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ABSTRACT. In the first part of the paper, we consider estimation and inference on policy rele-
vant treatment effects, such as local average and local quantile treatment effects, in a data-rich
environment where there may be many more control variables available than there are observa-
tions. In addition to allowing many control variables, the setting we consider allows endogenous
receipt of treatment, heterogeneous treatment effects, and function-valued outcomes. To make
informative inference possible, we assume that some reduced form predictive relationships are
approximately sparse. That is, we require that the relationship between the control variables
and the outcome, treatment status, and instrument status can be captured up to a small ap-
proximation error using a small number of the control variables whose identities are unknown to
the researcher. This condition allows estimation and inference for a wide variety of treatment
parameters to proceed after selection of an appropriate set of controls formed by selecting con-
trol variables separately for each reduced form relationship and then appropriately combining
these reduced form relationships. We provide conditions under which post-selection inference
is uniformly valid across a wide-range of models and show that a key condition underlying the
uniform validity of post-selection inference allowing for imperfect model selection is the use of
approximately unbiased estimating equations. We illustrate the use of the proposed methods
with an application to estimating the effect of 401(k) participation on accumulated assets.

In the second part of the paper, we present a generalization of the treatment effect framework
to a much richer setting, where possibly a continuum of target parameters is of interest and the
Lasso-type or post-Lasso type methods are used to estimate a continuum of high-dimensional
nuisance functions. This framework encompasses the analysis of local treatment effects as a
leading special case and also covers a wide variety of classical and modern moment-condition
problems in econometrics. We establish a functional central limit theorem for the continuum of
the target parameters, and also show that it holds uniformly in a wide range of data-generating
processes P, with continua of approximately sparse nuisance functions. We also establish validity
of the multiplier bootstrap for resampling the first order approximations to the standardized
continuum of the estimators, and also establish uniform validity in P. We propose a notion of
the functional delta method for finding limit distribution and multiplier bootstrap of the smooth
functionals of the target parameters that is valid uniformly in P. Finally, we establish rate and
consistency results for continua of Lasso or post-Lasso type methods for estimating continua
of the (nuisance) regression functions, also providing practical, theoretically justified penalty

choices. Each of these results is new and could be of independent interest.
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1. INTRODUCTION

The goal of many empirical analyses in economics is to understand the causal effect of a treat-
ment such as participation in a government program on economic outcomes. Such analyses are
often complicated by the fact that few economic treatments or government policies are randomly
assigned. The lack of true random assignment has led to the adoption of a variety of quasi-
experimental approaches to estimating treatment effects that are based on observational data.
Such approaches include instrumental variable (IV) methods in cases where treatment is not
randomly assigned but there is some other external variable, such as eligibility for receipt of a
government program or service, that is either randomly assigned or the researcher is willing to
take it as exogenous conditional on the right set of control variables. Another common approach
is to assume that the treatment variable itself may be taken as exogenous after conditioning on
the right set of controls which leads to regression or matching based methods, among others, for
estimating treatment eﬁectsﬂ

A practical problem empirical researchers must face when trying to estimate treatment effects
is deciding what conditioning variables to include. When the treatment variable or instrument
is not randomly assigned, a researcher must choose what needs to be conditioned on to make
the argument that the instrument or treatment is exogenous plausible. Typically, economic
intuition will suggest a set of variables that might be important to control for but will not
identify exactly which variables are important or the functional form with which variables should
enter the model. While less crucial to plausibly identifying treatment effects, the problem of
selecting controls also arises in situations where the key treatment or instrumental variables are
randomly assigned. In these cases, a researcher interested in obtaining precisely estimated policy
effects will also typically consider including additional control variables to help absorb residual
variation. As in the case where including controls is motivated by a desire to make identification
of the treatment effect more plausible, one rarely knows exactly which variables will be most
useful for accounting for residual variation. In either case, the lack of clear guidance about what
variables to use presents the problem of selecting a set of controls from a potentially large set of
control variables including raw variables available in the data as well as interactions and other
transformations of these variables.

In this paper, we consider estimation of the effect of an endogenous binary treatment, D,
on an outcome, Y, in the presence of a binary instrumental variable, Z, in settings with very
many potential control variables, f(X), including raw variables, X, and transformations of these
variables such as powers, b-splines, or interactions. We allow for fully heterogeneous treatment
effects and thus focus on estimation of causal quantities that are appropriate in heterogeneous
effects settings such as the local average treatment effect (LATE) or the local quantile treatment
effect (LQTE). We focus our discussion on the case where identification is obtained through the

!There is a large literature about estimation of treatment effects. See, for example, the textbook treatments
in Angrist and Pischke (2008) or Wooldridge (2010) and the references therein for discussion from an economic

perspective.
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use of an instrumental variable, but all results carry through to the case where the treatment
is taken as exogenous after conditioning on sufficient controls. Note that we can simply replace
the instrument with the treatment variable in the estimation and inference methods and in the
formal results.

The methodology for estimating policy-relevant effects we consider allows for cases where the
number of potential control variables, p := dim f(X), is much greater than the sample size,
n. Of course, informative inference about causal parameters cannot proceed allowing for p > n
without further restrictions. We impose sufficient structure through the assumption that reduced
form relationships such as E[D|X], E[Z|X], and E[Y|X] are approximately sparse. Intuitively,
approximate sparsity imposes that these reduced form relationships can be represented up to a
small approximation error as a linear combination, possibly inside of a known link function such
as the logistic function, of a small number s < n of the variables in f(X) whose identities are
a priori unknown to the researcher. This assumption allows us to use methods for estimating
models in high-dimensional sparse settings that are known to have good prediction properties
to estimate the fundamental reduced form relationships. We may then use these estimated
reduced form quantities as inputs to estimating the causal parameters of interest. Approaching
the problem of estimating treatment effects within this framework allows us to accommodate
the realistic scenario in which a researcher is unsure about exactly which confounding variables
or transformations of these confounds are important and so must search among a broad set of
controls.

Valid inference following model selection is non-trivial. Direct application of usual inference
procedures following model selection does not provide valid inference about causal parameters
even in low-dimensional settings, such as when there is only a single control, unless one assumes
sufficient structure on the model that perfect model selection is possible. Such structure is very
restrictive and seems unlikely to be satisfied in many economic applications. For example, a
typical condition that allows perfect model selection in a linear model is to assume that all but
a small number of coefficients are exactly zero and that the non-zero coefficients are all large
enough that they can be distinguished them from zero with probability very near one in finite
samples. Such a condition rules out the possibility that there may be some variables which have
moderate, but non-zero, partial effects. Ignoring such variables may lead to only a small loss
in predictive performance while also producing a non-ignorable omitted variables bias that has
a substantive impact on estimation and inference regarding individual model parameters. (For
further discussion, see Leeb and Pé&tscher (2008a; 2008b), Potscher (2009), as well as Belloni,
Chernozhukov, and Hansen (2011).)

A key contribution of our paper is providing inferential procedures for key parameters used
in program evaluation that are theoretically valid within approximately sparse models allowing
for imperfect model selection. Our procedures build upon the insights in Belloni, Chernozhukov,
and Hansen (2010) and Belloni, Chen, Chernozhukov, and Hansen (2012), which demonstrate
that valid inference about low-dimensional structural parameters can proceed following model
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selection, allowing for model selection mistakes, under two key conditions. First, estimation
should be based upon “orthogonal” moment conditions that are first-order insensitive to changes
in the values of nuisance parameters. Specifically, if the target parameter value g is identified
via the moment condition

Epy(W, ag, ho) = 0, (1)

where hg is a nuisance function-valued parameter estimated via a post-model-selection or regu-
larization method, one needs to use a moment function, ¢, such that the moment condition is
orthogonal with respect to perturbations of h around hg. More formally, the moment conditions
should satisfy

O Epyp (W, ag, h)]h=n, = 0 (2)

where Oh computes the functional derivative operator with respect to h. Second, one needs to
use a model selection procedure that keeps model selection errors “moderately” small.

The orthogonality condition embodied in (2]) has a long history in statistics and econometrics.
For example, this type of orthogonality was used by Neyman (1979) in low-dimensional settings
to deal with crudely estimated parametric nuisance parameters. To the best of our knowledge,
Belloni, Chernozhukov, and Hansen (2010) and Belloni, Chen, Chernozhukov, and Hansen (2012)
were the first to use this property in the p > n setting. They applied it to a linear instrumental
variables model with many instruments, where the nuisance function hg is the optimal instrument
estimated by Lasso or post-Lasso methods. Using estimators based upon moment conditions with
this low-bias property insures that crude estimation of hg via post-selection or other regularization
methods has an asymptotically negligible effect on the estimation of ag. Belloni, Chernozhukov,
and Hansen (2011) and Farrell (2013) also exploited this approach in the p > n setting to
develop a double-selection method that yields valid inference on the parameters of the linear part
of the partially linear model and on average treatment effects when the treatment is exogenous
conditional on observables. In the general endogenous treatment effects setting we consider in this
paper, such moment conditions can be found as efficient influence functions for certain reduced
form parameters as in Hahn (1998). Moreover, our analysis allows for function-valued outcomes.
As a result, the parameters of interest «g are themselves function-valued; i.e. they can carry an
index. We illustrate how these efficient influence functions coupled with methods developed for
forecasting in high-dimensional sparse models can be used to estimate and obtain valid inferential
statements about a variety of structural /treatment effects. We formally demonstrate the uniform
validity of the resulting inference within a broad class of approximately sparse models including
models where perfect model selection is theoretically impossible.

The second set of main results of the paper deals with a more general setting, where possibly a
continuum of target parameters is of interest and the Lasso-type or post-Lasso type methods are
used to estimate the a continuum of high-dimensional nuisance functions. This framework is quite
general, and it encompasses the analysis of LATE and other effects for function-valued outcomes
as a special case. It covers a very wide variety of classical and modern moment-condition problems

— it covers both smooth moment conditions as well as non-smooth ones, such those arising in
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the context of structural quantile analysis, for example, the nonseparable endogenous models in
Chernozhukov and Hansen (2005). Here, firstly, we establish a functional central limit theorem for
the continuum of the target parameters, and also show that it holds uniformly in a wide range of
data-generating processes P with approximately sparse continua of nuisance functions. Secondly,
we also establish validity of the multiplier bootstrap for resampling the first order approximations
to the standardized continua of the estimators, and also establish uniform-in-P validity. (These
uniformity results here complement those given in (Romano and Shaikh, 2012) for the empirical
bootstrap.) Thirdly, we establish validity of the functional delta method uniformly in P, under an
appropriately strengthened notion of Hadamard differentiability, as well as uniform-in- P validity
of the functional delta method for the multiplier bootstrap for resampling the smooth functionals
of the continuum of the target parameters. All of these results are new and represent the second
main contribution of the paper.

In establishing our main theoretical results, we consider variable selection for functional re-
sponse data using fi-penalized methods. This type of data arises, for example, when one is
interested in LQTE at not just a single quantile but over a range of quantile indices or when
one is interested in how 1(Y < w) relates to the treatment over a range of threshold values wu.
Considering such functional response data allows us to provide a unified inference procedure for
interesting quantities such as the distributional effects of the treatment as well as simpler ob-
jects such as the LQTE at a single quantile. The main theoretical contribution of the paper is to
demonstrate that the developed methods provide uniformly valid inference for functional response
data in a high-dimensional setting allowing for model selection mistakes. Our result builds upon
the work of Belloni and Chernozhukov (2011b) who provided rates of convergence for variable
selection when one is interested in estimating the quantile regression process with exogenous
variables. More generally, this theoretical work complements and extends the rapidly growing
set of results for /1-penalized estimation methods; see, for example, Frank and Friedman (1993);
Tibshirani (1996); Fan and Li (2001); Zou (2006); Candes and Tao (2007); van de Geer (2008);
Huang, Horowitz, and Ma (2008); Bickel, Ritov, and Tsybakov (2009); Meinshausen and Yu
(2009); Bach (2010); Huang, Horowitz, and Wei (2010); Belloni and Chernozhukov (2011a); Kato
(2011); Belloni, Chen, Chernozhukov, and Hansen (2012); Belloni and Chernozhukov (2013); Bel-
loni, Chernozhukov, and Kato (2013); Belloni, Chernozhukov, and Wei (2013); and the references
therein. We also demonstrate that a simple multiplier bootstrap procedure can be used to pro-
duce asymptotically valid inferential statements on function-valued parameters, which should aid
in the practical implementation of our methods.

We illustrate the use of our methods by estimating the effect of 401(k) participation on mea-
sures of accumulated assets as in Chernozhukov and Hansen (2004)E Similar to Chernozhukov
and Hansen (2004), we provide estimates of LATE and LQTE over a range of quantiles. We
differ from this previous work by using the high-dimensional methods developed in this paper
to allow ourselves to consider a much broader set of control variables than have previously been

2See also Poterba, Venti, and Wise (1994; 1995; 1996; 2001); Benjamin (2003); and Abadie (2003) among others.
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considered. We find that 401(k) participation has a small impact on accumulated financial assets
at low quantiles while appearing to have a much larger impact at high quantiles. Interpreting the
quantile index as “preference for savings” as in Chernozhukov and Hansen (2004), this pattern
suggests that 401(k) participation has little causal impact on the accumulated financial assets of
those with low desire to save but a much larger impact on those with stronger preferences for
saving. It is interesting that these results are quite similar to those in Chernozhukov and Hansen
(2004) despite allowing for a much richer set of control variables.

1.1. Notation. We have a pair of random elements (W,¢) living on the probability space
(S, As, P x P¢). We have i.i.d. copies (W;)i; of W, the data. The variable £ is the bootstrap
multiplier variable with law determined by P, and it is independent of W. The data streams
(W;)22, live on the probability space (A,.A4,Pp), containing the infinite product of the space
above as a subproduct, where notation Pp signifies the dependence on P, the ”data-generating
process” for W. It is important to keep track of this dependence in the analysis, if we want the
results to hold uniformly in P in some set P,, which may be dependent on n (typically increas-
ing in n.) The probability space (A4, A4,Pp) will also carry i.i.d. copies of bootstrap multipliers
(&)52, which are independent of the data streams (W;)72,. Note also that we use capital letters
such as W to denote random elements and use the lower case letters such as w as fixed values
that these random elements can take. The operator Ep denotes the expectation with respect to
the probability measure Pp.

We denote by P,, the (random) empirical probability measure that assigns probability n=! to
each (W;,&;). E,, denotes the expectation with respect to the empirical measure, and G,, denotes
the empirical process /n(E, — P), i.e.

Gn(f) = Gnl(f(W,8)) :n_l/QZ{f(Wi,&)—P[f(W)7§]}7 Pf(W,€)] := /f(w,é)dp(w)dps(é)

indexed by a measurable class of functions F : S — R; see van der Vaart and Wellner (1996),

Chapter 2.3. In what follows, we use || - [|[p, to denote the L?(P) norm; for example, we use
IFW)llpg = (f [f(w)9dP(w))/* and || f(W)e,q = (07" 320y [F(Wi)]|9)!/2. For a vector v =
(v1,...,vp) € RP, |lv]|o denotes the fp-“norm” of v, that is, the number of non-zero components

of v, ||v]|1 denotes the ¢1-norm of v, that is, ||v||;1 = |v1|+- -+ |vn|, and ||v]| denotes the Euclidean
norm of v, that is, |[v]| = vv'v. Given a class F of measurable functions from S to R we say that
it is suitably measurable, if it is an image admissible Suslin class as defined in (Dudley, 1999),
which is a rather mild assumption. For a positive integer k, symbol [k] denotes the set {1,...,k}.

2. THE SETTING AND THE TARGET PARAMETERS

2.1. Observables and Reduced Form Parameters. The observables are a random variable
W = ((Yu)ueu, X, Z,D). The outcome variable of interest Y, is indexed by u € U. We give
examples of the index u below. The variable D € D = {0,1} is an indicator of the receipt of a
treatment or participation in a program. It will be typically treated as endogenous; that is, we
will typically view the treatment as assigned non-randomly with respect to the outcome. The
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instrumental variable Z € Z = {0, 1} is a binary indicator, such as an offer of participation, that
is assumed to be randomly assigned conditional on the observable covariates X with support
X. For example, in the empirical application we argue that 401(k) eligibility can be considered
exogenous only after conditioning on income and other individual characteristics. The notions
of exogeneity and endogeneity we employ are standard, but we state them below for clarity and
completeness. We also restate standard conditions that are sufficient for a causal interpretation
of our target parameters.

The indexing of the outcome Y, by wu is useful to analyze functional data. For example, Y,
could represent an outcome falling short of a threshold, namely Y, = 1(Y < u), in the context
of distributional analysis; Y,, could be a height indexed by age u in growth charts analysis; or Yy,
could be a health outcome indexed by a dosage u in dosage response studies. Our framework is
tailored for such functional response data. The special case with no index is included by simply
considering U to be a singleton set.

We make use of two key types of reduced form parameters for estimating the structural param-
eters of interest — (local) treatment effects and related quantities. These reduced form parameters
are defined as

ay(z) := Eplgy (2, X)] for z € {0,1} and ~y := Ep[V], (3)
where z = 0 or z = 1 are the fixed values of the random variable Z E The function gy, mapping
the support ZX of the vector (Z, X) to the real line R, is defined as

gv(z,x2) = Ep[V|Z = 2, X = z|. (4)

We use V' to denote a target variable whose identity may change depending on the context such
as V =14(D)Y, or V = 14(D), where 14(D) := 1(D = d) is the indicator function.

All the structural parameters we consider are smooth functionals of these reduced-form pa-
rameters. In our approach to estimating treatment effects, we estimate the key reduced form
parameter oy (z) using recent approaches to dealing with high-dimensional data coupled with
using “low-bias” estimating equations. The low-bias property is crucial for dealing with the
“non-regular” nature of penalized and post-selection estimators which do not admit lineariza-
tions except under very restrictive conditions. The use of regularization by model selection or
penalization is in turn motivated by the desire to accommodate high-dimensional data.

2.2. Target Structural Parameters — Local Treatment Effects. The reduced form param-
eters defined in () are key because the structural parameters of interest are functionals of these
elementary objects. The local average structural function (LASF) defined as

a1,(pyv, (1) — a1,Dyy, (0)
a1,(p)(1) = az,py(0)

underlies the formation of many commonly used treatment effects. The LASF identifies the

9Yu (d) = , de {07 1} (5)
average outcome for the group of compliers, individuals whose treatment status may be influenced

3The expectation that defines the parameter ay (z) is well-defined under the support condition 0 < P(Z =1 |
X) < 1 a.s. We impose this condition in Assumption [l and Assumption 2]
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by variation in the instrument, in the treated and non-treated states under standard assumptions;
see, e.g. Imbens and Angrist (1994). The local average treatment effect (LATE) is defined as
the difference of the two values of the LASF:

Oy, (1) — by, (0). (6)

The term local designates that this parameter does not measure the effect on the entire population
but on the subpopulation of compliers.

When there is no endogeneity, formally when D = Z, the LASF and LATE become the average
structural function (ASF) and average treatment effect (ATE) on the entire population. Thus,

our results cover this situation as a special case where the ASF and ATE are given by

Oy, (2) = ay,(2), Oy, (1) — 0y, (0) = ay, (1) — ay,(0). (7)

We also note that the impact of the instrument 7 itself may be of interest since Z often encodes
an offer of participation in a program. In this case, the parameters of interest are again simply
the reduced form parameters ay, (z) and ay, (1) —ay, (0). Thus, the LASF and LATE are primary
targets of interest in this paper, and the ASF and ATE are subsumed as special cases.

2.2.1. Local Distribution and Quantile Treatment Effects. Setting Y, =Y in (Bl and (@) provides
the conventional LASF and LATE. An important generalization arises by letting Y, = 1(Y < u)
be the indicator of the outcome of interest falling below a threshold u. In this case, the family
of effects

(Oy, (1) — 0y, (0))uer, (8)

describe the local distribution treatment effects (LDTE). Similarly, we can look at the quantile
left-inverse transform of the curve u — Oy, (d),

0y (7,d) ;= inf{u € R: Oy, (d) > 7}, 9)
and examine the family of local quantile treatment effects (LQTE):

(03 (7, 1) = 65 (7, 0)re0,1)- (10)

2.3. Target Structural Parameters — Local Treatment Effects on the Treated. In ad-
dition to the local treatment effects given in Section 2.2, we may be interested in local treatment
effects on the treated. The key object in defining local treatment effects on the treated is the
local average structural function on the treated (LASF-T) which is defined by its two values:

N V102)) i a1,(Dyv, (0)
V14(D) — @14(D)(0)

Jy, (d) , de{0,1}. (11)

These quantities identify the average outcome for the group of treated compliers in the treated
and non-treated states under assumptions stated below. The local average treatment effect on the
treated (LATE-T) introduced in Hong and Nekipelov (2010) is defined simply as the difference
of two values of the LASF-T:

Uy, (1) = Vv, (0). (12)
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The LATE-T may be of interest because it measures the average treatment effect for treated
compliers, namely the subgroup of compliers that actually receive the treatment

When the treatment is assigned randomly given controls so we can take D = Z, the LASF-
T and LATE-T become the average structural function on the treated (ASF-T) and average
treatment effect on the treated (ATE-T). In this special case, the ASF-T and ATE-T are given
by

Y1,(D)Ya Y10(D)Y, — v, (0)
)=——"— Uy (0)=
Y11(D) To(p) — 1
and we can use our results to provide estimation and inference results for these quantities.

Uy, (1 Uy, (1) =y, (0); (13)

2.3.1. Local Distribution and Quantile Treatment Effects on the Treated. Local distribution treat-
ment effects on the treated (LDTE-T) and local quantile treatment effects on the treated (LQTE-
T) can also be defined. As in Section 2.2.1, we let Y,, = 1(Y < u) be the indicator of the outcome
of interest falling below a threshold uw. The family of treatment effects

(Vy, (1) = 0,(0))ucr (14)

then describes the LDTE-T. We can also use the quantile left-inverse transform of the curve
u —r 19yu (d),
9y (1,d) ;== inf{u € R: dy, (d) > 7}, (15)
and define LQTE-T:
(79;7(7-7 1) - 19(; (T7 O))TE(O,I)‘ (16)
Under conditional exogeneity LQTE and LQTE-T reduce to the quantile treatment effects (QTE)
(Koenker (2005)) and quantile treatment effects on the treated (QTE-T).

