that is that RU jy�z = RU jz
and RUmjy�z = RUmjz, for all m 2 f1; : : : ;Mg.

We build on the characterization of the identi�ed set given in Theorem 3 to develop a charac-

terization of the identi�ed set when there is a conditional independence condition. The result is

given in Theorem 4, the proof of which is given in the Appendix.

Theorem 4 Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

conditional independence restriction CI has an identi�ed setM� (FY Z) which can be written as

M� (FY Z) �
��
h;GU jZ

�
2M : 8m 2 f1; : : : ;Mg; 8S 2 Qm (h; z) ,

Cm (S; hjm; z) � GUmjZ (Sjz) , a.e. z 2 RZ
	
.

Here S � RUmjz, and Qm (h; z) is a collection of closed subsets of RUmjz comprising unions of sets
on the conditional support of Um(Y; Z;h) given Z = z and Y� = m de�ned in Lemma 1.

Remarks

1. Regarding the collections of distributions GU jZ , the identi�ed set in Theorem 4 only places

restrictions on the marginal distributions, GUmjZ (�jz), m 2 f1; : : : ;Mg. Data is never infor-
mative about the covariation of Um and Um0 , for any m 6= m0.

2. Applying the unprojected version of the inequality in the de�nition of the set M� (FY Z) in
Theorem 4 to the complement, Sc, of a set S gives an upper bound on GU jZ (Sjz) and thus
a two-sided inequality that must hold for almost every z 2 RZ :

8m;n 2 f1; : : : ;Mg , S � RU : C (S; hjm; z) � GU jZ (Sjz) � 1� C (Sc; hjn; z) .

This representation leads directly a characterization of bounds on structural function h with-

out direct reference to a distribution of unobserved heterogeneity GU jZ (Sjz).

Example 1 continued. In the simple treatment e¤ect model the projected u-level sets Um (Y; Z;h)
are singleton and a small modi�cation to the argument that leads to Corollary 2 leads to the

conclusion that the inequalities in the de�nition of M� (FY Z) in Theorem 4 reduce to equalities.

For any set S � Qm (h; z),
GUmjZ(Sjz) = FY1jY2;Z (Sjm; z)
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and it follows that for m 2 f1; : : : ;Mg:

1. each conditional distribution function of Um given Z = z is point identi�ed by the conditional

distribution function of Y1 given Y2 = m and Z = z,

2. each marginal distribution function of Um is point identi�ed by the expected value with

respect to Z of the conditional distribution function of Y1 given Y2 = m and Z = z,

3. which leads directly to the familiar results on point identi�cation of the Average and Quantile

Treatment E¤ects.

The analysis applies directly when there are vector counterfactual outcomes, U1; : : : ; UM , in the

treatment e¤ect model. �

3.5 The additional identifying power of marginal independence conditions

Theorem 4 provides a characterization of the identi�ed set of structures
�
h;GU jZ

�
delivered by

a model of counterfactual processes embodying Restriction A4 and the conditional independence

restriction CI. In models of processes more complex than found in the treatment e¤ects case there

may be additional marginal independence restrictions. We consider Restriction MI.

Restriction MI. Let e(Z) be a vector-valued function of Z. Random variables Um and e(Z)

are independently distributed for each m 2 RY� .

Restriction MI restricts the set of admissible structures
�
h;GU jZ

�
2M to be those with Um and

e(Z) independently distributed for all m 2 f1; : : : ;Mg. A common choice for a function e(�) will
be a function that selects certain elements from Z, for example, with Z = (Z1; Z2), e(Z) = Z1.10

Theorem 5 provides a characterization of the identi�ed set delivered by a model embodying the

conditional and marginal independence restrictions CI and MI.

Theorem 5 Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

independence restrictions CI and MI has an identi�ed setM�(FY jZ) which can be written as follows.

M� (FY Z) �
( �

h;GU jZ
�
2M : 8m 2 f1; : : : ;Mg; 8S 2 Qm (h; z) ,

Cm (S; hjm; z) � GUmjZ (Sjz) , a.e. z 2 RZ

)
,

where Q (hm; z) is the collection of core determining sets de�ned in Lemma 1.

