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Abstract

We study a dynamic stochastic general equilibrium model where agents are concerned about
model uncertainty regarding climate change. An externality from greenhouse gas emissions
adversely affects the economy’s capital stock. We assume that the mapping from climate
change to damages is subject to uncertainty, and we adapt and use techniques from robust
control theory in order to study effi ciency and optimal policy. We obtain a sharp analytical
solution for the implied environmental externality, and we characterize dynamic optimal tax-
ation. A small increase in the concern about model uncertainty can cause a significant drop
in optimal energy extraction. The optimal tax which restores the social optimal allocation
is Pigouvian. Under more general assumptions, we develop a recursive method and solve the
model computationally. We find that the introduction of uncertainty matters qualitatively
and quantitatively. We study optimal output growth in the presence and in the absence of
concerns about uncertainty and find that these can lead to substantially different conclusions.

∗We thank participants at the 2013 Midwest Macro Conference and at the Econometric Society Summer
2013 meetings for comments and suggestions. The opinions expressed do not necessarily reflect those of the
Federal Reserve System.
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1 Introduction

We study optimal taxation in a dynamic stochastic general equilibrium model where agents
are concerned about model uncertainty. We assume that an externality through global
temperature changes resulting from greenhouse gas emissions (GHG) adversely affects the
economy’s capital stock and, thus, output. Its precise effects, however, are subject to un-
certainty. In order to model the effect of the emissions created by economic activity on the
environment, we employ the framework in Golosov, Hassler, Krusell, and Tsyvinski (GHKT,
2013).1 While they assume that the mapping from climate change to damages is subject
to risk, in our model this mapping is subject to Knightian uncertainty. We study the im-
plications of this assumption using a robust control approach. We believe that this is an
appropriate application of uncertainty in economic modeling. After all, man-made climate
change is unprecedented, and there is an ongoing heated debate about its potential effects.
Our approach can perhaps be thought of as a first step towards addressing the critique that
economic models consistently under-assess risk (Stern, 2013). While our model does not
include the risks of large-scale human migration or conflict resulting from climate change,
it proposes a robust control approach as an alternative to standard probability distribution-
based modeling. More specifically, concerned about model uncertainty, a social planner in
our model maximizes social welfare under a "worst-case scenario."
In addition to taking into consideration model-uncertainty, there are two other differences

between our assumptions and those in GHKT. First, we find it convenient to assume that the
environmental externality affects output indirectly, through the capital stock. As a result, the
theoretical analysis in our model brings different results, although the two assumptions lead
to identical results if we assume 100% capital depreciation (as we do in the computational
part). A second difference is that we use estimates about total fossil fuel supplies that are
significantly larger than theirs. This is partly due to adding the supply of unconventional
oil and gas, but mainly due to considering estimated methane hydrate resources.2

Under plausible assumptions, we obtain a sharp analytical solution for the implied pol-
lution externality, and we characterize dynamic optimal taxation. A small increase in the
concern about model uncertainty can cause a significant drop in optimal energy extraction.
The optimal tax, which restores the social optimal allocation, is Pigouvian. Under more
general assumptions, we develop a simple recursive method that allows us to solve the model
computationally. We find that the introduction of uncertainty matters in the sense that
our model produces results that are qualitatively different, for example, in terms of oil con-
sumption, from GHKT. At the same time, we find that concerns about uncertainty do not
affect renewable energy adoption. The reason is that the margin that determines short-term
decisions regarding energy sources is driven by two factors: the trade-off between higher
versus lower total energy consumption, and the choice of coal versus gas/oil, rather than

1Acemoglu, Aghion, Bursztyn, and Hemous (2012) study related issues. See Nordhaus and Boyer (2000)
and Stern (2007) for earlier work that also points to the importance of uncertainty.

2See Boswell and Collett (2011), Hartley, Medlock, Temzelides, and Zhang (2012), and references therein
for a more detailed discussion on total estimated fossil fuel resources.

2



by renewable energy use. We find that oil-use in our model can be flat for some paramet-
rizations. We study optimal output growth in the presence and in the absence of concerns
about uncertainty and find that the results can be very different. In the worst case scenario,
optimality implies that a small sacrifice in yearly output can prevent a large future welfare
loss.
Since the green energy sector does not create emissions in our model, we find that the

optimal path for the use of green energy does not directly depend on the level of concern
about model uncertainty. However, since green energy, coal, and oil are substitutes, model
uncertainty does affect the use of green energy indirectly, through its impact on coal and oil.
We also find that an increase in the concern about model uncertainty causes a significant
decline in the use of coal, while the use of oil is slightly delayed. Holding other parameters
fixed, the optimal path of oil consumption is determined jointly by the resource scarcity
effect and by the model uncertainty effect. Naturally, we do not find a significant difference
in oil consumption when the scarcity effect dominates. However, when we consider a higher
level of initial resources of fossil fuel, the concern about model uncertainty substantially
discourages the use of oil.
As we mentioned, our work builds on the model in GHKT.3 In addition, we rely on exist-

ing work in robust control theory from both economics and engineering. In the traditional
stochastic control literature, uncertainties in the system are modeled using probability distri-
butions. The goal there is to derive a policy that works best "on average." In contrast, given
a bound on uncertainty, robust control is concerned with optimizing performance under a
so-called worst-case scenario.4 Hansen and Sargent (2001) introduced techniques from ro-
bust control theory to dynamic economic decision making problems.5 They pointed out the
connection between the max-min expected utility theory of Gilboa and Schmeidler (1989)
and the applications of robust control theory proposed by Anderson et al. (2000) and Dupuis
et al. (1998). Hansen, Sargent, Turmuhambetova and Williams (2005) give a thorough in-
troduction to the robust control approach, and develop a variety of tools required to make
it useful in an economics context. They discuss applications to a wide range of problems
within the Linear-Quadratic-Gaussian world.6

As is standard in the robust control literature, our paper postulates the problem of
optimal fossil fuel extraction as a two-person zero-sum dynamic game: in each stage, a
social planner (a representative household in the decentralized version) maximizes social

3See also Barrage (2013). Previous related work includes Hotelling (1931), Dasgupta and Heal (1974),
Nordhaus (2000, 2008), Hoel (1978), Stern (2007), Sinn (2008), Gars, Golosov, and Tsyvinski (2009), Krusell
and Smith (2009), and Ploeg and Withagen (2012, 2012). GHKT (2013) provide an excellent review of this
literature.

