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1. Introduction

It is well known that default risk only accounts for part of the pricing of corporate bonds. For

example, Longstaff, Mithal, and Neis (2005) estimate that the default component explains

about 50% of the spread between the yields of Aaa/Aa-rated bonds and Treasury bonds.

Furthermore, Longstaff, Mithal, and Neis (2005) find that the non-default component of

credit spreads is weakly related to the differential state tax treatment on corporate bonds and

Treasury bonds. Rather, consistent with the fact that the secondary corporate bond market

being illiquid (e.g., Edwards, Harris, and Piwowar (2007), Bao, Pan, and Wang (2011)), the

non-default component is strongly related to measures of bond liquidity.

The literature on structural credit risk modeling has mostly focused on understanding the

“default component” of credit spreads only. The “credit spread puzzle,” first discussed by

Huang and Huang (2012), refers to the finding that, when calibrated to match the observed

default rates and recovery rates, traditional structural models have difficulty explaining the

credit spreads for bonds rated investment grade and above. By introducing time-varying

macroeconomic risks into the structural models, Chen, Collin-Dufresne, and Goldstein (2009),

Bhamra, Kuehn, and Strebulaev (2010) and Chen (2010) are able to explain the default

components of the credit spreads for investment-grade corporate bonds.1 However, the

significant non-default components in credit spreads still remain to be explained.

This paper attempts to provide a full resolution of the credit spread puzzle by quantitatively

explaining both the default and non-default components of the credit spreads. It is commonly

accepted that the non-default component of credit spreads is a premium to compensate

investors for the liquidity risk when holding corporate bonds. There are two general empirical

patterns for liquidity of corporate bonds. First, cross-sectionally, corporate bonds tend to be

more liquid for bonds with higher credit ratings (e.g., Edwards, Harris, and Piwowar (2007);

Bao, Pan, and Wang (2011)). Second, over business cycle, corporate bonds are less liquid

1Chen (2010) relies on the estimates of Longstaff, Mithal, and Neis (2005) to obtain the default component
of the credit spread for Baa rated bonds, while Bhamra, Kuehn, and Strebulaev (2010) focus on the difference
between Baa and Aaa rated bonds. The difference of spreads between Baa and Aaa rated bonds presumably
takes out the common liquidity component, which is a widely used practice in the literature. This treatment
is accurate only if the liquidity components for both bonds are the same, which is at odds with existing
literatures on liquidity of corporate bonds, e.g., Edwards, Harris, and Piwowar (2007), Bao, Pan, and Wang
(2011).
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during economic downturns, and more so for riskier bonds (e.g., Dick-Nielsen, Feldhütter,

and Lando (2011); Friewald, Jankowitsch, and Subrahmanyam (2012)). The cross-sectional

pattern implies the importance of endogenous liquidity in modeling the non-default component

of corporate bonds.

We follow He and Milbradt (2012) by introducing a secondary over-the-counter market

search friction (a la Duffie, Gârleanu, and Pedersen (2005)) into a structural credit models

with aggregate macroeconomic fluctuations (e.g., Chen (2010)). In our model, bond investors

face the risk of uninsurable idiosyncratic liquidity shocks that drive up their costs for holding

the bonds. Market illiquidity arises endogenously because to sell their bonds, investors have

to search for dealers to intermediate transactions with other investors not yet hit by liquidity

shocks. The dealers set bid-ask spreads to capture part of trading surplus, and default risk

affects the liquidity discount of corporate bonds by influencing the outside option of the

illiquid bond investors in the ensuing bargaining.

The endogenous liquidity is further amplified by the endogenous default decision of the

equity holders, as shown in Leland and Toft (1996) and emphasized by He and Xiong (2012).

A default-liquidity spiral arises in He and Milbradt (2012): when secondary market liquidity

deteriorates, equity holders suffer heavier rollover losses in refinancing their maturing bonds

and will consequently default earlier. This earlier default in turn worsens secondary bond

market liquidity even further, and so on so forth. In contrast to He and Milbradt (2012)

with constant parameters for secondary market liquidity, in this paper we explicitly allow

for procyclical liquidity, which interacts with the cyclical variation in the firm’s cash flows

growth and aggregate risk prices.

As the goal of our structural model is to deliver quantitative results, allowing for time-

varying macroeconomic risk is important in explaining the credit risk puzzle, as shown by

Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and

Chen (2010). We introduce state-dependent liquidity risk, which interacts with countercyclical

macroeconomic risk prices and goes a long way in explaining the credit spread of corporate

bonds. The fact that the economy spends considerably longer time in the good state than

in the bad state, and therefore most bond transactions driven by liquidity shocks occur in

the good state with a fairly liquid secondary bond market, does not necessarily imply a low
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liquidity risk of holding such bonds. This is because investors are most likely to get stuck

with the illiquid bond precisely in recessions during which prices of risk are high, low recovery

values prevail, and it takes a long time to sell the bond.

We follow the literature in calibrating the pricing kernel parameters over binary macroe-

conomic states (normal and recession) to fit key moments of asset prices. The parameters

governing secondary bond market liquidity over macroeconomic states are calibrated based

on existing empirical studies and TRACE (e.g., bond turnovers and bid-ask spreads). In our

model, liquidity of corporate bonds requires compensation, either because of the liquidity

premium where investors face uninsurable idiosyncratic liquidity shocks on holding costs, or

because of the liquidity risk premium so that the secondary market liquidity worsens (e.g.,

the meeting intensity with dealers goes down) in recession during which the marginal utility

is high.

We apply our model to corporate bonds across four credit rating classes (Aaa/Aa, A, Baa,

and Ba) and two different time-to-maturities (both 5-year and 10-year bonds). In addition

to the two common measures — cumulative default probabilities and credit spreads — that

the previous literature on corporate bonds calibration (e.g., Huang and Huang (2012)) has

focused on, modeling bond market liquidity allows us to investigate the model’s quantitative

performance in matching two empirical measures of non-default risk for corporate bonds.

The first measure is Bond-CDS spreads, defined as the bond’s credit spread minus the Credit

Derivative Swap (CDS) spread; this is motivated by Longstaff, Mithal, and Neis (2005) who

argue that CDS contracts mostly price the default risk of bonds because of their more liquid

secondary market relative to that of corporate bonds. The second measure is bid-ask spreads

for bonds of different ratings, and we compare our model implied bid-ask spreads to those

documented in Edwards, Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011). These

two measures crucially rely on secondary market illiquidity: in a model with a perfectly liquid

bond market, both the implied Bond-CDS spread and bid-ask spread will be zero.

By adopting the over-the-counter search modeling, our model focuses on trading liquidity

of corporate bonds while missing the funding liquidity, i.e., the ability of using bonds as

collateral in securing financing. Indeed, one leading concern for using Bond-CDS spreads,
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which adopts Treasuries as the default-free and illiquidity-free benchmark,2 is that Treasuries

enjoy certain liquidity premia that are not captured by our search-based model (e.g., Treasuries

have the lowest hair cut in collateralized financing). To address this concern, we separate

the risk-free rate and the Treasury yield by allowing for state-dependent liquidity premium

for Treasuries. In calibration, we proxy this liquidity premium by repo-Treasury spreads

observed in the data.

Since it is well-known that CDS market is most liquid for 5-year contracts, our calibration

focuses on bonds with 5-year maturity. We are able to match the empirical pattern of

credit spreads for 5-year bonds, both cross-sectionally across credit ratings and time-series

matching over business cycle.3 On the dimension of non-default risk, endogenously linking

bond liquidity to a firm’s distance-to-default allows us to generate the cross-sectional and

business-cycle patterns in both Bond-CDS spreads and bid-ask spreads. Overall, relative to

the data, our model produces less variation in Bond-CDS spreads across rating classes, and

future research incorporating heterogenous funding liquidity across rating classes should help

in this regard. Finally, the matching on 10-year bonds is less satisfactory, in that our model

features a steeper term structure of credit spreads and Bond-CDS spreads than the data

suggests.

Our model has important implications in understanding the role of default and liquidity

in determining a firm’s borrowing cost. A common practice in the empirical literature is to

decompose credit spreads into a liquidity and a default component, which naturally leads

to the interpretation that these components are independent of each other. Our model

suggests that both liquidity and default are endogenously linked, and thus there can be

economically significant interaction terms. These dynamic interactions are difficult to capture

2Our Bond-CDS spread is defined as the corporate bond yield minus the Treasury yield with the same
maturity, and then minus its corresponding CDS spread. Another closely related measure widely used among
practitioners and academic researchers is Bond-CDS basis. The only difference is on the choice of risk-free
benchmark: our Bond-CDS spread takes the treasury rate as the benchmark, while Bond-CDS basis takes
the interest rate swap rate. Interest rate swap gives a more accurate measure of an arbitrager’s financing
cost, and recent studies on Bond-CDS basis focus on limits-to-arbitrage (e.g., Gârleanu and Pedersen (2011),
Bai and Collin-Dufresne (2012).) For our paper, treasury is a better default-free benchmark because the
interest rate swap is contaminated by the default risk of LIBOR. Treasury also serves as the illiquidity-free
benchmark, where “liquidity” are trading liquidity and market illiquidity captured by our model.

3Our calibration on aggregate macroeconomic states focuses on normal expansions and recessions, but not
crises. As a result, in constructing empirical moments for recessions, we exclude the 2008 crises period from
October 2008 to March 2009 throughout.
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using reduced-form models with exogenously imposed liquidity premia.

We propose a structural decomposition that nests the common additive default-liquidity

decomposition to quantify the interaction between default and liquidity for corporate bonds.

Motivated by Longstaff, Mithal, and Neis (2005) who use CDS spread to proxy for default

risk, we identify the “default” part by pricing a bond in a counterfactually perfectly liquid

market but with the model implied default threshold. After subtracting this “default” part,

we identify the remaining credit spread as the “liquidity” part. We further decompose

the “default” (“liquidity”) part into a “pure default” (“pure liquidity”) component and a

“liquidity-driven-default” (“default-driven liquidity”) component, where the “pure default”

or “pure liquidity” part is the spread implied by a counterfactual model where either the

bond market is perfectly liquid as in Leland and Toft (1996) hence equity holders default

less often, or only the over-the-counter search friction is at work for default-free bonds as in

Duffie, Gârleanu, and Pedersen (2005), respectively. The two interaction terms that emerge,

i.e., the “liquidity-driven default” and the “default-driven liquidity” components, capture

the endogenous positive spiral between default and liquidity. For instance, “liquidity-driven-

default” is driven by the rollover risk mechanism in that firms relying on finite-maturity debt

financing will default earlier when facing worsening secondary market liquidity.

Besides giving a more complete picture of how the default and liquidity forces affect credit

spreads, our structural decomposition also offers important insight on evaluating hypothetical

government policies, as it is important to fully take into account of how an individual firm’s

default responds to liquidity conditions. Imagine a policy that makes the secondary market

in recession as liquid as in normal times, which lowers the credit spread of Ba rated bonds

in recession by about 137 bps (about 29% of the spread). The liquidity-driven default part,

which captures lower default risk from firms with mitigated rollover losses, can explain 27%

of this drop. The default-driven liquidity part, which captures the endogenous reduction

of liquidity premium for safer bonds, can explain about 17%. The prevailing view in the

literature masks this interdependence between default and liquidity and thus tends to miss

these interaction terms.

The paper is structured as follows. Section 2 introduces the model, which is solved in

Section 3. Section 4 presents the main calibration. Section 5 discusses the model-based
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default-liquidity decomposition, and analyzes the effectiveness of a policy geared towards

liquidity provision from the perspective of our decomposition. Section 6 concludes. The

appendix provides proofs and a more general formulation of the model.

2. The Model

2.1 Aggregate States and the Firm

The following model elements are similar to Chen (2010) and Bhamra, Kuehn, and Strebulaev

(2010), except that we study the case in which firms issue bonds with an average finite

maturity a la Leland (1998) so that rollover risk in He and Xiong (2012) is present.

2.1.1 Aggregate states and stochastic discount factor

The aggregate state of the economy is described by a continuous time Markov chain, with

the current Markov state denoted by st and the physical transition density between state i

and state j denoted by ζPij . We assume an exogenous stochastic discount factor (SDF):

dΛt

Λt

= −r(st)dt− η (st) dZ
m
t +

∑
st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t , (1)

where η (·) is the state-dependent price of risk for Brownian shocks, dM
(j,k)
t is a compensated

Poison process capturing switches between states, and κ (i, j) embeds the jump risk premia

such that in the risk neutral measure, the distorted jump intensity between states is ζQij =

eκ(i,j)ζPij .

In this paper we focus on the case with binary aggregate states to capture the notion

of economic expansions and recessions, i.e., st ∈ {G,B}. In the Appendix we provide the

general setup for the case with n > 2 aggregate states.
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2.1.2 Firm cash flows and risk neutral measure

A firm has assets in place that generate cash flows at the rate of Yt. Under the physical

measure P , the cash-flow rate Yt follows, given the aggregate state st,

dYt
Yt

= µP (st) dt+ σm (st) dZ
m
t + σfdZ

f
t . (2)

Here, dZm
t captures aggregate Brownian risk, while dZf

t captures idiosyncratic Brownian

risk. Given the stochastic discount factor Λt, risk neutral cash-flow dynamics under the risk

neutral measure Q follow

dYt
Yt

= µQ (s) dt+ σ (s) dZQt ,

where ZQt is a Brownian Motion under the risk-neutral measure Q. The state-dependent

risk-neutral cash-flow drift and volatility are given by

µsQ ≡ µP (s)− σm (s) η (s) , and σs ≡
√
σ2
m (s) + σ2

f .

For ease of notation, we work with log cash flows y ≡ log (Y ) throughout. Define

µs ≡ µsQ −
1

2
σ2
s = µP (s)− σm (s) η (s)− 1

2

(
σ2
m (s) + σ2

f

)
so that we have

dyt = µsdt+ σsdZ
Q
t . (3)

From now on we work under measure Q unless otherwise stated, so we drop the superscript

Q in dZQt and ζQij to simply write dZt and ζij where no confusion can arise.

As standard in the asset pricing literature, we can obtain valuations for any asset as the

expected discounted cash flows under the risk neutral measure Q. The unlevered firm value,
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given the aggregate state s and the cash-flow rate y, is

vU (y) ≡

 rG − µG + ζG −ζG
−ζB rB − µB + ζB

−1 1 exp (y) . (4)

We will use vsU to denote the element of vU in state s.

There is one caveat in applying the risk neutral pricing to bond valuations, as later we

will introduce undiversifiable idiosyncratic liquidity shocks to bond investors. Because we

model liquidity shocks as holding costs which can be interpreted as negative dividends, the

risk neutral pricing for bonds with holding-cost adjusted cash flows is still valid provided

that the bond holding is infinitesimal in the representative investor’s portfolio.4

2.1.3 Firm’s debt maturity structure and rollover frequency

The firm has bonds in place of measure 1 which are identical except for their time to maturity,

and thus the aggregate and individual bond coupon (face value) is c (p). As in Leland (1998),

equity holders commit to keeping the aggregate coupon and outstanding face-value constant

before default, and thus issue new bonds of the same average maturity as the bonds maturing.

Each bond matures with intensity m, and the maturity event is i.i.d. across individual

bonds. Thus, by law of large numbers over [t, t+ dt) the firm retires a fraction m · dt of its

bonds. This implies an expected average debt maturity of 1
m

. The deeper implication of

this assumption is that the firm adopts a “smooth” debt maturity structure with an average

refinancing/rollover frequency of m. As shown later, the rollover frequency (at the firm level)

is important for secondary market liquidity to affect a firm’s endogenous default decisions.

