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POACHING AND THE PROTECTION OF AN ENDANGERED 

SPECIES: A GAME-THEORETIC APPROACH 

 

 
 
 
 
 

 
-DRAFT- 

 
Abstract:  The poaching of endangered species like the elephant 
and the rhino has increased dramatically over the last decade.  Anti-
poaching patrols must use their limited resources strategically in or-
der to achieve the highest level of protection.  We develop a model 
that views poaching and protection as a repeated game between 
strategic players.  We conceptualize a “space” within which an en-
dangered species is distributed spatially and temporally through mi-
gration.  Poaching and anti-poaching patrolling are introduced as 
spatial-temporal activities in the space.  We study the long-term ef-
fects of different strategies of a poaching unit and an anti-poaching 
unit on the population dynamics of an endangered species.  We 
solve for a mixed strategy Nash equilibrium in this game and pro-
vide a proof for it uniqueness.  The model is generally applicable to 
the protection of spatially distributed species populations that are 
subject to illegal harvest.  

 

Keywords: migration, poaching, anti-poaching enforcement, 
strategies, population dynamics.  
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(1) Introduction 
The protection of endangered species such as the elephant and the rhino has become in-
creasingly difficult in recent times with poaching on the rise in several African countries.  

International syndicates sponsor poaching units/gangs with aircraft and high-powered 
weapons, and also arrange for the rapid shipment of tusk and horn to markets in Asia  
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(Mullen & Zhang, 2012; Sas-Rolfes, 2012; Shukman, 2013; Wassener, 2013; S. K. Was-
ser et al., 2008).  Anti-poaching units/patrols are limited in number, given the area to be 
covered, and are at a disadvantage given the resources and technology employed by 
poachers.  Anti-poaching units must strategically use their resources to achieve the high-
est level of protection.  Poaching gangs and anti-poaching patrols are essentially engaged 
in a repeated game of poaching and protection.   

Economic models are used to study poaching behavior under open access settings 
with the assumption that poachers have no incentive to preserve a natural resource  (E. H. 
Bulte & van Kooten, 1999a; E. H. Bulte & van Kooten, 1999b; A. Johannesen & Skon-
hoft, 2005; Kremer & Morcom, 2000; Messer, 2010; Milner-Gulland & Leader-Williams, 
1992; Skonhoft & Solstad, 1998).  These models predict equilibrium levels of endangered 
populations under different conservation policies.  When studying systems in which a 
resource is distributed heterogeneously in space  (Sanchirico & Wilen, 1999a) note that a 
considerable amount of interesting behavior is unaccounted for when a model aggregates 
out the spatial aspects of economic activity.  The literature has given inadequate attention 
to the effects of spatial variability on resource harvesting and management.  (E. Bulte, 
Damania, Gillson, & Lindsay, 2004) note that models that link ecological theory and nat-
ural resource economics should expand their scope beyond the notion of steady state 
equilibrium by incorporating variability, complexity, scale, and uncertainty into econom-
ic models.  The interaction between ecological variability and the economic behavior of 
individuals engaged in poaching and protecting endangered species requires further re-
search (E. Bulte et al., 2004; Skonhoft, 2007).   

This paper develops a simple, yet novel, model of strategic poaching and protec-
tion for an endangered species that is spatially and temporally distributed across inter-
connected habitats.  Uncertainty is introduced through strategic spatial-temporal location 
choices of poaching gangs and anti-poaching patrols.  This causes the population harvest-
ed illegally to become a stochastic process, and in turn causes a stochastic evolution in 
the species’ population dynamics.  Our simple model links the spatial dynamics of spe-
cies migration with the economic game of poaching and protection.  This research asks 
the following questions:  (1) “What anti-poaching strategy can best combat the best strat-
egy of a poaching gang?” and (2) “How do these strategies affect the population dynam-
ics of an endangered species?”  In the next section we provide an overview of the rele-
vant literature.  In section 3 we lay out the components of the model, the payoffs and po-
tential strategies of the players, a solution for a Nash equilibrium, and numerical simula-
tions.  In section 4 we discuss the numerical results of the model.  Section 5 provides 
some caveats and a conclusion.   