4See, for example, Lewis (1986) and Chandrasekharan (1996).
5See Knight (1921), Savage (1954), Ellsberg (1961), Gilboa and Schmeidler (1989), Hansen and Sargent

(2001 and 2010) for related research.
6Related work includes Hansen, Sargent and Tallarini (1999), Hansen and Sargent (2003), Colgey,

Colacito, Hansen and Sargent (2008). See Williams (2008) for a review. In a recent paper, Bidder and
Smith (2012) use robust control theory to study the implications of model uncertainty for business cycles
generated through “animal spirits.”
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welfare (lifetime utility) by choosing the level of energy extraction, consumption, labor and
capital investment. Then, a malevolent player chooses alternative distributions in order to
minimize the respective payoff. Our work contributes to the existing literature of applications
of robust control in economics in two ways. First, it explores a class of models under a non-
quadratic objective and non-linear constraints. In that regard, we demonstrate that models
of the type in GHKT (2013) can be restated in a robust control framework. We then
derive some sharp analytical results, and compute the resulting model numerically. Second,
we employ the exponential distribution as the approximating distribution. While existing
studies usually employ the Linear-Quadratic model combined with Gaussian distributions in
order to produce analytical solutions, our work shows that the approximating distribution
for models with log-utility and full depreciation of capital can be drawn from either the
normal or the exponential family.
The paper proceeds as follows. Section 2 presents the basic model. Section 3 studies the

model analytically, while Section 4 presents our numerical and quantitative findings. A brief
conclusion follows. The Appendix contains some technical material.

2 The Model

In order to characterize the optimal policy for the case where there is a concern about
climate change and model uncertainty, we first formulate a general framework for the "robust
planner’s problem," a benchmark that we will subsequently compare to decentralized market
solutions.
Time, t, is discrete and the horizon is infinite. The world economy is populated by a

[0, 1]-continuum of infinite-lived representative agents with utility

E0

∞∑
t=0

βtu(Ct). (1)

The function u is a standard concave period utility function, Ct represents final-good con-
sumption in period t, and β ∈ (0, 1) is the discount factor. The final goods sector uses energy,
E, capital, K, and labor, N , to produce output. Labor supply is inelastic. The economy’s
capital stock depreciates at rate δ ∈ (0, 1). Henceforth, K̃ represents the end-of-period cap-
ital (before interacting with the climate factor through the process described below). The
feasibility constraint in the final goods sector is given by

Ct + K̃t+1 = Yt + (1− δ)Kt. (2)

There are four production sectors. The final-goods sector, indexed by i = 0, produces the
consumption good. The corresponding production function is given by Y = F (K,N0, E).
Thus, in addition to capital and labor, production of the final good requires the use of energy,
E. The three energy-producing sectors for oil, coal, and green energy (labelled by i = 1, 2, 3,
respectively) produce energy amounts E1, E2 and E3 (measured in carbon equivalents). The
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oil sector is assumed to produce oil at zero cost. We denote by R the total oil energy stock,
and we impose the resource constraint, Rt ≥ 0, for all t. Both the coal and the green energy
sectors use linear technologies

Ei = AiNi, i = 2, 3 (3)

We follow GHKT in modeling a simplified carbon cycle as follows. The variable S (measured
in units of carbon content) represents the GHG concentration in the atmosphere in excess of
the pre-industrial level. We denote by P and T the permanent and temporary components
of S, respectively. These evolve according to the following.

P ′ = P + φL(E1 + E2) (4)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2) (5)

S ′ = P ′ + T ′ (6)

We introduce model uncertainty regarding climate change through a stochastic variable, γ,
which reduces the end-of-period capital stock K̃ ′ by a factor of h(S ′, γ) to K ′. That is,
K ′ = h(S ′, γ)K̃ ′.7 We use π(γ) to denote the approximating distribution of γ, while π̂(γ)

denotes the welfare-minimizing distribution, and m(γ) = π̂(γ)
π(γ)

is the likelihood ratio. The
distance, ρ, between π̂(γ) and π(γ) is measured by relative entropy:

ρ(π̂(γ), π(γ)) ≡ E[m(γ) logm(γ)] ≡ Ê[logm(γ)] ≡
∫

[m(γ) logm(γ)]π(γ)dγ (7)

As is standard in robust control, the concern about model uncertainty is represented by a
two-person zero-sum dynamic game in which, after observing the choice of a social planner,
a malevolent player chooses the worst specification of the model in each period. This game
proceeds as follows.8 At the beginning of a period, the state; i.e., the value of (K,N, P, T,R)
is revealed. Then, the planner chooses (C,Ei, Ni, K̃

′, P ′, T ′, S ′, R′) in order to maximize so-
cial welfare. After observing the planner’s choice, nature (the "malevolent player") chooses
an alternative distribution π̂(γ) or, equivalently, m(γ), to minimize welfare. Note that any
deviation from the approximating distribution will be penalized by adding αρ(π̂(γ), π(γ)) to
the objective function. Here, α represents the magnitude of the "punishment." A greater α
means a greater penalty associated with the deviation of γ from its approximating distribu-
tion, thus, a lower concern about robustness.

7In GHKT, γ directly affects output. For technical reasons, we find it convenient to assume that γ
adversely affects the economy’s capital stock. The two assumptions lead to identical results when there is
100% capital depreciation (as we assume for our numerical results).

8Our attention will be restricted to a particular type of equilibrium, the so-called Markov perfect (or
feedback) equilibrium. This equilibrium is strongly time-consistent.
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This leads to the following social planner’s problem:

V (K,N, P, T,R) = max
{C,Ei,Ni,K̃′,P ′,T ′,S′,R′}

min
m(γ)

{u(C) + β

∫
[m(γ)V (K ′, N ′, P ′, T ′, R′) + αm(γ) logm(γ)]π(γ)dγ} (8)

s.t.