2.2 Secondary Over-the-Counter Corporate Bond Market

We follow He and Milbradt (2012) and Duffie, Gârleanu, and Pedersen (2005) in modeling

the over-the-counter corporate bond market. Individual bond holders are subject to liquidity

shocks that entail a positive holding cost. Bond holders hit by liquidity shocks will try to sell

4Intuitively, if the representative agent’s consumption pattern is not affected by the idiosyncratic shock
brought on by the bond holdings (which is true if the bond holding is infinitesimal relative to the rest of the
portfolio), then the representative agent’s pricing kernel is independent of idiosyncratic undiversified shocks.

8



by searching for dealers in the over-the-counter secondary market, and transaction prices are

determined by bargaining with a dealer once a contact is established. Bond investors can

hold either zero or one unit of the bond. They start in the H state without any holding cost

when purchasing corporate bonds in the primary market. As time passes by, H-type bond

holders are hit independently by idiosyncratic liquidity shocks with intensity ξs, which leads

them to become L-types who bear a positive holding cost χs per unit of time.

There is a trading friction in moving the bonds from L-type sellers to H-type buyers

without bond holdings, in that trades have to be intermediated by dealers in the over-the-

counter market. Sellers meet dealers with intensity λs, which we interpret as the intermediation

intensity of the financial sector. For simplicity, we assume that after L-type investors sell

their holdings, they exit the market forever. The H-type buyers on the sideline currently

not holding the bond also contact dealers with intensity λs. We follow Duffie, Gârleanu, and

Pedersen (2007) to assume Nash-bargaining weights β for the investor and 1 − β for the

dealer across all dealer-investor pairs.

Dealers use the competitive (and instantaneous) interdealer market to sell or buy bonds.

When a contact between a type L seller and a dealer occurs, the dealer can instantaneously

sell a bond at a price M to another dealer who is in contact with an H investor via the

interdealer market. If he does so, the bond travels from an L investor to an H investor via

the help of the two dealers who are connected in the inter-dealer market.

Fixing any aggregate state s, denote by Ds
l the individual bond valuation for the investor

with type l ∈ {H,L}. Denote by Bs the bid price at which the L type is selling his bond, by

As the ask price at which the H type is purchasing this bond, and by M s the inter-dealer

market price.

Following He and Milbradt (2012) we assume that the flow of H-type buyers contacting

dealers is greater than the flows of L-type sellers contacting dealers; in other words, the

secondary market is a seller’s market. Similar to Duffie, Gârleanu, and Pedersen (2005) and

He and Milbradt (2012), we have the following proposition. Essentially, Bertrand competition,

the holding restriction, and excess demand from buyer-dealer pairs in the interdealer market

drive the surplus of buyer-dealer pairs to zero.5

5This further implies that the value function of buyers without bond holdings who are sitting on the
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Proposition 1. Fix valuations Ds
H and Ds

L, and denote the surplus from trade by Πs =

Ds
H −Ds

L > 0. In equilibrium, the ask price As and inter-dealer market price M s are equal

to Ds
H , and the bid price is given by Bs = βDs

H + (1− β)Ds
L. The dollar bid ask spread is

As −Bs = (1− β) (Ds
H −Ds

L) = (1− β) Πs.

Empirical studies focus on the proportional bid-ask spread which is defined as the dollar

bid-ask spread divided by the mid price, i.e.,

∆s (y, τ) =
2 (1− β) (Ds

H −Ds
L)

(1 + β)Ds
H + (1− β)Ds

L

=
(1− β) Πs

Ds
H −

1−β
2

Πs
. (5)

2.3 State Transition

As notational conventions, we use capitalized bold-faced letters (e.g., X) to denote matrices,

lower case bold face letters (e.g. x) to denote vectors, and non-bold face letters denote scalars

(e.g. x). The only exceptions are the value functions for debt and equity, D,E respectively,

which will be vectors, and the (diagonal) matrix of drifts, µ. Dimensions for most objects are

given underneath the expression. While we focus on 2-aggregate-state case where s ∈ {G,B},

the Appendix presents general results for an arbitrary number of (Markov) aggregate states.

Denote by Q the Markov-transition matrix for both individual and aggregate states,

where each entry qls→l′s′ is the intensity of transitioning from (individual) liquidity state l to

l′ where l, l′ ∈ {H,L} and from aggregate state s to s′ where s, s′ ∈ {G,B}. The transition

matrix Q can be written as:6

Q︸︷︷︸
4×4

≡


−ξG − ζG ξG ζG 0

βλG −βλG − ζG 0 ζG

ζB 0 −ξB − ζB ξB

0 ζB βλB −βλB − ζB

 . (6)

sideline is identically zero, which makes the model tractable. Introducing for example direct bilateral trades
or assuming a buyer’s market would both entail tracking the value functions of investors on the sideline but
would not add additional economic insights pertaining to credit risk in particular.

6Our intensity-based modeling rules out the possibility of coinciding jumps in the aggregate and individual
states, so that qls→l′s′ = 0 if l 6= l′ and s 6= s′). Economically, this implies that the adverse aggregate shock
can bring about more liquidity shocks to individual bond holders given any time interval, although these
shocks are still i.i.d across individuals.
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The entry qLs→Hs = λsβ in the above transition matrix requires further explanation.

Given the aggregate state s, recall that we have assumed that the intensity of switching from

state-H to state-L is ξs, and the L-state is absorbing, i.e., those L-type investors leave the

market forever. However, an L-type bond holder meets a dealer with intensity λs and sells

the bond for Bs = βDs
H + (1− β)Ds

L that he himself values at Ds
L (see Proposition 1). Then

the L-type’s intensity-modulated surplus when meeting the dealer can be rewritten as

λs (Bs −Ds
L) = λsβ (Ds

H −Ds
L) .

As a result, for the purpose of pricing, the “effective” transitioning intensity from L-type to

H-type is qLs→Hs = λsβ where λs is the state-dependent intermediation intensity and β is

the investor’s bargaining power.

2.4 Delayed Bankruptcy Payouts and Effective Recovery Rates

In Leland-type frameworks, when the firm’s cash flow deteriorates, equity holders are willing

to repay the maturing debt holders only when the equity value is still positive, i.e. the option

value of keeping the firm alive justifies absorbing rollover losses and coupon payments. The

firm defaults when its equity value drops to zero at some default threshold ydef , which is

endogenously chosen by equity holders. As in Chen (2010), we will impose bankruptcy costs

as a fraction 1− α̂s of the value from unlevered assets vsU (ydef ) given in (4), where the debt

holder’s bankruptcy recovery α̂s may depend on the aggregate state s.

As emphasized in He and Milbradt (2012), because the driving force of liquidity in our

model is that agents value receiving cash early, our bankruptcy treatment has to be careful

in this regard (and different from typical Leland models). If bankruptcy leads investors to

receive the bankruptcy proceeds immediately, then bankruptcy confers a “liquidity” benefit

similar to a bond maturing. This “expedited payment” benefit runs counter to the fact

that in practice bankruptcy leads to the freezing of assets within the company and a delay

in the payout of any cash depending on court proceeding.7 Moreover, bond investors with

7For evidence on inefficient delay of bankruptcy resolution, see Gilson, John, and Lang (1990) and Ivashina,
Smith, and Iverson (2013). In addition, the Lehman Brothers bankruptcy in September 2008 is a good case
in point. After much legal uncertainty, payouts to the debt holders only started trickling out after about
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defaulted bonds may face a much more illiquid secondary market (e.g., Jankowitsch, Nagler,

and Subrahmanyam (2013)), and potentially a much higher holding cost once liquidity shocks

hit due to regulatory or charter restrictions which prohibit institutions to hold defaulted

bonds.

To capture above features, we assume that a bankruptcy court delay leads the bankruptcy

cash payout α̂sv
s
U < p to occur at a Poisson arrival time with intensity θ,8 where we simply

denote vsU (ydef ) by vsU . The holding cost of defaulted bonds for L-type investors is χsdefv
s
U

where χsdef > 0, and the secondary over-the-counter market for defaulted bonds is illiquid

with contact intensity λsdef . Denote the values of defaulted bonds by Ds,def
H and Ds,def

L , which

satisfy

rsD
s,def
H = θ

[
α̂sv

s
U −D

s,def
H

]
+ ξs

[
Ds,def
L −Ds,def

H

]
+ ζs

[
Ds′,def
H −Ds,def

H

]
rsD

s,def
L = −χsdefvsU + θ

[
α̂sv

s
U −D

s,def
L

]
+ λsdefβ

[
Ds,def
H −Ds,def

L

]
+ ζs

[
Ds′,def
L −Ds,def

L

]
(7)

Take Ds,def
L for example: the first term is the illiquidity holding cost, the second term

captures the bankruptcy payout, the third term captures trading the defaulted bonds with

dealers, and the last term captures the jump of the aggregate state.

In equation (7) we have assumed that the cash-flow rate y remains constant at ydef

(through vsU (ydef )) during bankruptcy procedures, a simplifying assumption that can be

easily relaxed.9 Defining Ddef ≡
[
DG,def
H , DG,def

L , DB,def
H , DB,def

L

]>
, it is easy to show that10

Ddef (y)︸ ︷︷ ︸
4×1

= diag
([

vGU (y) vGU (y) vBU (y) vBU (y)
])

(R−Qdef + θI)−1
(
θα̂− χdef

)︸ ︷︷ ︸
≡α

, (8)

where R ≡ diag ([rG rB]), χdef ≡ [0, χdef (G) , 0, χdef (B)]>, and where Qdef is the post-

three and a half years.
8We could allow for a state-dependent bankruptcy court delay, i.e., θ (s); but the Moody’s Ultimate

Recovery Dataset reveals that there is little difference between the recovery time in good time versus bad
time.

9We have identical results if instead we assume that y evolves as in (3), and debt holders receive the entire
payout (net bankruptcy cost) of αvsU eventually. The values of defaulted bonds will be slightly lower if we
take into account that equity holders receive some payouts in the event of αvsU > p, but one can derive the

formula of Ds,def
H and Ds,def

L in closed form.
10Throughout, diag (·) is the diagonalization operator mapping any row or column vector into a diagonal

matrix (in which all off-diagonal elements are identically zero).
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default counterpart of Q in (6).

In equation (8), for easier comparison to existing Leland-type models where debt recovery

at bankruptcy is simply α̂vU , we denote the (bold face) vector α ≡
[
αGH , α

G
L , α

B
H , α

B
L

]>
as the

effective bankruptcy recovery rates at the time of default. We will have αsH > αsL to capture

the fact that default is more costly to L-type investors.

These effective bankruptcy recovery factors α are determined by the post-default corporate

bond market structures;11 and they are the only critical ingredients for us to solve for the

pre-default bond valuations, as well as its secondary market liquidity. In calibration, we will

not rely on deeper structural parameters (say, post-default holding cost χdef). Instead, we

choose these effective recovery rates α to target both the market price of defaulted bonds

observed immediately after default (which are close to L-type valuations) and the associated

empirical bid-ask spreads.

3. Model Solutions and Bond-CDS Spread

Denote by D
(s)
l the l-type bond value in aggregate state s, E

(s)
l the equity value in aggregate

state s, and ydef =
[
yGdef , y

B
def

]>
the vector of endogenous default boundaries. We derive the

closed-form solution for debt and equity valuations in this section as a function of a given

ydef , along with the characterization of endogenous default boundaries ydef .

3.1 Debt Valuations

Because equity holders will default earlier in state B, i.e., yGdef < yBdef , the domains of debt

valuations change when the aggregate state switches. We deal with this issue by the following

treatment; see the Appendix for the generalization of this analysis.

Define two intervals I1 =
[
yGdef , y

B
def

]
and I2 =

[
yBdef ,∞

)
, and denote by Ds,i

l the restriction

of Ds
l to the interval Ii, i.e., Ds,i

l (y) = Ds
l (y) for y ∈ Ii. Clearly, DB,1

l (y) = αBl v
B
U (y) is in

the “dead” state, so that the firm immediately defaults in interval I1 when switching into

11Interestingly, as emphasized in He and Milbradt (2012), because vU (ydef ) depends on the endogenously
determined bankruptcy boundary ydef , the dollar bid-ask spread of defaulted bonds is higher if the firm
defaults earlier. Thus, the illiquidity of defaulted bonds relative to that of default-free bonds depends on the
firm’s pre-default parameters, exactly through the channel of endogenous default.
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state B (from state G). In light of this observation, on interval I2 =
[
yBdef ,∞

)
all bond

valuations denoted by D(2) =
[
DG,2
H , DG,2

L , DB,2
H , DB,2

L

]>
are “alive.”

For bond valuation equations we simply treat holding costs given liquidity shocks as

negative dividends, which effectively lower the coupon flows that investors are receiving.

Moreover, we directly apply the pricing kernel (pricing under risk neutral measure Q) given in

(1) and make no risk adjustments on the liquidity shocks, which is justified by the assumption

that the illiquid bond holding is infinitesimal in the representative investor’s portfolio. For

further discussions, see footnote 4 and the end of Section 2.1.2.

Proposition 2. The bond values on interval i are given by

D(i)︸︷︷︸
2i×1

= G(i)︸︷︷︸
2i×4i

· exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

· b(i)︸︷︷︸
4i×1

+ k
(i)
0︸︷︷︸

2i×1

+ k
(i)
1︸︷︷︸

2i×1

exp (y) , (9)

where the matrices G(i), Γ(i) and the vectors k
(i)
0 , k

(i)
1 and b(i) are given in the Appendix 1.3.

3.2 Equity Valuations and Default Boundaries

When the firm refinances its maturing bonds, we assume that the firm can place newly issued

bonds with H investors in a competitive primary market.12 This implies that there are rollover

gains/losses of m
[
S(i) ·D(i) (y)− p1i

]
at each instant as a mass m ·dt of debt holders matures

on [t, t+ dt], where S(i) is a i×2imatrix that selects the appropriateDH as we assumed the firm

issues to H-type investors in the primary market. For instance, for y ∈ I2 = [ydef (B) ,∞), we

have D(2) =
[
DG,2
H , DG,2

L , DB,2
H , DB,2

L

]>
and S(2) = (1− ω)

 1 0 0 0

0 0 1 0

, where ω ∈ (0, 1)

is the proportional issuance costs in the primary corporate bond market.

The rollover term due to bond repricing enters the equity valuation. For ease of exposition,

we denote by double letters (e.g. xx) a constant for equity that takes a similar place as a

single letter (i.e. x) constant for debt. We can write down the valuation equation for equity

12This is consistent with our seller’s market assumption in Section 2.2, i.e., there are sufficient H-type
buyers waiting on the sidelines.
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on interval Ii. For instance, on interval I2 we have

(
R−QQ(2)

)
︸ ︷︷ ︸

2×2

E(2) (y)︸ ︷︷ ︸
2×1

= µµ(2)︸ ︷︷ ︸
2×2

(
E(2)

)′
(y)︸ ︷︷ ︸

2×1

+
1

2
ΣΣ(2)︸ ︷︷ ︸
2×2

(
E(2)

)′′
(y)︸ ︷︷ ︸

2×1

+ 12 exp (y)︸ ︷︷ ︸
Cashflow,2×1

− (1− π) c12︸ ︷︷ ︸
Coupon,2×1

+m
[
S(2) ·D(2) (y)− p12

]︸ ︷︷ ︸
Rollover,2×1

(10)

where the matrices µµ, ΣΣ, QQ summarize the drifts, volatilities and transition probabilities

of the system and are defined in the Appendix.