 

(2) Overview and Background for the Model 
The incentive to poach has been studied under various conservation policies such as trade 
bans  (E. H. Bulte & van Kooten, 1999a; E. H. Bulte & van Kooten, 1999b; Burton, 
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1999), fines for poaching  (E. H. Bulte & van Kooten, 1999a; E. H. Bulte & van Kooten, 
1999b; Damania, Milner-Gulland, & Crookes, 2005; Damania, Stringer, Karanth, & 
Stith, 2003; Milner-Gulland & Leader-Williams, 1992; Skonhoft & Solstad, 1998), alter-
native livelihoods when there is conflict between land use and species conservation  
(Fischer, Muchapondwa, & Sterner, 2011; A. Johannesen & Skonhoft, 2005; Skonhoft, 
2007), price-control through supply restrictions (Brown & Layton, 2001; Kremer & Mor-
com, 2000; Mason C.F., Bulte E.H., & Horan R.D., 2012), and the controversial “shoot-
poachers-on-sight” policy (Messer, 2010).  Models of illegal harvest assume open access 
conditions under which poachers myopically maximize short-run profit, and entry and 
exit occur until rents are dissipated.   

Models of anti-poaching enforcement on the other hand study the optimization 
problem for park managers who maximize long-term revenue from tourism and hunting 
permits, and from which they net out enforcement costs  (E. H. Bulte & van Kooten, 
1999b; Muchapondwa & Ngwaru, 2010; Skonhoft & Solstad, 1998).  Such studies of 
poaching and anti-poaching enforcement predict how the steady-state equilibrium stock, 
harvest, and enforcement levels change with economic parameters such as harvest prices, 
poaching costs, and the detection probability of anti-poaching patrols (E. H. Bulte & van 
Kooten, 1999b; A. Johannesen & Skonhoft, 2005; A. B. Johannesen & Skonhoft, 2004; 
Milner-Gulland & Leader-Williams, 1992; Skonhoft & Solstad, 1998).  (Messer, 2010) 
contends that low wages in developing countries impose limits on the potential economic 
costs for poachers of fines and imprisonment.  Messer infers that increasing the economic 
cost to poachers through tough anti-poaching policy, such as increasing the risk of detec-
tion, might be an effective way to curb poaching.   

With ecosystems continually changing, models should incorporate the ecological 
variability of interconnected habitats and the opportunity costs of protecting them (E. 
Bulte et al., 2004).  In a spatial econometric study  (Frank & Maurseth, 2006) find that 
elephant population changes in one country positively affect population changes in 
neighboring countries.  Frank and Maurseth contend that poachers may account for vary-
ing levels of anti-poaching enforcement in different countries.  Resource harvesting mod-
els allow for spatial heterogeneity of the resource and connectivity between its sub-
populations through migration  (Conrad & Smith, 2012; Sanchirico & Wilen, 1999a; 
Skonhoft, 2007).  The dispersal of meta-populations can be modeled in a variety of ways.  
These include fully integrated system, a closed system, a sink-source system, and finally 
a spatially linear system  (Sanchirico & Wilen, 1999a).  In a fully integrated system bio-
mass disperses directly from one patch to any other patch in the system.  In a closed sys-
tem the maintenance of biomass density within each region is only determined by its own 
production and no dispersal occurs anywhere in the system.  In a sink-source system one 
or more patches provide unidirectional biomass movement to other patches.  In a spatially 
linear system one can have dispersal in a pairwise fashion between adjacent patches.   
(Skonhoft, 2007) notes that density-dependent dispersal is often not observed empirically 
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and usually dispersal is of the sink-source type.  Seasonal migration, which is a form of 
sink-source dispersal, has been documented for several animal species such as the Afri-
can savannah elephant  (Muchapondwa & Ngwaru, 2010; Van Aarde et al., 2008), the 
wildebeest  (A. B. Johannesen & Skonhoft, 2004), reindeer and moose (Skonhoft, 2007) 
amongst others.   