Ei = AiNi; i = 2, 3 (9)

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ (10)

N = N0 +N2 +N3 (11)

K̃ ′ = F (K,N0, E) + (1− δ)K − C (12)

K ′ = h(S ′, γ)K̃ ′ (13)

R′ = R− E1 ≥ 0 (14)

N ′ = ANN (15)

P ′ = P + φL(E1 + E2) (16)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2) (17)

S ′ = P ′ + T ′ (18)

1 =

∫
m(γ)π(γ)dγ (19)

Under a set of additional assumptions, the social planner’s problem can be solved analytically,
and we will focus on the analytical solution first. We will discuss the decentralized problem
and show that the socially optimal allocation can be restored by imposing appropriate fossil
fuel taxes on the energy-producing sector.

3 The Analytical Solution

For the remainder of this section, we will make the following additional assumptions. While
these assumptions are admittedly strong, they allow us to fully solve the model analytically.
As we shall see, certain aspects of the solution remain instructive in the next Section, when
the restrictive assumptions are dropped and the model is solved numerically.
(A1) The period utility function is given by u(C) = log(C).
(A2) Capital depreciates fully; i.e., δ = 1.
(A3) The production function is given by F (K,N0, E) = A0K

θN1−θ−ν
0 Eν .

(A4) The damage function is given by h(S ′, γ) = e−S
′γ.9

(A5) The approximating distribution for γ is exponential with mean λ−1 and variance
λ−2; i.e., π(γ) = λe−λγ.10

9There exists a constant, ∆, such that if the GHG concentration, S, is greater than 1
∆ , the system cannot

be “robustified,”in the sense that the value of the game goes to negative infinity. However, if the economy
starts with an initial S0 <

1
∆ , then St will converge to

1
∆ as t→ +∞.

10The exponential distribution with mean λ−1 is the maximum-entropy distribution among all continuous
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(A6.1) φL = 0.11

(A6.2) φ = 0.
(A7) There is a single fossil energy sector producing oil at zero cost. Production is

subject to a resource feasibility constraint: R′ ≥ 0. As a result, N1 = 0 and N0 = N .
(A8) There is no population growth, and the aggregate labor supply is normalized to 1.

That is, AN = 1 and N = 1 in all periods.
(A9) There is no technology improvement. That is, A0 is constant over time. We

normalize A0 = 1.
(A10) The resource feasibility constraint is not binding.12

We will first solve the social planner’s problem. We will then discuss the decentralized
problem and show that the socially optimal allocation can be restored by implementing fossil
fuel taxes on the energy-producing sector.
Under A1-A10, the social planner’s problem can be rewritten as:

V (K,S)

= max
{C,E,K̃′,S′}

min
m(γ)
{u(C) + β

∫
[m(γ)V (K ′, S ′) + αm(γ) logm(γ)] π(γ)dγ} (20)

s.t.

K̃ ′ = F (K,E)− C (21)

K ′ = h(S ′, γ)K̃ ′ (22)

S ′ = S + φ0E (23)

1 =

∫
m(γ)π(γ)dγ (24)

where h(S ′, γ) = e−S
′γ and F (K,E) = KθEν . To solve this problem, we first guess that V (·)

takes the form

V (K ′, S ′) = f(S ′) + Ā log(K ′) + D̄ = f(S ′) + Ā log(h(S ′, γ)K̃ ′) + D̄ (25)

where Ā and D̄ are undetermined coeffi cients. The functional form for f(·) will be derived
when we solve the minimizing player’s problem.

distributions supported in [0,∞] that have mean λ−1. The worst case distribution for γ is also exponential
with mean (λ∗)−1 and variance (λ∗)−2, where λ∗ = λ(1 − ∆S′∗) = λ(1 − ∆φ0cE)(1 − ∆S). That is,
π∗(γ) = λ∗e−λ

∗γ . Since λ∗ = λ(1−∆S′∗) < λ, the worst case mean of γ, (λ∗)−1, is strictly greater than the
approximating mean, λ−1.
11If φL > 0, we need to depict the dynamics of P and T separately before we sum them in order to obtain

the dynamics of S. Assuming that φL = 0 allows us to express the dynamics of S without the need to
consider P and T separately. That is, S′ = (1 − φ)S + φ0E. Moreover, (A6.1) and (A6.2) imply that
S′ = S + φ0E, which is necessary for an analytical solution.
12Later we provide a suffi cient condition for (A10).
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First, we define the robustness problem (the inner minimization problem) by

R(V )(K̃ ′, S ′) = min
m(γ)

∫
[m(γ)V (K ′, S ′) + αm(γ) logm(γ)] π(γ)dγ (26)

s.t.

K ′ = e−S
′γK̃ ′ (27)

1 =

∫
m(γ)π(γ)dγ (28)

The F.O.N.C. for m(γ) implies that

m∗(γ) =
exp(−V (K′,S′)

α
)∫

exp(−V (K′,S′)
α

)π(γ)dγ
= (1−∆S ′)e∆S′λγ (29)

or, equivalently,

π̂∗(γ) = m∗(γ)π(γ) = λ∗e−λ
∗γ (30)

where we define ∆ = Ā
αλ
and λ∗ = λ(1−∆S ′).13 Thereby,

R(V )(K̃ ′, S ′) =

∫
[m∗(γ)V (K ′, S ′) + αm∗(γ) logm∗(γ)] π(γ)dγ

= −α log[

∫
exp(−V (K ′, S ′)

α
)π(γ)dγ] (31)

Substituting equation(25) into equation(31), we obtain

R(V )(K̃ ′, S ′) = f(S ′) + Ā log(K̃ ′) + D̄ +H(S ′;α, Ā) (32)

where H(S ′;α, Ā), the robust version of the externality from carbon emissions, is given by

H(S ′;α, Ā) = −α log[

∫
h−

Ā
α (S ′, γ)π(γ)dγ] (33)

It follows from (A4)-(A5) that

H(S ′;α, Ā) = α log(1−∆S ′) (34)

Next, we define the optimal choice problem (the outer maximization problem). Using the
analysis above, this problem can be written as

V (K,S) = max
{C,E,K̃′,S′}

{log(C) + βR(V )(K̃ ′, S ′)} (35)

13The worst case distribution of γ remains exponential with a distorted mean (λ∗)−1 and variance (λ∗)−2.
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or equivalently,

f(S) + Ā log(K) + D̄

= max
C,E
{log(C) + β[f(S ′) + Ā log(K̃ ′) + D̄ +H(S ′;α, Ā)]} (36)

s.t.