This characterization appears the same as that of Theorem 4, but it di¤ers because now admis-

sible structures
�
h;GU jZ

�
2M are required to be such that GU jZ satis�es Restriction MI in addition

10 It would be easy to relax the marginal independence restriction to Um k em(Z), m 2 f1; : : : ;Mg.
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to Restriction CI. Thus the identi�ed set of Theorem 5 is subset of that of Theorem 4 because the

conditional containment inequality must hold for some
�
h;GU jZ

�
in this more restrictive collection

of admissible structures.

Sharpness is immediate because for any S 2 RUm , under Restriction CI

Cm (S; hjm; z) � GUmjZ (Sjz)) Cm (S; hjm; z) � GUmjY�Z (Sjm; z) .

This is required to hold for all (m; z) and for all core-determining sets, so the selectionability

statement of Theorem 1 is satis�ed. Again, the di¤erence with Theorem 4 is that the distributions

GUmjZ are now required to belong to more restrictive collections of conditional distributions, namely

we have as a requirement of admissible structures that for each e 2 Re(Z),

GUmjZ (SjZ 2 Ze) = GUm (S) , where Ze � fz : e (Z) = eg . (3.11)

The characterization of M� (FY Z) in the Theorem 5 produces interesting observable implica-

tions that may not appear immediate, but which provide bounds on
�
h;GU jZ

�
, potentially non-sharp

in isolation. These implications may prove bene�cial in developing su¢ cient conditions for point

identi�cation of
�
h;GU jZ

�
or features of

�
h;GU jZ

�
in particular models. Two such implications are

as follows.

1. For any m 2 RY� , e 2 Re(Z), and any S � RUm ,

E [Cm (S; hjm;Z) je(Z) = e] � GUm (S) . (3.12)

This follows from integrating both sides of the inequality Cm (S; hjm; z) � GUmjZ (Sjz) as
follows. First we have from the left hand side,

1

FZ (Ze)

Z
z2Ze

C (S; hmjy�; z) dFZ (z) = E [C (S; hmjy�; Z) jZ 2 Ze]

= E [C (S; hmjy�; Z) je (Z) = e] .

Then multiplying the right hand side by 1
FZ(Ze) and integrating we obtain

1

FZ (Ze)

Z
z2Ze

GUmjZ (Sjz) dFZ (z) = GUmjZ (SjZ 2 Ze) = GUm (S) ,

where the �nal equality follows from Restriction MI.

It is interesting to note that the expression E [Cm (S; hjm;Z) je(Z) = e] is a conditional ex-
pectation of the containment functional Cm (S; hjm;Z) holdingm �xed, which may in general
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di¤er from Cm (S; hjY� = m; e(Z) = e).

2. For any m 2 RY� , e 2 Re(Z), and any S � RUm ,

Cm (S; hjZ 2 Ze) � GUmjZ(SjZ 2 Ze) = GUm (S) ,

by Restriction MI.

Remarks

1. Since the bounded probabilities, GUm(S) = GUmjZ(SjZ 2 Ze), do not depend on the value e
of e(Z) for each value m and set S only the supremum of the lower bounding expression over

values e 2 Re(Z) is instrumental in (3.12).

2. In the common case in which Z = (Z1; Z2) and e(Z) = Z1 is a selection of the elements in Z,

EZ [�je(Z) = e] = EZ2 [�jZ1 = e] .

3. Arguing as in Remark 2 following Theorem 4, a two-sided inequality is obtained:

EZ [Cm (S; hjm; z) je(Z) = eL] � GUm (S) � 1� EZ [Cm (Sc; hjm; z) je(Z) = eU ] ,

which must hold for all (eL; eU ) 2 Re(Z).