2.4. Causal Interpretations for Structural Parameters. The quantities discussed in Sec-
tions 2.2 and 2.3 are well-defined and have causal interpretation under standard conditions. To
discuss these conditions, we use potential outcomes notation. Let Y,,; and Y, denote the poten-
tial outcomes under the treatment states 1 and 0. These outcomes are not observed jointly, and
we instead observe Y, = DY,1 + (1 — D)Y,0, where D € D = {0,1} is the random variable indi-
cating program participation or treatment state. Under exogeneity, D is assigned independently
of the potential outcomes conditional on covariates X, i.e. (Yy,1,Yy) 1L D | X a.s., where 1L

denotes statistical independence.

When exogeneity fails, D may depend on the potential outcomes. For example, people may
drop out of a program if they think the program will not benefit them. In this case, instrumental
variables are useful in creating quasi-experimental fluctuations in D that may identify useful
effects. To provide identification in this setting, we assume the existence of an instrument Z,
such as an offer of participation, that is assigned randomly conditional on observable covariates
X. We further assume the instrument is binary. Let the random variables D; and Dg indicate

4Note that LATE-T # LATE in general, because the distribution of X might be different for treated and

non-treated compliers.
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the potential participation decisions under the instrument states 1 and 0, respectively. These
variables may in general depend on the potential outcomes. As with the potential outcomes,
the potential participation decisions under both instrument states are not observed jointly. The
realized participation decision is then given by D = ZD; + (1 — Z)Dy.

There are many causal quantities of interest for program evaluation. Chief among these are

various structural averages

average structural function (ASF):  Ep[Yy4l,

average structural function on the treated (ASF-T): Ep[Y,q| D =1],

local average structural function (LASF): Ep[Y,q | D1 > Dy,

local average structural function on the treated (LASF-T): Ep[Yyq | D1 > Do, D = 1],

as well as effects derived from them such as

e average treatment effect (ATE): Ep[Y,1 — Yyo,

e average treatment effect on the treated (ATE-T): Ep[Yy — Y | D =1],

e local average treatment effect (LATE): Ep[Y,1 — Yo | D1 > Do,

e local average treatment effect on the treated (LATE-T): Ep[Yy1 — Yuo | D1 > Do, D = 1].

These causal quantities are the same as the structural parameters defined in Sections 2.2-2.3
under the following well-known sufficient condition.

Assumption 1 (Causal Interpretability). The following conditions hold P-almost surely: (Ex-
ogeneity) ((Yur,Yuo)uew D1, Do) AL Z | X; (First Stage) Ep[Dy | X] # Ep[Do | X]; (Non-
Degeneracy) P(Z =1| X) € (0,1); (Monotonicity) P(Dy > Dy | X) = 1.

This condition is much-used in the program evaluation literature. It has an equivalent formu-
lation in terms of a simultaneous equation model with a binary endogenous variable; see Vytlacil
(2002) and Heckman and Vytlacil (1999). For a thorough discussion of this assumption, we refer
to Imbens and Angrist (1994). Using this assumption, we present an identification lemma which
follows from results of Abadie (2003) and Hong and Nekipelov (2010) that both in turn build
upon Imbens and Angrist (1994). The lemma shows that the parameters 0y, and vy, defined
earlier have a causal interpretation under Assumption [ Therefore, our referring to them as
structural /causal is justified under this condition.

Lemma 2.1 (Identification of Causal Effects). Under Assumption [, for each d € D,
Ep[Yua | D1 > Do = by, (d), Ep[Yua| D1 > Do, D = 1] = vy, (d).
Furthermore, if D is exogenous, namely D = Z a.s., then

Ep[Yud ‘ Dy > DO] = EP[Yu ], Ep[Yud ‘ Dy > Dy, D = 1] = EP[Yud ’ D = 1].
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3. ESTIMATION OF REDUCED-FORM AND STRUCTURAL PARAMETERS IN A DATA-RICH
ENVIRONMENT

Recall that the key objects used in defining the structural parameters in Section 2 are the
expectations

ay(z) = Eplgy (2, X)] and yv := E[V], (17)
where gy (z,X) = Ep[V|Z = z, X] and V denotes a variable whose identity will change with the
context. Specifically, we shall vary V over the set V,:

V €V i= (Viy)i1 i= {Yu, 10(D)Ys, 10(D), 11(D) Yy, 11 (D)} (18)

Given the definition of oy (2) = Eplgy (2, X)], it is clear that gy (z, X) will play an important
role in estimating ay (z). A related function that will play an important role in forming a robust
estimation strategy is the propensity score my : ZX — R defined by

my(z,x) :=PplZ = z|X = z]. (19)

We will denote other potential values for the functions gy and myz by the parameters g and m,
respectively. A first approach to estimating ay (z) is to try to recover gy and my directly using
high-dimensional modelling and estimation methods.

As a second approach, we can further decompose gy as
1

gv(z,x) = Zev(d,z,:n)lp(d,z,:n), (20)
d=0

where the regression functions ey and [p, mapping the support DZX of (D, Z, X) to the real
line, are defined by

ev(d,z,z) ==Ep[V|D =d,Z = 2,X = x| and (21)
Ip(d,z,x) :=Pp[D=d|Z =2,X = x|. (22)

We will denote other potential values for the functions ey and [p by the parameters e and [. In
this second approach, we can again use high-dimensional methods for modelling and estimating
ey and lp, and we can then use relation ([20) to obtain gy. Given the resulting gy and an
estimate of myz obtained from using high-dimensional methods to model the propensity score,
we will then recover ay (z).

This second approach may be seen as a “special” case of the first. However, this approach
could in fact be more principled. For example, if we use linear or generalized linear models to
approximate each of the elements ey, [p and myz, then the implied approximations can strictly
nest some coherent models such as the standard dummy endogenous variable model with normal
disturbancesﬁ This strict nesting of coherent models is more awkward in the first approach
which directly approximates gy using linear or generalized linear forms. Indeed, the “natural”
functional form for gy is not of the linear or generalized linear form but rather is given by the

S¢Generalized linear” means “linear inside a known link function” in the context of the present paper.
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affine aggregation of cross-products shown in (20). While these potential differences exist, we
expect to see little quantitative difference between the estimates obtained via either approach if
sufficiently flexible functional forms are used. For example, we see little difference between the
two approaches in our empirical example.

In the rest of the section we describe the estimation of the reduced-form and structural pa-

rameter. The estimation method consists of 3 steps:

(1) Estimation of the predictive relationships myz and gy, or myz, [p and ey, using high-
dimensional nonparametric methods with model selection.

(2) Estimation of the reduced form parameters oy and 7y using low bias estimating equations
to immunize the reduced form estimators to imperfect model selection in the first step.

(3) Estimation of the structural parameters and effects via plug-in rule.

3.1. First Step: Modeling and Estimating Regression Function gy, mz, [p, and ey in
a Data-Rich Environment. In this section, we elaborate the two strategies that we introduced

above.

Strategy 1. We first discuss direct estimation of gy and my, which corresponds to the first
strategy suggested in the previous subsection. Since the functions are unknown and potentially

complicated, we use generalized linear combinations of a large number of control terms

FX) = (f;(X)=1 (23)
to approximate gy and my. Specifically, we use
gv(z,@) = Av[f(z,2) Bv] +rv(z,2), (24)
fz2) = (1 =2)f(2),2f(2)), Bv = (Bv(0),Bv(1)), (25)
and
mz(1,x) = Az[f(x) Bz] +r2z(x), mz(0,2) =1~ Az[f(2)'Bz] —rz(2). (26)

In these equations, ry (z,z) and rz(z) are approximation errors, and the functions Ay (f(z, ) By)
and Ayz(f(z)'Bz) are generalized linear approximations to the target functions gy (z,z) and
myz(1,x). The functions Ay and Ay are taken to be known link functions A. The most common
example is the linear link A(u) = u. When the response variables V', Z, and D are binary, we
may also use the logistic link A(u) = Ag(u) = e*/(1 + €") and its complement 1 — Ag(u) or the
probit link A(u) = ®(u) = (2r) /2 I e=**/2dz and its complement 1 — ®(u). For clarity, we
use links from the finite set £ = {Id, ®,1 — ®, Ag,1 — Ap} where Id is the identity (linear) link.

In order to allow for a flexible specification and incorporation of pertinent confounding factors,
we allow for the dictionary of controls, denoted f(X), to be “rich” in the sense that its dimension

p = p, may be large relative to the sample size. Specifically, our results require only that

logp = o(n'/?)
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along with other technical conditions. High-dimensional regressors f(X) could arise for different
reasons. For instance, the list of available variables could be large, i.e. f(X) = X as in e.g.
Koenker (1988). It could also be that many technical controls are present; i.e. the list f(X) =
(f;(X ))?:1 could be composed of a large number of transformations of elementary variables X
such as B-splines, dummies, polynomials, and various interactions as, e.g., in Newey (1997),
Tsybakov (2009), and Wasserman (2006). The functions f; forming the dictionary can depend
on n, but we suppress this dependence.

Having very many controls f(X) creates a challenge for estimation and inference. A useful
condition that makes it possible to perform constructive estimation and inference in such cases is
termed approximate sparsity or simply sparsity. Sparsity imposes that there exist approximations
of the form given in (24))-(26]) that require only a small number of non-zero coefficients to render
the approximation errors small relative to estimation error. More formally, sparsity relies on two
conditions. First, there must exist By and Sz such that, for all V € V:= {V, : u € U},

1Bv o+ 11Bzllo < s. (27)

That is, there are at most s = s, < n components of f(Z, X) and f(X) with nonzero coefficient
in the approximations to gy and myz. Second, the sparsity condition requires that the size of the
resulting approximation errors is small compared to the conjectured size of the estimation error;
namely, for all V € V,

{Ep[ri (2, X)}'? + {Ep[rZ (X} S Vs/n. (28)

Note that the size of the approximating model s = s,, can grow with n just as in standard series
estimation, subject to the rate condition

s*log®(p vV n)/n — 0.

This condition ensures that the functions gy and my are estimable at the o(n~'/*) rates and
are used to derive asymptotic normality results for the structural and reduced-form parameter
estimates. This condition can be substantially relaxed if sample splitting methods are used.

The high-dimensional-sparse-model framework outlined above extends the standard framework
in the program evaluation literature which assumes both that the identities of the relevant controls
are known and that the number of such controls s is much smaller than the sample size. Instead,
we assume that there are many, p, potential controls of which at most s controls suffice to achieve
a desirable approximation to the unknown functions gy and myz; and we allow the identity of
these controls to be unknown. Relying on this assumed sparsity, we use selection methods to
choose approximately the right set of controls.

Current estimation methods that exploit approximate sparsity employ different types of reg-
ularization aimed at producing estimators that theoretically perform well in high-dimensional
settings while remaining computationally tractable. Many widely used method are based on
f1-penalization. The Lasso method is one such commonly used approach that adds a penalty for
the weighted sum of the absolute values of model parameters to the usual objective function of
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an M-estimator. A related approach is the Post-Lasso method which performs re-estimation of
the model after selection of variables by Lasso. These methods are discussed at length in recent
papers and review articles; see, for example, Belloni, Chernozhukov, and Hansen (2013). Rather
than providing specifics of these methods here, we specify detailed implementation algorithms in
a supplementary appendix.

In the following, we outline the general features of the Lasso and Post-Lasso methods focusing
on estimation of gy. Given the data (f/i,f(i)?:l = (Vi, f(Z;, X3))!,, the Lasso estimator Sy

solves

. - A~
B € arg min (Ba[M(V, X'B)] + 21 ¥6]h), (29)

where U = diag(lAl, . ,lAp) is a diagonal matrix of data-dependent penalty loadings, M (y,t) = (y—
t)2/2 in the case of linear regression, and M (y,t) = 1(y = 1)log A(t)+1(y = 0) log(1—A(t)) in the
case of binary regression. In the binary case, the link function A could be logistic or probit. The
penalty level, \, and loadings, T] 7 =1,...,p, are selected to guarantee good theoretical properties
of the method. We provide theoretical choices and further detail regarding implementation in
Section 5. A key consideration in this paper is that the penalty level needs to be set to account for
the fact that we will be simultaneously estimating potentially a continuum of Lasso regressions
since our V varies over the list 1V, with u varying over the index set U.

The post-Lasso method uses EV solely as a model selection device. Specifically, it makes use
of the labels of the regressors with non-zero estimated coefficients,

Iy = support(By).

The Post-Lasso estimator is then a solution to
- ] -, e
B < arg min (B, [M(V.X'8)]: 5 = 0.5 ¢ Iy ). (30)

A main contribution of this paper is establishing that the estimator gy (Z, X) = A(f(Z, X)'Bv)
of the regression function gy (Z, X), where (B = BV or fy = BV, achieve the near oracle rate
of convergence y/(slogp)/n and maintain desirable theoretic properties, while allowing for a
continuum of response variables.

Estimation of my proceeds similarly. The Lasso estimator BZ and Post-Lasso estimators
Bz are defined analogously to BV and By using the data (f/;-,)z,-)?:l: (Zi, f(Xi));. As with
the estimator gy (Z, X), the estimator myz(1,X) = Az(f(X) Bz) of mz(X), with 37 = By or
By = By, achieves the near oracle rate or convergence \/W and has other good theoretic
properties. The estimator of mz (0, X) is then given by 1 —mz(1, X).

Strategy 2. The second strategy we consider involves modeling and estimating mz as above
via (20) while modeling gy through its disaggregation into the parts ey and Ip via ([20). We
model each of the unknown parts of ey and [p using the same approach as in Strategy 1@

6Upon conditioning on D = d some parts become known; e.g., e1,(pyy (d',,2) = 0if d # d’ and e1 ,(py(d', z,z) =
lifd=d.
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Specifically, we model the conditional expectation of V' given D, Z, and X by

ev(d,z,x) = Tv[f(d,z,2)'0v] + ov(d, z,2), (31)
f(dv Z,:E) = ((1 - d)f(zv$),7 df(zv$),)/7 (32)
Oy = (0v(0,0),0v(0,1),6y,(1,0),0y(1,1)). (33)

We model the conditional probability of D taking on 1 or 0, given Z and X by

Ip(1,2z,2) = Tplf(z,2)'0p] + op(2, 1), (
Ip(0,2z,2) =1 —Tp[f(z,2)0p] — op(z,x), (
flz2) = (1= 2)f(2), 2f(2)), (36
Op = (0p(0),0p(1)")". (

Here oy (d, z,x) and op(z,x) are approximation errors, and the functions 'y (f(d, z, z)'6y) and
I'p(f(z,2)'0p) are generalized linear approximations to the target functions ey (d,z,z) and
Ip(1,z,2). The functions I'y and I'p are taken to be known link functions A € £ as in the
previous strategy.

As in the first strategy, we maintain approximate sparsity in the modeling framework. We
assume that there exist 8z, 6y and 0p such that, for all V € V,

10vllo + 1€pllo + |18z ]l0 < s. (38)

That is, there are at most s = s,, < n components of f(D, Z, X), f(Z,X) and f(X) with nonzero
coefficient in the approximations to ey, [p and my. The sparsity condition also requires the size
of the approximation errors to be small compared to the conjectured size of the estimation error:
For all V€ V, we assume

{{Eplol (D, 2, X)}'/? + {Ep[oh(Z, X)] + Ep[rZ (X)[}/*}2 S Vs /n. (39)

Note that the size of the approximating model s = s,, can grow with n just as in standard series
estimation as long as s2log3(p V n)/n — 0.

We proceed with the estimation of ey and [p analogously to the approach outlined in Strat-
egy 1. The Lasso estimator 5‘/ and Post-Lasso estimators 6y are defined analogously to BV
and [y using the data (Y;, X;)7_,= (Vi, f(D;, Zi, Xi))- L and the link function A = TI'yy. The
estimator ey(D, Z, X) = Dy [f(D, Z, X)'8y], with 8y = 6y or 6y = By, have near oracle rates
of convergence, \/W, and other desirable properties. The Lasso estimator HD and Post-
Lasso estimators 9~D are also defined analogously to BV and BV using the data (f/;-,Xi)?:l:
(D, f(Z;, X;))?_, and the link function A = I'p. Again, the estimator Ip(Z,X) =Tplf(Z X)bp)
of Ip(Z,X), where p = 9D or p = 6p, have good theoretical properties including the near
oracle rate of convergence, \/m. The resulting estimator for gy (z, X) is then

1

Z (d,z,2)lp(d, z,x). (40)

d=0
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3.2. Second Step: Robust Estimation of Reduced-Form Parameters ay(z) and vy.
Estimation of the key quantities ay (z) will make heavy use of “low-bias” moment functions as
defined in ([2)). These moment functions are closely tied to efficient influence functions, where
efficiency is in the sense of locally minimax semi-parametric efficiency. The use of these functions
will deliver robustness with respect to the irregularity of the post-selection and penalized esti-
mators needed to manage high-dimensional data. The use of these functions also automatically
delivers semi-parametric efficiency for estimating and performing inference on the reduced-form
parameters and their smooth transformations — the structural parameters.

The efficient influence function and low-bias moment function for ay(z) for z € Z = {0,1}
are given respectively by

W (W) =49 gy my, (Wi av (2)) and (41)

0 (Wia) = N = 2((‘: = )g(z, X))

The efficient influence function was derived by Hahn (1998); they were also used by Cattaneo
(2010) in the series context (with p < n) and Rothe and Firpo (2013) in the kernel context. The
efficient influence function and the moment function for vy are trivially given by

UL (W) o= ¢y, (Wv), and o) (W, y) ==V — . (43)

+9(z,X) —a. (42)

We then define the estimator of the reduced-form parameters ay (z) and vy (2) as solutions
a = ay(z) and v = 7y to the equations

En[qb&z,ﬁv,fﬁz (VV7 a)] =0, En[w\’;(Wv ’Y)] =0, (44)

where gy and my are constructed as in the previous section. Note that gy may be constructed
via either Strategy 1 or Strategy 2. We apply this procedure to each variable name V € V,, and
obtain the estimator

Pu = (1@ (0),av (1), AV ) yey, of pui= ({av(0),av ()W) yey, I (45)

The estimator and the estimand are vectors in R% with dimension d, =3 x dimV, = 15.

In the next section, we formally establish a principal result which shows that

V(pu — pu) ~ N(0,Varp(¥f)), ol == ({¥¥,0, %71,y Dvev,, (46)
uniformly in P € P,,

where P,, is a rich set of data generating processes P. The notation “Z, p ~ Zp uniformly
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in P € P,” is defined formally in the Appendix and can be read as “Z, p is approximately
distributed as Zp uniformly in P € P,.” This usage corresponds to the usual notion of asymptotic
distribution extended to handle uniformity in P. Here P, is a “rich” set of data generating

processes P which includes cases where perfect model selection is impossible theoretically.

We then stack all the reduced form estimators and the estimands over u € U as

ﬁ: (ﬁu)ueu and P = (pu)uel/h
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giving rise to the empirical reduced-form process p and the reduced-form functional p. We
establish that /n(p — p) is asymptotically Gaussian: In £>°(Uf)%,

\/ﬁ(ﬁ— p) ~ ZP = (Gpwz)uez/h uniformly in Pe Pn (47)

where Gp denotes the P-Brownian bridge (van der Vaart and Wellner, 1996). This result contains
([H6]) as a special case and again allows P, to be a “rich” set of data generating processes P that
includes cases where perfect model selection is impossible theoretically. Importantly, this result
verifies that the functional central limit theorem applies to the reduced-form estimators in the
presence of possible model selection mistakes.

Since some of our objects of interest are complicated, inference can be facilitated by a multiplier
bootstrap method. We define p* = (p})ucu, a bootstrap draw of p, via

Vi, = pu) =0~ Y (W). (48)
i=1
Here (&), are i.i.d. copies of £ which are independently distributed from the data (W;)?_; and
whose distribution does not depend on P. We also impose that

Elg] =0, E[¢*)=1, Elexp(|¢])] < oo.

Examples of € include (a) £ = £ —1, where £ is standard exponential random variable, (b) £ = N,
where A is standard normal random variable, and (c) & = N7/v/2 + (N2 — 1)/2, where N and
N, are mutually independent standard normal random Variablesﬁ Methods (a), (b), and (c)
correspond respectively to the Bayesian bootstrap (e.g., Hahn (1997), Chamberlain and Imbens
(2003)), the Gaussian multiplier method (e.g, van der Vaart and Wellner (1996)), and the wild
bootstrap method (Mammen, 1993) P8 in [@R)) is an estimator of the influence function v}

defined via the plug-in rule:

= (Wveve, BOV) = (W05, m, (W.av(0). 481 5, m, (W.av(1),07 (W 3v)}. (49)
Note that this bootstrapping is computationally efficient since it does not involve recomputing
the influence functions 1;5 Each new draw of (&) generates a new draw of p* holding the data
and the estimates of the influence functions fixed. This method simply amounts to resampling
the first-order approximations to the estimators. Here we build upon the prior uses of this or
similar methods in low-dimensional setting include Hansen (1996) and Kline and Santos (2012).

We establish that that the bootstrap law \/n(p* — p) is uniformly asymptotically valid: In the
metric space £°(U)%, both unconditionally and conditionally on the data,

Vn(p* —p) ~p Zp, uniformly in P € P,
where ~»p denotes the convergence of the bootstrap law conditional on the data, as defined in

the Appendix.

8We do not consider the nonparametric bootstrap, which corresponds to using multinomial multipliers &, to

reduce the length of the paper; but we note that it is possible to show that it is also valid in the present setting.
9 The motivation for method (c) is that it is able to match 3 moments since E[¢?] = E[¢®] = 1. Methods (a)

and (b) do not satisfy this property since E[¢%] = 1 but E[¢*] # 1 for these approaches.



18

3.3. Step 3: Robust Estimation of the Structural Parameters. All structural parameters
we consider take the form of smooth transformations of reduced-form parameters:

A = (Ay)qeo, where Ay :=¢(p)(q), ¢ € Q. (50)

The structural parameters may themselves carry an index ¢ € Q that can be different from u; for
example, the structural quantile treatment effects are indexed by the quantile index ¢ € (0,1).
This formulation includes as special cases all the structural functions we previously mentioned.
We estimate these quantities by the plug-in rule. We establish the asymptotic behavior of these
estimators and the validity of the bootstrap as a corollary from the results outlined in Section
3.2 and the functional delta method.

For the application of the functional delta method, we require that the functionals be Hadamard
differentiable — tangential to a subset that contains realizations of Zp for all P € P, — with de-
rivaAtive map h — (b;)(iz) = (A;’q(h))qeg. We define the estimators and their bootstrap versions
as A = (Ag)geg and A* = (A})eo, where

Ry=6() (0 B =0 () (51)
We establish that these estimators are asymptotically Gaussian
V(A = A) ~ ¢),(Zp), uniformly in P € Py, (52)
and that the bootstrap consistently estimates their large sample distribution:
VA(A* — A) w5 ¢,(Zp), uniformly in P € P,. (53)

These results can be used to construct simultaneous confidence bands on A.