K̃ ′ = F (K,E)− C (37)

S ′ = S + φ0E (38)

H(S ′;α, Ā) = α log(1−∆S ′) (39)

The F.O.N.C. imply

C =
F (K,E)

1 + βĀ
(40)

−φ0

[
∂f(S ′)

∂S ′
+
∂H(S ′;α, Ā)

∂S ′

]
=

1 + βĀ

β

∂F (K,E)
∂E

F (K,E)
(41)

Noting that H(S;α, Ā) is a logarithmic function of S, we guess that f(S) = B̄ log(1−∆S),
where B̄ is an undetermined coeffi cient. As a result, the above F.O.N.C. can be simplified
to

C =
KθEν

1 + βĀ
(42)

βφ0∆(α + B̄)

1−∆S ′
=

ν(βĀ+ 1)

E
(43)

After some tedious derivations, we obtain

Ā =
θ

1− βθ (44)

B̄ =
1

1− β [αβ +
ν

1− βθ ] (45)

The expression for D̄ is more complicated and less intuitive. Substituting Ā = θ
1−βθ into

the F.O.N.C., we obtain the optimal allocation. We summarize the above discussion in the
following.

Proposition 1. Assume that (A1)-(A10) hold. The two-person zero-sum dynamic game
described by eq(20)-eq(24) admits a feedback (Markov perfect) equilibrium. The equilibrium
strategies are given by:

C∗ = (1− βθ)KθE∗ν = (1− βθ)Kθ[cE(1−∆S)]ν (46)

E∗ = cE(1−∆S) (47)

S ′∗ = S + φ0cE(1−∆S) (48)

π̂∗(γ) = λ∗e−λ
∗γ (49)

where cE = ν(1−β)
[βα(1−βθ)+ν]φ0∆

and λ∗ = λ(1−∆S ′∗).
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A few technical remarks are in order. First, the function V (K,S) is increasing in K,
decreasing in S, and jointly concave in K and S. The value of Ā is the same as in the model
without concern about model uncertainty. Both E∗ and S ′∗ are affi ne functions of S. In
addition, it can be shown that, given S, both E∗ and S ′∗ are increasing functions of α. This
is intuitive since a greater α implies a larger resulting penalty from a deviation of γ from its
approximating distribution, thus, a lower concern about model-uncertainty. Note that C∗

is affected by S only through E∗. This is due to logarithmic utility. As a result, a greater
concern about model-uncertainty will lower both E∗ and C∗. The value of the externality
from one unit of emissions evaluated at E∗ is given by

λs = −β∂V (K ′, S ′)

∂E
|K′∗,S′∗ =

βφ0∆(B̄ + α)

1−∆S ′∗
=

ν

cE(1− βθ)(1−∆S)
=

ν

(1− βθ)E∗ (50)

Our model so far is similar to the oil regime in GHKT, except that we assume that the
resource constraint is not binding. Since St+1 = St + φ0Et, we arrive at the following
expression for the aggregate oil extraction

+∞∑
t=0

Et = lim
t→+∞

φ−1
0 (St − S0) = φ−1

0 (
1

∆
− S0) (51)

Thus, the resource constraint is not binding if and only if the aggregate oil reserves are
greater than φ−1

0 ( 1
∆
−S0). Figures 1, 2, and 3 below illustrate how E∗ responds to a concern

about model-uncertainty. Figures 1 and 2 show how E∗ reacts to a change in the penalty
parameter, α, in the multiplier version of the game.

We can also study the effect of change in concern about uncertainty on energy use. Figure
3 refers to the equivalent constraint game, in which π̂(γ) is constrained in a closed ball of
radius δ centered at π(γ), denoted by Bδ(π(γ)). Direct calculation shows that the distance
between π̂∗(γ) and π(γ), as measured by entropy is given by

ρ(π̂∗(γ), π(γ)) = log(1−∆S ′∗) +
∆S ′∗

1−∆S ′∗
(52)

Since π̂∗(γ), which is chosen by the minimizing player, must be on the boundary of Bδ(π(γ)),
we have that ρ(π̂∗(γ), π(γ)) = δ. Recall that ρ measures the relative entropy of π and π̂.
Figure 3 shows how E∗ changes as we relax δ, allowing for more uncertainty about the
approximating model. In the Appendix we show that ∂E∗

∂δ
|δ=0 = −∞. That is, even an

infinitesimal concern about model uncertainty can cause a significant drop in the optimal
energy extraction.
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Figure 1: The Effect of Penalty Parameter α on Optimal Carbon Emissions, E

Figure 2: The Effect of α−1 on E
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Figure 3: The Effect of Model Deviation as Measured by Entropy, δ, on E

Robust control modeling can be introduced in different ways. So far we used a closed-loop
zero-sum dynamic game in which the social planner moves first in each period. Alternatively,
we can construct a game with the same information structure by interchanging the order of
max and min in eq(20). The two games differ only in terms of the timing protocol. However,
both lead to the same (unique) feedback saddle-point equilibrium if certain conditions are
satisfied. More precisely, if (A1)-(A10) hold, then the objective in (20) is strictly concave in
C and E, and strictly convex in m(γ). Consequently, the two closed-loop zero-sum dynamic
games admit the same unique pure strategy saddle-point Nash equilibrium, which is the one
described in Proposition 1.
Let us now turn to the decentralized problem. Suppose a percentage tax, τ t, is imposed

on emissions, Et. Since the extraction cost of energy (the cost of creating emissions) is zero,
it must be true that