 (Sanchirico & Wilen, 1999b) model an open access system with a spatially dis-
tributed resource over interconnected patches.  They study the effects of profitability of a 
particular patch on the decision to harvest from that patch.  Their model determines 
steady state equilibrium effort levels for each of the interconnected patches.  Effort is 
shown to flow to patches with higher biomass and therefore higher profitability; the effort 
flows continue until a steady state is attained under open access and all rent is dissipated.   
(Muchapondwa & Ngwaru, 2010) model park managers’ choices of anti-poaching en-
forcement levels in neighboring parks between which there is population migration.  The 
park manager maximizes expected tourism benefits net of anti-poaching enforcement 
costs.  Through comparative static exercises Muchapondwa and Ngwaru determine theo-
retical conditions under which unified park management is feasible given expected 
poaching levels and institutional heterogeneity in the constituent parks.   

In this paper we consider the strategic interaction between a poaching unit and an 
anti-poaching unit in a manner that is different from previous studies in the literature.  
We develop a game-theoretic model of poaching and protection in the presence of a spa-
tially and temporally distributed resource.  The leaders of a poaching unit and an anti-
poaching unit act strategically by choosing locations (patches/habitats) to poach and pa-
trol.  Uncertainty is introduced into the model through location choice strategies for 
poaching and patrolling.  The number of animals killed versus the number of animals 
protected will be the stochastic outcome of a game that is played repeatedly between a 
poaching unit and an anti-poaching unit.  We focus on the interactions between strategic 
players and determine the long-term effects of different strategies on the population dy-
namics of an endangered species.   

 
 

(3) A Model of Poaching and Protection 
Consider a “space” represented by a three-by-three grid as shown in Figure 1.  The pro-
tected species population is distributed spatially and temporally across the nine patches or 
cells as and when seasonal migration takes place.  In season one of the first year the pop-
ulation is distributed over seasonal patches 1, 2, & 3 in the row denoted season  1.  In 
season two migration of the sub-populations in the three seasonal patches takes place 
from row  1 to row  2, when the sub-populations flow to the subsequent three sea-
sonal patches.  Migration routes follow a northward direction from season one through 
season three, and then turn southward in season four, returning to the seasonal patches 1, 
2, & 3 at the beginning of season one in the subsequent year.  Migration coefficients de-
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termine the population distribution across the grid, over the four seasons, in each year.  
Thereby the sub-populations are distributed in the seasonal patches 1, 2, & 3 in seasons 
one, two, three, and four in the rows denoted by season  1,  2,  3, and  4 
respectively.  The migration cycle continues year after year.   
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Figure 1: Space within which seasonal migration, poaching and anti-poaching patrolling 
take place.  
 

Let us assume that there is one anti-poaching patrol/unit and one poaching unit 
operating per season.  The poaching unit leader wants to choose a patch that has no patrol 
in it.  At the same time the anti-poaching patrol leader wants to intercept the poaching 
unit by choosing the same patch, and thereby avoid losing a portion of the resident popu-
lation to poaching.  If the poaching unit selects a different patch from the patrol leader, 
the poaching unit kills some proportion of the resident patch’s animal population.  If both 
choose the same patch then the poaching unit is “decommissioned” for the rest of that 
year, but a new poaching unit forms in season one of the next year.  In each season both 
unit leaders know the population distribution in the three seasonal patches.  In season one 
of each year the population is augmented by the birth of juveniles from females that sur-
vive poaching and natural mortality in the previous year.  We use the following notation 
for our model:  

 
, 1, 2, 3: seasonal patch index,  
s 1, 2, 3, 4: number of seasons within a year, 