4. THEORY OF ESTIMATION AND INFERENCE ON LOCAL TREATMENT EFFECTS FUNCTIONALS

Consider fixed sequences of positive numbers d, N\, 0, ¢, N\, 0, A, \, 0, ¢, — o0, and
1 < K,, < 00, and positive constants ¢, C, and ¢ < 1/2 which will not vary with P. P is allowed
to vary in the set P, of probability measures, termed “data-generating processes”, where P, is
typically a weakly increasing in n set.

Assumption 2 (Basic Assumptions). (i) For each n > 1, our data will consist of i.i.d. copies
(W) of the stochastic process W = ((Yy)ueu, X, Z, D) defined on the probability space (S, S, P),
where P € P, and the collection (Y, )ueu is suitably measurable, namely image-admissible Suslin
(Dudley, 1999, p. 186). Let

Vi = (Vij)jeg = {Yu, 1o(D)Yu, 10(D), 11(D)Yy, 11(D)}

where J ={1,...,5} and V = (V) ueu- (ii) For P := U, Py, the map u — Y, obeys the uniform
continuity property:

limsup sup [|¥, — Yallp2 =0, sup Epsup |Y,|*"¢ < oo,
NO PeP dy (u,)<e pPeP  ueld
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for each j € J, where the supremum is taken over u,u € U, and U is a totally bounded metric
space equipped with the metric dy . The uniform e covering entropy of (Yy,u € U) is bounded
by C'log(e/e) vV 0. (iii) For each P € P, the conditional probability of Z =1 given X is bounded
away from zero or one: P(c < my(z,X) < 1—) = 1; the instrument Z has a non-trivial
impact on D, namely P(¢ < Ip(1,1,X) —Ip(1,0,X)) = 1; and the regression function gy is
bounded, ||gv||poo < 00 for all V e V.

This assumption implies that the set of functions (v4)yey, where 14 1= {Yv0, ¥ 1 VN veva
is P-Donsker uniformly in P. That is, it implies

Znp ~ Zp in £2°U)%, uniformly in P € P, (54)
where
Zn,P = (Gn¢5)ueu and Zp = (GPT,Z)Z)uew (55)
with Gp denoting the P-Brownian bridge (van der Vaart and Wellner, 1996), and Zp having
bounded, uniformly continuous paths uniformly in P € P:

sup Epsup || Zp(u)|| < oo, limsup Ep sup [[Zp(u) — Zp(4)| = 0. (56)
PEP  ueld ENOPEP  dy(uii)<e

Other assumptions will be specific to the strategy taken.

Assumption 3 (Approximate Sparsity for Strategy 1). Under each P € P, and for each n >
no, uniformly for all V. € V the following conditions hold: (i) The approzimations (Z4)-(24)
hold with the link functions Ay and Az belonging to the set L, the sparsity condition holding,
18vllo + 18zll0 < s, the approzimation errors satisfying ||rv ||p2+||7zllp2 < 6nn ™4, |rv || poo +
|7zl Poo < €n, and the sparsity index and the number of terms p in vector f(X) obeying s log®(pV
n)/n < 8,. (i) There are estimators By and Bz such that, with probability no less than 1 —
An, the estimation errors satisfy |f(Z, XY By — Bv)llpnz + 1F(XY(Bz — B2)llpnn < Sun11,
Ku||Bz — Bz|1 + KBz — Bzll1 < 6n; the estimators are sparse such that ||By||o + ||Bz]lo < Cs;
and the empirical and populations norms induced by the Gram matriz formed by (f(X;)), are
equivalent on sparse subsets, sup| s <s,s |[[£(X) 0|, 2/ f(X) 6]l p2 — 1| < 0n. (iii) The following
boundedness conditions hold: ||| f(X)|lec||Poc < Ky and ||V pee < C.

Comment 4.1. These conditions are simple intermediate-level conditions which encode both the
approximate sparsity of the models as well as some reasonable behavior on the sparse estimators
of myz and gy . Sufficient conditions for the equivalence between empirical and population norms
are given in Belloni, Chernozhukov, and Hansen (2011). The boundedness conditions are made
to simplify arguments, and they could be removed at the cost of more complicated proofs and
more stringent side conditions. ]

Assumption 4 (Approximate Sparsity for Strategy 2). Under each P € P, and for all n > ny,
uniformly for all V- € V the following conditions hold: (i) The approximations (31)-(37) and
(28) apply with the link functions Ty, T'p and Ay belonging to the set L, the sparsity condition
10vlo + [16pllo + |5zllo < s holding, the approzimation errors satisfying ||opl|lp2 + |lov|p2 +
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Irzllp2 < 8,n~ % and |lop||lpeo + llovpoo + 72l Poo < €n, and the sparsity index s and the
number of terms p obeying s*log®(p V n)/n < 6,. (ii) There are estimators Oy, Op, and By
such that, with probability no less than 1 — A, the estimation errors satisfy ||f(D, Z, X)'(0y —
V)2t f(Z, X) (00—=0D) e, 2+ F(X) (Bz—B2) B2 < 6an™/* and K, || 0y —0y |1 +Kn||fp—
Opll1 + KnllBz — Bz|l1 < €n; the estimators are sparse such that |0y |lo + ||0pllo + ||Bz]lo < Cs;
and the empirical and populations norms induced by the Gram matriz formed by (f(X;))’, are
equivalent on sparse subsets, sup|s <, |1f(X) 0|, 2/ f(X)'0llp2 — 1| < 6p. (iii) The following
boundedness conditions hold: ||| f(X)|lec||Poc < Ky and ||V pee < C.

Under the stated assumptions, the empirical reduced form process ZL p = +/n(p— p) defined
by (@) obeys the following laws.

Theorem 4.1 (Uniform Gaussianity of the Reduced-Form Parameter Process). Under
Assumptions 2 and 3 or 2 and 4 holding, the reduced-form empirical process admits a lineariza-
tion, namely

~

Znp =P —p) = Znp+op(l) inl®U)%, uniformly in P € P,. (57)
The process is also asymptotically Gaussian, namely

Zl,p ~ Zp in 1°U)% , uniformly in P € P, (58)
where Zp is defined in [53) and its paths obey the property (50) .

Another main result of this section shows that the bootstrap law

Z; p=n(p" — )

provides a valid approximation to the large sample law of \/n(p — p).

Theorem 4.2 (Validity of Multiplier Bootstrap for Inference on Reduced-Form Pa-
rameters). Under Assumptions 2 and 3 or 2 and 4, the bootstrap law consistently approximates
the large sample law Zp of Z,, p uniformly in P € P, namely,

2;713 wp Zp in °U)%, uniformly in P € P,. (59)

The notation ~-p is defined in the Appendix and just means the usual notion of weak conver-
gence in probability of the bootstrap law.

We derive the large sample distribution and validity of the multiplier bootstrap for structural
functionals via the functional delta method, which we modify to handle uniformity with respect
to the underlying dgp P. We shall need the following assumption on the structural functionals.

Assumption 5 (Uniform Hadamard Differentiability of Structural Functionals). Suppose that
for each P € P, p = pp is an element of a compact subset Dy C D = £>°(U)%. Suppose o — ¢(0),
a functional of interest mapping D, to £>°(Q), is Hadamard differentiable in o with derivative
¢, tangentially to Dy = UCU)%, uniformly in p € Dy, and that the mapping (o, h) ¢, (h)
from Dy x Dy into £>°(Q) is defined and continuous.
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The definition of uniform Hadamard differentiability is given in the appendix.

This assumption holds for all examples of structural parameters listed in Section 2.

The following result gives asymptotic Gaussian law for \/ﬁ(ﬁ — A), the properly normalized
structural estimator. It also shows that the bootstrap law of \/ﬁ(ﬁ* —3), computed conditionally
on the data, approaches the asymptotic Gaussian law for \/ﬁ(ﬁ — A). The following is the
corollary of the previous theorems as well as of a more general result contained in Theorem

Corollary 4.1 (Limit Theory and Validity of Multiplier Bootstrap for Smooth Struc-
tural Functionals). Under Assumptions 2, 3 or 4, and 5,

V(A = A) ~ Tp = ¢, (Zp), in £°(Q), uniformly in P € P, (60)

where Tp is a zero mean tight Gaussian process, for each P € P. Moreover,

~

VI(A* = A) ~op Tp = ¢(Zp), i £2°(Q), uniformly in P € P, (61)

5. A GENERAL PROBLEM OF INFERENCE ON FUNCTION-VALUED PARAMETERS WITH
APPROXIMATELY SPARSE NUISANCE FUNCTIONS

In this section we generalize the previous specific framework to a more general setting, where
possibly a continuum of target parameters is of interest and the Lasso-type or post-Lasso type
methods are used to estimate a continuum of high-dimensional nuisance function. This framework
is quite general — in addition to the previous specific framework, it covers a rich variety of modern
moment-condition problems in econometrics. We establish a functional central limit theorem for
the estimators of the continuum of the target parameters, and also show that it holds uniformly
in P € P, where P includes a wide range of data-generating processes with approximately
sparse continua of nuisance functions. We also establish validity of the multiplier bootstrap for
resampling the first order approximations to standardized continua of the estimators, and also
establish its uniform validity. Moreover, we establish uniform validity of the functional delta
method, using an appropriate strengthening of Hadamard differentiability; and we establish
uniform validity of the functional delta method for the multiplier bootstrap for resampling the
smooth functionals of continua of the target parameters.

We are interested in a continuum of target parameters indexed by v € U C R%. We denote
the true value of the target parameter by

00 = (0w)ucus where 8, € ©, C O C R% . for each u € U C R%.

We assume that for each w € U the true value 6, is identified as a solution of the following
moment condition:
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where for each u € U, vector W, is a random vector taking values in W, C R%, containing
vector Z, taking values in Z, as a subcomponent; the function

Yu t W x Oy x Ty = R (w,0,1) 1y (w, 0, 1) = (thy(w, 0,1)) 72,
is a measurable map, and the function

B i Zu— Ty CRY, 2 hy(2) = (hum(2)%

m=1
is another measurable map, the nuisance parameter, possibly infinite-dimensional.

We assume that the continuum of the nuisance functions (hy)yeys is approximately sparse,
which can be modelled and estimated using modern regularization and post-selection methods; for
example, in the previous sections we described the continuum of Lasso and post-Lasso regressions.
We let ﬁu = (ﬁum)%zl denote the estimator of h,, which obeys conditions stated below. The
estimator 6, of 6, is constructed as any approximate €,-solution in ©,, to a sample analog of the
estimating equation above:

||En[¢U(Wu,§u,EU(Zu))]H < 0in@f |En[p (W, 97ﬁu(Zu))H| + €n, where €, = O(n_l/z)- (63)
€0y

The key condition needed for regular estimation of 6, is the orthogonality or immunization
condition. This condition can be expressed as follows:

O Ep [t (Wa, O, ho(Z0))| Zu] = 0, aus., (64)

where we use the symbol 0; to abbreviate %. This condition holds in the previous setting of

inference on policy-relevant treatment effects. The condition above is formulated to cover certain
non-smooth cases, for example, in structural and instrumental quantile regression problems.

It is important to construct the moment-functions v, that have this orthogonality property.
Generally, if we have a moment function 1, which identifies the parameters of interest 6, but
does not have the orthogonality property, we can construct the moment-function ,, that has the
required orthogonality property by projecting the original function 1/~1u onto the orthocomplement
of the tangent space for the nuisance functions; see, for example, (van der Vaart and Wellner,
1996; van der Vaart, 1998; Kosorok, 2008).

In what follows, we shall denote by c¢g, ¢, and C' some positive constants.

ASSUMPTION S1. For each n, we observe i.i.d. copies (W)l of W = (Wy)ueu with law
determined by the probability measure P € P,. Uniformly for all n > ng and P € P,, the
following conditions hold. (i) The true parameter values 6,, obeys (62) and is interior relative to
0., C © C R%, namely there is a ball of fived positive radius centered at 0, contained in ©,. (i)
For each j, for each v = (uk)zgdt = (0,t) € O, x Ty, andu € U, the map v — Ep[thyj(Wy, V)| Z,]
18 twice continuously differentiable a.s. with derivatives obeying the integrability conditions spec-
ified in S2 below. (iii) The orthogonality condition (064)) holds. (iv) The identifiability condition

10he expression OtEp [ty (W, Ou, hw(Z.))| Z.] is understood to be O:Ep[tu (W, Ou, )| Zu]|i=h, (2.)-
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holds: ||Ep[tu (W, 0, ho(Z )| = 272(||Ju(0 — 04)|| V co) for all § € O, where eigenvalues of
Ju = OE[tpy (W, 0y, hy(Zy))] lie in between ¢ > 0 and C' for all u € U.

The conditions above are mild and standard assumptions for moment condition problems. The
identification condition encodes both global identifiability and local identifiability sufficient to

get a rate result, not just consistency.

ASSUMPTION S2. Let (U,dy) be a semi-metric space, such that log N (e,U,dy) < C'log(e/e).
Let o € [1,2] and a1 and ay be some positive constants. Uniformly for all n = ng and P € Py,
the following holds: (i) The set of functions Fo = {tyj(Wy,0u, hu(Zy)),7 € [do),u € U} is
suitably measurable; the envelope Fy = SUDj¢(d,) uctt,vc0,x Ty [Vuj(Wu, V)| is measurable and obeys
| Follpg < C, were q > 4 is a fized constant, and supg log N (|| Follq,2, Fo, || - [lg,2) < Clog(e/e).
(11) for all j € [dg] and k,r € [dg + dy],

(2) SUPyers,(v,)e(©u x )2 BP[(Vuj (Wa, v) = thuj(We, 7))*| 2] < Cllv — 7|1, P-a.s.,
(b) suPg, (ua)<s EP[(Yu (W) — oy (W ))?] < O, SUDP gy, (u,a)<s [T — Jall < C0°2,
(C) Ep supueu vEOL X Ty ‘&zTEP [wu](Wuay) ‘ Z ] ‘2 < C’

(d) supuersveo,xT, 00,00 Ep[uj(Wu, V)| Zu]| < C, P-a.s.

This assumption imposes various smoothness and integrability conditions on various quantities
derived from . It also imposes some conditions on the complexity of the relevant function classes.

In what follows, let 9, \, 0 and 7, \, 0 be a sequence of constants approaching zero from above.

ASSUMPTION AS. The following conditions hold for each n = ng and all P € P,,. The function

m=1

lAL (ﬁum)dt € Hyn with probability at least 1 — &, where Hyy, is the set of measurable maps
h=(hm)%_, : Z, — T, such that

||hm - hum||P,2 < T,

and whose complexity does not grow two quickly in the sense that the uniform covering entropy
of Fi = {tyj(Wy,0,h(Z,),j € [dg),u € U,0 € Oy, h € Hyn} obeys:

sgplog N(elFillga2 Fi: |l - llg2) < sn(loglan/e)),

where F| < Fy is the envelope of Fi, and a,, > max(n,e) and s, > 1 are some numbers that obey
the growth condition:

n~? ( snlog(an) +n~ s ,ni 10g(an)) < 7o and 7%/, 108(an) < 6n.

This assumption imposes conditions on the rate of estimating nuisance functions hy,, as well
as on the complexity of functions sets to which the estimators ﬁum belong. Under approximately
sparse framework, the index s, appearing above will correspond to the maximum of the dimension
of approximating models and of the size of the selected models; and index a,, will be equal to
pVn. Under other frameworks, these parameters could be different; yet if they are well behaved,
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then our results apply. Thus these results potentially cover other frameworks, where assumptions
other than approximate sparsity are used to get the estimation problems to be manageable. We
also would like to point out that the class F; need not be Donsker, in particular its entropy
is allowed to increase with n. Allowing non-Donskerness is crucial for allowing modern high-
dimensional estimation methods for the nuisance functions. This is one assumption that makes
the conditions imposed here very different from conditions imposed in various classical references
on dealing with nonparametrically estimated nuisance functions.

The following theorem is one of the main results of the paper:

Theorem 5.1 (Uniform Functional Central Limit Theorem for a Continuum of Target
Parameters). Under Assumptions S1, S2, and AS, an estimator (é\u)ueu that obeys equation
(G3), satisfies uniformly in P € Py,:

V(0 = Ou)uct = (Guthu)ucu + op(1) in £°U)™,
where ¥, (W) == J 4y (We, 0u, ho(Z4)), and uniformly in P € P,
(Gntu)ucu ~ (CpPu)ucu in £2°U)™,
where the paths of u +— Gpip, are a.s. uniformly continuous on (U, dy) and

sup Epsup [|Gpi)y| < oo and lim sup Ep  sup [|Gpiby, — Gpibg| = 0.
PeP, ueld =0 pep, dyg (u,)<6

We can estimate the law of Zp by using the the bootstrap law of
A:;P = \/ﬁ(é\z é\u uEZx/ - Zfﬂ/)u Z (65)

where (&), are i.i.d. multiplier variables defined in Section 3. The bootstrap law is computed
by drawing (;)I; conditional on the data. The estimated score above is

where ju_ !is a suitable estimator of J, . Here we do not discuss the estimation of J,, since it is
often a problem-specific matter. In Section 3, we had J, = I, so we did not need to estimate it.
The following theorem shows that the multiplier bootstrap provides a valid approximation to

the large sample law of \/71(6y — 0 )ucus-

Theorem 5.2 (Uniform Validity of Multiplier Bootstrap). Suppose Assumptions S1, S2,
and AS hold and that, for some positive constant oz, uniformly in P € P, with probability 1 — 6y,

(u — ju) e Tn={ur— Jy: | Ju—Jall <Cllu—ul®,|Jy — Ju|| < 70, for all (u,a) € U?}.
Then Z’;P ~p Zp in £2°(U)% , uniformly in P € P,,.
Using a functional delta methods, we next derive the large sample distribution and validity

of the multiplier bootstrap for estimators A = ¢(§) = ¢((§u)ueu) of structural functionals
A = ¢(0°) = ¢((0y)uew). The latter functionals defined as “suitably differentiable” transforms of
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6° = (04)uecy. We suitably modify the functional delta method to handle uniformity with respect
to the underlying dgp P. The following result gives asymptotic Gaussian law for \/ﬁ(ﬁ —A), the
properly normalized structural estimator. It also shows that the bootstrap law of \/ﬁ(ﬁ* — 3),
computed conditionally on the data, approaches the asymptotic Gaussian law for \/ﬁ(ﬁ —A).
Here A* := ¢(6*) := ¢((6*)uew) is the boostrap version of A, and 85 = 0, + s, &y (W) is
the multiplier bootstrap version of §u defined via equation ([65]).

Theorem 5.3 (Uniform Limit Theory and Validity of Multiplier Bootstrap for Smooth
Functionals of 0.). Suppose that for each P € P := UpspPn, 0° = 993 is an element of a
compact subset Dy C D = £°WU)%. Suppose ¥ — ¢(V), a functional of interest mapping Dy
to £>°(Q), is Hadamard differentiable in ¥ with derivative ¢ly, tangentially to Dy = Uucu),
uniformly in 9 € D1, and that the mapping (9, g) — ¢l4(g) from Dy x Dy into £>°(Q) is defined
and continuous. Then,

V(A = A) ~ Tp = ¢/90P(Zp), in £°(Q), uniformly in P € Py, (66)
where Tp is a zero mean tight Gaussian process, for each P € P. Moreover,

VI(A* = A) g Tp = qﬁ’eop(Zp), in £>°(Q), uniformly in P € Py, (67)

Here the usual notion of Hadamard differentiability is strengthened to a uniform notion of
Hadamard differentiability as defined in the Appendix. The strengthening is sufficient to guar-
antee the uniform validity with respect to P. This result may be of independent interest in other
problems.

6. GENERIC LASSO AND P0OST-LASSO METHODS FOR FUNCTIONAL RESPONSE DATA

In this section, we provide estimation and inference results for Lasso and Post-Lasso estimators
with function-valued outcomes and linear or logistic links. These results are of interest beyond
the context of treatment effects estimation, and thus we present this section in a way that leaves
it autonomous with respect to the rest of the paper.

6.1. The generic setting with function-valued outcomes. Consider a data generating pro-
cess with a functional response variable (Y,,),ecys and observable covariates X satisfying for each
uelu

E[Yu | X] = A(f(X)leu) + ru(X)7 (68)
where f : X — R? is a set of p measurable transformations of the initial controls X, 6, is a
p-dimensional vector, 7, is an approximation error, and A is a fixed link function. We note that
the notation in this section differs from the rest of the paper with Y, and X denoting a generic
response and generic covariates to facilitate the application of these results in other contexts.
We only consider the cases of linear link function, A(t) = ¢, and the logistic lin function
A(t) = exp(t)/{1+exp(t)}, in detail; but we note that the principles discussed here apply to any

11Considering the logistic link is useful for binary response data where Y, € {0, 1} for each u € U, though the

linear link can be used in this case as well.
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M-estimator. In the remainder of the section, we discuss and establish results for ¢;-penalized
and post-model selection estimators for 6,,u € U, that hold uniformly over v € U.

Throughout the section, we assume that v € U C [0,1]* and that i.i.d. observations from a
dgp where ([@8) holds, {(Yui,u € U, X;, f(X;)) : ¢ = 1,...,n}, are available to estimate (6y,)ueus-
For u € U, a penalty level A, and a diagonal matrix of penalty loadings \Tlu, we define the Lasso
estimator as

bu € argmin B, [M (Y., £(X)'0)] + %H\Tfueul (69)

where M (y,t) = 3(y — A(t))? for the case of linear regression, and M (y,t) = 1(y = 1)log A(t) +
1(y = 0)log(1 — A(t)) in the case of the logistic link function for binary response data. The
corresponding Post-Lasso estimator is then defined as

6u € argmin B, [M (Y, f(X)'0)] - supp(6) C supp(u). (70)

The chief departure between analysis of Lasso and Post-Lasso when U is a singleton and the
functional response case is that the penalty parameter needs to be set to control selection errors
uniformly over u € U. To uniformly control these errors, we will essentially set the penalty
parameter A so that with high probability

2> csup |8, Ea [VoM (v, £(XY0)]| (71)

n ued 00
The strategy above is similar to Bickel, Ritov, and Tsybakov (2009); Belloni and Chernozhukov
(2013); and Belloni, Chernozhukov, and Wang (2011) who use an analog of (7I)) that derive
properties of Lasso and Post-Lasso when U is a singleton. In the context of quantile regression a
related uniform choice of penalty parameter was used in Belloni and Chernozhukov (2011a). In
the functional outcome case guaranteeing that the “regularization event” ([[I)) holds with high
probability also plays a key role in establishing desirable properties of Lasso and Post-Lasso
estimators uniformly over u € U.