Proposition 3. The equity value is given by

E(i) (y)︸ ︷︷ ︸
i×1

= GG(i)︸ ︷︷ ︸ ·
i×2i

exp
(
ΓΓ(i)y

)
︸ ︷︷ ︸

2i×2i

·bb(i)︸ ︷︷ ︸
2i×1

+KK(i)︸ ︷︷ ︸
i×4i

exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

b(i)︸︷︷︸
4i×i

+kk
(i)
0︸︷︷︸

i×1

+kk
(i)
1︸︷︷︸

i×1

exp (y) for y ∈ Ii

(11)

where the matrices GG(i), ΓΓ(i), KK(i), Γ(i) and the vectors kk
(i)
0 , kk

(i)
1 and b(i) are given

in the Appendix 1.3.

Finally, the endogenous bankruptcy boundaries ydef =
[
yGdef , y

B
def

]>
are given by the

standard smooth-pasting condition:

(
E(1)

)′ (
yGdef

)
[1]

= 0, and
(
E(2)

)′ (
yBdef

)
[2]

= 0. (12)

3.3 Model Implied Credit Default Swap

One of key empirical moments for bond liquidity used in this paper is the Bond-CDS spread,

defined as Bond credit spread minus the spread of the corresponding Credit Default Swap

(CDS). Since the CDS market is much more liquid than that of corporate bonds, following

Longstaff, Mithal, and Neis (2005) we compute the model implied CDS spread under the

assumption that the CDS market is perfectly liquid.13

Let τ (in years from today) be the time of default. Formally, τ ≡ inf{t : yt ≤ ystdef} can be

either the first time at which the cash-flow rate yt reaches the default boundary ysdef in state

13Arguably, the presence of CDS market will in general affect the liquidity of corporate bond market; but
we do not consider this effect. A recent theoretical investigation by Oehmke and Zawadowski (2013) shows
ambiguous results on this regard.
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s, or when yGdef < yt < yBdef so that a change of state from G to B triggers default. Thus, for

a T -year CDS contract, the required flow payment f is the solution to the following equation:

EQ
[∫ min[τ,T ]

0

exp (−rt) fdt

]
= EQ

[
exp

(
−rτ1{τ≤T}

)
LGDτ

]
, (13)

where LGDτ is the loss-given-default when the default occurs at time τ . If there is no default,

no loss-given-default is paid out by the CDS seller. The loss-given-default LGD is defined

as the bond face value p minus its recovery value, and we follow the practice to define the

recovery value as the transaction price right after default (with the mid price when the

firm defaults at ysdef). We calculate the required flow payment f that solves (13) using a

simulation method. Finally, the CDS spread, f/p, is defined as the ratio between the flow

payment f and the bond’s face value p.

3.4 Liquidity Premium of Treasury

It has been widely recognized (e.g., Duffie (1996), Krishnamurthy (2002), Longstaff (2004))

that Treasuries, due to their special role in financial markets, are earning returns that are

significantly lower than the risk-free rate, which in our model is represented by rs in equation

(1). The risk-free rate is the discount rate for future deterministic cash flows, whereas treasury

yields also reflect the additional benefits of holding Treasuries relative to a generic default-free

and easy-to-transact bond. The wedge between the two rates, which we term “liquidity

premium of Treasuries”, represents the convenience yield that is specific to Treasury bonds,

e.g., the ability to post Treasuries as collateral with a significantly lower haircut than other

financial securities. Although this broad collateral-related effect is empirically relevant, our

model is not designed to capture this economic force.

Motivated by the above consideration, we assume that there are (exogenous) state-

dependent liquidity premia ∆s for Treasuries. Specifically, given the risk-free rate rs in state

s, the yield of Treasury bonds is simply rs−∆s. When calculating credit spreads of corporate

bonds, we can use either the risk-free rate or the Treasury yield as the benchmark. In the

latter case, there will be a baseline state-dependent Bond-CDS spread of ∆s even for those
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illiquidity-free and default-free bonds.

As explained shortly, we calibrate ∆s using the spread between 3-month general collateral

repo rates and 3-month Treasury yields observed in the data, which is close to the values

reported in Longstaff (2004).14 Longstaff (2004) shows that the liquidity premium does not

feature any significant term structure effect. Thus, we use this 3-month repo-Treasury spread

to proxy for both 5-year and 10-year Treasury liquidity premium. Last but not least, from

the perspective of our model, our ideal measure of liquidity premium should only capture the

convenience yield of Treasuries for its ability of being posted as collateral. If we believe that

repo contracts are not perfectly liquid in trading, the repo-Treasury spread might reflect the

trading friction and thus probably gives an overestimate of the liquidity premium.

4. Calibration

4.1 Benchmark Parameters

We calibrate the parameters governing firm fundamentals and pricing kernels to the key

moments of the aggregate economy and asset pricing. Parameters governing time-varying

liquidity conditions are calibrated to their empirical counterparts on bond turnover, dealer’s

bargaining power, and observed bid-ask spreads.

[TABLE 1 ABOUT HERE]

4.1.1 SDF and cash flows liquidity parameters

We follow Chen, Xu, and Yang (2012) in calibrating firm fundamentals and investors’ pricing

kernel. Table 1 reports the benchmark parameters we use, which are standard in the literature.

Start from investors’ pricing kernel. The risk free rate is rG = rB = 2% in both aggregate

states, so that we abstract from the standard term structure effect. Transition intensities give

the duration of the business cycle (10 years for expansions and 2 years for recessions). Jump

14There are a few alternative ways to identify the Treasury liquidity premium. One could use Refcorp as a
proxy for the risk-free rate as in Longstaff (2004), but that data is unavailable. By imposing a multi-factor
affine model of Treasury bonds, corporate bonds, and swap rates, Feldhütter and Lando (2008) arrive at an
estimate of the risk-free rate after taking out the default component in swap rates.
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risk premium exp(κ) = 2 in state G (and the state B jump risk premium is the reciprocal of

that of state G) is consistent with a long-run risk model with Markov-switching conditional

moments and calibrated to match the equity premium (Chen (2010)). The risk price η is the

product of relative risk aversion γ and consumption volatility σc: η = 0.165 (0.255) in state

G (state B) requires γ = 10 and σc = 1.65% (σc = 2.55%).

On the firm side, the cash-flow growth is matched to the average growth rate of aggregate

corporate profits. State-dependent systematic volatilities σsm are chosen to match equity

return volatilities. We set m = 0.2 so that the average debt maturity is about 1/m = 5 years.

This is close to the empirical median debt maturity (including bank loans and public bonds)

reported in Chen, Xu, and Yang (2012). We set the debt issuance cost ω in the primary

corporate bond market to be 1% as in Chen (2010). And, the idiosyncratic volatility σi is

chosen to match the default probability of Baa firms. There is no state-dependence of σi as

we do not have data counterparts for state-dependent Baa default probabilities. Finally, as

explained later, the firm’s cash-flow is determined from empirical leverage observed in the

data.

Chen, Collin-Dufresne, and Goldstein (2009) argue that generating a reasonable equity

Sharpe ratio is an important criterion for a model that tries to simultaneously match the

default rates and credit spreads, for otherwise one can simply raise credit spreads by imposing

unrealistically high systematic volatility and prices of risk. Based on our calibration (especially

the choices of σm, σi, κ, and η), we obtain the equity Sharpe ratio of 0.11 in state G and

0.20 in state B, which is close to the mean firm-level Sharpe ratio for the whole universe of

the CRSP firms (0.17) reported in Chen, Collin-Dufresne, and Goldstein (2009).

4.1.2 Bond market illiquidity

We set the state-dependent liquidity premium ∆s for Treasuries based on observed repo-

Treasuries spread. This spread is measured as the difference between the 3-month general

collateral repo rate and the 3-month Treasury rate. This is because the repo rate can be

interpreted as the true “risk-free” rate, i.e., the discount rate for future deterministic cash

flows. The daily average of the repo-Treasury spread is 15 bps in the non-recession period

from October 2005 to September 2013 and 40 bps in the recession period, which lead us to set
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∆G = 15bps and ∆B = 40bps.15 These estimates are consistent with to the average liquidity

premium reported in Longstaff (2004) based on Refcorp curve.

The other liquidity parameters in secondary corporate bond market are less standard

in the literature. We first fix the state-dependent intermediary meeting intensity based on

anecdotal evidence, so that it takes a bond holder on average a week (λG = 50) in the good

state and 2.6 weeks (λB = 20) in the bad state to find an intermediary to sell all bond

holdings.16 We interpret the lower λ in state B as a weakening of the financial system and

its ability to intermediate trades. We then set bond holders bargaining power β = 0.05

independent of the aggregate state, based on the empirical work that estimates search frictions

in secondary corporate bond markets (Feldhütter (2012)).

We choose intensity of liquidity shocks, ξs, based on observed bond turnovers in the

secondary market. In our model, all turnovers in secondary corporate bond markets are driven

by liquidity reasons. Apparently, in practice investors trade corporate bonds for reasons

other than liquidity, and recent turmoil during 2007/08 financial crisis suggests that during

recession institutional investors are more likely to be hit by liquidity shocks and hence trade

their bond holdings. We thus rely on the empirical turnover frequency during recessions to

set ξB = 1.17 Given the state B meeting intensity of λB = 20 with dealers, the model implied

turnover year in recession, which is ξBλB
ξB+λB

, is about 1.05 years.

The state-G liquidity intensity ξG = 0.5 is then chosen to target a good overall fit of

state-G Bond-CDS spread in the investment grade (A/Baa). With a meeting intensity of

λG = 50, the model implied state-G turnover is about 2.02 years.18 Procyclicality of ξs over

the business cycle captures the important time-varying liquidity conditions in the secondary

corporate bond markets. In our model, adverse macroeconomic conditions (prices of risk)

coincide and interact with weaker firm fundamentals and worsened secondary market liquidity,

15We exclude crisis period of October 2008 to March 2009 throughout the paper. Also, over a given
horizon, state-dependent instantaneous liquidity premium suggests that the average liquidity premium is
horizon-dependent, but we ignore this effect for simplicity.

16Ideally one can infer λ using the total time the corporate bond funds take to complete a sale, which is a
challenging task empirically.

17In TRACE, the value-weighted turnover of corporate bonds during NBER recessions is about 1.4 years.
18In TRACE, the value-weighted turnover of corporate bonds during non-recessions is about 1.4 years,

similar to the turnover during recessions. As explained we decide not to set ξG based on non-recession bond
turnover years. This is because, in normal times, bond trading is more likely to be driven by reasons (say,
speculative) other than liquidity shocks.
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which help generate quantitatively important implications for the pricing of defaultable bonds.

The holding costs χs are central parameters that determine the bid-ask spread in the

secondary market of corporate bonds. Since there is no direct empirical counterpart for

holding costs, we calibrate χs to target the bid-ask spread for bonds with investment grade

in both aggregate states.

4.1.3 Effective recovery rates

As explained in Section 2.4, our model features type- and state-dependent recovery rates

αsl for l ∈ {L,H} and s ∈ {G,B}. We first borrow from the existing structural credit risk

literature (say, Chen (2010)) who treats the traded prices right after default as recovery rates,

and estimates recovery rates of 57.6% · vGU in normal times and 30.6% · vBu in recessions (recall

vsU is the unlevered firm value at state s).

Assuming that post-default prices are bid prices at which investors are selling, then

Proposition 1 implies:

0.5755 = αGL + β(αGH − αGL ), and 0.3060 = αBL + β(αBH − αBL ). (14)

We need two more pieces of bid-ask information for defaulted bonds to pin down the αsl ’s.

Edwards, Harris, and Piwowar (2007) report that in normal times, the transaction cost for

defaulted bonds for median-sized trades is about 200bps. To gauge the bid-ask spread for

defaulted bonds during recessions, we take the following approach. Using TRACE, we first

follow Bao, Pan, and Wang (2011) to calculate the implied bid-ask spreads for low rated

bonds (C and below) for both non-recession and recession periods. We find that relative

to the non-recession period, during recessions the implied bid-ask spread is about 3.1 times

higher. Given a bid-ask spread of 200bps for defaulted bonds, this multiplier implies that the

bid-ask spread for defaulted bonds during recessions is about 620bps. Hence we have

2% =
2 (1− β)

(
αGH − αGL

)
αGL + β(αGH − αGL ) + αGH

, and 6.2% =
2 (1− β)

(
αBH − αBL

)
αBL + β(αBH − αBL ) + αBH

. (15)
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Solving (14) and (15) gives us the estimates of:19

α =
[
αGH = 0.5871, αGL = 0.5749, αBH = 0.3256, αBL = 0.3050

]
. (16)

4.1.4 Degree of freedom in calibration

We summarize our calibration parameters in Table 1. Although there are a total of 31

parameters, most of them are in Panel A ”pre-fixed parameters” of Table 1, which are set

either using the existing literature or based on moments other than the corporate bond pricing

moments. We only pick (calibrate) four parameters freely to target the empirical moments

that our model aims to explain, which are highlighted in bold fonts in Panel B ”calibrated

parameters” in Table 1. In summary, we pick σi to target Baa firm default probabilities, ξG

to target state-G Bond-CDS spreads for investment grade (A/Baa) firms, and χG and χB

to target investment grade bid-ask spread in both states. As shown shortly, this degree of

freedom (four) is far below the number of our empirical moments that we aim to match.20

We point out that in our model, the quantitative performance along the dimension of

business cycles is less surprising, simply because our model takes (and sometimes, chooses)

exogenous parameters in two aggregate macroeconomic states. Because our model links the

secondary bond market liquidity to the firm’s distance-to-default, our model’s quantitative

strength is more reflected on its cross-sectional performance (say, matching the total credit

spreads over four ratings). And, recall that ξB is chosen based on empirical bond turnovers

in state B; hence matching state-B Bond-CDS spreads can also be considered as a success of

our model.

4.2 Empirical Moments

We consider four rating classes: Aaa/Aa , A, Baa, and Ba; the first three rating classes are

investment grade, while Ba is speculative grade. We combine Aaa and Aa together because

19This calculation assumes that bond transactions at default occur at the bid price. If we assume that
transactions occur at the mid price, these estimates are αG

H = 0.5813, αG
L = 0.5691, αB

H = 0.3140, αB
L = 0.2972.

20We have cumulative default probabilities over four credit ratings (4), total credit spreads and Bond-CDS
spreads over four ratings and two aggregate states (2× 4× 2 = 16), and bid-ask spreads over three rating
classes and two aggregate states (3× 2 = 6).
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there are few observations for Aaa firms. We emphasize that previous calibration studies on

corporate bonds focus on the difference between Baa and Aaa only, while we are aiming to

explain the level of credit spreads across a wide range of rating classes. Furthermore, we report

the model performance conditional on macroeconomic states, while typical existing literature

only focus on unconditional model performance (Chen, Collin-Dufresne, and Goldstein (2009),

Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010)). We classify each quarter as either

in “state G” or “state B” based on NBER recession. As the “B” state in our model only

aims to capture normal recessions in business cycles, we exclude two quarters during the

2008 financial crisis, which are 2008Q3 and 2009Q1, to mitigate the effect caused by the

unprecedented disruption in financial markets during crisis.21

4.2.1 Default Probabilities

The default probabilities for 5-year and 10-year bonds in the data column of Panel A in Table

2 are taken from Exhibit 33 of Moody’s annual report on corporate default and recovery

rates (2012), which gives the cumulative default probabilities over the period of 1920-2011.

Unfortunately, the state-dependent measurement on default probabilities over business cycles

are unavailable.

[TABLE 2 ABOUT HERE]

4.2.2 Bond Spreads

Our data of bond spreads is obtained using Mergent Fixed Income Securities Database (FISD)

trading prices from January 1994 to December 2004, and TRACE data from January 2005 to

June 2012. We follow the standard data cleaning process, e.g. excluding utility and financial

firms.22 For each transaction, we calculate the bond credit spread by taking the difference

between the bond yield and the treasury yield with corresponding maturity. Within each

rating class, we average these observations in each month to form a monthly time series

21For recent empirical research that focuses on the behaviors of corporate bonds market during the 2007/08
crisis, see Dick-Nielsen, Feldutter, and Lando (2011), and Friewald, Jankowitsch, and Subrahmanyam (2011).