τ t = pt =
∂F (Kt, Et)

∂Et
= νKθ

tE
ν−1
t (53)

The above equation captures the one-to-one relationship between Et and τ t. Therefore,
to achieve the optimal emissions level, Et = cE(1 − ∆S) in eq(47), we must impose τ t =
νcν−1

E (1−∆St)
ν−1Kθ

t . It is straightforward to show that τ t = λs

u′(C∗t )
, where C∗t is the optimal

consumption, given by eq(46). That is, the optimal tax on emissions is equal to the corres-
ponding GHG externality measured in units of the consumption good. It remains to show
that C∗t can be recovered under the optimal tax. This can be shown using the representative
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household’s problem as follows. Since we have established a one-to-one relationship between
Et and τ t, we may assume without loss of generality that the planner chooses Et. Further,
assume that Et is chosen as a function of St only.14 Given E = E(S), k, K, and S, a
representative household solves:

V (k,K, S) = max
c,k̃′

min
π̂(γ)

{
u(c) + βÊγ

[
V (k′, K ′, S ′) + α log

(
π̂(γ)

π(γ)

)]}
(54)

s.t.

c+ k̃′ = r(K,S)k + τ(K,S)E(S) + πprofit (55)

K̃ ′ = G(K,S) (56)

k′ = e−γS
′
k̃′ (57)

K ′ = e−γS
′
K̃ ′ (58)

S ′ = S + φ0E(S) (59)

where u(c) = log(c), r(K,S) = θKθ−1[E(S)]ν , τ(K,S) = νKθ[E(S)]ν−1, πprofit is the firm’s
profit, and K̃ ′ = G(K,S) is the equilibrium transition law for the aggregate capital stock.
Here, (k,K, S) stands for the beginning-of-period and (k̃′, K̃ ′, S ′) for the end-of-period state,
respectively. Notice that (k̃′, K̃ ′) is not equal to the beginning-of-next-period state, (k′, K ′),
due to capital deterioration by a factor e−γS

′
. In addition, Êγ is calculated with respect to the

worst case distribution for γ, π̂(γ), as chosen by the minimizing player. Since the minimizing
player moves after the maximizing player, the worst distribution is, in general, conditional on
the end-of-period state, (k̃′, K̃ ′, S ′). It can be shown that the optimal consumption sequence
satisfies the following Euler equation:

u′(c∗) = β

∫
e−γS

′
r(K ′, S ′)u′(c′∗)e−

V (k′,K′,S′)
α π(γ)dγ∫

e−
V (k′,K′,S′)

α π(γ)dγ
(60)

This yields the following Proposition.

Proposition 2. Assume that (A1) - (A10) hold. The optimal energy consumption is E =
cE(1 − ∆S). The optimal tax is τ t = λs

u′(C∗) , with tax proceeds rebated lump-sum to the
representative consumer. The resulting competitive equilibrium allocation coincides with the
solution to the planner’s problem. That is, c∗ = C∗ = (1− βθ)Kθ[cE(1−∆S)]ν.

4 The Computational Solution and Calibration

In this Section we first extend the analytical model by relaxing assumptions (A6.1) and
(A6.2). For our baseline model, we will assume that π(γ), the approximating distribution
of γ, is exponential. As we now allow for φL > 0, we need to introduce two additional state

14This is without loss of generality, since our goal is to recover the optimal emissions in eq(47), which only
depends on St.

13



variables (P and T ), since keeping track of the sum S = P +T will no longer suffi ce. We will
also relax (A7) by incorporating a "coal" and a "green" sector into the model. Furthermore,
we will relax (A8) and (A9) by allowing A2N2 and A3N3 to grow at a rate of two percent
per year. Last, we will drop (A10).

The social planner’s problem becomes:

V (K,N, P, T,R) = max
{C,E1,E2,E3,E,K̃′,P ′,T ′,S′,R′}

min
m(γ)

{u(C) + β

∫
[m(γ)V (K ′, N ′, P ′, T ′, R′) + αm(γ) logm(γ)]π(γ)dγ} (61)

s.t.

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ (62)

K̃ ′ = F

(
K,N(1− E2

A2N
− E3

A3N
), E

)
− C (63)

K ′ = h(S ′, γ)K̃ ′ (64)

A′2N
′ = (1 + g)A2N (65)

A′3N
′ = (1 + g)A3N (66)

R′ = R− E1 ≥ 0 (67)

P ′ = P + φL(E1 + E2) (68)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2) (69)

S ′ = P ′ + T ′ (70)

1 =

∫
m(γ)π(γ)dγ (71)

To solve this problem we first argue that most of the analysis conducted in Section 3 carries
over. The only difference is that the function f(·) no longer has a closed form expression. We
will again apply the outer-inner loop method used in Section 3. The inner loop minimization
problem is unchanged, while the outer loop maximization problem will be solved in parts.
In that regard, it is important to note that solving the optimization problem for Ei, P ′, T ′,
and R′ can be carried out separately from solving for C and K̃ ′. Furthermore, the solution
to the second optimization problem remains the same as in Section 3; i.e., C∗ = (1− βθ)Y ∗
and K̃ ′∗ = βθY ∗, where Y ∗ denotes the optimal output level. After substituting for C∗,
the optimization problem for Ei, P ′, T ′, and R′ can be simplified, leading to the dynamic
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programming problem below:

f(N,P, T,R) = max
E1,E2,E3,E,P ′,T ′,S′,R′{

1

1− βθ log[(1− E2

A2N
− E3

A3N
)1−θ−νEν ] + β[f(N ′, P ′, T ′, R′) + α log(1−∆S ′)]

}
(72)

s.t.