Example 3 continued. For simplicity in this illustration exogenous variables z1 are excluded
from the threshold function, so gm(y2; z1) is written gm(y2) and since Y2 is binary the structural

function h(y; z; u) is characterized by four parameters: � � (g1(0); g1(1); g2(0); g2(1)). Recall m = 1

for people who attend a training programme and m = 2 for people who do not. Thus, g1(0) is the

threshold parameter for a person who does attend a training programme and is not in receipt of

bene�t payment. We can normalize the threshold functions so that each Um is marginally uniformly

distributed on the unit interval and then there is the following representation.

In state m: Y1 =

8><>:
0 ; 0 � Um � gm(Y2)

1 ; gm(Y2) � Um � 1

:

The set up here is similar to that in Chesher and Rosen (2013b), henceforth CR2013b. In that

paper there was only one state, so there U1 = U2 (denoted U in that paper) and g1(y2) = g2(y2)

(denoted p(y2) in that paper). In CR2013b there was no conditional independence restriction but

there was a marginal independence restriction U k Z. For ease of comparison with CR2013b the
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characterization of the identi�ed set is presented here in terms of 1�gm(y2), m 2 f1; 2g;, y2 2 f0; 1g
which are counterfactual probabilities of return to work in state m with bene�t receipt indicator

equal to y2. De�ne probabilities which could be estimated using data, as follows.

fij(z;m) � P[Y1 = i ^ Y2 = jjY3 = m;Z = z]; (i; j) 2 f0; 1g � f0; 1g; m 2 f1; 2g

Applying Theorem 4, under the conditional independence restriction, (U1; U2) k Y3jZ, the identi�ed
set of structures (�;GU jZ) is characterized by the following inequalities which hold for m 2 f1; 2g
and almost every z 2 RZ .
For gm(0) � gm(1):

f10(z;m) + f11(z;m) � 1�GUmjZ(gm(0)jz) � 1� f00(z;m)

f11(z;m) � 1�GUmjZ(gm(1)jz) � f10(z;m) + f11(z;m)

For gm(0) � gm(1)

f10(z;m) � 1�GUmjZ(gm(0)jz) � f10(z;m) + f11(z;m)

f10(z;m) + f11(z;m) � 1�GUmjZ(gm(1)jz) � 1� f01(z;m)

We now apply Theorem 5 and impose the marginal independence restriction (U1; U2) k Z1 jointly
with the conditional independence condition (U1; U2) k Y3jZ where Z = (Z1; Z2) . The inequalities
(3.12) deliver the following additional inequalities which hold for m 2 f1; 2g.
For gm(0)) � gm(1):

sup
z12RZ1

EZ2jZ1=z1 [f10(z;m) + f11(z;m)] � 1� gm(0) � inf
z12RZ1

�
1� EZ2jZ1=z1 [f00(z;m)]

�
sup

z12RZ1

EZ2jZ1=z1 [f11(z;m)] � 1� gm(1) � inf
z12RZ1

EZ2jZ1=z1 [f10(z;m) + f11(z;m)]

For gm(0) � gm(1):

sup
z12RZ1

EZ2jZ1=z1 [f10(z;m)] � 1� gm(0) � inf
z12RZ1

EZ2jZ1=z1 [f10(z;m) + f11(z;m)]

sup
z12RZ1

EZ2jZ1=z1 [f10(z;m) + f11(z;m)] � 1� gm(1) � inf
z12RZ1

�
1� EZ2jZ1=z1 [f01(z;m)]

�

20



4 Concluding remarks

We have presented an extension of a treatment e¤ect model in which a discrete classi�er variable

indicates in which one of a number of counterfactual processes an individual engages. The observed

process delivers realizations of endogenous variables and values of exogenous variables are available.

We have considered models of counterfactual processes which may be incomplete. Such mod-

els can arise when a process involves multiple equilibria and no equilibrium selection mechanism

is speci�ed, when a process is de�ned by inequality restrictions as in some auction models and

when only some elements of a simultaneous equations system that determines values of endogenous

variables are speci�ed.

We have considered models which place no structure on the determination of the classi�er

variable but impose a conditional independence restriction requiring the unobservable variables

that deliver stochastic variation in the counterfactual processes and the classi�er variable to be

independently distributed conditional on some observed exogenous variables. Our models may

incorporate additionally, marginal independence restrictions requiring unobservable variables and

known functions of exogenous variables to be independently distributed.