1, 2, … , : year index, 

, , : species sub-population in time period , in season , in patch .  
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, , : migration coefficient for sub-population flowing from patch  in season , to patch 

 in season 1; 0 , , 1, ∑ , , 1, 

0 1: kill rate of the poaching unit, 

, , , , 0: population lost to poaching in year , in season , in patch ,  

, , , , , , , , ∑ , , , , , , : species sub-population in year 

, in season 1, in patch , 

, , : initial population distribution in 0, in 1, in patch ,  

 
The surviving sub-populations at the end of season four of year  is augmented by 

the birth of juveniles in season one of the next year 1 as per an iterative map (I) with 
⋅  denoting a population growth function:  

 

, , , , , , ⋅ , , ∑ , , , , ⋅ , ,   (I)

 
Given the seasonal location of the species’ sub-populations, the poaching unit 

leader and the patrol unit leader must make binary decisions , , 0, 1  and , ,

0, 1  in season    1, 2, 3, and  4, in patch 1, 2, & 3.  With only one patch chosen by 
the gang and the patrol we impose the requirement that ∑ , , 1 and ∑ , , 1.   

 

(3.1) Payoffs and Strategies 
The model can be viewed as a repeated game between smart opponents, with strategies 
potentially depending on the population distribution in the seasonal patches.  We assume 
the poaching unit leader is a myopic poacher who maximizes the expected payoff in each 
season given the chosen strategy of the patrol leader.  With myopic poaching in each sea-
son the anti-poaching patrol leader maximizes his own expected payoff, or minimizes the 
expected loss to poaching for a given population distribution.  This brings us to the ques-
tion of whether randomization might be optimal when the game is repeated.  Antagonistic 
interactions between hosts and parasites have been modeled as zero-sum games to study 
the evolutionary fitness of strategies  (Adami C, Schossau J, & Hintze A, 2012; Cohen & 
Newman, 1989; Kerr, Riley, Feldman, & Bohannan, 2002; Kirkup & Riley, 2004).  A 
parasite may favor one distribution of possible strategies so as to maximize the mean 
change in its net reproductive rate.  The host, in defending itself from the parasite, will 
favor a different distribution, one that minimizes the net reproductive rate of the parasite  
(Cohen & Newman, 1989).  The value of the host-parasitic interaction may be defined as 
the mean change in net reproductive rate when evolutionary fitness forces the parasite to 
maximize the mean change in its net reproductive rate, given that the host is evolving 
(choosing strategies) by minimizing the net reproductive rate that the parasite can 
achieve.   (Cohen & Newman, 1989) find that the best mean change in the parasite’s net 
reproductive rate results from the randomization of strategies from stable distributions for 
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parasites and hosts.  For potential strategies in our poaching and protection game the 
poaching unit leader might consider randomizing using the population in the seasonal 
patches to generate a discrete distribution for selecting a patch in which to poach.  The 
patrol leader might similarly generate a discrete distribution for selecting a patch in 
which to patrol.  For ease of notation we drop the season ( ) and time ( ) subscripts of the 
sub-populations in the seasonal patches, and simply refer to , , , , , , , ,  as , ,  

in Figure 2.   
 

Seasonal patch 1 Seasonal patch 2 Seasonal patch 3 

, ,  , ,  , ,  

Figure 2: Population distribution in the seasonal patches shown in Figure 1.   
 
As payoffs let us consider the following.  If, for instance, in a given season the 

poaching unit leader chooses seasonal patch 1 and the patrol leader chooses another sea-
sonal patch  ( 1) then the gang leader achieves a payoff of , which is the population 
killed since the gang would have successfully evaded the anti-poaching patrol.  The pa-
trol leader therefore loses  of the population to poaching.  If however both choose the 
same patch then the poaching unit is destroyed and there is no loss of that patch’s resident 
population to poaching.  Consequently the gang is destroyed and there are no gains for 
the poaching unit leader.1  We assume that the cost of choosing a patch is zero for both 
the poaching unit and the patrol.  We further assume that the gain to the patrol leader 
when choosing the same patch as the gang leader is only the amount of the resident spe-
cies population that is not lost to poaching, i.e. zero.  We can thereby formulate the pay-
offs and losses, to the gang and patrol respectively, as a zero-sum game.  Since the kill 
rate of the poaching gang ( ) is a common term we can ignore it in the payoff matrix 
shown in Figure 3.    