22For FISD data, we follow Collin-Dufresne, Goldstein,and Martin (2001). For TRACE data, we follow
Dick-Nielsen (2009).
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of credit spreads for that rating. We then calculate the time-series average for each rating

conditional on the macroeconomic state (whether the month is classified as NBER recession),

and provide the conditional standard deviation for the conditional mean. To account for the

autocorrelation of these monthly series, we calculate the standard deviation using Newey-West

procedure with 15 lags.

We report the conditional means for each rating and their corresponding conditional

standard deviations for both 5-year and 10-year bonds in the data column in Panel B of

Table 2. In the existing literature, Huang and Huang (2012) cover the period from the 1970’s

to the 1990’s, and report an (unconditional) average credit spread of 55 bps for 4-year Aaa

rated bonds, 65 bps for Aa, 96 for A, 158 for Baa, and 320 for Ba. Our unconditional 5-year

average credit spreads are fairly close, which is the weighted average across conditional means

reported in Panel B of Table 2: 65 bps for Aaa/Aa, 100 bps for A, 167 for Baa, and 349 for

Ba.

4.2.3 Bond-CDS spreads

Longstaff, Mithal, and Neis (2005) argue that because the market for CDS contracts is much

more liquid than the secondary market for corporate bonds, the CDS spread should mainly

reflect the default risk of a bond, while the credit spread also includes liquidity premium to

compensate for the illiquidity in the corporate bond market. Following Longstaff, Mithal, and

Neis (2005), we take the difference between the bond credit spread and the corresponding

CDS spread. This Bond-CDS spread is our first empirical measure for the non-default risk of

corporate bonds.

We construct Bond-CDS spreads as follows. We first match FISD bond transaction data

with CDS prices from Markit, and then follow the same procedure as above, with two caveats.

First, the data sample period only starts from 2005 when CDS data become available. Second,

to address the potential selection issue, we follow Chen, Xu, and Yang (2012) and focus on

firms that have both 5-year and 10-year bonds outstanding. The results are reported in the

data column in Panel A in Table 2.

One issue is worth further discussing. Our Bond-CDS spread is defined as the corporate

bond yield minus the treasury yield with matching maturity, and then minus its corresponding
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CDS spread. Another closely related measure, Bond-CDS basis, is of great interest to both

practitioners and academic researchers. The only difference is on the risk-free benchmark:

our Bond-CDS spread takes the Treasury yield as the benchmark, while Bond-CDS bases

takes interest rate swap rate as the benchmark. For recent studies on Bond-CDS basis, see

Gârleanu and Pedersen (2011) and Bai and Collin-Dufresne (2012).

The study of Bond-CDS basis mostly focuses on limits-to-arbitrage during the turmoil of

financial market. Because interest rate swap gives a more accurate measure of an arbitrager’s

financing cost, the choice of interest rate swap is more appropriate when studying Bond-CDS

basis.

In contrast, our paper aims to explain the credit spread, and we follow the corporate bond

pricing literature in setting the Treasury yield as our benchmark. The credit spread includes

both the default and liquidity components. Treasuries are a better default-free benchmark,

because the interest rate swap rate is the fixed leg of LIBOR, which is contaminated by

default risk. Treasuries also serve as the illiquidity-free benchmark, where “liquidity” can be

interpreted broadly to include trading liquidity and market liquidity that are captured by

our model. Finally, as explained in Section 3.4, our calibration allows for state-dependent

liquidity premia ∆s for Treasuries to capture other liquidity benefits (of holding Treasury

bonds) that are missing from our model.

4.2.4 Bid Ask Spreads

The second non-default measure that we study is bid-ask spreads in the secondary market

for corporate bonds, whose model counterpart is given in (5). Previous empirical studies

have uncovered rich patterns of bid-ask spreads across aggregate states and rating classes.

More specifically, we combine Edwards, Harris, and Piwowar (2007) and Bao, Pan, and

Wang (2011) to construct the data counterparts for the bid-ask spread, as Edwards, Harris,

and Piwowar (2007) only report the average bid-ask spread across ratings in normal times

(2003-2005). The ratings considered in Edwards, Harris, and Piwowar (2007) are superior

grade (Aaa/Aa) with an bid-ask spread of 40 bps, investment grade (A/Baa) with an bid-ask
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spread of 50 bps, and junk grade (below Ba) with a bid-ask spread of 70 bps.23 For each

grade, we then compute the measure of liquidity in Roll (1985) as in Bao, Pan, and Wang

(2011), which we use to back out the bid-ask spread ratio between B-state and G-state. We

multiply this ratio by the bid-ask spread estimated by Edwards, Harris, and Piwowar (2007)

in normal times (2003-2005) to arrive at bid-ask spread in B state. These empirical estimates

are reported in Panel B in Table 3.

4.3 Model Performance on Default Risk and Credit Spreads

4.3.1 Calibration method

For any given cash-flow y, which links one-to-one to the firm’s market leverage, we can

compute the default probability and credit spread of bonds at 5 and 10 year maturity using

Monte-Carlo methods. 24 As typical in structural corporate bond pricing models, we find that

the model implied default probability and total credit spread are highly nonlinear in market

leverage (see Figure 3). The non-linearity inherent in the model implies that the average

credit spreads are higher than the spreads at average market leverage. We thus follow David

(2008) in computing model implied aggregate moments. Specifically, we compute the market

leverage (i.e., book debt over the sum of market equity and book debt) of all Compustat firms

(excluding financial and utility firms and other standard filters) for which we have ratings

data between 1994 and 2012.25 We then match each firm-quarter observed in Compustat to

its model counterpart based on the observed market leverage, compute the average across

aggregate states, and repeat the procedure for each rating class and each maturity (5 or 10

23We take the median size trade around 240K. Edwards, Harris, and Piwowar (2007) show that trade size
is an important determinants for transaction costs of corporate bonds. But, for tractability reasons, we have
abstracted away from the trade size.

24Recall that for tractability we assume that bonds are with random maturity. In calibration, we study
bonds with deterministic maturities, which can be viewed as some infinitesimal bonds in the firm’s aggregate
debt structure analyzed in Section 2.1.3. Since the debt valuation derived in Proposition 2 does not apply,
we rely on Monte-Carlo methods. Specifically, we simulate the cash flow of the firm and aggregate state for
50,000 times for a fixed duration of 5 or 10 years and count the times where the cash flow cross the state
dependent default boundary and also record the cash flow received by bond holders of either H or L type.
Following the literature, we consider bonds that are issued at par.

25A similar point is made in Bhamra, Kuehn, and Strebulaev (2010). For empirical distribution of market
leverage for each rating, see Figure 2. Market leverage is defined as the ratio of book debt over book debt
plus market equity.
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years). Hence our model always exactly matches the data counterpart on the dimension of

leverage.

Relative to the existing literature, our calibration aims at explaining the level of credit

spread across ratings, rather than differences between ratings. For instance, (Chen, Collin-

Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010))

focus on explaining the difference between Baa and Aaa rated bonds, which is considered

as the default component of Baa rated bonds under the assumption that the observed

spreads for Aaa rated bonds are mostly driven by liquidity premium. Because our framework

endogenously models bond liquidity, we are able to match the credit spreads that we observe

in the data across the superior ratings (Aaa/Aa) and the high end of speculative rating bonds

(say Ba).

Another important dimension that our paper improves over the existing literature is on

the matching of conditional means of credit spreads. Because the success of Chen, Collin-

Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010)

hinges on the idea that the bond’s payoff is lower in recessions with a higher marginal utility

of consumption, checking whether the model implied bond spreads during recessions matches

empirical counterpart can be viewed as a disciplinary test for the mechanism proposed by

those papers.

4.3.2 Calibration results

Table 2 presents our calibration results on aggregate default probability (Panel A) and credit

spread for bonds of four rating classes (Panel B), for both 5-year and 10-year bonds.

5-year default probabilities and credit spreads On the maturity end of 5-year, our

quantitative model is able to deliver a decent matching for both cross-sectional and state-

dependent patterns in default probabilities and credit spreads. For instance, the model

implied default probability is 2.9%, matching quite well with 3.1% reported by Moody’s. The

model implied credit spread in state G (state B) is 148 (235) bps. They are close to 149

(275) bps in the data, taking into account of the standard deviation of the conditional sample

means.
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On the superior grade bonds with Aaa/Aa ratings, our model gives an almost perfect

matching for 5-year credit spreads: in state G (state B), the model predicts 61.4 (117)

bps while the data counterpart is 55.7 (107) bps. Thanks to introducing liquidity into

the structural corporate bond pricing model, we are able to produce reasonable credit

spreads for Aaa/Aa bonds conditional on empirically observed default probabilities. In fact,

somewhat interestingly, our model implied 5-year default probability for Aaa/Aa firms (0.4%)

undershoots the data counterpart (0.7%) a bit. This suggests that our model may overshoot

the non-default component for superior grade bonds, which is indeed our finding in Section

4.4.1.

Our calibration exercise puts more emphasis on the 5-year horizon.26 The reason that we

focus more on 5-year, rather than 10-year, is that this paper aims to explain the non-default

component of corporate bonds. The Bond-CDS spreads require the input of observed CDS

spreads. Motivated by the fact that CDS market is more liquid than corporate bond market

(e.g., Longstaff, Mithal, and Neis (2005)), our model assumes a perfectly liquid CDS market.

In practice, it is well-known that the most liquid CDS contracts are those with a 5-year

maturity. Hence, focusing on the 5-year end mitigates the potential liquidity effect of the

CDS market in biasing our calibration results.

10-year default probabilities and credit spreads While our model is able to quan-

titatively match the cross-sectional and state-dependent pattern for the credit spreads of

5-year bonds, the matching for 10-year bonds is less satisfactory. The general pattern is

that although the default probability matches the data counterpart reasonably well, the

model implied conditional credit spread for 10-year bonds overshoots the empirical moments,

suggesting that the model implied term structure of credit spreads is steeper than the data

suggests. In unreported results, we find that the method of David (2008) which addresses

the nonlinearity in the data (caused by the diverse distribution in leverage) has helped our

model greatly to deliver a flatter term structure. This finding is consistent with Bhamra,

Kuehn, and Strebulaev (2010). Nevertheless, this treatment is not strong enough to get the

26More specifically, within the reasonable range used in the literature, we have chosen the state-dependent
risk price η and systematic volatility σm to deliver an overall good match for 5-year Baa rated bonds.
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term structure right. Certain interesting extensions of our model (e.g., introducing jumps in

cash flows that are more likely to occur in state B) should help in this dimension, and we

leave future research to address this issue.

Bond recovery rates As emphasized by Huang and Huang (2012), in order for a model

to explain the corporate bond spreads, it should not only be able to match the observed

spreads, but also generate default probabilities and bond recovery rates that are consistent

with the data. In our model, the bond recovery rate is 49.7% in state G and 24.5% in state

B. The unconditional average recovery rate is 44.6%. These values are consistent with the

average issuer-weighted bond recovery rate of 42% in Moody’s recovery data over 1982-2012,

and they capture the cyclical variations in recovery rates as documented in Chen (2010).

4.4 Model Performance on Non-Default Risk

Our model features an illiquid secondary market for corporate bonds, which implies that the

equilibrium credit spread must compensate the bond investors for bearing not only default

risk but also liquidity risk. This new element allows us to investigate the model’s quantitative

performance on dimensions specific to bond market liquidity, i.e., Bond-CDS spreads and

bid-ask spreads, in addition to cumulative default probabilities and credit spreads on which

the previous literature has focused.

4.4.1 Bond-CDS Spread

Recall that we assume a perfectly liquid CDS market in Section 3.3. In practice, although

much more liquid than the secondary corporate bond market, the CDS market is still not

perfectly liquid. As explained above, to mitigate this effect we have focused on bonds with

5-year maturity, because 5-year CDS contracts are traded with the most liquidity.27

5-year Bond-CDS spread Similar to the above procedure in Section 4.3, following

David (2008) we obtain our model-implied aggregated moments by first calculate the Bond-

27Because the CDS market is a zero-net-supply derivative market, how the secondary market liquidity of
CDS market affects the pricing of CDS depends on market details. Bongaerts, De Jong, and Driessen (2011)
show that indeed, the sellers of CDS contract earn a liquidity premium.
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CDS spread for each firm-quarter observation in Compustat based on its market leverage,

conditional on the macroeconomic state. To be consistent with data counterpart constructed

in 4.2 which is only available after 2005, we report our model implied Bond-CDS spreads in

Table 3 using empirical leverage distribution from 2005 to 2012.

[TABLE 3 ABOUT HERE]

The quantitative matching of Bond-CDS spreads, which is reported in Panel A in Table

3, is reasonably good for 5-year bonds, including both cross-sectional and state-dependent

dimensions. For 5-year Baa bonds, our model implies a Bond-CDS spread of 72.1 bps in state

G, while the data has a mean of 74.6 bps and a standard deviation of 8.7 bps. In recession,

the model implied Bond-CDS spread for 5-year Baa bonds is 135 bps, which undershoots

the data counterpart 182.3 bps (with a standard deviation of 18.0 bps). The matching of Ba

bonds is similar.

On the end of superior grade bonds with Aaa/Aa ratings, the model implied Bond-CDS

spread overshoots the data counterpart in both states: 50.4 bps (model) vs 27.7 bps (data) in

state G, and 105 bps (model) vs 76 bps (data) in state B).28 This overshooting in non-default

component is consistent with Table 2 where the model undershoots in default probabilities

for Aaa/Aa rated bonds but delivers an almost perfect match in credit spreads.

Overall, our model delivers the right magnitude for the empirically observed Bond-CDS

spreads, especially those in state-B which we do not choose parameters to target on. The

matching across macroeconomic states performs better than the matching across four rating

categories, in that our model seems to produce too little variation ranging from superior

grade bonds (Aaa/Aa) to speculative grade bonds (Ba). One possible explanation is that our

model misses another important cross-sectional liquidity effect in that safer bonds receives

better terms in funding liquidity (say, lower haircut), which helps in generating a steeper

Bond-CDS spread across rating classes. We await future research on this interesting topic.

10-year Bond-CDS spreads and term structure Moving on to 10-year bonds, the

model is doing a fair job in quantitatively matching the observed Bond-CDS spread in state

28Recall that even for illiquidity-free (χ = 0) and default-free (y =∞) bonds, the model implied Bond-CDS
spreads will be ∆G = 15bps and ∆B = 40bps.
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B, while the performance in state G is poor. More importantly, similar to the discussion at

the end of Section 4.3, one area our model clearly fails is to replicate a slightly downward

sloping Bond-CDS term structure in the data. In our data from 2005 to 2012, the 5-year

Bond-CDS spread is slightly higher than the 10-year counterpart across all rating categories,

subject to the caveat that the difference may not be statistically significant taking standard

deviations into account. It is worth noting that this downward sloping term structure in

Bond-CDS spreads is inconsistent with the robust finding of longer-maturity bonds being

less liquid documented in the empirical literature (e.g., Edwards, Harris, and Piwowar (2007);

Bao, Pan, and Wang (2011)). In fact, Longstaff, Mithal, and Neis (2005) report a positive

relation between Bond-CDS spread and maturity in their sample.