Using tools from random set theory and in particular the concept of selectionability, we have

developed characterizations of the sharp identi�ed sets delivered by these models.

In research in progress we are studying the identifying power of alternative covariation restric-

tions, for example conditional mean and quantile independence and we are developing characteri-

zations of identi�ed sets in more general cases in which there are combinations of conditional and

marginal independence restrictions.
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A Appendix: Proofs

Proof of Theorem 1. Theorem 2 of CR2013 states that under Restrictions A1-A3 of that paper,

identical to Restrictions A1-A3 here, the identi�ed set of structures
�
h;GU jZ

�
are those such that

GU jZ (�jz) - U (Y; z;h) when Y � FY jZ (�jz) , a.e. z 2 RZ , (A.1)

where �-�means �is selectionable with respect to the distribution of�, as in CR2013. This state-
ment has the following interpretation.

1. There exists a random variable ~U such that for almost every z 2 RZ , ~U � GU jZ (�jz) condi-
tional on Z = z.

2. There exists a random variable ~Y such that for almost every z 2 RZ , ~Y � FY jZ (�jz) condi-
tional on Z = z.

3. ~U and ~Y belong to probability space (
;F ;P) and P
h
~U 2 U

�
~Y ;Z;h

�
jZ = z

i
= 1 a.e. z 2

RZ .

To prove the theorem it is required to show that (A.1) is equivalent to the existence of a

collection of conditional distributions GU jY�Z �
�
GU jY�Z (�jy�; z) : (y�; z) 2 RY�Z

	
such that:

1. For almost every z 2 RZ :

GU jZ (�jz) =
Z

y�2RY�

GU jY�Z (�jy�; z) dFY�jZ (y�jz) , and (A.2)

2. For almost every (y�; z) 2 RY�Z :

GU jY�Z (�jy�; z) - U (Y; z;h) when Y � FY jY�Z (�jy�; z) . (A.3)

To show this start with (A.1), from which we have, with ~U and ~Y as de�ned in bullet points

1-3,

1 = P
h
~U 2 U

�
~Y ;Z;h

�
jZ = z

i
=

Z
RY�jz

P
h
~U 2 U

�
~Y ;Z;h

�
j ~Y� = y�; Z = z

i
dFY�jZ (y�jz) ,

where ~Y � FY jZ (�jz) conditional on Z = z. This can hold if and only if

P
h
~U 2 U

�
~Y ;Z;h

�
j ~Y� = y�; Z = z

i
= 1 a.e. (y�; z) 2 RY�Z ,
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with ~Y � FY jZ (�jz).
Now de�ne GU jY�Z (�jy�; z) such that for any S 2 RU ,

GU jY�Z (Sjy�; z) � P
h
~U 2 Sj ~Y� = y�; Z = z

i
.

Consequently, from Restriction A3 and the �rst consequence of (A.1) above, GU jZ (Sjz) = P
h
~U 2 SjZ = z

i
,

and then from the law of total probability, (A.2) holds. Then we have that (A.3) holds since

1. There exists a random variable ~U such that for almost every z 2 RZ , ~U � GU jZ (�jz) con-
ditional on Z = z, and such that for almost every (y�; z) 2 RY�Z , ~U � GU jY�Z (�jy�; z)
conditional on Z = z, Y� = y�.

2. There exists a random variable ~Y such that for almost every z 2 RZ , ~Y � FY jZ (�jz) condi-
tional on Z = z.

3. ~U and ~Y belong to probability space (
;F ;P) and P
h
~U 2 U

�
~Y ;Z;h

�
j ~Y� = y�; Z = z

i
= 1

a.e. (y�; z) 2 RY�Z .

That (A.3) implies (A.1) is immediate, and so equivalence is proved. �

Proof of Theorem 3

Fix (m; z) 2 RY�Z . From Lemma 1 we have that

8S 2 Qm (h; z) , Cm (S; hjm; z) � GUmjY�Z (Sjm; z)

implies that

8S 2 F (RUm) , Cm (S; hjm; z) � GUmjY�Z (Sjm; z) .