 
   Patrol leader  

  Patch 1  Patch 2  Patch 3	  

 Patch 1  0, 0 ,  ,  

Poaching unit 
leader 

Patch 2  ,  0, 0 ,  

 Patch 3  ,  ,  0, 0 

Figure 3: Payoff matrix of the seasonal game.  

 
																																																													
1 We ignore any monetary cost (such as poaching fines) to the poaching unit when decommissioned since 
this could be considered as a transfer from the poaching unit to the patrol with the same property of a zero-
sum payoff in the game. 	



	 8

We denote the set of possible actions (patch choices of the poaching unit and the 
patrol leaders) as 1, 2, 3 .	  We denote ∆ , , ∈ | , ,
0	&∑ 	 1  as the set of probability distributions of the poaching unit/gang leader 

on .  Similarly we denote ∆ , , ∈ | , , 0	&∑ 	 1  as 
the set of probability distributions of the patrol leader on .  ,  is the gang lead-
er’s payoff associated with the action pair , ∈ .  The gang leader’s expected 
payoff for a pair of mixed strategies , ∈ ∆ ∆  would equal ,
∑ , ∈ , .   Similarly the patrol leader’s expected payoff for a 

pair of mixed strategies , ∈ ∆ ∆  would equal ,
∑ , ∈ , .   

The payoff matrix in Figure 3 shows that there are no dominant strategies for ei-
ther the gang leader or the patrol leader.  We use the property that any two-player game 
must have at least one Nash equilibrium (Gibbons, 1992) to derive a solution to the game.  
With no dominant strategies for either player the solution is that of a mixed strategy Nash 
equilibrium.  We list the associated Nash equilibrium probabilities over the action spaces 
for the poaching unit leader and the patrol leader.  The derivation of the mixed strategy 
Nash equilibrium and a proof of its uniqueness are provided in the Appendix.  
 

∗  , ∗  , ∗  ,  

 

 ∗  , ∗  , ∗  . 

 
In a system with two seasonal patches we can similarly derive the associated 

mixed strategy Nash equilibrium probabilities over the action spaces for the leaders of the 
poaching unit and the anti-poaching unit.  The derivation and the uniqueness proof are 
provided in the Appendix.    

 
∗  , ∗  ,  

 

 ∗  , ∗  .  

 
In order to derive the intuition behind this result we turn to the two-player game 

of rock-paper-scissors.  In the two player zero-sum game of rock-paper-scissors (Nouwe-
land, 2007) analytically proves that, with equal payoffs for each of the three actions, the 
unique mixed strategy Nash equilibrium is to play each action with equal probability, i.e. 
one-third each.  If however one were to modify the game of rock-paper-scissors with un-
equal payoffs then it can be shown that on average the players will each choose an action 
depending on the chances of that action defeating their opponent’s chosen action in such 
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a way that expected payoffs for each action tend towards zero in equilibrium.2  Drawing 
from the zero-sum game of rock-paper-scissors with uneven payoffs we can infer an in-

terpretation of the mixed strategy Nash equilibrium ∗, ∗, ∗	 , ∗, ∗, ∗	  in the 

economic game of poaching and protection.  The poaching unit leader’s probability of 
choosing a location depends on how often he expects the patrol leader to choose the other 
location(s), given the seasonal population distribution.  The patrol leader’s probability of 
choosing a location to patrol depends on how often he expects the gang leader to choose 
that location, thereby minimizing the expected loss of population to poaching given the 
seasonal population distribution.  We note that if the sub-populations were to be evenly 
distributed in a season then the mixed strategy Nash equilibrium values would be exactly 
1
3 ,
1
3 ,
1
3 , 1 3 ,

1
3 ,
1
3  in the three seasonal patches system, and 

1
2 ,
1
2 , 1 2 ,

1
2  in the two seasonal patches system.      