To implement ([71]), we propose setting the penalty level as
A= cvn® (1 —y/{2pn'}), (72)

where ¢ is the dimension of U, 1 — v with v = o(1) is a confidence level associated with the
probability of event (1), and ¢ > 1 is a slack constant similar to that of Bickel, Ritov, and
Tsybakov (2009). In practice, we set ¢ = 1.1 and v = .1/log(n) though many other choices are
theoretically valid.

In addition to the penalty parameter A, we also need to construct a penalty loading matrix
U, = diag({lyjk,j = 1,...,p}). This loading matrix can be formed according to the following
iterative algorithm.

Algorithm 1 (Estimation of Penalty Loadings). Choose v € [1/n,1/logn] can ¢ > 1 to form
A as defined in ([72]), and choose a constant K > 1 as an upper bound on the number of iter-
ations. (0) Set £k = 0, and initialize lAuj,o for each j = 1,...,p. For the linear link function,
set lAu]yo = {En[ff(X)(Yu — Y)?}/? with Y, = E,[Yy]. For the logistic link function, set
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uyO HE, [f2( )]}¥/2. (1) Compute the Lasso and Post-Lasso estimators, 8, and 6, based

on U, = diag({lujr,j = 1,-...p})- (2) Set lyjur1 = {Enlf2(X)(Yy — A(F(X)0,)2}2. (3) If
k > K, stop; otherwise set k < k + 1 and go to step (1).

6.2. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for
Functional Responses: Linear Case. In the following, we provide sufficient conditions for
establishing good performance of the estimators discussed in Section 5.1 when the linear link
function is used. In the statement of the following assumption, 6, \, 0, £, " oo, and A, \, 0
are fixed sequences; and ¢, C, k', k" and v € (0, 1] are positive finite constants.

Assumption 6. For each n > 1, our data consist of i.i.d. copies (W;)?_, of the stochastic
process W = ((Yu)ueu, X) defined on the probability space (S,S, P) such that model (68) holds
withU C [0,1]*. Consider A(t) =t and (, = Y, —E[Y, | X]|. Suppose the following conditions hold
uniformly for all P € Py: (i) the model (68) is approximately sparse with sparsity index obeying
supyey [|0ullo < s and the growth restriction log(pn/y) < 8,n'/3. (ii) The set U has covering
entropy bounded as log N (e,U, dy) < tlog(1/e) V 0, and the collection (Yu, CusTu)ucu 5 suitably
measurable. (iii) Uniformly over w € U, the model’s moments are boundedly heteroscedastic,
namely ¢ < Ep[¢2 | X] < C and maxj<,Ep[|f;(X)Cul® + | f;(X)Yul?] < C. (iv) We have that the
dictionary functions, approximation errors, and empirical errors obey the following boundedness
and empirical reqularity conditions: (a) ¢ < Ep[sz(X)] <C,j=1,...,p; max;c, |f;(X)| < K,
a.s.; Kplog(pVn) < Santvhz}. (b) With probability 1 — A,,, sup,ecy En[r2(X)] < Cslog(pVn)/n;
P ety M%< (B — Bp) 2OV | — Ep) [FX)Y2]] < b 50Dy B+ Ep) (G —
C) % < C{e’ +n~?}. (¢) The empirical minimum and mazimum sparse eigenvalues are
bounded from zero and above, r' < inf|s5),<se,, [[f(X)0lp, 2 < supys,<se, [1F(X)'d]p, 2 < K"

Under Assumption [6] we establish results on the performance of the estimators (69]) and (70)
for the linear link function case that hold uniformly over v € U.

Theorem 6.1 (Rates and Sparsity for Functional Responses under Linear Link). Under As-
sumption [0 and setting penalties as in Algorithm [A, for all n large enough, uniformly for all
P € P, with Pp probability 1 — o(1), for some constant C, the Lasso estimator §u 18 uniformly
sparse, SUP, ey 16ullo < C's, and the following performance bounds hold:

s?log(p Vv n)

9 M and SupHH —Oull1 <

sup || f(X)' (0u — 0u)|[p,.2 < C
ueU

For all n large enough, uniformly for all P € P, with Pp probability 1 — o(1), the Post-Lasso
estimator corresponding to §u obeys

~ — /slog(pVvn s?log(pVn
sup [0 @ = 00,2 < Oy L g sup [0 = Oully < oy e
ue

We note that the performance bounds are exactly of the type used in Assumptions [3] and [l
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6.3. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for
Functional Responses: Logistic Case. Next we provide sufficient conditions to state results
on the performance of the estimators discussed above for the logistic link function. This case
corresponds to M (y,t) = 1(y = 1)log A(t)+1(y = 0)log(1—A(t)) with A(t) = exp(t)/{1+exp(t)}
where the response variable is assumed to be binary, Y,; € {0,1} forallu e i/ and i = 1,...,n.

Consider fixed sequences 6, — 0, ¢, ~ oo, A,, — 0 and positive finite constants c, C, x’, k"
and v € (0,1].

Assumption 7. For each n > 1, our data consist of i.i.d. copies (W;)_, of the stochastic pro-
cess W = ((Yu)ueu, X) defined on the probability space (S,S, P) such that model (68) holds with
U C [0,1]". Consider A(t) = exp(t)/{1 +exp(t)}, Yy, € {0,1}, and ¢, =Y, — E[Y,, | X]. Suppose
the following conditions hold uniformly for all P € P,: (i) the model (68) is approzimately sparse
form with sparsity index obeying sup, s ||0ullo < s and the growth restriction log(pn/vy) < 8,nt/3.
(1) The set U has covering entropy bounded as log N(e,U, dy) < tlog(1/e) V 0, and the collec-
tion (Y, CusTu)ucu 1S suitably measurable. (iii) Uniformly over uw € U the model’s moments
satisfy maxj<,Ep[|f;(X)]}] < C, and ¢ < EplY, | X] < 1—c. (iv) We have that the dictio-
nary functions, approximation errors, and empirical errors obey the following boundedness and
empirical regularity conditions: (a) sup,cy |ru(X)| < 0y a.s.; ¢ < Ep[f]?(X)] <C,j=1,...,p;
max;j<, |f(X)| < K, a.s.; Kylog(pVvn) < 5,n""2} and K2s?log*(pVn) < 6un. (b) With prob-
ability 1 — Ay, supyey En[ri(X)] < Cslog(p V n)/n; sup,ey maxj<p |(En — EP)[sz(X)Cg” < On;
SUPg,, (uu)<et (En + Ep)[(Cu — o) MY? < C{e” + n~ Y2 (¢) The empirical minimum and
mazimum sparse eigenvalues are bounded from zero and above: k' < infj5) <sp, If(X) 0P, 2 <
SUP|sjo<stn |1 (X) 0,2 < K.

The following result characterizes the performance of the estimators (69) and (TQ) for the
logistic link function case under Assumption [7

Theorem 6.2 (Rates and Sparsity for Functional Response under Logistic Link). Under As-
sumption [ and setting penalties as in Algorithm [1, for all n large enough, uniformly for all
P € P, with Pp probability 1 — o(1), the following performance bounds hold for some constant
C:

s2log(p VvV n)

and sup ||8, — 0,||1 < Oy —=——.
U n

slog(pVn)
n U

SUB Hf(X),(é\u - 9u)”Pn,2 < é

uUe

and the estimator is uniformly sparse: sup,cy \|§u\|o < Cs. For all n large enough, uniformly for
all P € Py, with Pp probability 1 — o(1), the Post-Lasso estimator corresponding to 0, obeys

slog(pV n)

~ _ /821 v
———— and Sup\|0u—9u\|1<0\/w.
uel n ueld n

sup | £ (X) (B — 02,2 < C

We note that the performance bounds satisfy the conditions of Assumptions [3] and @]
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7. ESTIMATING THE EFFECT OF 401(K) PARTICIPATION ON FINANCIAL ASSET HOLDINGS

As an illustration of the methods in this paper, we consider the estimation of the effect of 401(k)
participation on accumulated assets as in Abadie (2003) and Chernozhukov and Hansen (2004).
The key problem in determining the effect of participation in 401(k) plans on accumulated assets
is saver heterogeneity coupled with the fact that the decision of whether to enroll in a 401(k)
is non-random. It is generally recognized that some people have a higher preference for saving
than others. It also seems likely that those individuals with the highest unobserved preference
for saving would be most likely to choose to participate in tax-advantaged retirement savings
plans and would tend to have otherwise high amounts of accumulated assets. The presence of
unobserved savings preferences with these properties then implies that conventional estimates
that do not account for saver heterogeneity and endogeneity of participation will be biased
upward, tending to overstate the savings effects of 401(k) participation.

To overcome the endogeneity of 401(k) participation, Abadie (2003) and Chernozhukov and
Hansen (2004) adopt the strategy detailed in Poterba, Venti, and Wise (1994; 1995; 1996; 2001)
and Benjamin (2003), who used data from the 1991 Survey of Income and Program Participation
and argue that eligibility for enrolling in 401(k) plan in this data can be taken as exogenous after
conditioning on a few observables of which the most important for their argument is income. The
basic idea of their argument is that, at least around the time 401(k)’s initially became available,
people were unlikely to be basing their employment decisions on whether an employer offered
a 401(k) but would instead focus on income. Thus, eligibility for a 401(k) could be taken as
exogenous conditional on income, and the causal effect of 401(k) eligibility could be directly esti-
mated by appropriate comparison across eligible and ineligible individuals[:1 Abadie (2003) and
Chernozhukov and Hansen (2004) use this argument for the exogeneity of eligibility conditional
on controls to argue that 401(k) eligibility provides a valid instrument for 401(k) participation
and employ IV methods to estimate the effect of 401(k) participation on accumulated assets.

As a complement to the work cited above, we estimate various treatment effects of 401(k)
participation on holdings of financial assets using high-dimensional methods. A key component
of the argument underlying the exogeneity of 401(k) eligibility is that eligibility may only be
taken as exogenous after conditioning on income. Both Abadie (2003) and Chernozhukov and
Hansen (2004) adopt this argument but control only for a small number of terms. One might
wonder whether the small number of terms considered is sufficient to adequately control for
income and other related confounds. At the same time, the power to learn anything about the
effect of 401(k) participation decreases as one controls more flexibly for confounds. The methods
developed in this paper offer one resolution to this tension by allowing us to consider a very broad
set of controls and functional forms under the assumption that among the set of variables we
consider there is a relatively low-dimensional set that adequately captures the effect of confounds.

12pgterba, Venti, and Wise (1994; 1995; 1996; 2001) and Benjamin (2003) all focus on estimating the effect of
401(k) eligibility, the intention to treat parameter. Also note that there are arguments that eligibility should not

be taken as exogenous given income; see, for example, Engen, Gale, and Scholz (1996) and Engen and Gale (2000).
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This approach is more general than that pursued in Chernozhukov and Hansen (2004) or Abadie
(2003) which both implicitly assume that confounding effects can adequately be controlled for
by a small number of variables chosen ez ante by the researcher.

We use the same data as Abadie (2003), Benjamin (2003), and Chernozhukov and Hansen
(2004). The data consist of 9,915 observations at the household level drawn from the 1991 SIPP.
We consider two different outcome variables in our analysis: net total financial asset and total
Wealth Our treatment variable, D, is an indicator for having positive 401(k) balances; and
our instruments, Z, is an indicator for working at a firm that offers a 401(k) plan. The vector
of controls, X, consists of age, income, family size, years of education, a married indicator,
a two-earner status indicator, a defined benefit pension status indicator, an IRA participation
indicator, and a home ownership indicator. Further details about the sample and variables used
can be found in Chernozhukov and Hansen (2004).

We present results for four different sets of control variables f(X). The first set of control
variables uses the indicators of marital status, two-earner status, defined benefit pension status,
IRA participation status, and home ownership status, a linear term for family size, five categories
for age, four categories for education, and seven categories for income (Indicator specification).
We use the same definitions of categories as in Chernozhukov and Hansen (2004) and note that
this is identical to the specification in Chernozhukov and Hansen (2004) and Benjamin (2003).
The second specification augments the Indicator specification with all two-way interactions be-
tween the variables from the Indicator specification (Indicators plus interactions specification).
The third specification uses the indicators of marital status, two-earner status, defined benefit
pension status, IRA participation status, and home ownership status, and cubic b-splines with
one, one, three, and five interior knots for family size, education, age, and income, respectively
(B-Spline specification). The fourth specification augments the B-Spline specification with all
two-way interactions of the sets of variables from the B-Spline specification (B-Spline plus in-
teractions specification). The dimensions of the set of control variables are thus 20, 167, 27,
and 323 for the Indicator, Indicator plus interactions, B-Spline, and B-Spline plus interactions
specifications, respectively.

We report estimates of the LATE, LATE-T, LQTE, and LQTE-T for each of the four sets
of control variables. Estimation of all of the treatment effects depends on first-stage estimation
of reduced form functions as detailed in Section Bl We estimate reduced form quantities where
Y, =Y is the outcome using least squares when no model selection is used or Post-Lasso when
selection is used. We estimate propensity scores and reduced form quantities where Y,, = 1(Y <
u) is the outcome by logistic regression when no model selection is used or Post-¢;-penalized

13Net total financial assets are defined as the sum of checking accounts, U.S. saving bonds, other interest-earning
accounts in banks and other financial institutions, other interest-earning assets (such as bonds held personally),
stocks and mutual funds less nonmortgage debt, IRA balances, and 401(k) balances.

MTotal wealth is net financial assets plus housing equity, housing value minus mortgage, and the value of

business, property, and motor vehicles.
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logistic regression when selection is used We use the penalty level given in [f2] and construct
penalty loadings using the method detailed in Algorithm [Il For the LATE and LATE-T where
the set U is a singleton, we use the penalty level in [[2] with + = 0. This choice corresponds to
that used in Belloni, Chernozhukov, and Hansen (2011).

Estimates of the LATE and LATE-T are given in Table 1. In this table, we provide point
estimates for each of the four sets of controls with and without variable selection. We also
report both analytic and multiplier bootstrap standard errors. The bootstrap standard errors
are based on 500 bootstrap replications and wild bootstrap weights. Looking first at the two sets
of standard error estimates, we see that the bootstrap and analytic standard are quite similar
and that one would not draw substantively different conclusions from one versus the other.

It is interesting that the estimated LATE and LATE-T are similar in seven of the eight sets
of estimates reported, suggesting positive and significant effects of 401(k) participation on net
financial assets and total wealth. This similarity is unsurprising but reassuring in the Indicator
and B-Spline specifications as it illustrates that there is little impact of variable selection relative
to simply including everything in a low-dimensional Setting The one case where we observe
substantively different results is in the B-Spline specification with interactions when we do not
use variable selection. In this case, both the LATE and LATE-T point estimates are large with
associated very large estimated standard errors. One would favor these imprecise estimates from
the B-spline plus interactions specification if there were important nonlinearity that is missed by
the simpler specifications. The concern that there is important nonlinearity missed by the other
specifications that renders the estimated treatment effects too imprecise to be useful is alleviated
by noting that the point estimate and standard error based on the B-spline plus interactions
specification following variable selection are sensible and similar to the other estimates. The fact
that estimates following variable selection are similar to the other estimates suggests the bulk of
the reduced form predictive power is contained in a set of variables similar to those used in the
other specifications and that there is not a small number of the added variables that pick out
important sources of nonlinearity neglected by the other specifications. Thus, the large point
estimates and standard errors in this case seem to be driven by including many variables which
have little to no predictive power in the reduced form relationships but result in overfitting.

We provide estimates of the LQTE and LQTE-T based on the Indicator specification, the Indi-
cator plus interaction specification, the B-Spline specification, and the B-Spline plus interaction
specification in Figures 1, 2, 3, and 4, respectively. The left column in each figure gives results
for the LQTE, and the right column displays the results for the LQTE-T. In the top row of each

15The estimated propensity score shows up in the denominator of the efficient moment conditions. As is
conventional, we use trimming to keep the denominator bounded away from zero with trimming set to 107 '2.
Trimming only occurs when selection is not done in the B-spline plus interaction specification.

161, the low-dimensional setting, using all available controls is semi-parametrically efficient and allows uniformly
valid inference. Thus, the similarity between the results in this case is an important feature of our method which
results from our reliance on low-bias moment functions and sensible variable selection devices to produce semi-

parametrically efficient estimators and uniformly valid inference statements following model selection.
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figure, we display the results with net financial assets as the dependent variable, and we give
the results based on total wealth as the dependent variable in the middle row. The bottom row
of each figure displays the selection-based estimate of the treatment effect on net total financial
assets along with the selection-based estimate of the treatment effect on total wealth. In each

graphic, we use solid lines for point estimates and report uniform 95% confidence intervals with
dashed lines.

Looking across the figures, we see a similar pattern to that seen for the LATE and LATE-T
in that the selection-based estimates are stable across all specifications and are similar to the
estimates obtained without selection from the baseline Indicators specification and the B-Spline
specification. In the more flexible specifications that include interactions, the estimates that do
not make use of selection start to behave erratically. This erratic behavior is especially apparent
in the estimated LQTE of 401(k) participation on total wealth where we observe that small
changes in the quantile index may result in large swings in the point estimate of the LQTE and
estimated standard errors are large enough that meaningful conclusions cannot be drawn. Again,
this erratic behavior is likely due to overfitting as the variable selection methods select a roughly
common low-dimensional set of variables that are useful for reduced form prediction in all cases.

If we focus on the LQTE and LQTE-T estimated from variable selection methods, we find that
401(k) participation has a small impact on accumulated net total financial assets at low quantiles
while appearing to have a much larger impact at high quantiles. Looking at the uniform confi-
dence intervals, we can see that this pattern is statistically significant at the 5% level and that
we would reject the hypothesis that 401(k) participation has no effect and reject the hypothesis
of a constant treatment effect more generally. For total wealth, we can also reject the hypothesis
of zero treatment effect and the hypothesis of a constant treatment effect, though the uniform
confidence bands are much wider. Interestingly, the only evidence of a statistically significant
impact on total wealth occurs for low and intermediate quantiles; one cannot rule out the hy-
pothesis of no effect of 401(k) participation on total wealth in the upper quantiles. This pattern
is especially interesting when coupled with the evidence of essentially a uniformly positive effect
of participation on net total financial assets which suggests that some of the effect on financial
assets may be attributed to substitution from non-financial assets into the tax-advantaged 401(k)
assets.

It is interesting that our results are similar to those in Chernozhukov and Hansen (2004)
despite allowing for a much richer set of control variables. The similarity is due to the fact
that the variable selection methods consistently pick a set of variables similar to those used in
previous work. The fact that we allow for a rich set of controls but produce similar results to
those previously available lends further credibility to the claim that previous work controlled
adequately for the available observables Finally, it is worth noting that this similarity is not
mechanical or otherwise built in to the procedure. For example, applications in Belloni, Chen,

17of course, the estimates are still not valid causal estimates if one does not believe that 401(k) eligibility can

be taken as exogenous after controlling for income and the other included variables.
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Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov, and Hansen (2011) use high-
dimensional variable selection methods and produce sets of variables that differ substantially

from intuitive baselines.

APPENDIX A. SOME TOOLS

A.1. Stochastic Convergence Uniformly in P. All parameters, such as the law of the data,
are indexed by P, sometimes referred to as the the data generating process. This dependency,
which is well understood, is kept implicit throughout. We shall allow the possibility that the
probability measure P = P, can depend on n. We shall conduct our stochastic convergence
analysis uniformly in P, where P can vary within some set P,, which itself may vary with n.

The convergence analysis, namely stochastic order relations and convergence in distribution,
uniformly in P € P,, and the analysis under all sequences P, € P, are equivalent. Specifically,
consider a sequence of stochastic processes X, and a random element Y, taking values in the
metric space I, defined on the probability space (A, A4,Pp). Through most of the Appendix
D = ¢°°(U), the space of uniformly bounded functions mapping an arbitrary index set U to the
real line. Consider also a sequence of deterministic positive constants a,. We shall say that

(i) X, = Op(ay) uniformly in P € Py, if limg soo limy, o0 suppep, Pp(|Xn| > Ka,) = 0,
(i) X, = op(ay) uniformly in P € Py, if supyglim, o suppep, PH(| X0 > Ka,) =0,
(iii) X, ~ Y (with law dependent on P) uniformly in P € P,, if

sup  sup |Eph(X,)—Eph(Y)| — 0.
PEPy heBL: (D,R)

Here the symbol ~~ denotes weak convergence, i.e. convergence in distribution or law, BL; (D, R)
denotes the space of functions mapping D to R with Lipschitz norm at most 1, and the outer

probability and expectations, P}, and E},, are invoked whenever (non)-measurability arises.

Lemma A.1. The above notions are equivalent to the following notions:

(i) for every sequence P, € Py, Xn = Op,(an), i-e. img s limy 00 Pp (| Xn| > Kayn) =0,
(ii) for every sequence Py, € Pn, Xy = op, (an), i.e. supg~qlim, 00 Py ([ Xn| > Kay) =0,
(iii) for every sequence P, € P, X, ~ Y, i.e.
sup |Ep MX,) —Ep,h(Y)| — 0.
heBL; (D,R)
Proof of Lemma [A.Tl. The claims follow straightforwardly from the definitions, and so the
proof is omitted.

A.2. Uniform in P Donsker Property. Let (W;)?2, be a sequence of i.i.d. copies of random
element W : S — W, taking values in the sample space (W, Ayy), with law determined by a
probability measure P € P defined on a measurable space (S, Ag). Let Fp be a set of measurable
functions w — fp;(w) mapping W to R indexed by P € P and t € T', where T is a fixed, totally
bounded semi-metric space equipped with a semi-metric dy. Let N(e, Fp,| - ||g2) denote the
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e-covering number of the class of functions Fp with respect to the L?(Q) seminorm ||+ |2, where
@ is finitely discrete. We shall invoke the following lemma.