We need to show that (3.9),

Cm (S; hjm; z) � GUmjY�Z (Sjm; z) , (A.4)

for all S 2 F (RUm) implies that (3.8),

C (S; hjm; z) � GU jY�Z (Sjm; z) .

for all S 2 F (RU ).
To show this, start with

C (S; hjm; z) � GU jY�Z (Sjm; z) . (A.5)

for an arbitrary S 2 F (RU ).
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First suppose that it does not hold that the projection of S onto its nth projection Sn, n 6= m,
is equal to RUn . All elements of the support of U (Y; Z;h) conditional on (Y�; Z) = (m; z) have

Un (Y; Z;h) = RUn , implying that C (S; hjm; z) = 0 and (A.5) is trivially satis�ed.
We now turn to sets S with nth projection Sn, n 6= m, equal to RUn . In this case

C (S; hjm; z) = Cm (Sm; hjm; z) ,

and

GU jY�Z (Sjm; z) = GUmjY�Z (Smjm; z) ,

so that (A.5) is in fact equivalent to (A.4), completing the proof. �

Proof of Theorem 4

We start with the characterization of the identi�ed set given in Theorem 3:

M� (FY Z) =

8>>>>><>>>>>:

�
h;GU jZ

�
2M : 9GU jY�Z s.t. 8m 2 f1; :::;Mg , 8S 2 Qm (h; z) ,

Cm (S; hjm; z) � GUmjY�Z (Sjm; z) a.e. (m; z) 2 RY�Z , and

GUmjZ (Sjz) =
Z

y�2RY�

GUmjY�Z (Sjy�; z) dFY�jZ (y�jz) a.e. z 2 RZ

9>>>>>=>>>>>;
.

Using Restriction CI GUmjY�Z (Smjm; z) = GUmjZ (Smjz) so we obtain

M� (FY Z) =

( �
h;GU jZ

�
2M : 8m 2 f1; :::;Mg , 8S 2 Qm (h; z) ,

Cm (S; hjm; z) � GUmjZ (Sjz) a.e. (m; z) 2 RY�Z

)
,

equivalently

M� (FY Z) =

(�
h;GU jZ

�
2M : sup

(m;z)2RY�Z

sup
S2Qm(h;z)

Cm (S; hjm; z)�GUmjY�Z (Sjz) � 0
)
.

�

Proof of Theorem 5

The Theorem is proved using the same argument as in the proof of Theorem 4 but now with

structures
�
h;GU jZ

�
required to belong to a more restrictive set such that Restriction CI and

Restriction MI both hold. Thus the set of structures
�
h;GU jZ

�
satisfying these restrictions (i.e.

those such that
�
h;GU jZ

�
2M) and also satisfying the condition stated in the Theorem, namely

8m 2 f1; : : : ;Mg; 8S 2 Qm (h; z) , Cm (S; hjm; z) � GUmjZ (Sjz) , a.e. z 2 RZ
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are by Theorem 3 precisely those
�
h;GU jZ

�
2M satisfying

8S 2 F (RU ) , C (S; hjm; z) � GU jY�Z (Sjm; z) a.e. (y�; z) 2 RY�Z ,

where the conditional distribution of U given (Y�; Z) satis�es the conditional independence restric-

tion

GU jY�Z (Sjm; z) = GU jZ (Sjz) .

Application of Artstein�s Inequality as in Corollary 1 then gives that this collection of
�
h;GU jZ

�
2M

satis�es the selectionability criteria of Theorem 1, namely that GU jY�Z (�jm; z) is selectionable with
respect to the conditional distribution of random set U (Y; Z;h) given (Y� = m ^ Z = z) induced
by the distribution of Y conditional on (Y� = m ^ Z = z) as given by FY Z , a.e. (m; z) 2 RY�Z .
ThusM� (FY Z) is the identi�ed set of structures

�
h;GU jZ

�
. �
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