 

(3.2) Numerical Analysis  
Having derived a mixed strategy Nash equilibrium in our game of poaching and protec-
tion we proceed to study the effect of this strategy on the population dynamics of an en-
dangered species.  The model is applied to the case of the migratory savannah elephant 
(Loxodonta africana).  The logistic growth function is often used to model elephant 
population dynamics  (E. H. Bulte & van Kooten, 1999b; Milner-Gulland & Leader-
Williams, 1992).  Following  (Milner-Gulland & Leader-Williams, 1992) we adopt a 
skewed-logistic specification for the population growth function 

1 ⁄ .   is the population,  is the intrinsic net growth rate of population,  is 
the habitat carrying capacity, and  is a skew parameter.  The surviving adult population 
at the end of season four of year  is augmented by the birth of juveniles in season one of 
the next year 1 as per the iterative map previously defined in (I):  

 

, , , , , , 1 1 , , ⁄ , ,

, , , , 1 1 , , ⁄ , ,  

 
Adult female elephants give birth to approximately one offspring every three 

years, which implies a population pregnancy rate of approximately 0.33 per year  (Arm-
bruster & Lande, 1993).  The average natural mortality rate of elephants has been esti-
mated at 0.27, which implies a net intrinsic growth rate of  0.06  (Armbruster & 

																																																													
2 For example if the wining payoffs to rock, paper, and scissors are 1, 3, and 5 (i.e. rock beating only scis-
sors with a payoff of 1, paper beating only rock with a payoff of 3, and scissors beating only paper with a 
payoff of 5), then it can be shown that players would choose to play rock with 5/9th probability, paper with 
1/9th probability, and scissors with 3/9th probability.	
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Lande, 1993).  A skew parameter greater than one (  1) is used to model population 
dynamics of large mammals  (Cromsigt, Hearne, Heitkonig, & Prins, 2002); (E. H. Bulte 
& van Kooten, 1999b; Milner-Gulland & Leader-Williams, 1992) set  7.  We normal-
ize the carrying capacity of the seasonal “space” to one (i.e. ∑  1), and assume it to 
be equally divided between the seasonal patches.   

Using the data of  (E. H. Bulte & van Kooten, 1999b) on illegal off-take of ele-
phants in African range states we calculate the off-take rates as varying between 0.03% 
and 3.8% of the resident elephant population in the mid-1990s.  Noting the reports of or-
ganized criminal syndicates involved in elephant and rhino poaching in African range 
states  (Mullen & Zhang, 2012; Sas-Rolfes, 2012; Shukman, 2013; Wassener, 2013; S. K. 
Wasser et al., 2008) it is likely that the scale and intensity of poaching has increased since 
the 1990s.  A 2006-07 report (Blanc, 2007) of savannah elephant population totals by re-
gion listed the elephant population in Southern Africa at approximately 300,000.  Based 
on data from seizures of illegal ivory shipments amounting to roughly 24 tons in the year 
2006 Wasser et. al. (2007) use DNA analysis to estimate that  approximately 23,000 sa-
vannah elephants were illegally harvested from the southern African range states.  This 
evidence suggests an illegal off-take rate of approximately 7% to 8% in the year 2006.  
For the base-case set of parameters in the model we assume a poaching off-take/ kill rate 
of  0.07.  Table 1 lists the base-case values of the model’s parameters.  