From the theoretical perspective, the model implied term structure for Bond-CDS spreads

is upward sloping for investment grade bonds, but may turn downward sloping or flat for

speculative grade bonds. In Table 3 state B model row, the Bond-CDS spread difference

between 10-year and 5-year is about 3 bps for Aaa/Aa bonds, while the difference turns

-10 bps for Ba bonds. In our model, this is because bonds with shorter maturity are more

liquid due to a better outside option of bond sellers who can sit out waiting for the principal

payment (He and Milbradt (2012)). For bonds that are close to default, the bond’s stated

maturity matters little, thus 5-year and 10-year bonds face similar illiquidity. Thus, the

illiquidity discount per year (which is stated maturity) is higher for 5-year bonds, leading to

downward sloping curve for Bond-CDS spreads for risky bonds.29

One possible explanation for the downward sloping Bond-CDS spreads, which is outside

our model, is that the CDS spreads at different maturities are affected by liquidity differently.

It is well recognized that CDS contracts are most liquid at the 5-year horizon when measured

by the number of dealers offering quotes. If dealers are mainly selling CDS protections to

regular investors and they possess market power (consistent with the empirical evidence in

Bongaerts, De Jong, and Driessen (2011)), then the price of 10-year CDS contracts that are

only offered by a small number of dealers tend to be higher than the price of 5-year CDS

contracts with more competitive dealers. This may contribute to the relatively lower 10-year

29This is similar to the inverted term structure of credit spreads for bonds with lower distance-to-default in
standard default-driven models.
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Bond-CDS spreads.

4.4.2 Bid-Ask Spread

Now we move on to the bid-ask spread as the second measure of non-default component.

Recall that on the data side we combine both Edwards, Harris, and Piwowar (2007) and

Bao, Pan, and Wang (2011) to obtain the estimates of bid-ask spreads for corporate bonds,

both across credit ratings and over business cycle. On the model side, again we rely on

the empirical leverage distribution in Compustat firms across ratings and aggregate states

to calculate the average of model implied bid-ask spreads. Since the average maturity in

TRACE data is around 8.3 years, the model implied bid-ask spread is calculated as the

weighted average between the bid-ask spread of a 5-year bond and a 10-year bond.

The model implied bid-ask spreads are reported in Panel B of Table 3, together with

their empirical counterparts. The model is able to generate both cross-sectional and state-

dependent patterns that quantitatively match what we observe in the data, especially in

normal time. As mentioned before, we calibrate two state-dependent holding cost parameters

(χG and χB) to match the bid-ask spread of investment grade bonds over macroeconomic

states. Thus, it is less surprising that we are able to match the state-dependent pattern

that bid-ask spreads more than double when the economy switches from state G to state B.

However, in our model the bond’s secondary market liquidity is endogenously linked to the

firm’s distance-to-default, which allows us to deliver the cross-sectional matching across three

ratings. In normal times, the average bid-ask spread is 43 bps for superior grade bonds, 50

bps for investment grade bonds, and 73 bps for junk grade bonds, which are close to the data

row in Table 3 taken from Edwards, Harris, and Piwowar (2007). The quantitative matching

during recession is also satisfactory. Although not reported here, the model-implied bid-ask

spread of longer-maturity bonds are higher than that of shorter-maturity bonds, which is

consistent with previous empirical studies (eg. Edwards, Harris, and Piwowar (2007); Bao,

Pan, and Wang (2011)). Finally, the implied bid-ask spread for the case of χ = 0 is zero by

definition (unreported in Table 3).
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4.5 What if Pre-default Secondary Market is Perfectly Liquid?

Compared to earlier credit risk models that also incorporate macroeconomic risks, such as

Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and

Chen (2010), our model adds an illiquid secondary market for corporate bonds. By setting

either the holding cost for type L investors, or the liquidity shock intensity, to zero (i.e.,

either χs = 0 or ξs=0), we see what our model calibration implies about default risk and

credit spreads in the absence of liquidity frictions, which helps isolate the effects of pre-default

secondary market illiquidity.

The results are reported in the rows “χ = 0” in Table 2 and Table 3. With χs = 0, the

credit spreads become significantly lower. For Aaa/Aa rated firms, in state G the 5-year

spread falls from 61.4 bps to 23.4 bps (compared to the average spread of 55.7 bps in the

data), while in state B it falls from 117 bps to 49.1 bps (compared to 107 bps in the data).30

For 10-year spread, the unconditional credit spread falls from 93.8 bps to 43.7 bps (compared

to 61.2 bps in the data). Credit spreads for low-rated firms also fall, but by less in relative

terms compared to highly-rated firms. Though not reported in Table 3, once we set χs = 0

the model implied Bond-CDS spreads is close to ∆G = 15bps in state G and ∆B = 40bps in

state B.

Besides the credit spreads, shutting off the pre-default secondary market illiquidity lowers

default probabilities as well. Quantity wise, the reduction for bonds with high rating is about

25% lower, while it is about 15% for speculative grade bonds. It is because the secondary

market illiquidity raises the rollover risk for firms, which in turn raises the probability of default.

More importantly, this result illustrates that in order to obtain a precise decomposition of

the default and liquidity components in credit spreads, we need to take into account the

interactions between default risk and liquidity risk. We propose such a decomposition in the

next section.

30Recall that we impose a liquidity premium for treasury, which is 15 bps in state G and 40 bps in state B,
independent of default. In light of this, when setting χ = 0, the potential default of Aaa/Aa firms contributes
23.4bps-15bps=8.4bps in state G while 49.1bps-40bps=9.1bps in state B.

32



5. Structural Default-Liquidity Decomposition

Our structural model of corporate bonds features a full interaction between default and

liquidity in determining the credit spreads of corporate bonds. It has been a common

practice in the empirical literature to decompose the credit spread into liquidity and default

components in an additive way, such as in Longstaff, Mithal, and Neis (2005). From the

perspective of our model, this “intuitively appealing” decomposition tends to over-simplify

the role of liquidity in determining the credit spread. More importantly, the additive structure

often leads to a somewhat misguided interpretation that liquidity or default is the cause of

the corresponding component, and each component would be the resulting credit spread if

we were to shut down the other channel.

This interpretation may give rise to misleading answers in certain policy related questions.

For instance, as our decomposition indicates, part of the default risk comes from the illiquidity

in the secondary market. Thus, when the government is considering providing liquidity to the

market, besides the direct effect on the credit spread by improving liquidity, there is also an

indirect effect in lowering the default risk via the rollover channel and the firm’s endogenous

default decision. The traditional perspective with an additive structure often overlooks this

indirect effect, a quantitatively important effect according to our study.

5.1 Decomposition Scheme

We propose a more detailed structural decomposition, which nests the additive default-

liquidity decomposition common in the literature. We first isolate liquidity premium for

Treasury bonds, which comes from the specialness of Treasuries (in serving as collateral) but

not so much about trading illiquidity of corporate bonds. The remaining spread, which can

be considered as credit spread relative to the risk-free rate (instead of the Treasury rate),

consists of the default and liquidity parts. We further decompose the default part into the

pure-default and liquidity-driven-default parts, and similarly decompose the liquidity part
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into the pure-liquidity and default-driven-liquidity parts:

ĉs = ∆ +

Default Component ĉsDEF︷ ︸︸ ︷
ĉspureDEF + ĉsLIQ→DEF +

Liquidity Component ĉsLIQ︷ ︸︸ ︷
ĉspureLIQ + ĉsDEF→LIQ (17)

This way, we separate causes from consequences, and emphasize that lower liquidity (higher

default) risk can lead to a rise in the credit spread via the default (liquidity) channel.

Recognizing and further quantifying this endogenous interaction between liquidity and default

is important in evaluating the economic consequence of policies that are either improving

market liquidity (e.g., Term Auction Facilities or discount window loans) or alleviating default

issues (e.g, direct bailouts).

Start with the default component. Imagine a hypothetical investor who is not subject to

liquidity frictions, both pre- and post- default, and consider the spread that this investor

demands over the risk-free rate. The resulting spread, denoted by ĉsDEF , only prices the

default event given default threshold ydef , in line with Longstaff, Mithal, and Neis (2005)

who use information from the relatively liquid CDS market to back out the default premium.

Importantly, the default boundaries ysdef ’s in calculating ĉsDEF remains the same given

liquidity frictions as derived in equation (12).31

In contrast, we define the “Pure-Default” component ĉspureDEF as the spread implied by

the benchmark Leland model without secondary market liquidity frictions at all (e.g., setting

ξ = 0 or χ = 0 for both pre- and post-default). Because the liquidity of the bond market leads

to less rollover losses, equity holders default less often, i.e., yLeland,sdef < ysdef , where yLeland,sdef

denotes the endogenous default boundary in Leland and Toft (1996) with time-varying

aggregate states. The distinction between default boundaries implies a smaller pure-default

component ĉspureDEF than the default component ĉsDEF . The difference ĉsDEF − ĉspureDEF
gives the novel “Liquidity-Driven Default” component, which quantifies the effect that the

illiquidity of secondary bond markets makes default more likely.

Now we move on the liquidity side. The liquidity component, in line with Longstaff, Mithal,

and Neis (2005), is defined as ĉsLIQ ≡ ĉs− ĉsDEF . That is to say, the liquidity component is

31Hypothetically, this is the situation where all other bond investors are still facing liquidity frictions as
modeled. Hence, equity holders’ default decision is not be affected.
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the difference between the credit spread ĉs implied by our model, and that required by a

hypothetical investor without liquidity frictions, i.e., the spread ĉsDEF . Following a similar

treatment to the default component, we further decompose ĉsLIQ into a “Pure-Liquidity”

component and a “Default-driven Liquidity” component. Let ĉspureLIQ be the spread (relative

to the risk-free rate) of a bond that is subject to liquidity frictions as in Duffie, Gârleanu, and

Pedersen (2005) but does not feature any default risk; this is the spread implied by our model

as y →∞ so that the bond becomes default free. The residual ĉsLIQ − ĉspureLIQ is what we

term the default-driven liquidity part of our credit spread. Economically, the default-driven

liquidity part arises because default leads to a more illiquid post-default secondary market,

which endogenously worsens the pre-default secondary market liquidity.

5.2 Ultimate Recovery Rates

The proposed default-liquidity decomposition requires us to estimate the benchmark “pure-

default” Leland model by removing liquidity frictions in the secondary corporate bond market,

not only for pre-default but also for post-default. This affects the hypothetical Leland default

recovery rates, which we denote by αGLeland and αBLeland. It is worth noting that these recovery

rates under Leland setting do not affect our previous calibration exercise.

In the context of our model, αsLeland’s are valuations of hypothetical bond investors at

default who can costlessly wait for the ultimate recovery from bankruptcy payout. Following

this idea, we first estimate the ultimate recovery rate α̂s, which is the debt holders’ final

payout (as a fraction of the unlevered firm value) from bankruptcy settlement. Using Moody’s

default and recovery database that covers defaulted corporate bonds between 1987 and 2011,

we track the price path for each defaulted bond from the default date to the settlement (or

emergence) date.32 The average time from credit event to ultimate resolution is 501 days,

implying a bankruptcy payout intensity of θ = 0.73. And, this duration varies little across

recession and non-recession periods.

To adjust risk, we borrow from the empirical literature on venture capital / private equity

32We follow Moody’s preferred method in choosing the emergence price. For each bond, Moody’s calculates
the emergence price using three methods: trading price, settlement price or liquidity price and indicates
which one is preferred.
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(e.g. Kaplan and Schoar (2005)) by discounting the return for each defaulted bond by a

public market reference return over the same horizon (from default date to emergence date).

We use the S&P500 total return (including dividends) as the relevant benchmark, and the

resulting excess returns are called “Public Market Equivalent” (PME).33 It is also convenient

to account for state dependence in risk premium under this simple method. Sorting our

sample into two groups based on whether the default month is classified as recession by

NBER,34 we find that the average risk-adjusted buy-and-hold return when default occurs in

recession is about 212%, and when default occurs in non-recession is about 153%.

Suppose that right after default the trading prices is psv
s
U in state s. Then, Moody’s

default and recovery database implies that the expected final payouts are pGv
G
u · 153% if

default occurs at state G, and pBv
B
u ·212% if default occurs at state B. Because the aggregate

states are switching before eventual bankruptcy payout, the ultimate recovery rates α̂G and

α̂B satisfy  pG · 153%

pB · 212%

 =

 0.5755 · 153%

0.3060 · 212%

 =

 πGG πGB
xB
xG

πBG
xG
xB

πBB

 α̂G

α̂B


where πij = Pr (sτ̂ = j| s0 = i), and τ̂ is the random payout time following an exponential

distribution with intensity θ = 0.73, and xG and xB are state-dependent price-dividend

ratios.35 Finally, we discount these ultimate recovery rates back to the date of default, taking

switching aggregates states in to account:

 αLelandG

αLelandB

 =

 r + θ + ζG −ζGxBxG
−ζB xG

xB
r + θ + ζB

−1  θα̂G

θα̂B

 .
Under our calibrations, we have αLelandG = 0.8583 and αLelandB = 0.6297.

33We use this approach because it is difficult to estimate beta for this investment strategy due to unbalanced
panels and unknown interim returns before emergence date, a well-known problem in the VC/PE literature.
Moreover, we need to calculate the state-dependent excess return, which makes the estimation of beta even
harder.

34There are 130 defaults occurring in recession among a total of 642 defaults. Table 6 in the Appendix
provides summary statistics on our excess return matric and Figure 1 plots its empirical distribution.

35We compute xs as

[
xG
xB

]
=

[
r − µG + ζG −ζG
−ζB r − µB + ζB

]−1 [
1
1

]
.
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5.3 Default-Liquidity Decomposition

We perform the above default-liquidity decomposition for typical 5-year bonds. The firm’s

cash-flow rate y is set at state G to match the average credit spreads of different ratings

observed in non-recession periods. We then imagine that the economy switches to state B, and

investigate the change of decomposition due to the change of aggregate state. Importantly,

because we fix the firm’s cash-flow y across two states, the resulting credit spread in B

typically is below the data counterpart in Table 2.36

The decomposition results for both aggregate states are presented in Panel I in Table 4.

We give both the credit spread relative to the Treasury rate and the credit spread relative to

the risk-free rate; their difference is just the Treasury liquidity premium ∆s (15bps in state G

and 40bps in state B) exogenously specified by our calibration. Because the liquidity-default

decomposition applies to the credit spread relative to the risk-free rate, in this subsection we

place more emphasis on this credit spread measure. For this reason, in this subsection the

term “credit spread” refers to the credit spread relative to the risk-free rate.

5.3.1 Level of credit spreads

For each component, Table 4 reports its absolute level in bps, as well as the percentage

contribution to the credit spread relative to the risk-free rate. As expected, the “pure

liquidity” component accounts for a greater fraction of credit spread for higher rated bonds.

For instance, for Aaa/Aa rated bonds about 75% of the credit spread comes from the “pure

liquidity” component, and the aggregate state matters little. In contrast, the “pure liquidity”

component only accounts for 21% (26%) of the credit spread of Ba rated bonds in state G

(state B). A similar intuitive pattern holds for the “pure default” component across credit

ratings. The fraction of credit spreads that can be explained by the “pure default” component

starts from around 12% for Aaa/Aa rated bonds, and monotonically increases to about 45%

for Ba rated bonds.

The remaining part of the observed credit spreads, which is around 12%∼30% depending

on the rating, can be attributed to the novel interaction terms, either “liquidity-driven default”

36In Table 2, we identify the firm’s cash-flow in each state. based on the corresponding empirical leverage
distribution in Compustat.
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or “default-driven liquidity.” The “liquidity-driven default” part captures how corporate

endogenous default decisions are affected by secondary market liquidity frictions via the

rollover channel, which is non-negligible even for the highest rating firms (about 8% for

Aaa/Aa rated bonds). As expected, its quantitative importance rises for low rating bonds:

for Ba rated bonds, the liquidity-driven default accounts for about 21% of observed credit

spreads.