Theorem A.1. For each P € P, let Fp be a suitably measurable class of functions mapping VW
to R, equipped with a measurable envelope Fp : VW — R. Suppose that for q > 2

sup ||Fpllpy < C and lim sup sup Il fe = fellp2 = 0.
PeP NOPEP (f1,f;) € FEidr(tD<s

Furthermore, suppose that

6
I log N (|| Fpllg.2, Fp, || - [lg.2)de = 0.
6g%A%M%@Mm%mwme

Consider Zy, p := (Zn(t))ter = (Gn(ft)ter and Zp := (Zp(t))ier = (Gp(ft))ter-
(a) Then for Z, p ~> Zp in {>°(T) uniformly in P € P, namely

sup sup |Eph(Z, p) — Eph(Zp)| — 0.
PEP he BLy ((>°(T),R)

(b) Moreover, the limit process hat the following continuity properties:

sup Epsup |[Zp(t)| < oo, limsup Ep sup |Zp(t) — Zp(t)| =0.
PeP  teT NOPEP dp(t,D)<0

(c) The paths t — Zp(t) are a.s. uniformly continuous on (T, dr) under each P € P.

This is a version of uniform Donsker theorem stated in Theorem 2.8.2 in van der Vaart and
Wellner (1996), which allows for the function classes to be depend on P themselves. The latter
case is critically needed in all of our problems.

Proof. Part (a) is a direct consequence of Lemma [A.2] stated below, and part (b) can be
demonstrated similarly to the proof of Theorem 2.8.2 in van der Vaart and Wellner (1996). Claim
(c) follows from claim (b) and a standard argument, based on application of Borell-Canteli lemma
and reasoning as in Van der Vaart (1998). [

A.3. Uniform in P Validity of Multiplier Bootstrap. Consider the setting of the preceding
subsection. Let () be i.i.d multipliers whose distribution does not depend on P, such that
E(]£|7) < C for ¢ > 2. Consider the multiplier empirical process:

np = (Zy()ter = (Gn(&ft))ter = <% ;&ﬁ) ;

teT
and Zp := (Zp(t))ier := (Gp(fi))ier, as defined before.

Theorem A.2. Consider the conditions of Theorem[A 1l Then (a) the following unconditional
convergence takes place, Zyp o~ Zpn 02°(T") uniformly in P € P, namely

sup sup |Eph(Z, p) — Eph(Zp)| — 0.
PEP heBLy (¢>(T),R)



35

(b) and the following conditional convergence takes place, Z, p~B Zp in 02°(T) uniformly in
P € P, namely

sup sup \Exvh(Z, p) — Eph(Zp)| = op(1),
PEP heBLy (¢ (T),R)

where Eyr denotes expectation over multiplier weights (&;)7, holding the data (W;)!_, fized.

Proof. We begin by claiming that (i) Z; p ~ Zp in £°°(T), where Z}; p := (Gp& fu)ter; and
(i) Zp = (Gp&fi)ier is equal in distribution to Zp := (Gpfi)ier, in particular, Z} and Zp
share the identical covariance function (and so they also share the continuity properties, which
we have established in the preceding theorem).

Claim (ii) is immediate, since multiplication by & to create Gp(£f) does not change the co-
variance function of Gp(f), that is, the P-Gaussian processes indexed by £F and by F are equal
in distribution.

Claim (a) is verified by invoking Lemmal[A.Jl To demonstrate the claim, we note that F and Fp
satisfy conditions Lemmal[AJl The same is also true of {Fp and its envelope || Fp, since £ is in-
dependent of W. Indeed by Lemma[A 5] multiplication by £ does not change qualitatively the uni-
form entropy bound: log supg N (e]|[€] Fill.2: E7p, [[lg.2) < Clogsupg N(e|l€lFr lg.2/C. EFp, |-
lg,2). Moreover, multiplication by ¢ does not affect the || - || p2 norm of the functions, since § is
independent of W by construction. The claim then follows.

Claim (b). The previous argument implies unconditional convergence in distribution under
any sequence P = P, € P,. Using the same argument as in the first part of the proof of Theorem
2.9.6 in van der Vaart and Wellner (1996), we can claim that the conditional convergence takes
place under any sequence P = P, € P,, using the unconditional convergence to establish that
the stochastic equicontinuity holds conditionally. The marginal convergence holds by the central
limit theorem for triangular array and by tightness of Zp along any sequence P € P. [ ]

A.4. Donsker Theorems for Function Classes that depend on n. Let (W;)7°, be a se-
quence of i.i.d. copies of random element W with law P = P, defined on a measurable space
(S, Ag), and let w — f, (w) be measurable functions from W to R indexed by n € N and a
fixed, totally bounded semi-metric space (T, dr). Consider the stochastic process

n
(G fot)ter == {n_l/2 > (fad(Wi) — an,t)}
i=1 teT
This empirical process is indexed by a class of functions F;, = {f,+ : t € T'} with an envelope
function F),. It is important to note here that the dependency on n allow us to have the class
itself be possibly dependent on the law P = P,.

Lemma A.2 (Donsker Theorem for Classes Changing with n.). For each n, let F, =
{fn.thter be a class of suitably measurable functions, and measurable envelope F,,, indezed by a
fized, totally bounded semimetric space (T,dr). Suppose that for some fixed constants ¢ > 2 and
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that for every sequence 6, \ 0:

HFTLHqu = 0(1)7 sup ||fn,s - fn,tHP,2 — 0)
P(Svt)éfsn

on
/ sup \/logN(eHFnHQ,g,fn,Lg(Q))de — 0.
0 @

Then the empirical process (G, fnt)ter is asymptotically tight in £>°(T'). For any subsequence
such that the covariance function Pfy, sfni—P fn P fnt converges pointwise onI’xT', it converges
to a Gaussian process with covariance function given by the limit of the covariance function along
that subsequence.

Proof. This is an immediate consequence of Theorem 2.11.12 in (van der Vaart and Wellner,
1996), p. 220-221. [

A.5. Probabilistic Inequalities. Let 02 > 0 be any positive constant such that SUPfcr Pf? <
o < ||F|
S P2

Lemma A.3 (A Maximal Inequality). Let F be an image admissible Suslin set of functions
with a measurable envelope F. Suppose that ' = supscr | f| with ||[Fllgq < co for some q > 2.
Let M = max;<,, F(W;). Suppose that there exist constants a > e and v > 1 such that

logsup N (e[| F||g,2, F. | - llgz2) < v(loga+log(1/e)), 0 < Ve < 1.
Q

Then

EplIGull ] < %02 g (Ar2) y tMere , (ollz )

Moreover, for every t > 1, with probability > 1 — t—9/2,
[Gnllr < 1+ a)Ep[|Gall] + K(q) [(0 + 02| M][p, ) VE+ Ofln_l/QHMlle,ﬂ] , Yo >0,

where K(q) > 0 is a constant depending only on q.

Proof. See Chernozhukov, Chetverikov, and Kato (2012). [

Lemma A.4 (A Self-Normalized Maximal Inequality). Let F be an image-admissible
Suslin set of functions with a measurable envelope F. Suppose that F > Supfe]_-|f| > 1, and
suppose that there exist some constants p > 1, m > 1, and k > 3V n such that

log N(e||[Fllp, 2, F; |l - [Ip,.2) < (5/€)™, 0 <e<1.

Then for every 6 € (0,1/6), with probability at least 1 — 0,

[GnllF < (0’/\/5)\/m10g(/<\|F\|Pn,2) max {sup | f[lp,2, sup IIfIIPn,z} :
feF feF

where the constant C' is universal.
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Proof. The inequality can be deduced from Belloni and Chernozhukov (2011b), with the
exception that the envelope is allowed to be larger than sup ¢ r || [ ]

Lemma A.5 (Algebra for Covering Entropies).

(1) Let F be a measurable VC class with a finite VC index k or any other class whose entropy
is bounded above by that of such a VC class, then the covering entropy of F obeys:

Sup log N (e[ FllQ.2; F: | - [l@2) S 1+ klog(1/e)

Ezxamples include F = {o/z,a € R* ||a|| < C} and F = {1{c’2 > 0},a € R* ||a|| < C}.

(2) For any measurable classes of functions F and F':
log N(el| F + F'llga, F + F', || - lg.2) < B
log N(e||[F'- F'll2, F - F', || l.2) < B
log N(e|FV Flllg2, FUF, |- lg2) < B
B =logN (3l Fllga 7.l - loa) +1og N (51F o2 7.1 - loz)
(3) Given a measurable class F and a random variable &:
logsgpN(EIHS\FHQ,z,if, I llQ2) S 10gSgPN(6/2HFHQ,2=fa - llQ.2)

(4) For the class F* created by integrating F, i.e.

F = {f* s ff(x) = /f(:n,y)d,u(y), for some 1 a probability measure }
, we have that

log N(e|[FllQ.2, F*, I - l@.2) <log N (el Fllg.2, F: I - l@.2)

Proof. For the proof of assertions (1)-(3) see, e.g., Andrews (1994). The fact (4) was noted
in Chandraksekhar et al (2011), though it is rather elementary and follows from convexity of
the norm and Jensen’s inequality: ||f* — f*[lo2 < [|If — fllo2dy = ||f — fllg.2, from which
the stated bound follows immediately. In other words, any averaging done over components of
the function contracts distances between functions and therefore does not expand the covering
entropy. A related, slightly different bound is stated in Ghosal and Van der Vaart (2009), but
we need the bound above. ]

Lemma A.6 (Contractivity of Conditional Expectation). Let (V,X) and (V',X) be
random vectors in R x R¥ defined on the probability space (S, As,Q), with the first components
being scalar, then for any 1 < q¢ < oo,

[Eq(VIX) —EQ(V'IX)lgq < IV = Vqq

This is an instance of a well known result on the contractive property of the conditional
expectation. We recall it here since we shall use it frequently.
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A.6. Hadamard Differentiability for Sequences and Delta Method for Sequences. We
shall use the functional delta method, as formulated in van der Vaart and Wellner (1996). Let
Dy, D, and E be normed spaces, with Dy C ID. A map ¢ : Dy C D +— E is called Hadamard-
differentiable at 6 € D, tangentially to Dy if there is a continuous linear map ¢ : Dy — E such

that
¢(9 + 75nhn) B @(9)
tn
for all sequences t, — 0 and h, — h € Dg such that 0 + ¢, h,, € Dy for every n.

— ¢y(h), n — oo,

A map ¢ : Dy C D~ E is called Hadamard-differentiable uniformly in 6 € Dy, a compact
subset of D, tangentially to Dy, if
128
for all sequences 0,, — 0, t, — 0, and h,, — h € Dg such that 6 + ¢,h, € Dy for every n. As a

—¢p(h)| =0, n— oo,

part of the definition, we require that the map h — ¢y(h) from Dy to E is continuous and linear,
and that the map (0, h) — ¢y(h) from Dy x Dy to E is continuous.

Lemma A.7 (Functional delta-method for sequences). Let Dy, D, and E be normed spaces.
Let ¢ : Dy C D = E be Hadamard-differentiable uniformly in 6 € Dy tangentially to Dy, with
derivative map ¢,. Let X, be a sub-sequence of stochastic processes taking values in Dy such
that r(X,, — 60,) ~ X and 6, — 6 in D along a subsequence n € Z' C Z , where X possi-
bly depends on Z' and is separable and takes its values in Dg, for some sequence of constants
rn — 00. Then 1, (9(Xy) — ¢(0n)) ~> ¢4(X) in E along the same subsequence. If ¢ is defined
and continuous on the whole of D, then the sequences ry ($(Xy) — ¢(0n)) — ¢y, (rn(Xn — 0n))
and ¢y (rn(Xn — 0n)) — ¢ (rn(Xn — 0r)) converge to zero in outer probability along the same
subsequence.

Let D,, = (W;)}~, denote the data vector and M, = (&;)/, be a vector of random variables,
used to generate bootstrap draws or simulation draws (this may depend on particular method).
Consider sequences of stochastic processes X,, = X,,(D,,) , where the sequence G,, = \/n(X,,—0,)
weakly converges unconditionally to the tight random element G in the normed space D along a
subsequence, and 6,, — 6. This means that

sup  |Ep h(Gp) — Eqh(G)| — 0,
heBL1 (D,R)
along n € Z', where Eg denotes the expectation computed with respect to the law of G. This
is denoted as G,, ~ G along n € Z'. Also consider the bootstrap stochastic process G} =
Gn(Dy, My,) in D, where G,, is a measurable function of M,, for each value of D,,. Suppose that
G, converges conditionally given D,, in distribution to G, in probability, that is
sup  |Ea, [h(G})] — Egh(G)| — 0,
heBL; (D,R)
in outer probability along n € Z’, where Ej;  denotes the expectation computed with respect to
the law of M,, holding the data D,, fixed. This is denoted as G, ~p G along n € Z', respectively.
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Let X} = X,, + G}, /\/n denote the bootstrap or simulation draw of X,.

n

Lemma A.8 (Delta-method for bootstrap and other simulation methods for sequences). Let
Do, D, and E be normed spaces, with Dy C D. Let ¢ : Dy C D — E be Hadamard-differentiable
uniformly in 6 € Dy tangentially to Dy, with the derivative map ¢,. Let X, and X be maps as
indicated previously with values in Dy such that /n(X,—60,) ~ G, 0, = 0, and /n(X;;—X,,) ~p
G in D along a subsequence of integers n € Z' C 7, where G is separable and takes its values in
Do. Then /n(¢(X}) — ¢(6y)) ~B ¢p(G) in E along the same subsequence.

Another technical result that we use in the sequel concerns the equivalence of continuous and

uniform convergence.

Lemma A.9 (Uniform convergence via continuous convergence). Let D and E be complete sep-
arable metric spaces, with D compact. Suppose f : D +— E is continuous. Then a sequence of
functions f,, : D — E converges to f uniformly on D if and only if for any convergent sequence
Ty, — x in D we have that fp(x,) — f(x).

Proofs of Lemmas [A.T] and [A.8 The result follows from the proofs in VW, Chap. 3.9,
where proofs (pointwise in ) are given for a sequence of integers n € {1,2,...}. The claim extends
to subsequences trivially. m

Proof of Lemma [A.9] See, for example, Resnick (1987, p. 2).

APPENDIX B. PROOFS FOR SECTION 4

B.1. Proof of Theorem (.7l The results for the two strategies have similar structure, so we
only give the proof for Strategy 1.

STEP 0. (A Preamble). In the proof a < b means that a < Ab, where the constant A depends
on the constants in Assumptions only, but not on n once n > ng = min{j : 6; < 1/2}, and not
on P € P,. We consider a sequence P, in P,, but for simplicity, we write P = P, throughout
the proof, suppressing the index n. Since the argument is asymptotic, we can just assume that
n = ng in what follows.

To proceed with the presentation of proofs, it might be convenient for the reader to have the
notation collected in one place. The influence function and low-bias moment functions for ay (2)
for z € Z ={0,1} are given respectively by:

1(Z =2)(V—g(z,X))
m(z, X)

w%’,z(W) = w%,z,gv,mz(mc Ozv(Z)), wg’,z,g,m(VVv a) = + 9(27 X) - Q.

The influence functions and the moment functions for vy are given by (W) := |, (W, vy ) and
Y- (W,v) :== V — 7. Recall that the the estimator of the reduced-form parameters ay (z) and vy

are solutions o« = ay (z) and v = 7y to the equations:

En[lﬁ?},zg‘,,mz (VV, a)] = O, En[T/J\V/(W’ ’Y)] = 07
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where gy (z,2) = Ay (f(z,2)'By) and mz(z,2) = Az(f(x)'Bz), where By and Bz are estimators
as in Assumption 3. For each variable name V € V,,

Vi i= (Vi) =1 == (Yu, 1o(D) Yy, 19(D), 11(D)Y,, 11(D)),

we obtain the estimator p, := ({@V(O),&v(l),‘y\v})‘/evu of py = ({aV(O),aV(l),’yv})VE‘/u.
The estimator and the estimand are vectors in R% with a finite dimension. We stack these

vectors into the processes p = (py)ucyy and p = (pu)ucu-

STEP 1.(Linearization) In this step we establish the first claim, namely that
Vi(p = p) = Znp+op(l) in U, (73)

where Z,, p := (G9! uey. The components (vn(Yv,; =W, ))ueu of /n(p— p) trivially have the
linear representation (with no error) for each j € J. We only need to establish the claim for the
empirical process (v/n(ay,,(2) — av,;(2)))ueu for z € {0,1}, which we do in the steps below.

(a) We make some preliminary observations. For ¢t = (t1,t2,t3,t4) € R? x (0,1)? and v € R,
(2,2) € {0,1}2, we define the function (v, z, 2, t) — (v, 2, Z,t) via:

I(z=1)(v—t 1(z = —t
oo,z 1,0 = LEZDOZ) gy 20 = HEZOZ0)
4 3

+ 1.
The derivatives of this function with respect to t obey for all k = (k‘j)?:l e N*:0 < |k <4,
|Of<p(v,z, th)| <L, \V/(’U,Z, Zyt) : |U| <G, |t1|7 |t2| <G, Cl/2 < |t3|7 |t4| <l- Cl/27 (74)

where L depends only on ¢ and C, |k| = Z?Zl k;j, and oF = 8?11 8522 8@3 8@4.
(b) Let

/\

hy (X;) = ) ;
hv (Xi) == (gv (0, Xi), gv (1, Xi), m(0, X;),

Sy (W) =0V, 2,2, hy (X7)),

Tryv:(W) =V, Z, 2, hy (X))

(v (0,X3),gv (1, X;),1 — m(1

We observe that with probability no less than 1 — A,

gv(0,-) € Gv(0), gv(1,-) € Gv(1), m(L,-) € M(1), m(0,-) € M(0) =1—M(1),
where
(2.2) = Av(f(2,2)B) : 1Bl < 5C
Gv(z) = 1AV (f (2, X)'B) = gv (2 X)llp2 S dan ™% 5,
HAV(f(zvX),B) - gV(zvX)HP,oo ,S €n

z = Az(f(z)'B) : [1B]lo < sC
'B) —mz(1,X)|p2 S Sun~ 14
,5) mZ(lyX)HP,OO 5 €n
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To see this note, that under Assumption 3, under conditions (i)-(ii), under the event occurring

under condition (ii) of that assumption: for all n > min{j : 0; < 1/2},
[Az(f(X)'B) —mz(1, X)llp2 < [[Az(f(X)'B) — Az(f(X)'B2)llp2 + lrz(X)p 2
S NOAZ]|ocll f(X)' (B = B2)lIp2 + Irz(X)llp,2
SN0AZ ol F(X)' (B = B2)llpn2 + Irz(X) P2 S 8un ™"
[Az(f(X)'B) =mz(1,X)llpoc < [Az(f(X)'B) = Az(f(X)'Bz)llpoc + I72(X)lP .o
< OAZ ool (X)' (B — B2)lIp,oc + [I72(X) P00
S KullB = Bzl + en < 2en,

for 8 = B, with evaluation after computing the norms, and for ||OA| s denoting sup;cg |OA(L)]

here and below. Similarly, under Assumption 3,
IAV(f(Z,X)'B) = gv(Z. X)p2 S I0AV]Isll£(Z,X) (B = Bv)llen + Irv(Z, X)Ip2 < 6un ™/
1Av(f(Z. X)'B) = gv(Z, X)|po S KnllB = Byl +en < 265,
for 8 = BV, with evaluation after computing the norms, and noting that for any
AV (£(0,X)'B8) = gv (0, X)[lp2 V [[Av(f(1,X)'B) — gv (L, X)|lp2 S [Av(f(Z,X)'B) — gv(Z, X)|p .2
under condition (iii) of Assumption 2, and trivially
”AV(f(Ov X)/ﬁ) - gV(Ov X)”ROO v ”AV(f(lv X)/B) - gV(17'X)HP,OO < ”AV(f(ZvX)IB) - gv(Z, X)”ROO
under condition (iii) of Assumption 2.
Hence with probability at least 1 — A,
BV € HV,n = {h = (g(ov ')7@(17 '),T?L(O, ')7m(17 )) S gV(O) X gV(l) X M(O) X M(l)}
(c) We have that
aV(Z) = EP[th,V,z] and Z)Z(z) = En[fﬁv’wz]a
so that
\/ﬁ((/)}v(z) - Oév(Z)) =G, [th,V,z] + (Gn[fh,\/,z] -G, [fhv,\/,z]) + \/E(EP[fh,V,z - fhv,h,z])y

Iy (2) Iy (2) 111y (2)

with h evaluated at h = EV.
(d) Note that for Ay; = h(Z;, X;) — hy (Zi, X;) and Ab, = AT AR AR AR
IIIV(Z) = \/ﬁ Z Ep[atkcp(‘/wzlvzvhV(ZleZ))AI\ﬁ/,Z]

|k|=1

+ VY 27 'Ep0fe(Vi, Ziy 2, hv (Zi, X)) AL ]
|k|=2

1

+ \/ﬁ Z / 6_1EP[81{€90(‘/27 Zi7 Z, hV(Zi7 XZ) + )‘AV7Z)A]€:/,Z]d)‘7
k|=3"0

= TII%(2) + I11(2) + I115(2),
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(with h evaluated at h = h after computing expectations).

By the law of iterated expectations and the low-bias property of the estimation equation for
ay,
Ep[ofo(Vi, Ziy 2, hy (Zi, X)) Zi, X;]) =0 VE € N? @ k| =1,

so we have that I11{;(z) = 0.

Moreover, uniformly for any h € Hy,, we have that, in view of properties noted in step (a),
(11T (2)] S Vallh = hvlfp o S V(6.2 <67,
[TTTG (2)] S Vollh = hvlpollh = hvllp.co S VA(San™ )€, < Saen
Since EV € Hy,, for all V € V with probability 1 — A,,, we have that once n > ny,

Pp<|IIIV(z)| <82 Wz e {0,1),VV € V) >1- A,
(e) Furthermore, we have that

sup max [Ty (z)] < sup (Gnlfnvie]l = Galfny vl
vey z€{0,1} heHy,n,2€{0,1},VEV

The classes of functions, viewed as maps from the sample space S to the real line,
Vi={Vy,uel,je€J} and V" :={gy,,(Z,X),ucl,jeJ}

are bounded by a constant envelope and have the uniform covering e-entropy bounded by a mul-
tiple of log(e/e) V 0, that is log supg N (€, V, || - lg,2) < log(e/€) V 0, which holds by Assumption
2, and logsupg N (e, V*, || - lg,2) < log(e/€) V 0 which holds by contractivity of conditions expec-
tations noted in Lemma [A.6] (or by Lemma [A5 item (iv)). The uniform covering e-entropy of
the function set B = {1(Z = z),z € {0,1}} is trivially bounded by log(e/€) V 0.