 
Table 1: Model base-case parameter values  

Parameter  Value Source 
Intrinsic growth rate  0.06  (Armbruster & Lande, 1993) 
Logistic growth skew 
parameter  

 7  (E. H. Bulte & van Kooten, 1999b; 
Milner-Gulland & Leader-Williams, 
1992) 

Poaching/off-take rate   0.07 Based on data from Wasser et. al. 
(2007) 

Initial sub-populations  , ,  0.15  
(  1,2,3) 

 

Carrying capacity ∑ 1  
Number of time peri-
ods 

 100  

 
We assume an evenly distributed initial elephant population of , , 0.15 , 

, , 0.15, and , , 0.15, and the following migration coefficients for the spatial-

temporal dispersal of the sub-populations in the space of Figure 1.    
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Table 2: Seasonal migration coefficients 
1:	 , , 0.4	 , , 0.3 , , 0.3

	 , , 0.3	 , , 0.5 , , 0.2
	 , , 0.1	 , , 0.3 , , 0.6

2:	 , , 0.2	 , , 0.5 , , 0.3
	 , , 0.1	 , , 0.4 , , 0.5
	 , , 0.1	 , , 0.4 , , 0.5

3:	 , , 0.5	 , , 0.3 , , 0.2
	 , , 0.4	 , , 0.5 , , 0.1
	 , , 0.2	 , , 0.3 , , 0.5

4:	 , , 0.6	 , , 0.2 , , 0.2
	 , , 0.4	 , , 0.5 , , 0.1
	 , , 0.1	 , , 0.2 , , 0.7

 
As noted previously in the setup of the game the poaching unit leader wants to 

choose a patch with no patrol, and the anti-poaching patrol leader wants to choose the 
same patch.  If different patches are selected the poaching unit kills some proportion ( ) 
of the resident population.  If both choose the same patch then the poaching unit is “de-
commissioned” for the rest of that year, but a new poaching unit forms in season one of 
the next year.  Given initial conditions, the model parameters in Table 1, and the set of 
migration coefficients the stochastic process of poaching and protection will cause the 
elephant population to evolve stochastically over  years.  We simulate approach paths 
for a period of  100 years, i.e. 400 seasons, to provide insight into the long-term ef-
fects of location strategies on the population dynamics.  Qualitatively different approach 
paths would arise depending on the type of strategy chosen by the poaching unit/gang and 
patrol leaders.  

We first study the effect on elephant population dynamics when the gang leader 
and the patrol leader randomize their seasonal location choices based on their respective 
mixed strategy Nash equilibrium probabilities.   

 
Mixed strategy Nash equilibrium randomness: 

, , , , , ∗, ∗, ∗	 , ∗, ∗, ∗	  

 
Next we study the effect on elephant population dynamics when the gang leader 

and the patrol leader randomize their location choices uniformly with equal probability of 
choosing any of the seasonal locations. 

 
Mixed strategy uniform randomness:  

, , , , , 1 3⁄ , 1 3⁄ , 1 3⁄ , 1 3⁄ , 1 3⁄ , 1 3⁄  

 
Given the previous two sets of strategies we consider two possible combinations 

of them.  This can be used to determine if there is incentive for either the patrol leader or 
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the gang leader to deviate from the Nash equilibrium.  In the first combination the patrol 
leader chooses the mixed Nash equilibrium strategy and the gang leader deviates by 
choosing the uniform mixed strategy.  In the second combination we look at the opposite 
case where the patrol leader deviates by choosing the uniform mixed strategy and the 
gang leader plays the Nash mixed strategy.       

 
Mixed strategy: Uniform and Nash equilibrium randomness 

, , , , , 1 3⁄ , 1 3⁄ , 1 3⁄ , ∗, ∗, ∗	  

or 

, , , , , ∗, ∗, ∗	 , 1 3⁄ , 1 3⁄ , 1 3⁄  

 
Lastly we consider the effect on population dynamics when the strategy of the pa-

trol leader is to patrol the patch with the highest species sub-population.  The strategy of 
the gang leader is to select in the patch with the next highest sub-population.  