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ (73)

N ′ = (1 + g)N (74)

R′ = R− E1 ≥ 0 (75)

P ′ = P + φL(E1 + E2) (76)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2) (77)

S ′ = P ′ + T ′ (78)

Next, we characterize the optimality conditions for E3, E2, and E1, respectively. The first-
order condition for E3 implies

νκ3

E1−ρ
3 Eρ

=
1− θ − ν
A3N0

(79)

The first-order condition for E2 gives

1− θ − ν
A2N0

=
νκ2

E1−ρ
2 Eρ

+ (1− βθ)β
[
φL

(
∂f

∂P ′
− α∆

1−∆S ′

)
+ (1− φL)φ0

(
∂f

∂T ′
− α∆

1−∆S ′

)]
(80)

Applying the envelope theorem to P and T gives

∂f

∂P
= β

(
∂f

∂P ′
− α∆

1−∆S ′

)
(81)

∂f

∂T
= β(1− φ)

(
∂f

∂T ′
− α∆

1−∆S ′

)
(82)

Defining Λ̂P = −(1 − βθ) ∂f
∂P

and Λ̂T = −(1 − βθ) ∂f
∂T
to be the marginal values of the

externality caused by P and T , respectively, the first-order condition for E2 becomes

1− θ − ν
A2N0

=
νκ2

E1−ρ
2 Eρ

−
[
φLΛ̂P +

(1− φL)φ0

1− φ Λ̂T

]
(83)

It is easy to see that the marginal externality caused by E2 (or E1) is given by

Λ̂S = φLΛ̂P +
(1− φL)φ0

1− φ Λ̂T (84)
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Thus, we obtain
νκ2

E1−ρ
2 Eρ

− Λ̂S =
1− θ − ν
A2N0

(85)

This has the same form as the corresponding equation in GHKT, but under a different
interpretation for Λ̂S. To see the difference, it is convenient to restore the time index, t.
From eq(81) and eq(82) we have

Λ̂P
t = (1− βθ)α∆

+∞∑
j=1

βj

1−∆St+j
= θγ̄

+∞∑
j=1

βj

1−∆St+j
(86)

Λ̂T
t = (1− βθ)α∆

+∞∑
j=1

[β(1− φ)]j

1−∆St+j
= θγ̄

+∞∑
j=1

[β(1− φ)]j

1−∆St+j
(87)

The second equality in either equation is obtained by using (1 − βθ)α∆ = (1 − βθ)α Ā
αλ

=
θλ−1 = θγ̄, where λ−1 = γ̄ is the mean of γ under the approximating model. It follows
immediately that Λ̂S

t can be expressed as

Λ̂S
t = θγ̄

+∞∑
j=1

[
φL

βj

1−∆St+j
+

(1− φL)φ0

1− φ
[β(1− φ)]j

1−∆St+j

]
(88)

It is instructive to consider the case when α → +∞; i.e., when there is no concern about
model uncertainty. Observe that ∆→ 0 as α→ +∞. Therefore,15

lim
α→+∞

Λ̂S
t = θγ̄

+∞∑
j=1

[
φLβ

j +
(1− φL)φ0

1− φ [β(1− φ)]j
]

= θγ̄

[
φLβ

1− β +
(1− φL)φ0β

1− (1− φ)β

]
(89)

Finally, the first-order condition for E1 yields

νκ1

E1−ρ
1 Eρ

− Λ̂S = β

[
νκ1

(E ′1)1−ρ(E ′)ρ
− (Λ̂S)′

]
(90)

Note that the operator Et does not appear on the right-hand-side, as the planner optimizes
under the worst case scenario, rather than averaging over all cases. As the planner’s prob-
lem has a similar structure as in the analytical model, it can be shown that analogues of
Propositions 1 and 2 hold in this environment. We numerically solve the above problem for
the cases where α = 0.01 and α = 100. We use the same parameter values as in GHKT,
except for R0, which is set to 800 as in Rogner (1997). Figures 4 through Figure 6 plot the
computed optimal paths.

15Contrasting this with the corresponding equation in GHKT
(

Λ̂St = γ̄
[
φL

1−β + (1−φL)φ0
1−(1−φ)β

])
, we identify

two differences. First, eq(89) contains an additional term (θ). This is because GHG directly affect aggregate
capital instead of output in our model. Second, the externality related to P and T is weighted by β in
eq(89). This is because GHG in our model affect next period’s capital rather than the current one.
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Parameter φ φL φ0 θ ν β ρ 1 + g
Value 0.0228 0.2 0.393 0.3 0.04 0.98510 −0.058 1.0210

Parameter P0 T0 R0 κ1 κ2 A2,0 A3,0 λ−1

Value 103 699 800 0.5008 0.08916 7, 693 1, 311 2.379× 10−5

Figure 4: Optimal Use of Energy

Figure 4 describes the optimal paths for the use of green energy, coal, and oil, as well as the
resulting carbon concentration in the atmosphere, conditional on different levels of concern
about model uncertainty. For simplicity, we refer to the optimal path under α = 100 as the
"non-robust optimal path," and to the path under α = 0.01 as the "robust optimal path."
Since the green energy sector does not inject carbon into the atmosphere, the optimal path
for the use of green energy does not directly depend on the level of concern about model
uncertainty regarding the externality from carbon emissions. However, since green energy,
coal, and oil are substitutes, model uncertainty considerations do affect the use of green
energy indirectly, through its impact on the "dirty" energy sectors – coal and oil.
We find that an increase in the concern about model uncertainty causes a significant

decline in the use of coal. In contrast, the use of oil is delayed, but only slightly. As the
supply of oil is finite, the decline rate of oil-use depends not only on model uncertainty,
but also on resource scarcity. As we will show in the next Section, an initial stock of oil
equaling R0 = 800GtC is low enough so that the resource scarcity effect overwhelms the
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model uncertainty effect in determining the optimal use of oil in the economy. This explains
why we do not observe a sharp decrease in the optimal use of oil when the concern about
model uncertainty increases. Finally, straightforward calculation shows that the difference
in energy use in the two optimal paths leads to a significant difference in the associated
carbon accumulation. Our model predicts that if there is a "small" concern about model
uncertainty (α = 100), or if model uncertainty is not incorporated into the model (α = 0.01),
atmospheric carbon concentrations will reach a level as high as 1350GtC (net of preindustrial
levels) after 180 years. However, this number is reduced by 40% to about 800GtC if concerns
about model uncertainty are incorporated and addressed through the corresponding optimal
tax, restoring the optimal energy path under α = 0.01.