The class of functions
G:={Gv(2),VeV,ze{0,1}}
has a constant envelope and is a subset of
{(z,2) = A(f(2,2)'B) : 1Bllo < sC,A € L={Id, ®,1 — ®,Ag, 1 — Ag}},
which is a union of 5 sets of the form
{(z,2) = A(f(z,2)'B) : |Bllo < sC}

with A € £ a fixed monotone function for each of the 5 sets; each of these sets are the unions
of at most ((,I*)s) VC-subgraph classes of functions with VC indices bounded by C’s ( note that a
fixed monotone transformations A preserves the VC-subgraph property). Therefore

logsup N (e, G, | - [Q.2) < (slogp + slog(1/e)) V0.
Q

Similarly, the class of functions M = (M (1) U (1 — M(1))) has a constant envelope, which is
a union of at most 5 sets, which are themselves the unions of at most (é’s) VC-subgraph classes
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of functions with VC indices bounded by C’s (a fixed monotone transformations A preserves the
VC-subgraph property). Therefore, logsupg N (e, M, || - [[g.2) $ (slogp + slog(1/e)) V0.

Finally, the set of functions
]:n = {fh,V,z - th,V,z HEAS {07 1}7 Ve Vv NS va},

is a Lipschitz transform of function sets V, V*, B, G, M, with bounded Lipschitz coefficients and

with a constant envelope. Therefore, we have that

logsup N (e, Fu, | - [l.2) S (slogp + slog(1/e)) v 0.
Q

Applying Lemma [A.3] and Markov inequality, we have for some constant K > e

sup max_|[1y(z)] < sup |Gy(f)]
vey z€{0,1} fEFn

= 1 2] K ;1 i] K -1
0P()<\/80n0g(pv Vo )+\/ﬁog(p\/ Vo, )>

= Op(1) <\/36$Ln—1/2 log(p vV n) + \/3271—1 log?(p Vv n))

= Op(1) (a0 + 01/%) = Op(87/2),

for o, = supger, | fllp2; and we used some simple calculations, exploiting the boundedness

conditions in Assumptions 2 and 3, to deduce that,

on=sup ||fllp2 <  sup |h—hy|p2 S dm A
feEFn hG/HV,n,VGV

since supyeyy,, vey b —hvlip2 < 5,n~ Y4 by definition of the set Hy,,; and then we used that
s2log3(p V n)/n < 6, by Assumption 3.

(f) The claim of Step 1 follows by collecting steps (a)-(e).

STEP 2 (Uniform Donskerness). Here we claim that Assumption 2 implies two assertions:

(a) The set of vector functions (% ).cy, where 1l := ({1/){‘}70,1/){‘}71,1[)?/})\/6%, is P-Donsker
uniformly in P, namely that

Zn,p~ Zp in 0°°(U)% | uniformly in P € P,

where Zn,p = (Gn¢5)u€u and Zp = (GP¢Z)UGM'
(b) Moreover, Zp has bounded, uniformly continuous paths uniformly in P € P:

sup Epsup || Zp(u)|| < oo, limsup Ep sup ||[Zp(u) — Zp(a)|| = 0.
PEP  weld NOPeP  dy(u,i)<e

To verify these claims we shall invoke Lemma [AT]

To demonstrate the claim, it will suffice to consider the set of R-valued functions ¥ = (¢, u €
U,k e1l,..,d,). Further, we notice that Gnpy,, = Guf, for f € F,

C(YZ =2}V —gv(2 X)) p
fz—{ mz(Z,X) +gV( 7X)7V€V}’




44

and that Gnl/f‘ﬂ = Gy,f, for f =V € V. Hence G, (¢¥yr) = Gu(f) for f € Fp=FoUF UV. We
thus need to check that conditions of Lemma [A.T] apply F uniformly in P € P.

Observe that F, is formed as a uniform Lipschitz transform of function sets 5,V, V*, M where
the validity of the Lipschitz property relies on Assumption 2 (to keep the denominator away from
zero) and on boundedness conditions in Assumption 3. The latter function sets are uniformly
bounded classes that have the uniform covering e-entropy bounded by log(e/e) V 0 up to a
multiplicative constant, and so this class, which is uniformly bounded under Assumption 2,
has the uniform e-entropy bounded by log(e/€) V 0 up to a multiplicative constant (e.g. van der
Vaart and Wellner (1996)). Since Fp is uniformly bounded and is a finite union of function sets
with the uniform entropies obeying the said properties, it also follows that it has this property,
namely:

sup logsup N (e, Fp, || - [lg,2) S log(e/e) V0.

PeP Q
Since fooo \/Wde = ey/7/2 < 0o and F is uniformly bounded, the entropy and bounded
moments condition in Lemma [A.T] holds.

We demonstrate other conditions. Consider a sequence of positive constants £ approaching
zero, and note that

sup  max ||tk — Yarllp2 S sup || fu — fallp2
dy (uyii)<e F<dp dyg (u,@)<e

where f, and f; must be of the form:

HZ = 2}(Uy — gu, (2, X))
my(z, X)

HZ =2}(Us — gu, (2, X))
myz(z, X)

+gUu(Z7X)7 +gUa(z7X)7

with (Uy, Uy) equal to either (Y,,Ys) or (14(D)Y,, 14(D)Yy), for d = 0 or 1, and z = 0 or 1.
Then

sup || fu — fallp2 S sup [|[Yu — Yallp2 — O,
PeP PeP

as dy(u, ) — 0 by Assumption 2. Indeed, suppep || fu — fallp2 < suppep ||Yu — Yallp2 follows
follows from a sequence of inequalities holding uniformly in P € P: (1)

| fu — fallp2 S 1Uu — Usllp2 + llgv, (2, X) — gu, (2, X)| P2,

which we deduced using triangle inequality and the fact that mz(z, X) is bounded away from
zero, (2) ||Uy — Usllp2 < ||Yu — Yal/p2, which we deduced using a Holder inequality, (3)

llgv, (2, X) — gu, (2, X)||p2 < || Uy — Uall P2,

which we deduced by the definition of gy, (z, X) = Ep(Uy|X, Z = z) and the contraction property
of conditional expectation recalled in Lemma [A.6] [
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B.2. Proof of Theorem The proof will be similar to the previous proof, and as in that
proof we only focus the presentation on the first strategy.

STEP 0. (A Preamble). In the proof a < b means that a < Ab, where the constant A depends
on the constants in Assumptions only, but not on n once n > ng = min{j : 6; < 1/2}, and not
on P € P,. We consider a sequence P, in P,, but for simplicity, we write P = P, throughout
the proof, suppressing the index n. Since the argument is asymptotic, we can just assume that
n = ng in what follows.

Let P, denote the measure that puts mass n~! on points (&, W;) fori = 1,...,n. Let E,, denote
the expectation with respect to this measure, so that E, f = n~! Sy f(& Wh).

Recall that we define the bootstrap draw as:

Sk N 1 k > >
¢ap—m=<vﬁZ¥wme = (Ga(edt))

cu weld
STEP 1.(Linearization) In this step we establish that
Vi(p* = p) = Zi p+op(1) in XU, (75)

where 7 p := (Gn&4)ucu- The components (Vr(W,, = s Dueu of /n(p* — p) trivially have
the linear representation (with no error) for each j € J. We only need to establish the claim for
the empirical process (\/ﬁ(a}*,uj(z) —avy,; (2)))uey for z € {0,1} and j € J, which we do in the
steps below.

(a) As in the previous proof, we have that with probability at least 1 — A,,,
BV € HV,n = {h = (g(ov ')7g(17 '),T?L(O, ')7m(17 )) € gV(O) X gV(l) X M(O) X M(l)}
(b) We have that

Vn(ay (z) — av(2)) = Guléfry vl + (Culéfrvz] — Gulé fay viz]) + V(EpEfrv,: — Efnhz])s

1 (2) 115,(2) 1173,(2)

with h evaluated at h = EV.
(c) Note that ITI{;(z) = 0 since £ is independent of W and has zero mean.

(d) Furthermore, we have that

sup max |IT(2)] < sup Gnléfn vzl = Gulé fry vl
vey z€{0,1} heHy n,2€{0,1},VEV

By the previous proof the class of functions, 7, = {fyv.. — fhyviz 1 2 € {0,1},V € V. h € Hy,},
obeys logsupg N (g, Fu, || - |g,2) < (slogp+slog(1/e)) V0. By Lemmal[A5 multiplication of this
class with £ does not change the entropy bound modulo an absolute constant, namely

logsup N (e,&Fn, || - llg,2) S (slogp + slog(1/e)) v 0,
Q
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since the envelope for £, is |£| times a constant, and E[¢2] = 1. We also have that, by standard
calculations using that E[exp(|£])] < oo,

(E[max [¢*])"/? < logn.

<n
Applying Lemma and Markov inequality, we have for some constant K > e

sup max |[[I{(z)| < sup |G,(f)
vey z€{0,1} fe&Fn

= Op(1) <\/sa% log(pV K Vop')+

slog

\/ﬁ
= Op(1) <\/85$Ln—1/2 log(p Vn)+ \/8271—1 log®(p Vv n))

= Op(1) (a0 + 01/%) = Op(3}/2),

n log(pV KV O’;l)>

for 0, = supseer, | fllp2 = supser, |Ifllp2; where the details of calculations are the same as in
the previous proof.

(e) The claim of Step 1 follows by collecting steps (a)-(d).

STEP 2 Here by Lemma [A.2] we have the conditional convergence:
Znp~B Zp in £°(U)% , uniformly in P € P,

where Z;;p = (Gn£¢5)ueuv and (b) Zp = (GP¢5)U€M'
Moreover, the linearization error in Step 1 converges to zero in unconditional probability.

It is known that this is stronger than the conditional convergence. The final claim follows by
combining the steps. =

APPENDIX C. PROOFS FOR SECTION 5

C.1. Proof of Theorem [5.1Il In order to establish the result uniformly in P € P,, it suffices
to establish the result under the probability measure induced by any sequence P = P, € P,. In
the proof we shall suppress the dependency of P on the sample size n.

Throughout the proof we use the notation

B(W) := max sup
J.k Vi, €Oy X Ty, u€l

T = nl/? < slog(an) +n = 2sni log(an)) .

&JkE[wuj(Wua V) ‘ Zu]

)

Step 1. (A Preliminary Rate Result). In this step we claim that with probability 1 — o(1),

sup |0, — 0. < Cr,
ueU

for some finite constant C. By definition

||En¢u(Wuaé\uaﬁu(Zu))” < 0in@f ||En¢U(Wm07/};u(Zu))H + €, for each u € U,
€0y
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which implies via triangle inequality that uniformly in u € U with probability 1 — o(1)
| Plu W B hi Z))]| < €0+ 20 + 282 S 7, (76)
where we define and bound I; and I in Step 2 below. The second bound in (76) follows from
Step 2 and from the assumption €, = o(n~/2). Since by Assumption S1, 27(||.J, (B — 6.)]| V co)
does not exceed the left side of (76]) and inf, e, mineig(.J,,) is bounded away from zero uniformly

in n, we conclude that

sup ng — 0, < sup(mineig(Ju))_lTn < Ty
ueU ueU

Step 2. (Define and bound I; and Iz) We claim that with probability 1 — o(1):

I = sup ‘ Enwu(Wuyeyﬁu(Zu)) - Enwu(WU767 hu(Zu))H 5 Tn,
0€0,, ,ucld

I, = Sup ‘ Enwu(Wuy 0, hu(Zu)) - EPwu(Wu’ 0, hU(ZU))H S -
0€O,, ,ucld

To establish the bound, we can bound I; < I1,+ I, and I < Ih,, where with probability 1—o(1),

e = sup [Eva( W, 0.1(2,)) = Bptou (W 0. 0(Z0))|| S 7
0€O ., ucU ,hEHyunU{hy}

[lb = sup HEPwu(Wuy 67 h(Zu)) - EPT/}u(Ww 97 hu(Zu))H 5 Tn.-
0€O ., ucl ,hEHyunU{hy}

The latter bounds hold by the following arguments.

In order to bound Iy, we employ Taylor’s expansion and triangle inequalities. For h(Z,u, j,6)
denoting a point on a line connecting vectors h(Z,) and hy(Z,),

dy  do
=1 m=1 0€Oy ,ucl heHun

< dod|| Bllp2 max ||hy — huml| P2,
me[d¢]

where the last inequality holds by definition of B(w) given earlier and the Holder’s inequality. By
Assumption S2 || B||p2 < C and by Assumption AS dy and d; are fixed and supy,cq,, maxy, ||fy, —
hum| P2 S T, conclude that Iy, S 7.

In order to bound I;, we employ the maximal inequality of Lemma [A.3] to the class

J1= {T,Z)uj(Wu,H, h(ZU))’j € [dg],u €eU,0 € Oy, h € Hyn U {h“}}’
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equipped with the envelope F; < Fy, to conclude that there exists a constant C' > 0 such that
with probability 1 — o(1),

max FO(WZ)

1<n

L, < Cn7'? <HF0”P,2 slog(an) +n~%s

log(an)
Pp,2

logn 4+ n~ Y2 ||max Fo(W;)
Pp,2

<n
< "_1/2<”F0HP,2 slog(an)+n‘msnéHFoHP,qlog(an)> S Tos

+

max Fo(W;)
<n

logn/|,
Pp,2

<||F0HP,2 +n7/?

using the assumptions on the entropy bound of 77, and that || Fy||p, < C and using the condltlon

that a, > n and s > 1, and using the elementary inequality |max;<, Fo(Wi)|lp, o < nq | Follp,q-

Step 3. (Linearization) We have that
VB (W, Oy b Zu)) | < i V[Entpu (W, 6, B Z0)) [ + enn /2
Application of Taylor’s theorem and the triangle inequality gives that for all uw € U
| VAB o (Wa O b 20)) + /(B = 00) + Dl = )
<eavi+sup (it VAIEL G, (W 0,5u(Z)] + [TL W) + [TE@)]) = op(D),

ueU

where the terms I1; and 115 are defined and bounded below in Step 4; the op(1) bound follows
from Step 4 and from €,+/n = 0(1) holding by assumption and from Step 5; and

dg

D — ) (Z\FP Ot PLu (W b ()| Z) o (Z) = hum( Z))] ) =0,

Jj=1

=0

where evanishment occurs because of the orthogonality condition. Conclude using Assumption
S1 that

< op(1) sgg(mineg(‘]u))fl =op(1),

ueUd

Furthermore, the empirical process (yv/nEq,Jy, 14, (Wa, 0u, hu(Zy)),u € U) is equivalent to an
empirical process G,, indexed by

0= (&u] 1j € [dg],UEU),

where 1,(W) = —J; %,(Wy, 04, hi(Z,)). We can show that that u ~ J;! is uniformly
Holder on (U, dy), given the stated assumptions. Indeed, ||J, — Jal| = ||Ju(J; ' — J7 D Jall <
supyey 17 P Ju — Jall S |lu—1]|*2. This property and assumptions on Fy imply by a standard
argument that F;, which depends on P, has a uniformly well-behaved uniform covering entropy,

namely

sup  logsup N(el|CFollgz2, o, | - @.2) < log(e/e),
PeP=Upzn,Pn Q
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where C'Fy is the envelope of F§ for some constant C. Application of Lemma [AT] gives the
required result.

Step 4. (Define and Bound 11, and I1). Let 11 (u) := (113 (u))glezl and I'ls(u) = (H'gj(u))?e:l,

where

IIlJ Z \/_P ajkawp[qu(Wuv’/u( ua]))|Z ]{Vur( u)_’/ur(Zu)}{ﬁuk(Zu) _Vuk(Zu)}]a

rk=1
I15;(u) == (qu(Wuveuah( w) = Vju(Was Ouy hu(Z4))),

W/l\lel‘f vu(Zy) = uk(Zu)E, = 0L, hi(Z0))s K = dp + di; Du(Z4) = Du(Zu))E, =
(0!, hy(Z,)"), and 0, (Z,,7) is a vector on the line connecting v, (W) and 7, (W).

Using Assumption AS, the claim of Step 1, and Holder inequalities, we conclude that

max sup |I1y;(u Z VP [C0:(Zy) = vur(Z) |06 (Z4) — vur(Z4)]]

J€ldo] ueut k=1

< CvnK? max 17 — vurl[p2 Sp v/ = o(1).
€

We have that with probability 1 — o(1),

max sup [/ 12j(u)| < sup |Gy (f)
Jj€ldel ueu fEF2

where, for ©,, :={0 € O, : |0 —0,| < C7,},
Fo = (Yus(Waas 0, 1(Z0)) = 5 (Was B, ha(Z)) £ € [do], 1 € Ush € Ho, 0 € O ).
Application of Lemma [A.3] gives:

1
rer Gn()] S 7%/ slog(an) +n~?sna || Fi| pglog(an) + T, (77)
€/2

since o in Lemma [A.3] can be chosen so that sup ez, || fllp2 <o < 7o, Indeed,

sup [|f|32 < sup EpEp[(¢uj(Wa, ¥(Z4)) = $uj(Was vu(Zu)))?| Zul,
feFe je[de}vueuﬂ/E@unXHun
< sup EpClv(Zy) — vu(Zu)|®,
UGZ/{,VE@unXHun
= sup Clv —vullpa < sup Cllv —vullpe S 70
UEUVEO yn X Hun UEU,VEO yn X Hun

where vy (Zy) := (uk(Zu))iey = (0 ha(Z0)')s K = do+dis v(Za) = (vi(Za))iey = (0, (Z4)')'s
where the first inequality follows by the law of iterated expectations; the second inequality follows
by Assumption AS; and the last inequality follows from « € [1,2] by Assumption AS and the
monotonicity of the norm || - ||p, in g € [1, c0].

Conclude that using the growth conditions of Assumption AS:

max sup |1 (u)| <p 78/2\/s1og(an) + n~2sni log(a,) = o(1). (78)
J€lde] ueu
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Step 5. In this step we show that infoee, vl Entu(Wa, 0, hu(Z,))|| = op(1). We have that
with probability 1 — o(1)

(W, 0, b Z0) | < VAl Entou(W, 0, b (Z0))|

where 0, = 0, — J; 'E, 100 (W, 04, hu(Zy)), since 6, € O, for all u € U with probability 1 — o(1),
and in fact sup,ey |0n — 0ull Sp 1/+/n by the last paragraph of Step 3.

Then, arguing similarly to Step 3 and 4, we can conclude that uniformly in v € U:
\/ﬁ”Endju(Wua éuaﬁu(ZU))H < \/EHEnd)u(Wuv ouv hu(Zu)) + Ju(éu - eu) + Du(ﬁu - hu)” + OP(l)

where the first term on the right side vanishes by definition of 6, and by D, (lAlu —hy)=0. =m

C.2. Proof of Theorem STEP 0. In the proof a < b means that a < Ab, where the
constant A depends on the constants in assumptions only, but not on n once n > ng, and not
on P € P,. In Step 1, we consider a sequence P, in P,, but for simplicity, we write P = P,
throughout the proof, suppressing the index n. Since the argument is asymptotic, we can just

assume that n > ng in what follows.

Let IP,, denote the measure that puts mass n~! on points (&;, W;) for i = 1,...,n. Let E,, denote
the expectation with respect to this measure, so that E,, f = n~! Yoy f(& Wh).

Recall that we define the bootstrap draw as:

~

o 1 & — ' - —~
\/ﬁ(e N 9) a <\/ﬁ i=1 gsz( 2)> =7 ( nfwu) ueld’
where

DuW) = = I bu (W, Oy ha(Z4)), (W) = =T 0u (W, O, B (Z).
STEP 1.(Linearization) In this step we establish that
V(6" —0) = Z; p +op(1) in £2U)", (79)

where Z}, p = (Gr&bt)ueu-

(a) We have that h, € H,, with probability 1 — d,.

(b) We have that

Vil = 0.) = Gal6du(W)] + Gal6du(W)] = Galebu(W))] + y/a(Pu(W) — &u(W)]) +Rn(u),
I*(u) 11+ (u) 111* ()

where notation Pf (£, W) means [ f(&, w)dP(§)dP(w), and where Ry, (u) := V(0 = 6,) — Guiby
obeys by the preceding theorem:

sup || Ry (u)|| = op(1).
ueld

(c) Note that I17*(u) = 0 since £ is independent of W and has zero mean.

(d) Furthermore, we have that with probability at least 1 — d;,:

sup [T (u)| < sup |G, [{f]]-
uel fEF3
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where
Fz = {J ou (W, Oy ha(Z0)) — Ty oW 0, i (Z0)),u € U, 01 € Oy by € Husny T € Tun}s

By the standard reasoning, under Assumption AS and additional conditions stated in the theo-

rem, we can conclude that this class obeys

logsup N (&l Esllgz: 73| lo2) S (slogan + s log(an /),

with the envelope F3 < Fy. By Lemma [A.5] multiplication of this class with & does not change
the entropy bound modulo an absolute constant, namely

log Sup N(elllElFsllQ2,€F3: || - lo2) < (slogan + slog(an/e)).

We also have that (E[max;<, |£]?])"/? < logn by standard calculations, using that E[exp(|¢])] <
0o. Applying Lemma [A.3] and Markov inequality, we have that

|| R 1
sn!/9|Fy g Og”bg(an))

NG

sup |G, (f)] =O0p(1) ( so2log(an) +
JEEF3

Snl/q”F()Hpg logn

N4

— 0p(1) (Tﬁ‘/? slog(an) + log<an>> — op(1),

/

for o, = supreer, | fllp2 = suprer, [1fllp2 S ™ ?. where the details of calculations are the same

as in the previous proof and therefore omitted in this version.
(e) The claim of Step 1 follows by collecting steps (a)-(d).
STEP 2. Here by Lemma[A.2] we have the conditional convergence of the bootstrap law:

Zynp~pB Zp in 0%°(U)% | uniformly in P € P,

where Z) p = (Gpétpu)uey; and Zp := (G piby )ueyr. Moreover, the linearization error R, in Step
1 converges to zero in probability unconditionally on the data. It is known that this is stronger
than the convergence in probability conditional on the data. The final claim follows by combining

the steps. ]
C.3. Proof of Theorem 5.3. We have that under any sequence P, € P,
Zpyn ~ Zp,s

which means that

heBLy (£>(U)% R)

where Z = {1,2, ..., }. By the uniform in P € P tightness of Zp and compactness of I; we can
split Z ={1,2, ..., } into a collection of subsequences {Z'}, along each of which

/
ZPn e Z/v H%n - 90 )
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where the former means that
sup [Ep,M(Zp,) — EMZ")| = ez O,
heBL1 (22 (U)% R)
where Z' is a tight Gaussian process, which depends on a subsequence 7Z' with paths that are
uniformly continuous on (U, dy), with covariance function equal to the limit of the covariance
function Zp, along the subsequence, which may depend on the subsequence Z', and 0% is some
value in Dy that also may depend on the subsequence Z'. We can conclude by the triangle
inequality that along that same subsequence,
ZPn,n ~ 7! ) that iS, sSup |EPnh(ZPn,n) - Eh(Z/)| —nez’ 0.
he€BL1 (£ (U)% R)

For each such subsequence, application of the functional delta method for subsequences, Lemma

[AT yields \/ﬁ(ﬁ —A) ~ ¢l (Z') and, furthermore, by the continuity of the map (¥, g) = ¢/(g)
on the domain Dy x Dy and the Extended Continuous Mapping Theorem, ¢}, (Zp,) ~ ¢, (Z"),
Pn

which gives that, via the triangle inequality, \/7(A — A) ~» Ppo (Zp,), that is,
Py

sup [Eph(vn(A — A)) — Eph(dhe (Zp,))| —new 0.
h€BL1(£>(Q),R) Pn

Since the argument above works for all subsequences as defined above, we conclude that

sup sup  |[Eph(vn(A — A)) — Eph(d (Zp,))] — 0,
PEP, he BL1 (£(Q),R) r

or, using more compact notation,

V(A = A) ~ byo(Zp), in £°°(Q), uniformly in P € P,.