The second interaction term, i.e., the “default-driven liquidity” component, captures

how secondary market liquidity endogenously worsens when a bond is closer to default.

Given a more illiquid secondary market for defaulted bonds, a lower distance-to-default

leads to a worse pre-default secondary market liquidity because of the reduced outside

option of L investors when bargaining with dealers. Similar to “liquidity-driven default,” the

“default-driven liquidity” component becomes larger for bonds of lower rating classes. In our

calibration, this component is a bit smaller than the “liquidity-driven default” part, but is

significant for low rated bonds (about 10% of the credit spread for Ba rated bonds).

Comparison to Longstaff, Mithal, and Neis (2005) How do our decomposition results

compare to those documented in Longstaff, Mithal, and Neis (2005)? Since we are decomposing

the credit spread relative to the risk-free rate, the more appropriate benchmark in Longstaff,

Mithal, and Neis (2005) is the results based on the Refcorp curve. Based on CDS spreads and

their structural model, Longstaff, Mithal, and Neis (2005) estimate that for 5-year Aaa/Aa

rated bonds, the default component is about 62% of their credit spreads. For lower ratings,

they report 63% for A, 77% for Baa, and 86% for Ba.

Overall, our decomposition in Table 4 gives a much lower default component compared

to Longstaff, Mithal, and Neis (2005). More specifically, by adding up the “pure-default”

and “liquidity-driven default” components, we have a default component of 20% for Aaa/Aa

rated bonds, 40% for A, 51% for Baa, and 65% for Ba. The main driving force behind this

difference is that we calibrate our model to match a much lower empirical ratio between

CDS spread and credit spreads, especially for investment grade bonds. More specifically, in

our data, the CDS ratio is only about 51% for 5-year Baa rated bonds, compared to 74%
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reported in Longstaff, Mithal, and Neis (2005).37 A lower targeted CDS spread implies a

smaller default component, which leads to a calibrated model with a relatively high liquidity

component.

5.3.2 The change of credit spreads over aggregate states

This subsection focuses on a long-standing question that has interested empirical researchers,

e.g., Dick-Nielsen, Feldhütter, and Lando (2011) and Friewald, Jankowitsch, and Subrah-

manyam (2012): How much of the soaring credit spread when the economy switches from

boom to recession is due to increased credit risk, and how much is due to worsened secondary

market liquidity? Our novel default-liquidity decomposition in (17) acknowledges that both

liquidity and default risks for corporate bonds are endogenous and may affect each other.

Given this feature, structural answers that rely on well-accepted economic structures are

more appropriate than reduced-form approaches.

We report results in Table 4. As suggested by Panel II, increased default risks constitute a

large fraction of the jump in credit spreads. The pure liquidity component is also quantitatively

significant in explaining the rise of credit spreads: even for Ba rated bonds, about 34% of the

rise when entering recessions is due to the lower secondary market illiquidity in state B.

When the economy encounters a recession, the higher default risk lowers secondary market

liquidity further, giving rise to a greater “default-driven liquidity” part. Since worse liquidity

in state B also pushes firms to default earlier, bond spreads rise because of a larger “liquidity-

driven default” part. For low rated (say Ba) bonds, the “default-driven liquidity” channel

(13%) is slightly less important than that of “liquidity-driven default” (18%).

[TABLE 4 ABOUT HERE]

37In Longstaff, Mithal, and Neis (2005) whose sample period is from March 2001 to October 2002, the
CDS spreads for Aaa/Aa rated bonds are about 59% of their corresponding credit spreads; 60% for A, 74%
for Baa, and 87% for Ba. In our data with a much longer sample period, these moments are 63% for Aaa/Aa,
52% for A, 51% for Baa, and 68% for B.
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5.4 Implications on Evaluating Liquidity Provision Policy

Our decomposition and its quantitative results are informative for evaluating the effect of

policies that target lowering the borrowing cost of corporations in recession by injecting

liquidity into the secondary market. As argued before, a full analysis of the effectiveness of

such a policy must take account of how firms’ default policies respond to liquidity conditions

and how liquidity conditions respond to the default risks. These endogenous forces are what

our model is aiming to capture.

Suppose that the government is committed to launching certain liquidity enhancing

programs (e.g., Term Auction Facilities or discount window loans) whenever the economy falls

into a recession, envisioning that the improved funding environment for financial intermediaries

alleviates the worsening liquidity in the secondary bond market. Suppose that the policy

is effective in making the secondary market in state B as liquid as that of state G. More

precisely, the policy helps increase the meeting intensity between L investors and dealers in

state B, so that noneλB rises from 20 to λG = 50; reduce the state B holding cost χB from

2.35 to χG = 1.25; reduce the liquidity intensity of ξG = 1 in state B to ξG = 0.5 as in state

G; and finally make the post-default secondary market in state B to be as liquid as state G.38

In Table 5 we take the same cash flow levels for each rating class as in Table 4, and

calculate the credit spreads with and without the state-B liquidity provision policy. We find

that a state-B liquidity provision policy lowers state-B credit spreads by about 21 (137) bps

for Aaa/Aa (Ba) rated bonds, which is about 29% (29%) of the corresponding credit spreads.

Moreover, given the dynamic nature of our model, the state-B-only liquidity provision also

affects firms’ borrowing costs in state G: the state-G credit spreads for Aaa/Aa (Ba) rated

bonds go down by 13 (59) bps, or about 31% (20%) of the corresponding credit spreads.

Our structural decomposition further allows us to investigate the underlying driving

force for the effectiveness of this liquidity provision policy. By definition, the “pure default”

component remains unchanged given any policy that only affects the secondary market

liquidity.39 In Table 5, we observe that the pure-liquidity component accounts for above 83%

38This implies that hypothetically, the state B buy-and-hold return is the same as state G, which is 152%.
Hence, we keep pG = 0.5755 but set pB = 0.3060× 212%/153% = 0.4240. We then obtain the hypothetical
αs
l ’s by imposing the state-G bid-ask spread at default (2%) for both states.
39The “pure default” component is defined by Leland and Toft (1996) which is independent of the secondary
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(90%) of the drop in spread for Aaa/Aa rated bonds in state G (state B). However, the

quantitative importance of the pure-liquidity component goes down significantly when we

walk down the rating spectrum: for Ba rated bonds, it only accounts for about 44∼56% of

the decrease in the credit spread.

The market-wide liquidity provision not only reduces investors’ required compensation

for bearing liquidity risk, but also alleviates some default risk faced by bond investors. A

better functioning financial market helps mitigate a firm’s rollover risk and thus its default

risk, and this force is captured by the “liquidity-driven default” part. The importance of this

mechanism goes up for lower rated bonds (around 27∼38%), but it remains quantitatively

significant even for Aaa/Aa rated bonds (around 7∼12%).

Given that the hypothetical policy was limited to only improving secondary market

liquidity, the channel of “default-driven liquidity” is more intriguing, which only exists in our

model with endogenous liquidity featuring a positive feedback loop between corporate default

and secondary market liquidity. Not surprisingly, the contribution through “default-driven

liquidity” is smaller; however, this interaction component is quantitatively significant. It

explains about 17% of policy effect for Ba rated bonds, although only about 5% for Aaa/Aa

rated bonds.

[TABLE 5 ABOUT HERE]

6. Concluding Remarks

We build over-the-counter search frictions into a structural model of corporate bonds. In the

model, firms default decisions interact with time varying macroeconomic and secondary market

liquidity conditions. We calibrate the model to historical moments of default probability

and empirical measures of liquidity. The model is able to match the observed credit spreads

for corporate bonds with different rating classes, as well as various measures of non-default

component studied in the previous literature. We propose a structural decomposition that

captures the interaction of liquidity and default risks of corporate bonds over the business

market liquidity.
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cycle and use this framework to evaluate the effects of liquidity provision policies during

recessions. Our results identifies quantitatively important economic forces that were previously

overlooked in empirical researches on corporate bonds.
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A Appendix

1.1 Appendix for Section 5.2 in Estimating Ultimate Recovery

[TABLE 6 ABOUT HERE]

[FIGURE 1 ABOUT HERE]

1.2 Appendix for Section 4.3: Empirical Leverage Distribution
across Ratings

[FIGURE 2 ABOUT HERE]

[FIGURE 3 ABOUT HERE]

1.3 Omitted formulas from the main text

Define Q(1) ≡
[
−ξG − ζG ξG
βλG −βλG − ζG

]
and Q̃(1) ≡

[
ζG 0
0 ζG

]
. The Q-measure Brownian motion is

given by

dZQt =
σm(s)√

σ2
m (st) + σ2

f

dZm
t +

√
1− σ2

m (s)

σ2
m (s) + σ2

f

dZf
t +

σm (s)

σ (s)
η (s) dt,

We have the following system of ODEs for D(2) when y ∈ I2 = [ydef (B) ,∞):

[(r +m) I4 −Q] D(2) =
(
c14 − χ(2)

)
+ µ(2)

(
D(2)

)′
+

1

2
Σ(2)

(
D(2)

)′′
+m · p14, (18)

where Q(2) = Q,
µ(2) = diag ([µG, µG, µB , µB ]) ,Σ(2) = diag

([
σ2
G, σ

2
G, σ

2
B , σ

2
B

])
.

In contrast, on interval I1 = [ydef (G) , ydef (B)], the bond is “dead” in state B, and the alive bonds

D(1) =
[
D

(G,1)
H , D

(G,1)
L

]>
solve

[
(r +m) I2 −Q(1)

]
D(1) =

(
c12 − χ(1)

)
+µ(1)

(
D(1)

)′
+

1

2
Σ(1)

(
D(1)

)′′
+m ·p12 + ζG

[
αB
H

αB
L

]
vBU (y) (19)

for
y ∈ I1 = [ydef (G) , ydef (B)] ,

where the last term is the recovery value in case of a jump to default brought about by a state jump.
The boundary conditions at y =∞ and y = ydef (G) are standard:

lim
y→∞

∣∣∣D(2) (y)
∣∣∣ <∞, and D(1)

(
yGdef

)
=

[
αG
H

αG
L

]
vGU
(
yGdef

)
(20)

For the boundary yBdef , we must have value matching conditions for all functions across ydef (B):

D(2)
(
yBdef

)
=

 D(1)
(
yBdef

)[
αB
H

αB
L

]
vBU

(
yBdef

)
 (21)
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and smooth pasting conditions for functions that are alive across yBdef (x[1,2] selects the first 2 rows of
vector x): (

D(2)
)′ (

yBdef
)
[1,2]

=
(
D(1)

)′ (
yBdef

)
. (22)

µµ(2) = diag ([µG, µB ]) ,ΣΣ(2) = diag
([
σ2
G, σ

2
B

])
,QQ(2) =

[
−ζG ζG
ζB −ζB

]
(23)

The particular solution is

E(2) (y)︸ ︷︷ ︸
2×1

= GG(2)︸ ︷︷ ︸ ·
2×4

exp
(
ΓΓ(2)y

)
︸ ︷︷ ︸

4×4

· bb(2)︸ ︷︷ ︸
4×1

+ KK(2)︸ ︷︷ ︸
2×8

exp
(
Γ(2)y

)
︸ ︷︷ ︸

8×8

b(2)︸︷︷︸
4×2

+ kk
(2)
0︸ ︷︷ ︸

2×1

+ kk
(2)
1︸ ︷︷ ︸

2×1

exp (y) fory ∈ I2

E(1) (y)︸ ︷︷ ︸
1×1

= GG(1)︸ ︷︷ ︸ ·
1×2

exp
(
ΓΓ(1)y

)
︸ ︷︷ ︸

2×2

· bb(1)︸ ︷︷ ︸
2×1

+ KK(1)︸ ︷︷ ︸
1×4

exp
(
Γ(1)y

)
︸ ︷︷ ︸

4×4

b(1)︸︷︷︸
4×1

+ kk
(1)
0︸ ︷︷ ︸

1×1

+ kk
(1)
1︸ ︷︷ ︸

1×1

exp (y) for y ∈ I1

where GG(i),ΓΓ(i), bb(i),KK(i), kk
(i)
0 and kk

(i)
1 for i ∈ {1, 2} are given below. In particular, the constant

vector bb(i) is determined by boundary conditions similar to those for debt.

1.3.1 Generalization to n aggregate states

We follow the Markov-modulated dynamics approach of Jobert and Rogers (2006).
We note that there are multiple possible bankruptcy boundaries, yb (s), for each aggregate state s

one boundary. Order states s such that s > s′ implies that yb (s) > yb (s′) and denote the intervals Is =

[yb (s) , yb (s+ 1)] where yb (n+ 1) =∞, so that Is ∩ Is+1 = yb (s+ 1). Finally, let yb = [yb (1) , ..., yb (n)]
>

be the vector of bankruptcy boundaries.

It is important to have a clean notational arrangement to handle the proliferation of states. Let D
(s)
l

denote the value of debt for an creditor in individual liquidity state l and with aggregate state s. We will use

the following notation: D
(s,i)
l ≡ D(s)

l , y ∈ Ii, that is D
(s,i)
l is the restriction of D

(s)
l

to the interval Ii. It is now clear that D
(s,i)
l = 0

for any i < s, as it would imply that the company immediately defaults in interval Ii for state s. Let
us, for future reference, call debt in states i < s dead and in states i ≥ s alive. Finally, let us stack the

alive functions along states s but still restricted to interval i so that D(i) =
[
D

(1,i)
H , D

(1,i)
L , ..., D

(i,i)
H , D

(i,i)
L

]>
where D

(s,i)
l has s denoting the state, i denotes the interval and l denotes the individual liquidity state. The

separation of s and i will clarify the pasting arguments that apply when y crosses from one interval to the
next. Let

Ii︸︷︷︸
i×i

=

 1 · · · 0
...

. . .
...

0 · · · 1

 (24)

i.e. a 2x2 diagonal identity matrix, and let

1i︸︷︷︸
i×1

= [1, ..., 1]
>

(25)

be a column vector of just ones.
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Fundamental parameters. For a 2x2 case, we have a transition matrix Q that looks like

Q︸︷︷︸
2n×2n

=


−
∑

ls6=H1 ξH1→ls ξH1→L1 ξH1→H2 ξH1→L2

ξL1→H1 −
∑

ls6=L1 ξL1→ls ξL1→H2 ξL1→L2

ξH2→H1 ξH2→L1 −
∑

ls6=H2 ξH2→ls ξH2→L2

ξL2→H1 ξL2→L1 ξL2→H2 −
∑

ls6=L2 ξL2→ls

 (26)

Further, define the possibly state-dependent discount rates

R︸︷︷︸
2n×2n

=


diag

([
rH (1)
rL (1)

])
· · · 02

...
. . .

...

02 · · · diag

([
rH (n)
rL (n)

])
+mI2n (27)

where we are including the intensity of the random maturity in the definition of R for notational
convenience and brevity.

Building blocks for interval Ii. We now decompose the matrix Q. Let Q(i) be the transition
matrix of jumping into an alive state s′ ≤ i when currently in interval i and in an alive state s ≤ i. Let Q̃(i)

be the transition matrix of jumping into a default state s′ > i when currently in interval i and in an alive
state s ≤ i.

Let v(i) be the recovery or salvage value of the firm when default is declared in states s > i when currently

in interval i, where v
(s,i)
l exp (y) = α(s,l)

exp(y)
rH

. Thus, v(i) is a vector containing recovery values for states
(i+ 1, ..., n)× (H,L) (i.e., it is of dimension 2 (n− i)× 1).

Let χ(i) be a vector of holding costs in states (1, ..., i)× (H,L) (i.e, it is of dimension 2i× 1). The holding
costs are all positive, and are deducted from the coupon payment. Higher holding costs indicate more severe
liquidity states L for the agent.