Figure 5: Increase in Global Temperatures

Figure 5 demonstrates a direct consequence of the above analysis: based on the mapping from
carbon concentrations to global temperatures used in the RICE model, T (St) = 3 ln(St

S̄
)/ ln 2,

the global average temperature will rise by 3.8 degree Celsius 180 years from now if the
concern about model uncertainty is addressed, and by 5.3 degrees Celsius otherwise.
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Figure 6: Capital Stock and Output

The graphs in the first (second) column in Figure 6 describe the paths of total damages
as a percentage of the capital stock, and as a function of the capital stock, and of output,
respectively, assuming that the approximating model (worst case model) for γ is the true
model.16 In each graph, the green-dashed line (blue-solid line) represents the outcome when
energy is extracted based on the non-robust (robust) optimal path. The main findings can
be summarized as follows. If the approximating model for γ is the true model, pursuing
the robust optimal path for energy consumption would further reduce total damages by an
additional 1 percent 180 years from now. However, due to a more conservative use of oil and
coal in the final good sector, such a policy will also reduce both capital stock and output in
the long run. Since utility depends only on consumption (which is proportional to output),
this implies that the welfare loss from over-estimating the concern about uncertainty would
be rather small. In contrast, if the true distribution of γ evolves according to the worst case
model in each period (second column of Fig. 6), the cost of implementing the non-robust
optimal policy is rather large. In fact, the non-robust policy, which overlooks concerns about
model uncertainty, will dramatically reduce the entire capital stock in 120 years, resulting
in a large reduction in output and welfare.17

16To obtain smooth paths, γ is set to be the expected mean of the approximating (worst case) distribu-
tion(s) in each period.
17The dramatic effects on capital, output, and social welfare are partly due to the assumption that the

approximating distribution of γ is exponential. As we discuss next, the losses are somewhat reduced, though
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4.1 Varying the Approximating Distribution

Here we further explore the implications of assumption (A5). To this end, we now assume
that the approximating distribution of γ is normal with mean γ̄ and variance σ2; i.e., π(γ) =

1√
2πσ2

e−
(γ−γ̄)2

2σ2 . This creates two key differences. First, the normal distribution provides
us with two degrees of freedom: the mean, γ̄, reflecting the planner’s prior expectation
regarding damages, and the variance, σ2, indicating the prior regarding model uncertainty.
In comparison, recall that the exponential distribution only used one parameter, λ, which
determined both the mean and the variance of γ.18

We have:

H(S ′;α, Ā) = −(γ̄ +
Āσ2

2α
S ′)ĀS ′ (91)

π̂∗(γ) ∼ N (γ̄ +
Āσ2

α
S ′2, σ2) (92)

It is straightforward to show that H(·) is strictly negative, strictly increasing in α, and
strictly decreasing in both γ̄ and σ2. In addition, the worst case distribution for γ also
follows a normal distribution, and π̂∗(γ) and π(γ) differ only in their means. That is, when
choosing the worst case model, nature only alters the mean of γ, rather than its variance.
As a by-product, the relative entropy of π̂∗(γ) with respect to π∗(γ) is given by

ρ(π̂∗(γ), π∗(γ)) =
Ā2σ2S ′2

2α2
(93)

To complete the model, we need to replace the term α log(1 − ∆S ′) in eq(72) with −(γ̄ +
Āσ2

2α
S ′)ĀS ′. Accordingly, the optimality conditions for E1, E2, and E3 remain intact, expect

that the values of the externality associated with P , T , and E2 (or E1), respectively, are now
as follows:

Λ̂P
t =

βθγ̄

1− β +
θĀσ2

α

+∞∑
j=1

βjSt+j (94)

Λ̂T
t =

β(1− φ)θγ̄

1− β(1− φ)
+
θĀσ2

α

+∞∑
j=1

[β(1− φ)]jSt+j (95)

Λ̂S
t = φLΛ̂P

t +
(1− φL)φ0

1− φ Λ̂T
t (96)

still large, if the approximating distribution of γ is assumed to be normal. The exponential distribution is
one way to capture the extreme effects in Stern (2013) in the context of our model.
18As we shall see below, assuming that γ is normally distributed can also eliminate the "breaking point"

for S, which is always present when γ follows an exponential. This is because the exponential distribution
has a "fat" tail, thus, allowing more room for nature to create a worst-case-scenario given a level of penalty,
α.
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Note that Λ̂S
t reduces to the previous expression as α→ +∞, or as σ2 → 0. That is,

Λ̂S
t = θγ̄

[
φLβ

1− β +
(1− φL)φ0β

1− (1− φ)β

]
, as α→ +∞, or σ2 → 0 (97)

We will consider three cases regarding the initial stock of fossil fuel: R0 = 253.8GtC, R0 =
8000GtC, andR0 =∞. While the R0 =∞ case is for expository purposes only, the other two
cases are of interest. Indeed, the total stock of oil and gas is estimated to exceed 8000GtC
if methane hydrates are included.19 For each case, we numerically solve the above problem
for α = 0.01 and for α = +∞.20

Below we plot the same quantities as those shown in Fig. 4 through Fig. 6, but under the
assumption that the approximating distribution of γ is normal. Our focus here is to compare
the effects of model uncertainty on optimal oil-use under different values of R0. As we have
discussed earlier, holding other parameters fixed, the optimal path of oil consumption is
determined jointly by the resource scarcity effect and the model uncertainty effect. First,
note that we can hardly identify a difference between the robust and the non-robust optimal
path for oil-consumption when the scarcity effect dominates, that is, when R0 is suffi ciently
small. Figure 7 shows that when R0 = 253.8GtC, the non-robust optimal paths replicate
their counterparts in GHKT. In this case, model uncertainty delays the optimal use of oil
only slightly. However, Fig. 10 displays an altogether different pattern. When R0 is set to
8000GtC, although both paths are still decreasing over time, model uncertainty discourages
the use of oil substantively. Finally, as R0 goes to infinity, as shown in Fig. 12, we observe
a qualitative difference between the two paths. On the one hand, the non-robust optimal
path allows the use of oil to grow unboundedly, partially due to the technological progress
in the coal and green sectors. On the other hand, the increasing trend in oil consumption is
curbed due to the externality caused by carbon emissions.