The argument for bootstrap follows similarly, except now we apply Lemma ]

APPENDIX D. PROOFS FOR SECTION 6

Proof of Theorem [61. Condition WL is implied by Assumption Recall that the Algorithm
sets v € [1/n,1/logn] so that v = o(1) and log(np/v) < 3log(n V p). We will establish that
the events {\/n > v/esupuey Wit EnlCuf (X)), {0 < Wy < LWy}, for £ > 1/,/c and L
uniformly bounded, hold with probability 1 — o(1) for all iterations K for n sufficiently large.
Since ¢, = supyey ||Tullp, 2 is assumed, we will be able to invoke the conclusions of Lemmas [F.2]

(-3l and [F.4l
By Assumption [Bit follows that ¢ < E[|f;(X)¢u|?] < E[|f;(X)Y4|?] < C uniformly over u € U
and j =1,...,p. Moreover, Assumption [@l yields

sup max |(E,, — E)[|f;(X)Yu|*]| <6, and supmax |(E, — E)[|f;(X)¢ul?]| < 0n
ucld ISP ueld ISP

with probability 1 — A,. In turn this shows that E,[|f;(X)Y,[?] < C + 68, < L2E,[|£;(X)Cul?]
for some uniformly bounded L with probability 1 — A,, so that (I\’u < L(I\’uo. With the same
probability we have E,[|f; (X)Yu|?] = Eu[|f;(X)Cul?](1 — 26, /¢) for n > ng := min{n : §, < ¢/2}
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sufficiently large so that E\Tfuo < \Tf for ¢ = (1 — 26, /c) —p 1. This shows ECI\IHO < \/I}u < L(I\'uo
with probability 1 — A, where { —p 1 and L < C uniformly in v € U for n > ng. Moreover ¢ is
uniformly bounded which implies that k¢ is bounded away from zero by the condition on sparse

eigenvalues of order sf,,.

By Lemma [F.1] the event )\/n > \esup,ey ||(I\’;01E [f(X)Cu]|loo occurs with probability 1 —
o(1). Finally, by assumption ¢ < Cslog(p V n)/n with probability 1 — A,. By Lemma [F.2] we
have

~ slog(pVvn s2log(pVn
up 7Y B~ 0,2 < O LYt up 3, — 6,1 < 0 BV

ueld ueld

In the application of Lemma [[.3] since slog(p V n) < d,n and the conditions on the sparse
eigenvalues, we have that min,,eaf @max(m) is uniformly bounded. Thus, with probability 1 —
o(1), by Lemma [.3] we have

ne,

+\/} < Os.

ueld

Therefore by Lemma [F4] the Post-Lasso estimators (6, )y satisfy with probability 1 — o(1)

s?log(p VvV n)

5 M and sup||9 —0ull1 <

sup || £(X)' (6 — 0u) [, 2 < C
ueld
for some C independent of n.

In the kth iteration, the penalty loadings are constructed based on (%k))ueu, defined as \iujj =
En[|f;(X){Yy — ]“(X)’%P}F]}U2 for j =1,...,p. We assume (%k))ueu satisfy the rates above.
Then with probability 1 — o(1) we have

< B COUF XY B — 0} + Bl (X2} /2
< Kllf(X) (B — 0,2 + Kallrallp, 2 < CRo /2250 < G,

This establish the event of the penalty loadings for the (k + 1)th iteration which leads to the
stated rates of convergence and sparsity bound. ]

[Wujj — Vuojsl

Proof of Theorem[6.2. The proof is similar to the proof of Theorem[6.1l Condition WL is implied
by Assumption [l Recall that the Algorithm sets v € [1/n,1/logn| so that v = o(1) and
log(np/7y) < 3log(n V p). Moreover, by Assumption [0 w,; = E[Y, ui | X]( E[Y, ui | Xi]) <

is bounded away from zero. Since ¢(1 — ¢) < wy; < 1 we have E\I/uo < \I/ L\I/uo for some
uniformly bounded L and ¢ = 1. Moreover, since |r,(X)| < J,, a.s. uniformly on u € U, we have

[7u (3] < [ru(X)1 /el = ) = 62} < Clru(X)]. Thus [|7/v/Walle,2 < Clira/y/walle, 2.
By Assumption [7 it follows that ¢(1 — ¢)c < E[|f;(X)¢u[?] < E[|£(X)[?] < C uniformly over
ue€l and j=1,...,p. Moreover, Assumption [1 yields

sup max |(E, — E)[|.f;(X)¢ul?]| < o
ueld ISP
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with probability 1 — A,,. Note that by Lemma [A4] we have with probability 1 — (5}/ 2
lo n -
mescjp (B — B)I (X)) < 55/ 0 max; < /(B + E)£5 (X1

c mKnmaxj<,,¢<E +E)[|fg( )17

n

/4

under the condition K2s?log?(p V n) < &,n. Since for positive numbers a < b+ /a implies
a < (b+ 1), we have max;<, E,[|f;(X)|?] < C’ with probability 1 — o(1). Thus € is uniformly
bounded which implies that ¢ is bounded away from zero by the condition on sparse eigenvalues

//\ //\

3

of order s/,

By Lemma [E2T] the event A\/n > \/csup,cy H\T/;(}En[f(X)Cu]Hoo occurs with probability 1 —
o(1). Finally, since w,,; > ¢(1—c), by assumption |7, /\/wy||p, 2 < ¢ /c(1—c) < Cy/slog(p V n)/n
with probability 1 — A,,.

We have that g4, > bre/+/sK,. Under the condition K2s?log?(pVn) < 8,n, the side condition
in Lemma holds with probability 1 — o(1), and the lemma yields

) slog(pVn ~ s2log(pVn
sup || f(X) (6u — 0u)lp,.2 < C # and sup [|6, — Ou|1 < #
ueld n uelU n
In turn, under our conditions on sparse eigenvalues and K?2s? log? (pVn) < d,n, with probability

1 — o(1) Lemma [E.6] implies

3]2 < Cs

- c
sup s, < C {
ueld A

since ming,e Af Pmax(m) is uniformly bounded. The rate of convergence for gu is given by Lemma
[F7 namely with probability 1 — o(1)

s?log(p VvV n)

5 M and sup||9 —0ull1 <

sup [ f(X) (6u = 0u) ||, 2 < C
ucl
for some C' independent of n, since M, (8,) — M, (6,) < Cslog(pV n)/n and ||En[f(X)Cullleo <
log(p V n)/n by Lemma [Fdl and sup,cy; | ¥uolloe < C with probability 1 — o(1).

In the kth iteration, the penalty loadings are constructed based on (%k))ueu, defined as \iujj =
IE*lnHj"j(X){Yu—*/X(]"(X)’@(ﬁ))}m}1/2 forj=1,...,p. Weassume (%k))ueu satisfy the rates above.
Then
SAEF COLF (XY (O — 0u)}PIH? 4+ {En[| f5(X)ra ]}/
<Kl (XY (Bu = 022 + Knllrulle, 2 Sp Kny/ =52 < 6,

and we have K\T/uo < \T/u < L\T/uo for £ —p 1 and L uniformly bounded with probability 1 — o(1).
Then the same proof for the initial penalty loading choice applies to the iterate (k + 1). ]

(Wi — Puojjl

APPENDIX E. FINITE SAMPLE RESULTS OF A CONTINUUM OF LASSO AND P0OST-LASSO
ESTIMATORS FOR FUNCTIONAL RESPONSES

This section uses notation E[] = 2 3> | E[], because it allows for i.n.i.d. data.
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APPENDIX F. ASSUMPTIONS AND RESULTS

We consider the following high level conditions which are implied by the primitive Assumptions
[0 and [ For each n > 1, our data consist of fixed regressors (X;)!"; and independent (W;)I"
stochastic process W; = ((ui := Yui — E[Yui | Xi])uews defined on the probability space (S, S, P)
such that model (68) holds with ¢/ C [0, 1]*.

Condition WL. Let ¢ be fized, normalize E,[fj(X;)?] =1, j =1,...,p, and suppose that:
(i) for s = 1 we have sup,ey ||0ullo < 5, @71(1 —v/{2pn‘}) < 4y n1/6 N(e,U,dy) < (1/e).

{E[|fa( )Gu| }}1/3
(i3) Uniformly over u € U, 0 < ¢ < E[¢% | Xi] < €< o0, a.s., I§1<ap FI O
Xi)lloo < Ky, and for a fized parameter v € (0, 1],

<C
(i) with probability 1— A, we have max;<, || f(
Kylog(pVn) < 5nn{”A%}, and

sup max|(E, — E)[£;(X)*CZ]| < 0n,  supEn[rj] < cf,
ueld ISP ueld

sup  {(Bn + E)[(Gu — Cu)? I} < C{e” +n7 12

w,u' €U, dyy<e

The following important technical lemma formally justify the choice of penalty level \. It is
based on self-normalized moderate deviation theory.

Lemma F.1 (Choice of \). Suppose Condition WL holds, let ¢ > ¢ > 1, v € [1/n,1/logn], and

A= \/nd (1 —v/{2pn'}). Then for n > ng large enough depending only on Condition WL,

P (A/n > csup ||@;&En[f<x><u]||m> > 17— ofl).

F.1. Finite Sample Results: Linear Case. For the model described in (68]) with A(¢) =t and

M(y,t) = 3(y —t)* we will study finite sample properties of the associated Lasso and Post-Lasso
estimators of (0, )yeus-

The analysis relies on restricted eigenvalues
/
B 0 e, e
Ke = inf min -
uell |lorglh<ellér, Il |0z, |
maximal and minimum sparse eigenvalues

buinlm) = min T2 g gy = o WXl

1<l6flo<m o]l 1<[lbflosm o]l

and also the “ideal loadings” ‘T/uojj = {E,[f;(X)2¢2]}V/2.

Next we present technical results on the performance of the estimators generated by Lasso
that are used in the proof of Theorem
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~

Lemma F.2 (Rates of Convergence for Lasso). The events ¢, = sup,cy ||7ullp, 2 (0,0 <V, <
L(ﬁu(]; uw €U, and \/n > csup,cy H@;&En[f(X)(u]Hoo, for ¢ > 1/L, imply that

~ 20/ 1\ =
sup £(XY (B~ 0}l < 200 + 0 (L +2) 1ol
(¢

ueld
\V/5¢; 2)s LY esupuey [Yaplloo ™ 5
0, — 0] < 2L L v 1+ - S
iuP 10w — Oull1 g + Nkekog + Wuploo + {1+ 2¢ le—1 AT

where € = Sup,,cyy H\IJ ||oo||\I'u0||oo(Lc +1)/(bc—1)

The following lemma summarizes sparsity properties of (é\u)ueu-

Lemma F.3 (Sparsity bound for Estimated Lasso under data-driven penalty). Consider the
Lasso estimator @\u, its support T, = supp(@\u), and let's, = ]ful Assume that ¢, = sup,ey ||7ullp,,2,
A/n = esup,cy H@;&En[f(X)Cu]Hoo and (Vo < U, < LUy for allu €U, with L > 1> 0> 1/c.
Then, for co = (Le+1)/(bc — 1) and € = (Le+1)/(fc — 1) sup,ey ||\I’uo||oo||\I’ oo we have

’I’LCT \/g = 2
—|Wuolloo| [|¥y
[+ Liol] 1712

sup s, < 16 (min (bmax(m)) g sup

where M = {m e N:m > sup,y 32\@;01\\200 ["c’ + \/_”\I/uOHOO] } .

Lemma F.4 (Performance of the Post-Lasso). Under Conditions WL, let T w denote the support
selected by @\u, and 5u be the Post-Lasso estimator based on fu Then, with probability 1 — o(1),
uniformly over u € U, we have for s, = |fu|

IE[Ya | X] = F(X) Tl 0 < Y2VIBRVR) Lo miy | X = F(X) )0

min N
n (bmln(su) supp(0)CTy

Moreover, the following events ¢, = sup,cy ||7ullp...2, Wy < U, < LUy, u € U, and N\/n >
csupuey Voo Bnlf (X)Cullloos for ¢ > 1/, imply that

2\ ~
VE up Bl
NKke weu

sup min _ ||E[Y, | X] = £(X)0|lp,2 < 3¢ + (L—I— >
wel supp(0)CT,

F.2. Finite Sample Results: Logistic Case. For the model described in ([68]) with A(t) =
exp(t)/{1+exp(t)} and M(y,t) = 1{y = 0} log(A(t)) +1{y = 1} log(1 —A(t)) we will study finite
sample properties of the associated Lasso and Post-Lasso estimators of (6y)yecy. In what follows
we use the notation M, (0) = E,[M (Y, f(X)'0)] for convenience.

In the finite sample analysis we will consider not only the design matrix E,,[f(X) f(X)'] but also
a weighted counterpart B, [w, f(X)f(X)'] where wy; = E[Yy; | X;](1 = E[Yy: | X3]),i=1,...,n
u € U, is the conditional variance of the outcome variable Y;.

For T,, = supp(fy), |Tu| = 1, the (logistic) restricted eigenvalue is defined as
N I 3, »
c = .

w€U ||67¢ |1 <clléT, |11 |6, ||
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For a subset A, C RP, u € U, let the non-linear impact coefficient be defined as
Qa, = jnf B [l F0)0PT ) B [wal F(X)6°].
Note that g4, can be bounded based as

S 0 Y 6.0 0 I % 11 o1

M T sea Enfwdl {OSP] 7 sean maxicn [ (X loo 6]
which induces good behavior provided A, is appropriate (like the restrictive set in the def-
inition of restricted eigenvalues). In Lemma [[.5] we have A, = A U{d € RP : [|§|7 <

6c|| W o .
sl n) u iy ol /i0uf (X) b, 2}, which leads to

1 Koe A Ale —1) Ka2c
%%XIIf(X)IIm VEa(1+2¢) " 6en|| T oo lIu//alle, 2 \/gmaxuf( s

under ||ry,/\/Wy|lp,2 Sp \/Su/n and XA Zp /nlogp.

The definitions above differ from their counterpart in the analysis of ¢1-penalized least squares

qa, =

estimators by the weighting 0 < w; < 1. Thus it is relevant to understand their relations through
the quantities

RN R
V) = R ol

Many primitive conditions on the data generating process will imply 1, (A) to be bounded away

from zero for the relevant choices of A. We refer to (Belloni, Chernozhukov, and Wei, 2013) for
bounds on v,,. For notational convenience we will also work with a rescaling of the approximation
errors 7, (X ) defined as

Tui = fu(X,) = A_l( A(f(Xi)leu) + T ) - f(Xi)IHW
which is the unique solution to A(f(X;) 0, + 7,(X;)) = A(f(X;)'04) + 7u(X5). It trivially follows
that |rm| < |fm| and that |fm| < |rui|/inf0<t<;m A’(f(Xl’Hu) —|—t) < |7‘m|/{wm - 2|7"m|}
Next we derive finite sample bounds provided some crucial events occur.
Lemma F.5. Assume A\/n > csupueuH\T/;OlE [F(X)Culllos for ¢ > 1. Further, let (W, <
U, < LUy uniformly over u € U, & = (Le + 1)/(le — 1) supyeys W0 llool| Wit loo- and A, =
Age U {0 = [|d]h < 60”3‘12“01”00n”?‘u/\/wu”pmg”\/wuf( X)'6ullp, 2} Provided that the nonlinear
=+ 9¢||7u//Wallp, 2 } for every u € U, we have

NnKog

impact coefficient ga, > 3 {(L + E)||\I’u0Hoo
uniformly over u € U

||\/w_uf(X)'(§u—9u)||Pn,2<3{( ) ol f+9c||ru/¢w—u||n»n} and

1~ . MG
}{(L+ E)H\IJuOHoonH N + }
P,,,2 2¢ P,,2

The following provides a bounds on the number of non-zero coefficients in the ¢;-penalized

Tu

Ju

> (L+&)vs | 6 Puilloo
— <
16 9u|1\3{ K9& + le—1 A\

u

estimator §u, uniformly over u € U.
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Lemma F.6 (Sparsity of /;-Logistic Estimator). Suppose \/n > csup,cy H‘T’;(}En[f(X)gu]Hoo
then for s, = |supp(f,)]

N €2 2 )\ —~
; <M¢max<su>uf< XY B — 0u) + 2, .

Moreover, if max;<, |f(X-)’(§ —0y) + Tui| <1 we have
A (n/N)?

Su < (el — 1)2 ———— Pmax (8u) [[Vwu { f (X ) (é\u —0y) + fu}”l%n,?

Next we turn to finite sample bounds for the logistic regression estimator where the support
was selected based on f1-penalized logistic regression. The results will hold uniformly over v € U
provided the side conditions also hold uniformly over U.

Lemma F.7 (Post model selection Logistic regression rate). Consider gu defined by the support
T and let S = |T¥|. For each u € U we have

T f (X) (0~ 0)lp,2 < V3 O AL 1O, SFIE SO }
VSO B = 0l 2 < V3 MB) = Mul6) +3 {%( TN e M o

Ty

Vwu

ided that Ga, > 6 \/TSuIIEn[f )l oo 3‘
provide at qa, A/ Gl o) +
for Ay = {6 €R”: |30 <5, +8u}

M} and Ga, > 6y/M,(0,) — M (0.)

F.3. Proofs for Lasso with Functional Response: Penalty Level.

Proof of Lemma[F 1. Condition WL implies that \T’quj is bounded away from zero and from
above uniformly in j = 1,...,p and n with probability at least 1 — A,, for n > ng. Also,

By the triangle inequality
suPyer | Va0 Enlf (X)Cullloo < suPuerse W50 Enlf (X)ullloo
+Supu,u’eu,du(u,u’)<5 ”\I/;()lEn[f( )Cu] - ’10E [ (X)Cu’]”oo
where Y€ is a minimal e-cover of U. We will set € = 1/n so that [U¢| < n’.

The proofs in this section rely on the following result due to (Jing, Shao, and Wang, 2003).
Lemma F.8 (Moderate deviations for self-normalized sums). Let X3,..., X,, be indepen-
dent, zero-mean random variables and § € (0,1]. Let Sy, = nEn[X;], V2, = nEy[X?] and M, =

— — )
{E[XZ]}V/2 /{BE|X;|>H0]}1/1240} > 0. Suppose that for some £, — oo such that n?@¥ M, /€, > 1
[
Then for some absolute constant A, uniformly on 0 < xz < n2@+) M, /{,, — 1, we have
P(|Snn/Vanl = x) 1l < A
2(1 = ®(x)) T
Using Lemma [FL§ with 6 = 1, [//€] < n* and the union bound, we have

Enlf;(X )2C]

P | sup max
ueye J<P

>0 (1 - ’7/2pnb)> < {1 +o0(1)}
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provided that ®~(1 — v/2pn*) < §,n'/ which holds by by Condition WL.

Moreover, by triangle inequality we have

sup Wt Bn[f(X)Cu] = UuhEan [ (X) Gl oo

w,u €U, dy (u,u’)<e

< s B - T B ()Gl (80)

w,u’ €U, dy (u,u')<e

+  swp B [£(X) (Cu = Cur)lloo [T | oo

w,u' €U, dy (u,u')<e

The last term in (80) is of the order o(n~'/2) by Lemma and noting that sup, <, H(I\/;Ol Il oo
is uniformly bounded with probability at least 1 — o(1) — A,,.

To control the first term in (80) we note that by Condition WL with probability 1 — A,

sup  maxj<p [{Enlfj (X)°GN2 — {Ealf; (X))

w,u! €U, dyy (u,u’)<e

< sup EKn{En[(Gu — G’} < K O{e” +n7 12}

w,u’ €U, dy (u,u’)<e

(81)

Since (I\’quj is bounded away from zero with probability 1 — o(1) uniformly over v € U and

j=1,...,p, we have [W,. — \I/;,})jjl = [Wu0jj — Vuojjl /{Wu0jj Yuwoji} < ClWusj — Yuojs| with

the same probability. Thus, with € = 1/n the relation (§I]) implies with probability 1 — o(1)

=~ _ =~ _ _ 1
sup W — Uoblloo S Kan™"2) <6,/ log(p V n).
w,u’ €U, dyy (u,u’)<e

By Lemma [A4] with probability 1 — § we have
/ 1o n -
Py [EnlF(X)Cullloo < Go/ B2 sup,  { (B + B) £ (X222

By Condition WL, with probability 1 — A,, we have sup, ey {(E, +E)[f;(X)2¢?]}'/? < C. There-
fore, setting 6 = 5+/? we have with probability 1 — A, — 5% =1- o(1)

S~ = on C” [log(pVn)
sup \I’ul—\I’u,I oo [Enf(X)Cullloo < <o(1)/v/n.
u,u’eu,du(u,u’)<e|| 0 OH H [ ( ) ]H log(p\/n) 571/4 n ( )/

The results above imply that (80) is bounded by o(1)/y/n with probability 1 — o(1). Since
V0og(2pnt /) < @711 — v/{2pn‘}) we have that

P <L\/‘HC>¢1(1 —~/{2pn'}) > sup 19 0 B [£(X)Cu] — \Tfu/éEn[f(X)cu/]loo> =1-o0(1)

w,u' €U, dy (u,u’)<e

and the results follows. ™

Lemma F.9. Under Condition WL we have that with probability 1 — o(1)

sup max || En [£;(Xi)(Cui — Cwi)llleo < o(1)/v/.