First, let us start with the interval i = n. On this interval, all debt D
(s,n)
l is alive. Let

µ(n)︸︷︷︸
2n×2n

=

 µ (1) I2 · · · 0
...

. . .
...

0 · · · µ (n) I2

 (28)

and similarly let

Σ(n)︸︷︷︸
2n×2n

=

 σ2 (1) I2 · · · 0
...

. . .
...

0 · · · σ2 (n) I2

 (29)

and let

Q(n) = Q (30)

R(n) = R (31)

Q̃(n) = 0 (32)

Next, for the interval i = n − 1 we drop the last two rows and columns (i.e. rows and columns

2n and 2n − 1) (because they account for different liquidity states) of µ(n),Σ(n),Q(n),R(n) to form

µ(n−1),Σ(n−1),Q(n−1),R(n−1) which are all 2 (n− 1) × 2 (n− 1) matrices. In contrast, we form Q̃(n−1)

by dropping the last two rows and the first 2 (n− 1) columns of Q(n) to form a 2 (n− 1)× 2 matrix.
We repeat this procedure, dropping rows and columns and thus shrinking the matrices, step by step all

the all the way down to i = 1.
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Debt valuation within an interval Ii. Debt valuation follows the following differential equation
on interval Ii:(

R(i) −Q(i)
)

D(i) =
(
c12i − χ(i)

)
+ µ(i)

(
D(i)

)′
+

1

2
Σ(i)

(
D(i)

)′′
+ Q̃(i)v(i) exp (y) +m · p12i (33)

where Q̃(i)v(i) exp (y) represents the intensity of jumping into default times the recovery in the default state
and m · p12i represents the intensity of randomly maturing times the payoff in the maturity state. Next, let

us conjecture a solution of the kind g exp (γy) + k
(i)
0 + k

(i)
1 exp (y) where g is a vector and γ is a scalar. The

particular part stemming from c(i) is solved by a term k
(i)
0 with

k
(i)
0︸︷︷︸

2i×1

=
(
R(i) −Q(i)

)−1
︸ ︷︷ ︸

2i×2i

(c+m · p) 12i − χ(i)︸ ︷︷ ︸
2i×1

(34)

and the particular part stemming from Q̃(i)v(i) is solved by a term k
(i)
1 exp (y) with

k
(i)
1︸︷︷︸

2i×1

=

(
R(i) −Q(i) − µ(i) − 1

2
Σ(i)

)−1
︸ ︷︷ ︸

2i×2i

Q̃(i)︸︷︷︸
2i×2(n−i)

v(i)︸︷︷︸
2(n−i)×1

(35)

It should be clear that k
(n)
1 = 0 as on In there is no jump in the aggregate state that would result in

immediate default. Plugging in, dropping the c(i) and Q̃(i)v(i) exp (y) terms, canceling out exp (γy) > 0, we
have

02i =
(
Q(i) −R(i)

)
g + µ(i)γg +

1

2
Σ(i)γ2g (36)

Following JR06, we premultiply by 2
(
Σ(i)

)−1
and define h = γg to get

γg = h (37)

γh = −2
(
Σ(i)

)−1
µ(i)h + 2

(
Σ(i)

)−1 (
R(i) −Q(i)

)
g (38)

Stacking the vectors j =

[
g
h

]
we have

γj =

[
02i I2i

2
(
Σ(i)

)−1 (
R(i) −Q(i)

)
−2
(
Σ(i)

)−1
µ(i)

]
j = A(i)︸︷︷︸

4i×4i

j (39)

where I is of appropriate dimensions. The problem is now a simple eigenvalue-eigenvector problem and each

solution j is a pair

γ(i)j︸︷︷︸
1×1

, j
(i)
j︸︷︷︸

4i×1

 (or rather

γ(i)j︸︷︷︸
1×1

, g
(i)
j︸︷︷︸

2i×1

, as the vector j
(i)
j contains the same information as

g
(i)
j when we know γ

(i)
j , so we discard the lower half of j

(i)
j ). The number of solutions j to this eigenvector-

eigenvalue problem is 4i. Let

G(i) ≡
[
g
(i)
1 , ...,g

(i)
2×2×i

]
(40)

be the matrix of eigenvectors, and let

γ(i) ≡
[
γ
(i)
1 , ..., γ

(i)
2×2×i

]′
(41)

Γ(i) ≡ diag
[
γ(i)

]
(42)
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be the corresponding vector and diagonal matrix, respectively, of eigenvalues.
The general solution on interval i is thus

D(i)︸︷︷︸
2i×1

= G(i)︸︷︷︸
2i×4i

· exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

· c(i)︸︷︷︸
4i×1

+ k
(i)
0︸︷︷︸

2i×1

+ k
(i)
1︸︷︷︸

2i×1

exp (y) (43)

where the constants c(i) =
[
c
(i)
1 , ..., c

(i)
4i

]>
will have to be determined via conditions at the boundaries of

interval Ii (NOTE: c
(i)
j 6= c where c is the coupon payment).

Boundary conditions. The different value functions D(i) for i ∈ {1, ..., n}
are linked at the boundaries of their domains Ii. Note that Ii ∩ Ii+1 = {yB (i+ 1)} for i < n.
For i = n, we can immediately rule out all positive solutions to γ as debt has to be finite and bounded as

y →∞, so that the entries of C(n) corresponding to positive eigenvalues will be zero:40

lim
y→∞

∣∣∣D(n) (y)
∣∣∣ <∞ (44)

For i < n, we must have value matching of the value functions that are alive across the boundary, and we
must have value matching of the value functions that die across the boundary:

D(i+1) (yB (i+ 1)) =

 D(i) (yB (i+ 1))[
vi+1
H

vi+1
L

]
exp (yB (i+ 1))

 (45)

For i < n, we must have mechanical (i.e. non-optimal) smooth pasting of the value functions that are
alive across the boundary: (

D(i+1)
)′

(yB (i+ 1))[1...2i] =
(
D(i)

)′
(yB (i+ 1)) (46)

where x[1...2i] selects the first 2i rows of vector x.
Lastly, for i = 1, we must have

D(1) (yB (1)) =

[
v1H
v1L

]
exp (yB (1)) (47)

Full solution. We can now state the full solution to the debt valuation given cut-off strategies:

40According to JR06, there are exactly 2 × |S| = 2n eigenvalues of A in the left open half plane (i.e.
negative) and 2n eigenvalues in the right open half plane (i.e. positive) (actually, they only argue that this
holds if µ = R− 1

2Σ, but maybe not for general µ).
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Proposition 4. The debt value functions D for a given default vector yB are

D (y) =



D(n) (y)︸ ︷︷ ︸
2n×1

= G(n) · exp
(
Γ(n)y

)
· c(n) + k

(n)
0 y ∈ In

...
...

D(i) (y)︸ ︷︷ ︸
2i×1

= G(i) · exp
(
Γ(i)y

)
· c(i) + k

(i)
0 + k

(i)
1 exp (y) y ∈ Ii

...
...

D(1) (y)︸ ︷︷ ︸
2×1

= G(1) · exp
(
Γ(1)y

)
· c(1) + k

(1)
0 + k

(1)
1 exp (y) y ∈ I1

with the following boundary conditions to pin down vectors c(i):

lim
y→∞

∣∣∣∣∣∣∣D(n) (y)︸ ︷︷ ︸
2n×1

∣∣∣∣∣∣∣ < ∞ (48)

D(i+1) (yB (i+ 1))︸ ︷︷ ︸
2(i+1)×1

=

 D(i) (yB (i+ 1))[
vi+1
H

vi+1
L

]
exp (yB (i+ 1))


︸ ︷︷ ︸

2(i+1)×1

(49)

(
D(i+1)

)′
(yB (i+ 1))[1...2i]︸ ︷︷ ︸
2i×1

=
(
D(i)

)′
(yB (i+ 1))︸ ︷︷ ︸
2i×1

(50)

D(1) (yB (1))︸ ︷︷ ︸
2×1

=

[
v1H
v1L

]
exp (yB (1))︸ ︷︷ ︸
2×1

(51)

where x[1..2i] selects the first 2i rows of vector x.

.
Note that the derivative of the debt value vector is(

D(i)
)′

(y)︸ ︷︷ ︸
2i×1

= G(i)Γ(i) · exp
(
Γ(i)y

)
· c(i) + k

(i)
1 exp (y) (52)

where we note that Γ(i) · exp
(
Γ(i)y

)
= exp

(
Γ(i)y

)
· Γ(i)

as both are diagonal matrices (although this interchangeability only is important when s = 1 as it then
helps collapse some equations).

The first boundary condition (48) essentially implies that we can discard any positive entries of γ(n) by
setting the appropriate coefficients of C(n) to 0. The second boundary condition (49) implies that we have
value matching at any boundary yB (i+ 1) for i < n, be it to a continuation state or a bankruptcy state
. The third boundary condition (50) implies that we also have smooth pasting at the boundary yB (i+ 1)
for those states in which the firm stays alive on both sides of the boundary. Finally, the fourth boundary
condition (51) implies value matching at the boundary yB (1), but of course only for those states in which
the firm is still alive.

Thus, let us summarize the solution steps:

1. Order states so that the most restrictive/illiquid states are with the highest indices, such that
yB (i) < yB (j) implies i < j (i.e. they appear in the lowest rows/columns in the following matrices).
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2. Define the suitable matrices R,Q for the transitions, and of course µ,Σ for drift and variance. These
apply on the highest interval In.

3. Set up the eigenvalue-eigenvector problem and solve for (the matrix of) eigenvectors G(n) and (the

vector of) eigenvalues γ(n). Solve for the constant k
(n)
0 on this interval.

4. For intervals In−i we drop for each increment i the last pair of rows and columns of the appropriate
matrices, with the following exception. We define Q(n−i) as the matrix that arises out of Q when we
drop the last i pair of rows and columns, i.e. rows 1-2 and columns 1-2 survive in the 4x4 case. We
similarly define R(n−i),µ(n−i),Σ(n−i). We define Q̃(n−i) as the matrix that arises out of Q when we
drop the last i pair of rows and the first n− i pairs of columns, i.e. rows 1-2 and columns 3-4 survive
in the 4x4 case.

5. Set up the eigenvalue-eigenvector problem for interval In−i and solve for (the matrix of) eigenvectors

G(n−1) and (the vector of) eigenvalues γ(n−1). Solve for the constant k
(n−1)
0 on this interval and also

for the particular part k
(n−1)
1 exp (y).

6. Build the system of boundary conditions via the matrix definitions of the debt to solve for the linear
coefficients c(i). To impose boundary condition (48), it is probably easiest to just use those entries of
γ(n) that are negative. Thus, the appropriate C(n) for In is only a 2n× 1 vector, and not a 4n× 1
vector.

1.4 Equity

The equity holders are unaffected by the individual liquidity shocks the debt holders are exposed to. The only
shocks the equity holders are directly exposed to are the shifts in µ (s) and σ (s), i.e. shifts to the cash-flow
process.

However, as debt has maturity and is rolled over, equity holders are indirectly affected by liquidity shocks
in the market through the effect it has on debt prices. Thus, when debt matures, it is either rolled over if the
debt holders are of type H, or it is reissued to different debt holders in the case that the former debt holder
is of type L. Either way, there is a cash flow (inflow or outflow) of m

[
S(i) ·D(i) (y)− p1i

]
at each instant as

a mass m · dt of debt holders matures on [t, t+ dt].
For notational ease, we will denote by double letters (e.g. xx) a constant for equity that takes a similar

place as a single letter (i.e. x) constant for debt. Then, the HJB for equity on interval Ii is given by(
RR(i) −QQ(i)

)
E(i) (y) = µµ(i)

(
E(i)

)′
(y) +

1

2
ΣΣ(i)

(
E(i)

)′′
(y)

+1i exp (y)︸ ︷︷ ︸
Cashflow

− (1− π) c1i︸ ︷︷ ︸
Coupon

+m
[
S(i) ·D(i) (y)− p1i

]
︸ ︷︷ ︸

Rollover

(53)

where

RR(i) = diag ([rH (1) , ..., rH (i)]) (54)

µµ(i) = diag ([µ (1) , ..., µ (i)]) (55)

ΣΣ(i) = diag
([
σ2 (1) , ..., σ2 (i)

])
(56)

are i× i square matrices, QQ(i)is the transition matrix only between aggregate states that is also an i× i
square matrix, and S(i) is a i × 2i matrix that selects which debt values the firm is able to issue (each
row has to sum to 1), and m is a scalar (NOTE: In contrast to R, the matrix RR does not contain the
maturity intensity m). For example, for i = 2, if the company is able to place debt only to H types, then

S(2) =

[
1 0 0 0
0 0 1 0

]
. It is important that for reach row i only entries 2i− 1 and 2i are possibly nonzero,

whereas all other entries are identically zero (otherwise, one would issue bonds belonging to a different state).
[TABLE 1.4 ABOUT HERE]
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Writing out D(i) (y) = G(i) exp
(
Γ(i)y

)
c(i)

and conjecturing a solution to the particular, non-constant part KK(i)︸ ︷︷ ︸
i×4i

exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

c(i)︸︷︷︸
4i×1

, we have

(
RR(i) −QQ(i)

)
KK(i) exp

(
Γ(i)y

)
c(i)

=

[
µµ(i) ·KK(i) · Γ(i) +

1

2
ΣΣ(i)KK(i) ·

(
Γ(i)

)2
+m · S(i) ·G(i)

]
exp

(
Γ(i)y

)
c(i) (57)

We can solve this by considering each γ
(i)
j separately — recall that c(i) is a vector and exp

(
Γ(i)y

)
is a diagonal

matrix and in total there are 4i different roots. Consider the part of the particular part S(i) ·g(i)
j exp

(
γ
(i)
j y
)
·c(i)j

and our conjecture gives KK
(i)
j︸ ︷︷ ︸

i×1

exp
(
γ
(i)
j y
)

︸ ︷︷ ︸
1×1

· c(i)j︸︷︷︸
1×1

for each root j ∈ [1, ..., 4i]. Plugging in and multiplying out

the scalar exp
(
γ
(i)
j y
)
c
(i)
j , we find that

(
RR(i) −QQ(i)

)
KK

(i)
j = µµ(i) ·KK

(i)
j · γ

(i)
j +

1

2
ΣΣ(i)KK

(i)
j ·

(
γ
(i)
j

)2
+m · S(i) · g(i)

j (58)

Solving for KK
(i)
j , we have

KK
(i)
j︸ ︷︷ ︸

i×1

=

[
RR(i) −QQ(i) − µµ(i) · γ(i)j −

1

2
ΣΣ(i) ·

(
γ
(i)
j

)2]−1
︸ ︷︷ ︸

i×i

m · S(i)︸︷︷︸
i×2i

g
(i)
j︸︷︷︸

2i×1

(59)

Finally, for the homogenous part we use the same approach as above, but now we have less states as the
individual liquidity state drops out. Thus, we conjecture gg exp (γγy) to get

0i =
(
QQ(i) −RR(i)

)
gg + µµ(i)γγgg +

1

2
ΣΣ(i)γγgg (60)

so that, again, we have the following eigenvector eigenvalue problem

γγjj =

[
0i Ii

2
(
ΣΣ(i)

)−1 (
RR(i) −QQ(i)

)
−2
(
ΣΣ(i)

)−1
µµ(i)

]
jj = AA(i)︸ ︷︷ ︸

2i×2i

jj (61)

which gives
(
γγ

(i)
j ,gg

(i)
j

)
for j ∈ [1, ..., 2i] solutions. We stack these into a matrix of eigenvectors GG(i) and

a vector of eigenvalues γγ(i), from which we define the diagonal matrix of eigenvalues ΓΓ(i) ≡ diag
(
γγ(i)

)
.