19Estimated resources of methane hydrates vary, but they alone can amount to as much as 2.1× 104GtC.
Of course, only a small fraction of these resources is recoverable using today’s technologies. See Boswell and
Collett (2011). See also Hartley, Medlock, Temzelides, and Zhang (2012) and references therein.
20To draw an even closer comparison with GHKT, we have re-scaled γ by a factor of 1/θ, where θ is

the share of capital. The reason is that, given a Cobb-Douglas specification in final goods production, and
given 100% depreciation of capital, a proportional damage of e−γS

′
on capital is equivalent to a proportional

damage of e−θγS
′
on output. Accordingly, the mean and variance of γ in the approximating model are set

to γ̄ = 7.93× 10−5 and σ2 = 2.65× 10−8, respectively.
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Figure 7: Optimal Use of Energy when R0 = 253.8
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Figure 8: Increase in Global Temperatures when R0 = 253.8
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Figure 9: Capital Stock and Output when R0 = 253.8

Figure 10: Optimal Use of Energy when R0 = 8000
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Figure 11: Increase in Global Temperatures when R0 = 8000

Figure 12: Optimal Use of Energy when R0 =∞
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We now turn to a comparative analysis of the damages resulting from fossil fuel consumption.
GHKT assume Ro = 253.8GtC and estimate damages of $56.9/ton of carbon using an
annual discount rate of 1.5% and $496/ton under a rate of 0.1%. When β = 0.98510, and
if there is no concern about model uncertainty (α = ∞), the welfare loss implied by our
model equals 0.98510 × 56.4 = $48.5/ton. This number is independent of the approximating
distribution for γ, the initial stock of oil, and of the future path of the GHG concentration.
When α = 0.01, however, these factors can matter substantially, as seen below. If the
approximating distribution is normal, the losses are given in the following Table.

Ro/α 0.01 0.1 1 100 ∞
253.8 GtC 239.60 70.65 50.85 48.52 48.49
8000 GtC 276.60 90.60 55.08 48.57 48.49
∞ 318.70 103.06 63.42 56.49 48.49

(98)

4.2 Varying the Resource Feasibility Constraint

In order to further explore the model’s implications, we now report the results for the case
where oil is in infinite supply, while coal is constrained under an initial stock Rcoal = 666GtC.
This case demonstrates that the optimal use of oil mimics that in the case when both oil and
coal are in infinite supply. In addition, the use of coal increases steadily at the beginning
and then starts to drop.

Figure 13: Optimal Use of Energy when Rcoal = 666
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Figure 14: Increase in Global Temperature when Rcoal = 666
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Figure 15: Capital Stock and Output when Rcoal = 666

5 Conclusion

We studied optimal taxation in a dynamic stochastic general equilibrium model where agents
are concerned about model uncertainty regarding climate change. Our model builds on
(GHKT, 2013). We used robust control theory in order to model the uncertainty associated
with climate change. In addition, we used an estimate of fossil fuel that includes methane
hydrates as part of the supply of unconventional natural gas. While this huge resource is
not readily available with today’s technology, we believe that it is appropriate to include it
given the long-term modeling that we follow throughout this exercise. Finally, we assumed a
fat-tailed distribution of damages as a way to capture the extreme effects discussed in Stern
(2013).
We obtained a sharp analytical solution for the implied externality, and we characterized

the optimal tax. We found that a small increase in the concern about model uncertainty can
cause a significant drop in optimal energy extraction. The optimal tax which restores the
social optimal allocation was shown to be Pigouvian. Under more general assumptions, we
developed a recursive method that allowed us to solve the model computationally. We showed
that the introduction of uncertainty matters in a number of ways, both qualitatively and
quantitatively. This dependence relies heavily on specific assumptions about the magnitude
of fossil fuel reserves.
Our model can be extended in many ways. In the current version, the growth rate of

renewables is assumed to be independent from the concern about model uncertainty. It would
be interesting to endogenize growth in renewable energy productivity. A related extension
could involve using a distortionary tax on labor to subsidize R&D in renewables in order
to study the effects on energy composition and growth. Additionally, we could study a
benchmark case where coal supply is constrained, while assuming infinite supply of gas and
oil.

6 Appendix

Here we demonstrate that the optimal level of GHG, E∗, has the following properties: ∂E∗

∂δ
<

0 and ∂E∗

∂δ
|δ=0 = −∞, where δ is the upper bound for entropy allowed in the constraint game.

Proof. Recall that E∗ = cE(1−∆S) and δ = log(1−∆S ′∗)+ ∆S′∗

1−∆S′∗ , where S
′∗ = S+φ0cE(1−

∆S). Define a = α−1 and b = 1−∆S ′∗ = (1−∆φ0cE)(1−∆S). It follows immediately that
E∗ is decreasing in a. In addition, since both ∆ and cE are functions of a, it follows that b
is a function of a:

b(a) = [1−∆(a)φ0cE(a)][1−∆(a)S] (99)
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It is easy to see that b is decreasing in a. Thus, it defines a as an implicit function of b, with
a negative slope. Moreover, we can rewrite δ as:

δ = log b+
1− b
b

(100)

which defines b as an implicit function of δ. Direct calculation shows that ∂b
∂δ

= − b2

1−b < 0,
as b ∈ (0, 1). Thus,

∂E∗

∂δ
=
∂E∗

∂a

∂a

∂b

∂b

∂δ
< 0 (101)

Evaluating this at δ = 0, we obtain

∂E∗

∂δ
|δ=0 =

(
∂E∗

∂a
|a=0

)(
∂a

∂b
|b=1

)(
∂b

∂δ
|δ=0

)
(102)

It is straightforward to show that the first two terms on the right hand side in the above
expression are strictly negative and finite, and the last term goes to −∞. Therefore,
∂E∗

∂δ
|δ=0 = −∞.
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