! €U, dyy (u!)<1/n ISP
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Proof. By Lemma [A4] we have that with probability 1 — §
sup 1En [f (X)) (Cu — Cu )l oo

w,u €U, dy (u,u')<e

<G 2Ee)  sup (B + B[ (X0)2(Cui — Curi)?

w,u €U, dy (u,u’)<e

<GB g, iy {(E+ B)(Gu — )T}

w,u €U, dy (u,u’)<e

132

By Condition WL, ¢ is fixed, K, log!/? (pV n)n_(”A%) < 0y, and with probability 1 — A,

sup {(En +E)(Cu — G P2 < O + 072

u,u’ €U, dyy (u,u’)<e

1/2

Taking € = 1/n, with probability 1 — 4§,/ — A,, =1 — o(1) we have

sup B[ (X)(Cu — Cur)llloo < C"6L/ 40712,

w,u’ €U, dy (u,u’)<e

F.4. Proofs for Lasso with Functional Response: Linear Case.

Proof of Lemma[E3. Let ZS\u = §u — 0,. Throughout the proof we consider the events ¢ >
supyey Enlr2], A\/n > csup,ey H\T/;(}En[g“uf(X)]Hoo and (0,0 < U, < L.

By definition of §u we have

Ea[(f(X)',

W2 = 2En[(Ya — f(X)'0.) f(X))'6,
fX ) w)?] = En[(Ya = f(X)'0u)?]

=E,[(Y, —
< 2T — 2000
< %H\II 5UTuH1 - _H\IjuéuTcHI
< 2L Wuodur, 1 — 20| Tuodurs |1
Therefore, by ¢2 > sup,c Eq[r2] and A/n > esup, ey |50 EnlCuf (X)]]|oo, we have
En[(£(X)'0u)?] . o o o
< 2Bn[ruf (X))/0u + 2 BalGu f (X)) (Puodu) + 2 L] Waodurs, 1 = 220 Puodur 1

< 26 {En[(£(X)5.)? ]}1/2A+ 2J|\Tf;g]En[guf(X)]HOOH@uOgqu
2>\L||\I/u05uT H €||\I/u05uT5||1

< 2 (B [((X)8)2]} /2 + 2T u0dull + 2L Wuodur, Il = 20 Tuodur |
< Ou

2e{En[(f(X)'

212 4 22 (L4 1) [Waodur, |1 — 2 (€= 1) [Wuodure|r

(84)

Let ¢ = C%H SUP,ey H‘I’uoHooH\I’ !ls. Therefore if 5, & Ag we have that (L+1) W u0dur, I <

(t-1) H\I’u05uT§H1 so that
{En[(£(X)0,)%]}2 < 2¢,.

Otherwise assume Su € Ag. In this case (84) and the definition of kg yields

Ea[(f(X)'8.)%] < 2eAEa[(F(X) )2} + 2 (L + 4) [Puodur, |l — 2 (¢

- %)Auwuo&m\l
)

< 26 {Eal(f(X)'8u)2]}/2 + 2 (L + )ll‘I’uoHoof{E [(f(X)'0u)21}12 /e
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which implies

~ 2\
El(FXBPN < 20+ 2 (142 [uale
To establish the ¢1-bound, first assume that gu € Age. In that case

1Bl < (1 4+ 28 Burs Il < V(B (F(X) B2 Y2 s < 2V 20 28 <“ )‘l%um

K2e Nkekoe

Otherwise note that 5 ¢ Aoge implies that (L + ) ||\I’u05uTu I < % (f - %) H(I\fuoguTgnl so that
(B4) yields

;2: <€ - 1) 1Wu0durgllt < {Eal(£(X)6.)%]}2 (2@ —{E.[( f(X)’Su)Q]}lﬂ) <

Therefore

" 1 n C”L ”00” 2
5u < 1+ — 6u c < 1+ \I/ o) \I/u 5u c 1+—=) ——— ~
” Hl < 2c> H T"”l < ) ” ” ” 07wl Hl < 2c > Ec— 1 )\c

Proof of Lemma[E3 Let Ly, = 4co|| Wi ["CT + ‘[||\I'u0||oo} By Lemma [F.10/ and the defini-
tion of L, we have

Bu < Pmax (3u) L (85)
Consider any M € M, and suppose 5, > M. Therefore by the sublinearity of the maximum
sparse eigenvalue (see Lemma [F.17])

5 < |32 | G0
Thus, since [k]| < 2k for any k > 1 we have
M < 2umax(M)L,

which violates the condition that M € M. Therefore, we have 5, < M.

In turn, applying (83]) once more with s, < M we obtain
S, S (bmax(M)Li-
The result follows by minimizing the bound over M € M. ]

Proof of Lemma[F.4 Let my; = E[Y,; | Xi], F = [f(X1);...; f(X,)]" and for a set of indices
S c{1,...,p} we define Pg = F[S](F[S]F[S])~1F[S]" and Ps = F[S|(F[S) F[S])~*F[S]’ denote
the projection matrix on the columns associated with the indices in S. Since Yy; = my; + (u; we
have

my, — f(X)8u = (I = P ym, — Pz G,

where [ is the identity operator. Therefore

Ima — £(X)0ull < (I = P )ymall + | Pg Cull- (86)



62

Since | X[T,]/v/R(F[T,) F[T,]/n) " | € /1/bmin(5u), the last term in (B6) satisfies
1Pz, Gull - < V/1/bunin(5u) ||F ['Cu/ /7|

<
< V 1/¢m1n Su)”F Cu/f“
< V/1/Gmin(Su )\/EHF’{U/\/_Iloo

By Lemma [F.1] with v = 1/n, we have that with probability 1 — o(1)

sup | F'Cu/v/M|loo < C/tlog(pV n) sup max E,[f;(X)2¢2].

\.7\

By Condition WL, sup, < max1<]<p]( — E)[f;(X)%¢?]] < 6, with probability 1 — A,,, and
sup max E[f;(X)?¢?] < @E,[f;(X)?] < ¢. Thus with probability 1 — A,,,
weU 1<j<p

sup max \/E,[f;(X)2¢2 < C
wel 1SI<p

The result follows.

The last statement follows from noting that the Lasso solution provides an upper bound to
the approximation of the best model based on T,,, and the application of Lemma [

F.5. Auxiliary Technical Lemmas for Lasso with Functional Response.

Lemma F.10 (Empirical pre-sparsity for Lasso). Let f denote the support selected by the Lasso
estimator, S, = |T,|, assume \/n > csupy,ey |En (W 0 f(X)Cu oo, and (W, < U, < LWy for
all w e U, with L > 1 > ¢ > 1/c. Then, for co = (Le+1)/(lc — 1) and ¢ = (Le+ 1)/(bc —
1) sup,ey H‘IfuoHooH‘If Ylose we have uniformly over u € U

ney \/_
\/ X 4\/ ¢max Su ”\II ”oo Co H\Iluo”oo :

By

Proof of Lemma[F 10 Let Ry = (ru1,.--,7Tun), and F = [f(X1);...; f(X,)]. We have from the
optimality conditions that the Lasso estimator 6,, satisfies

Ea[U, L f5(X)(Yy — f(X)'0,)] = sign(f,;)A/n for each j € T,,.
Therefore, noting that | ¥ 1W,0llso < 1/¢, we have
VEuA = [[(T, F Yy — F(X)0u)7,
<H<-vwwﬁn+m U F Rz |+ (U F P (0, = 64))7, |

V Su ”\I] 1\IJuO”oo”\I] FCuHoo +n\/ ¢mdx Su H\Pu ”oocr
n\/sbmax ST ool F' (B = 00)lp, 2,

U oo
<V (10 n T F Culloe + 1/ G () 10 oo ”{ FIF B — 00l 2},
where we used that
1(F" (00 — 0u)) 7, | -
<SHP||5||o<su Is<1 16" F F (8 — 0u)| < supj5<s,, 1)<t H5’F’HHF(9 — 0|
< SUp| 5 <an 5 <1 10 F'FOY2F (00 — 00)] < ny/Omax (30) | F (X) (O — Ou) |, 2-
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Since A/c > sup,ey ”\T/;olF 'Cullsos and by Lemma [F2 we have that the estimate 6, satisfies
1F(X) (B — ) B2 < 260 + (L + 1) 22| T oo s0 that

NK&

R Gl Waglee faner 4 (1, + 1) )| Guollo
Su < .
(1-3)

The result follows by noting that (L 4 [1/¢c])/(1 — 1/[lc]) = cof by definition of co. [

Lemma F.11 (Sub-linearity of maximal sparse eigenvalues). Let M be a semi-definite positive
matriz. For any integer k > 0 and constant ¢ > 1 we have ¢max([Ck])(M) < [l]max(k)(M).

F.6. Proofs for Lasso with Functional Response: Logistic Case.

Proof of Lemma[E.3. Let 6, = §u — 60, and S, = E,[f(X){]. By definition of §u we have
My (0y) + 21 Wubyllt < My(0y) + 2[|¥0, 1. Thus,

~

My(0u) = Mu(62) < 3100l = 31 %0l
< %H‘I’ o, |l — —H‘I’ 5Tc|!1 (87)
<AL W07, |11 — 2L Wodre 1

However, by convexity of M,(-) and Holder’s inequality we have
My (0u) = My(60) > VM, (0,)'5,
—{VM( w) — Sut 0y + Sl0y
> — [V Sulloo [Wuodull — ru/vulle, 2llvVwaf (X) dulle, 2 (88)
> ———H‘Ifu05u Tl — gg”‘l’uo% Tell1
=lra/vwalle, 2llv/wa f (X) 6ullp, 2
Combining (Iﬂl) and (88]) we have

/\cf )\Lc—l—l
H\Ijuoéu TCHI

n

1Ww0dum, It + 7u/v/Dalle, 2l vViu f (X) 0ulle, 2
Lc+1

and for € = 757 sup,¢yy H\IIUOHOOH\I/_ loo We have

ncll¥.olleo
ourglh < o, -+ SRy o XYl

Suppose [[dy,7¢|[1 = 2€[[0u,T,|[1. Thus,

[0ulli < (1+ {2} 1) ||6u,7e]l1

(14 {28} )&lldur, |1 + (1 + {26}~ >"C“?s01”°° 7/ @l 2lly/@a f (XY 8ullp,. 2
<1 {26} ) gl + (1 + {28y ) 2Ll 10 s, ol i £ (XY Bl 2
22y (1+ {26} p Bl s 5, /e f (X)Sullp 2

Cl¥usle 21/ i, ol /T f (X) Dullen 2

Note that the relation above combined with the definition of k9 yields for J, that

u X/(Su
Je VT (XYl | Gl g

KR9g le —

//\ INCININ

//\

ol 2T O Bl (59

10w,7 1 <
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Since Ay = Aog U{6 - |16y < SM%aslloe n iy /ot Il /@af (X) 8,0}, we have

IV S (BRI
< MalBo) = MalOu) — VM6 b+ 20y Tl 2 VTS (X 2
<o (Lt DT+ 35l A
W, Oullpy, 2 6cl| U, wn
<0 (L4 DlTuollcd { VAL ol STl e, o] T (X Sl

""3”7:11/\/wuHPnQH\/wuf( ) 0ulle, 2
<+ DIFuolloo 22 + 987/ Bulp 2 | I1VBf (X)8ulp 2

where (1) follows by by Lemma [F.12 with A, (2) follows from |ry;| < |Fy;|, 7)) and (88), (3)
follows by (89), and (4) follows from simplifications. Provided that

\/_
so that the minimum on the LHS needs to be the quadratic term for each u € U, we have

Wy

in. > 3{ (L + DlFual
H\/wuf(X)/&LH]pmg <3 {( )||\I’u0\|oo f —|— 9¢||7u/ /Wy |p,, 2 } for every u € U.

Proof of Lemma[F.4. Recall that Am = E[Yy | X] and S, = E,[f(X)C] = En[(Yu — Au) f(X)].
Let T, = supp(9 ), Su = |Tul, 64 = 0y — 0., and Ay = exp(f(X)'6,)/{1 + exp(f(X)'6,)}. For
any j € T, we have |E,[(Yy — Au)fj( )| = (I\'ujj)\/n.

Since (U, < U, implies ||(I\’51\/I}u0\|oo < 1/4, the first relation follows from

AV =10 Eal(Ye — M) f, (X))
195 Wolloo W B (Ve — Au) 7, (X )]H2+H\I’ W00 | W g ) lloo 1En [(Au = M)z, (X))
VB O 0 BalGuf (D)oo + (1/O)1¥ 5 loo SuPyoo s, io=1 BallAu = Aul - 1£(X)0]
25 VBu 4V Dmax Ga) /01 5 oo £ (X) S+ 7 2

//\ NN

The other relation follows from

2 = WL B [(Yu = Ku) f7, (X)]l2
<(1/f>||\vu&En[<Yu—Au>fTu< )]||2+(1/€)H‘If ool En[(Ru — M) f7, (X)] 2
< VEL/OIELGuf ()] loo + (/O 55 lloo suPyoo s o= EnllAu — Aul - [£(X)0]]
< 7o VBu + (2/01V5 oo v/ Pmax (5u) |/ f (X)' 80 + ol 2

where we used Lemma [F.15] so that ]/AXM — Aui| < wyi2|f(X) 6y + Tus| since max;<p, | f(X;) 6y +

Tui| < 1 is assumed. ]
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Proof of Lemma[F.7 Let oy = 0, — 0, and t, = H‘/wuf(X)’SuH]png and S, = E,[f(X)(]. B
Lemma [F.12] with A, = {0 € RP : [|§]|o < S% + sy}, we have

L2 A {2t} < Mu(0) = Mu6) — VMU0 S + 207/ /T, 20
< My(0u) — My (0u) + [[Sullool6ull1 +3“fu/ku|’Pn,2t~Pn72

N

Mu(é ) (0 )—i—t]P)n’ { \/8u+8ullsu||oo +3||fu/ ,_wu||[[ﬁn72}

Pu(Au)\/ Pmin (35 +5u)

Provided that g4, /6 > {% e 4 3l /—wuuﬂ»mz} and g4, /6 > \/ Mu(6,) — M (0,),

if the minimum on the LHS is the linear term, we have t, < \/ M, (8,) — A(6,) which implies the

result. Otherwise, since for positive numbers a® < b+ ac implies a < Vb + ¢, we have

- = S+ SullSulloo -
tp, 2 < V3\/ My(0,) — My(6,) + 3 u + 3||Fui/Wuillp, 2 ¢ -
b2 < V3 ML(0,) — M, (6,) { T 8/ VTl

F.7. Technical Lemmas: Logistic Case.

Lemma F.12 (Minoration Lemma). For any u € U and § € A, we have

My (8 + 8) = My(0) — VMu(0.)'0 + 2|70/ /il 2]l /W00 f (X)'6lp, 2
> (B IVl (X018, o f A (% IVaf (X) 3z, 2}

Proof. Step 1. (Minoration). Consider the following convex function

Fu(é) - Mu(eu + 5) - Mu(eu) - VMu(eu)/‘S + 2“fu/\/w_uHP7l,2”\/w_uf(X)/éHPnQ-

Define the maximal radius over which F' can be minorated by a quadratic function
ra,=sw{r i F(0) > SIV@f(XYOl, , for all 6 € A, |/Tuf (X)6llp, 2 <7 }-

Step 2 below shows that 74, > Ga,. By construction of ry4,, the convexity of F;, and F,(0) = 0,

15112 / ~
Fl(6) > II\/wa();) OllE, 2 A ||\/me(X) 8|lg,, 2 . inf Fu(5)
Au € Au, VW f(X) 3pn 2274,

I r ()12, O Sl s | VTV, 5 - f qas
> . Pp.,2 /\{”\/w_f( ) dllp 2%} > . Pn.2 /\{qAT||\/w_uf(X)/5H]P’n,2}

T Ay

Step 2. (ra, > 4a,) Let 7; be such that A(f(X[0,) + Tui) = A(f(X[0,)) + rui = E[Ya | X].
Defining gu;(t) = log{1+exp(f(X;)'Ou+7ui+tf(Xi)'0)}, Jui(t) = log{1+exp(f(X) 6u+tf(X)'d)},
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Ayi = E[Yyi | X, Ay = exp(f(X)'6) /{1 + exp(f(X)'0.)}, we have
My(0u + 6) — My (0u) — VM, (0,)'6 =
= Ep [log{1 + exp(f(X)'{0u + d})} — Yuf(X)'(0u + 9)]
~E llog {1+ exp(£(X)'0) — Yuf (X)0u}] — En [ (A — Vi) F(X)'d]
— By |log {1+ exp(F(X)'{0 + 6})} — log{1 + exp(£(X)'0)} — Auf(X)'0]
= En[gu(1) = §u(0) — 1+ G,,(0)]
= Enlgu(1) — 9u(0) = 1- g3,(0)] + En[{gu(1) — 9u(1)} = {3u(0) = 9u(0)} — {5, (0) — 9,,(0)}]
Note that the function g,; is three times differentiable and satisfies, for
Awi(t) := exp(f(Xi) Ou + Tui + 1 (X)'0) /{1 + exp(f (Xi) Ou + Tui + £ (X)'6)},
Gui() = (F(X)O)Aui(t), gui(t) = (F(X2)'0)* Aui()[1 — Aui(t)],
gui () = (F(Xi)0)? A (1)[1 — Mg ()][1 — 2A5(1)]-
Thus |g(t)| < |f(X)'d|g);(t). Therefore, by Lemmas [E.13] and [E.14] we have
(1) = 9(0) — 1+, (0) > UGS {emp(FCXY5) + 7 CX0)'S] - 1)
> g { LA 00

Moreover, letting ng) = Gui(t) — gui(t) we have |Y7,(t)] = |(f(Xi)O){Aui(t) — Aui(t)}] <
|£(X;)'0| - |rus| where Ay;(t) := exp(f(X;) 0y + tf(X;)'0)/{1 + exp(f(X;) 0, + tf(X;)0)}. Thus

En[{9u(1) = gu(1)} = {9u(0) = 9u(0)} = {,(0) — 9o (0)})] =
= ’En[ru(l) - Tu(o) - {Au - Au}f(X)/(s”
< 2Bn[|7u] [£(X)'6]]
Therefore we have
Mu(eu + 6) - Mu(eu) - VMu(Hu)/(S = %En [wu‘f(X)/(sP] - %En [wu’f(X)lé‘g]
=2[|7u/vwullp, 2llvwu f (X) 0] e, 2

Note that for any ¢ € A, such that ||\/w,f(X)'d|p, 2 < §a, we have

IVwaf (X)dlle, 2 < @a, < IVwaf(X)0lI2, o/En [wal f(X)'6]%],
so that E,[wy|f(X)'6]%] < Ep[w,|f(X)'8|?]. Therefore we have

LB, [ FCO)OF] — 3. 10 FOXV8) > 2B, [wul 7XY6R] and

]
Lemma F.13 (Lemma 1 from (Bach, 2010)). Let g : R — R be a convex three times differentiable
function such that for allt € R, |¢"(t)] < Mg"(t) for some M > 0. Then, for all t > 0 we have

9"(0)
M2

Lemma F.14. Fort >0 we have exp(—t) +t —1 > 3% — 13,

{exp(=Mt) + Mt — 1} < g(t) — g(0) — ¢'(0)t < g]/\;([g) {exp(Mt) + Mt —1}.
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Proof of Lemma[F.1{ For t > 0, consider the function f(t) = exp(—t) + t3/6 — t2/2 + ¢ — 1.
The statement is equivalent to f(¢) > 0 for ¢ > 0. It follows that f(0) = 0, f/(0) = 0, and
1" (t) =exp(—t) +t—1 >0 so that f is convex. Therefore f(t) > f(0) +¢f'(0) = 0. [

Lemma F.15. The logistic link function satisfies |A(t + to) — A(to)| < A (to){exp(|t]) — 1}. If
[t| <1 we have exp(|t]) — 1 < 2|t|.

Proof. Note that |[A”(s)| < A'(s) for all s € R. So that —1 < dils log(A'(s)) = /X,I((j)) < 1. Suppose
s > 0. Therefore
—s < log(A'(s + o)) — log(A'(to)) < s.

In turn this implies A’(tg) exp(—s) < A'(s +tg) < A/(to) exp(s). Integrating one more time from
0 tot,

N (to){1 — exp(—1)} < At + o) — Alto) < A'(to) {exp(t) — 1).
The first result follows by noting that 1—exp(—t) < exp(t)—1. The second follows by verification.
[
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Table 1: Estimates and standard errors of average effects

Specification Net Total Financial Assets Total Wealth

Series approximation Dimension Selection LATE LATE-T LATE LATE-T
Indicators 20 N 11833 16120 8972 12500
(1638) (2224) (2692) (3572)

{1685} {2238} {2597} {3376}

Indicators 20 Y 14658 16895 13717 13711
(1676) (2265) (2726) (3645)

{1685} {2306} {2640} {3471}

Indicators plus interactions 167 N 11856 16216 9996 12131
(1632) (2224) (2675) (3428)

{1683} {2198} {2767} {3385}

Indicators plus interactions 167 Y 14653 16969 12926 13391
(1693) (2316) (2709) (3715)

{1680} {2307} {2711} {3700}

B-splines 27 N 11558 15572 8537 11431
(1573) (2140) (2625) (3502)

{1516} {2194} {2499} {3347}

B-splines 27 Y 11795 15956 8826 12016
(1632) (2172) (2674) (3520)

{1513} {2086} {2751} {3636}

B-splines plus interactions 323 N 40333 86032 31021 58152
(17526) (46158) (12449) (32123)

{17092} {47065} {11692} {33342}

B-splines plus interactions 323 Y 12337 16099 9706 10042
(1629) (2227) (2649) (3586)

{1618} {2120} {2627} {3468}

Notes: The sample is drawn from the 1991 SIPP and consists of 9,915 observations. All the specifications control for age, income, family
size, education, marital status, two-earner status, defined benefit pension status, IRA participation status, and home ownership status.
Indicators specification uses a linear term for family size, 5 categories for age, 4 categories for education, and 7 categories for income. B-
splines specification uses cubic b-splines with 1, 1, 3, and 5 interior knots for family size, education, age, and income, respectively. Marital
status, two-earner status, defined benefit pension status, IRA participation status, and home ownership status are included as indicators in
all the specifications. Analytical standard errors are given in parentheses. Wild bootstrap standard errors based on 500 repetitions with
Mammen (1993) weights are given in braces.
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