What remains is to solve for kk
(i)
0 and kk

(i)
1 . We have

kk
(i)
0 =

[
RR(i) −QQ(i)

]−1 [
− (1− π) c1i +m

(
S(i)k

(i)
0 − p1i

)]
(62)

and

kk
(i)
1 =

[
RR(i) −QQ(i) − µµ(i) − 1

2
ΣΣ(i)

]−1 (
1i +m · S(i)k

(i)
1

)
(63)

with k
(n)
1 = 0.

We are left with the following proposition.
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Proposition 5. The equity value functions E for a given default vector yB are

E (y) =



E(n) (y)︸ ︷︷ ︸
n×1

= GG(n) · exp
(
ΓΓ(n)y

)
· cc(n) + KK(n) exp

(
Γ(n)y

)
c(n) + kk

(n)
0 + kk

(n)
1 exp (y) y ∈ In

...
...

E(i) (y)︸ ︷︷ ︸
i×1

= GG(i) · exp
(
ΓΓ(i)y

)
· cc(i) + KK(i) exp

(
Γ(i)y

)
c(i) + kk

(i)
0 + kk

(i)
1 exp (y) y ∈ Ii

...
...

E(1) (y)︸ ︷︷ ︸
1×1

= GG(1) · exp
(
ΓΓ(1)y

)
· cc(1) + KK(1) exp

(
Γ(1)y

)
c(1) + kk

(1)
0 + kk

(1)
1 exp (y) y ∈ I1

with the following boundary conditions to pin down the vector cc(i):

lim
y→∞

∣∣∣∣∣∣∣E(n) (y) exp (−y)︸ ︷︷ ︸
n×1

∣∣∣∣∣∣∣ < ∞ (64)

E(i+1) (yB (i+ 1))︸ ︷︷ ︸
(i+1)×1

=

[
E(i) (yB (i+ 1))

0

]
︸ ︷︷ ︸

(i+1)×1

(65)

(
E(i+1)

)′
(yB (i+ 1))[1...i]︸ ︷︷ ︸
i×1

=
(
E(i)

)′
(yB (i+ 1))︸ ︷︷ ︸
i×1

(66)

E(i) (yB (1))︸ ︷︷ ︸
i×1

= 0 (67)

where x[1...i] selects the first i rows of vector x.

Note first the dimensionalities: ΓΓ(i)︸ ︷︷ ︸
2i×2i

,GG(i)︸ ︷︷ ︸
i×2i

and Γ(i)︸︷︷︸
4i×4i

,G(i)︸︷︷︸
2i×4i

. Note second the derivative of the equity

value vector is(
E(i)

)′
(y)︸ ︷︷ ︸

i×1

= GG(i)ΓΓ(i) · exp
(
ΓΓ(i)y

)
· cc(i) + KK(i)Γ(i) exp

(
Γ(i)y

)
c(i) + kk

(i)
1 exp (y) (68)

where we note that Γ(i) · exp
(
Γ(i)y

)
= exp

(
Γ(i)y

)
· Γ(i) and ΓΓ(i) · exp

(
ΓΓ(i)y

)
= exp

(
ΓΓ(i)y

)
· ΓΓ(i)

as both are diagonal matrices (although this interchangeability only is important when s = 1 as it then
helps collapse some equations).

The optimality conditions for bankruptcy boundaries {yB (i)}i are given by(
E(i)

)′
(yB (i))[i] = 0 (69)

i.e., a smooth pasting condition at the boundaries at which default is declared.
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Table 1: Baseline Parameters used in calibration. Unreported parameters are tax rate
π = 0.35. For pre-fixed parameters, transition density ζP, jump risk premium exp(κ), risk
price η, risk-free rate r, cash flow growth µP, primary bond market issuance cost κ, and
inverse of debt maturity m are taken from literature (e.g., Chen, Xu, and Yang (2012)).
Systematic volatility σm is chosen to match equity volatility. Treasury liquidity premium
∆ is from 3-month repo-treasury spread. Meeting intensity λ between low-type investors
and dealers are set so that selling holdings takes one week (2.5 weeks) in normal (recession)
period. Investors’ bargaining power β is from Feldhütter (2012). State- and type- dependent
recovery rates αsl ’s are calculated using existing literature on credit risk models and observed
bid-ask spreads of defaulted bonds. In Section 5.2, the ultimate recovery rate α̂ is based
on risk-adjusted holding period returns of post-default corporate bonds in Moody’s Default
and Recovery Databases from 1984-2010. For calibrated parameters (in bold face), the
idiosyncratic volatility σi is chosen to target the default probability of Baa firms. The state-B
liquidity shock intensity ξB is also pre-fixed to match corporate bond turnover in recession,
while ξG is chosen to target the investment-grade Bond-CDS spread in normal time. Holding
cost χ are chosen to target the investment grade bid-ask spread.

Symbol Description State G State B Justification / Target

A. Pre-fixed parameters

ζP Transition density 0.1 0.5 literature

exp(κ) Jump risk premium 2.0 0.5 literature

η Risk price 0.165 0.255 literature

r Risk free rate 0.02 0.02 literature

µP Cash flow growth 0.045 0.015 literature

σm Systematic vol 0.1 0.11 equity vol

ω Primary market cost 0.01 literature

m Average maturity intensity 0.2 literature

∆ Treasury liquidity premium 15 bps 40 bps repo spread

λ Meeting intensity 50 20 anecdotal evidence

β Investor’s bargaining power 0.05 literature

αH Recovery rate of H type 58.71% 32.56% literature

αL Recovery rate of L type 57.49% 30.50% literature

α̂ Ultimate recovery rate 87.96% 64.68% literature

B. Calibrated parameters

σi Idiosyncratic vol 0.225 Baa default prob

ξ Liquidity shock intensity 0.5 1.0 Bond-CDS in G, turnover

χ Holding cost 1.25 2.35 Investment bid-ask sprd
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Table 2: Default probabilities and credit spreads across credit ratings. Default
probabilities are cumulative default probabilities over 1920-2011 from Moody’s investors
service (2012), and credit spreads are from FISD transaction data over 1994-2010. We report
the time series mean, with the standard deviation (reported underneath) being calculated
using Newey-West procedure with 15 lags. The standard deviation of default probabilities are
calculated based on the sample post 1970’s due to data availability issue. On model part, we
first calculate the quasi market leverage for Compustat firms (excluding financial and utility
firms) for each rating over 1994-2010, then match observed quasi market leverage by locating
the corresponding cash flow level y. We then calculate the time series average of model-implied
credit spreads and Bond-CDS spreads across these firm-quarter observations. This procedure
implies that our model-implied leverages exact match the empirical counterpart.

Maturity = 5 years Maturity = 10 years

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

Panel A. Default probability (%)

data 0.7 1.3 3.1 9.8 2.1 3.4 7.0 19.0
model 0.4 1.1 2.9 8.6 1.7 4.1 8.4 16.8
χ = 0 0.3 0.9 2.5 7.4 1.5 3.7 7.6 15.5

Panel B. Credit spreads (bps)

State G

data 55.7 85.7 149 315 61.2 90.2 150 303
(3.7) (6.6) (15.5) (33.8) (4.4) (6.3) (12.8) (22.7)

model 61.4 87.2 148 317 93.8 139 216 372
χ = 0 23.4 42.2 88.1 226 43.7 79.1 141 270

State B

data 107 171 275 542 106 159 262 454
(5.8) (10.5) (23.9) (29.8) (6.7) (13.8) (29.3) (44.4)

model 117 155 235 434 142 201 292 465
χ = 0 49.1 74.8 132 283 71.6 116 186 320
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Table 3: Bond-CDS spreads and bid-ask spreads across credit ratings. In Panel A,
the sample to construct Bond-CDS spreads are firms with both 5-year and 10-year bonds, over
the sample period from 2005 to 2012. We report the time series mean for both including and
excluding crisis (from October 2008 to March 2009), with the standard deviation (reported
underneath) being calculated using Newey-West procedure with 15 lags. On the model side,
we calculate the quasi market leverage for Compustat firms (excluding financial and utility
firms) for each rating classes. We match the observed quasi market leverage by locating
the corresponding cash flow level y, and calculate the time series average of model-implied
credit spreads and Bond-CDS spreads across these firm-quarter observations. This procedure
implies that our model-implied leverages exactly match the empirical counterpart. The row
of χ = 0 gives the model implied moments when there is no liquidity frictions in pre-default
market under our baseline parameters. In Panel B, the normal time bid-ask spread are taken
from Edwards, Harris, and Piwowar (2007) for a median size trade. The recession time
numbers are normal time numbers multiplied by the ratio of bid-ask spread implied by Roll’s
measure of illiquidity (following Bao, Pan, and Wang (2011)) in recession time to normal
time. The model counterpart is computed for a bond with time to maturity of 8.3 years,
which is the mean time-to-maturity of frequently traded bonds (where we can compute a
Roll’s measure) in the TRACE sample. The model implied bid-ask spread for χ = 0 is zero
by definition.

Panel A. Bond-CDS spreads (bps)

Maturity = 5 years Maturity = 10 years

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

State G

data 27.7 44.4 74.6 104 23.2 37.2 58.5 67.8
(6.6) (5.8) (8.7) (11.2) (9.9) (6.1) (9.0) (16.1)

model 50.4 56.3 72.1 113 63.5 71.8 89.0 119

State B

data 76.0 125 182 227 72.2 104 162 191
(5.1) (2.1) (18.0) (39.2) (3.4) (6.1) (22.0) (36.5)

model 105 114 135 182 108 119 140 172

Panel B. Bid-Ask spreads (bps)

State G State B

Superior Investment Junk Superior Investment Junk
data 40 50 70 77 125 218

model 43 50 73 109 127 187
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Table 4: Structural Liquidity-Default Decomposition for 5-Year Bonds Across
Ratings. For each rating, we locate the cash flow y that corresponds to the historical total
credit spread of a ten year bond at this rating. We perform the structural liquidity-default
decomposition following the procedure discussed in the text across aggregate states. We
quantitatively evaluate the channels that give rise to the observed level of credit spreads and
their changes when the economy shifts from normal time to recession. As a comparison to
previous literature (e.g. Longstaff, Mithal, and Neis (2005)) , we also report the CDS spread
implied by the model across ratings and aggregate states.

Rating State
Spread Spread Default-Liquidity Decomposition

(treasury) (rf) Pure Def Pure Liq Liq → Def Def → Liq

Panel I: Explaining Credit Spread Levels

Aaa/Aa

G (bps) 56.5 41.5 4.8 31.1 3.5 2.1

(%) 100 12 75 9 5

B (bps) 114 73.8 9.6 55.8 5.4 2.9

(%) 100 13 76 7 4

A

G (bps) 85.3 70.3 16.2 40.2 9.2 4.7

(%) 100 23 57 13 7

B (bps) 165 125 26.9 75.7 15.3 6.6

(%) 100 22 61 12 5

Baa

G (bps) 151 136 48.1 50.8 24.9 11.7

(%) 100 35 37 18 9

B (bps) 267 227 76.4 93.7 39.2 17.9

(%) 100 34 41 17 8

Ba

G (bps) 318 303 145 64.0 66.2 27.4

(%) 100 48 21 22 9

B (bps) 522 482 207 126 98.3 50.6

(%) 100 43 26 20 10

Panel II: Explaining Credit Spread Changes

Aaa/Aa
G→ B (bps) 57.3 32.3 4.8 24.7 1.9 0.9

(%) 100 15 76 6 3

A
G→ B (bps) 79.3 54.3 10.7 35.5 6.1 2.0

(%) 100 20 65 11 4

Baa
G→ B (bps) 117 91.7 28.3 42.9 14.3 6.2

(%) 100 31 47 16 7

Ba
G→ B (bps) 204 179 62.1 61.8 32.1 23.2

(%) 100 35 34 18 13
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Table 5: Effect of Liquidity Provision Policy on 5-Year Bonds Across Ratings. We
consider a policy experiment that improves the liquidity condition (χ, λ) in the B state to be
as good as G state. We compute the credit spread under the policy for both G and B state,
and perform the structural liquidity-default decomposition to examine the channels that are
responsible for the reduced borrowing cost.

Rating State

Credit Spread (rf) Contribution of Each Component

w/o. w. pure LIQ LIQ→DEF DEF→LIQ

policy policy (%) (%) (%)

Aaa/Aa
G 41.5 28.6 83 12 5

B 73.8 52.7 89 7 4

A
G 70.3 47.0 71 12 17

B 125 67.3 80 10 10

Baa
G 136 99.4 61 25 14

B 227 146 71 16 13

Ba
G 303 244 44 38 18

B 482 344 56 27 17
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Table 6: Summary Statistics for Annualized Net PME on Defaulted Bond by
Default Time Data on holding period return of post-default bonds are from Moody’s
Default and Recovery Database 1984-2010. We adjust for risk by discounting the return of
holding defaulted bonds by a public market benchmark over the same investment horizon.
The resulting measure is called ”Public Market Equivalent” as reported below.

Default Time # of Def. Bond Mean Annual Net PME Mean Annual Net Return

Non-Recession 512 0.3126 0.3922
Recession 130 0.5537 0.4672

Full Sample 642 0.3613 0.4074
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Table 7: Matrix & Vector Dimensions.

Debt Parameters Equity Parameters

Symbol Interpretation Dimension Symbol Interpretation Dimension

D(i) (y) Debt Value Function 2i× 1 E(i) (y) Equity Value Function i× 1
µ(i) (Log)-Drifts 2i× 2i µµ(i) (Log-)Drifts i× i
Σ(i) Volatilities 2i× 2i ΣΣ(i) Volatilities i× i
R(i) Discount rates and maturity 2i× 2i RR(i) Discount rates i× i
χ(i) Holding costs 2i× 1 c Coupon 1× 1

Q(i) Transition to cont. states 2i× 2i QQ(i) Transition to cont. states i× i
Q̃(i) Transition to default states 2i× 2 (n− i) AA(i) Matrix to be decomposed 2i× 2i

v(i) Vector of recovery values 2 (n− i)× 1 ΓΓ(i) Diag matrix of eigenvalues 2i× 2i

A(i) Matrix to be decomposed 4i× 4i GG(i) Matrix of eigenvectors i× 2i

Γ(i) Diag matrix of eigenvalues 4i× 4i kk
(i)
0 ,kk

(i)
1 Coeff. of particular sol. i× 1

G(i) Matrix of eigenvectors 2i× 4i S(i) Issuance matrix i× 2i

k
(i)
0 ,k

(i)
1 Coeff. of particular sol. 2i× 1 KK(i) Coeff. of particular sol. i× 4i

c(i) Vector of constants 4i× 1 cc(i) Vector of constants 2i× 1
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Figure 1: Distribution of Annualized Net Return (left) and Public Market-Adjusted Return
(right) of Defaulted Bonds
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Figure 2: Empirical Distribution of Market Leverage for Compustat Firms by
Aggregate State and Rating classes. We compute quasi-market leverage for each
firm-quarter observation in the Compustat database from 1997-2012. The B state is defined
as quarters for which at least two months are classified as NBER recession month. The
remaining quarters are G state. We drop financial and utility firms in our sample. We also
exclude firms with zero leverage.
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Figure 3: Model Implied Nonlinearity between Market Leverage, Default Rates and Total
Credit Spread

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
e
fa

u
lt
 R

a
te

Market Leverage

 

 

fitted 5 yr

simulated 5 yr

fitted 10 yr

simulated 10 yr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
o
ta

l 
C

r
e
d
it
 S

p
r
e
a
d

Market Leverage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
e
fa

u
lt
 R

a
te

Market Leverage
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
o
ta

l 
C

r
e
d
it
 S

p
r
e
a
d

Market Leverage

64