 
Non-random strategy:  

, 							 , , , , 	  

, 							 , , , , 	  

 
Population dynamics and the average payoffs to the patrol and gang leaders under 

the different strategies as listed are compared with that of the mixed strategy Nash equi-
librium. Figure 4 charts the results of a single simulation for each of the strategy sets over 
the one hundred year time horizon for the set of base-case model parameters.  The simu-
lations are repeated one thousand times and the average population and poaching levels 
are reported on the right-hand side panel of Figure 4.  The mixed Nash strategy is shown 
in green; the uniform random strategy is shown in blue; the combination of the patrol 
leader playing the Nash mixed strategy and the gang leader playing the uniform random 
mixed strategy is shown in purple; the combination of the gang leader playing the Nash 
mixed strategy and the patrol leader playing the uniform random mixed strategy is shown 
in red; and finally the non-random strategy is shown in black.  Each of the random strate-
gies appear to have the effect of leading to higher elephant population over time when 
compared with the non-random strategy.  For each of the strategy sets we list the average 
values of population and poaching from season two hundred to season four hundred, or 
the period of time when a stable distribution of population is attained.  This reduces the 
effect of the initial conditions on the average values.   

Let us study the average values of population and poaching of Figure 4 a little 
more closely.  The average values of population and poaching are 0.82516 and 0.00745 
in the mixed strategy Nash equilibrium.  This is what the patrol leader and the gang lead-
er can expect on average.  Now we ascertain if there is incentive for either party to devi-
ate from playing the Nash mixed strategy.  If the gang leader deviates by playing the uni-
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form strategy while the patrol leader continues playing the Nash strategy we note that the 
average poaching level declines to 0.00739 and the average population increases to 
0.82657 which is statistically greater than the Nash equilibrium value at the ten percent 
error level.  There is therefore no incentive for the gang leader to deviate from playing 
the Nash strategy.  If the patrol leader deviates from playing the Nash strategy by playing 
the uniform random strategy, while the gang leader continues to play the Nash strategy 
the patrol leader is better off since the average population increases to 0.83374 and the 
average poaching level declines to 0.00724.  The average population level is also statisti-
cally greater than the Nash equilibrium value at the one percent error level.  Since the 
gang leader is worse off he will consider playing the uniform random strategy as well and 
increase his average payoff- poaching value- to 0.00761.  The average population value 
declines to 0.81551, which is statistically lower than the Nash equilibrium value at the 
one percent error level.  This creates a disincentive for both the patrol leader and the gang 
leader to deviate from playing the mixed strategy Nash equilibrium.   

We carry out further numerical analyses by varying the poaching gang’s kill rate, 
, between 3% and 12% to account for a wide range of poaching efficiency rates.  The 

simulation results are plotted in Figures 5 through 9 for  3%, 5%, 8%, 10%, and 12%.  
We note that for  between 3% and 8% the broad results are similar to the base-case 
when  7%.  The differences in average population levels are statistically different 
from the Nash equilibrium average values.  Apart from  3% we note that the random 
strategies achieve higher average payoffs for both the patrol leader and the gang leader. 
Similar to the results in Figure 4 the simulated average values of population and poaching 
in Figure 5, Figure 6, and Figure 7 suggest that the Nash mixed strategy is a unique equi-
librium on average.  When the poaching off-take/ kill rate is increased to  10% we 
begin to notice that the differences in average poaching become statistically significant 
when compared with the average Nash equilibrium values.  The population distributions 
are no longer stable and the variance increases dramatically.  One thing that we do note is 
that the uniform random strategy does worse than the Nash for both leaders.  When  
12% we see that the elephant sub-population begin a slow decline towards extinction for 
each of the random strategies.  The non-random strategies always results a very quick 
decline towards extinction.   
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t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level.	
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t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level.	
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t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level.	

 

 

 

 

 

 

 

 



	 18

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level.	
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t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in 
(parentheses).  *** statistically significant mean difference at 1% error level;  ** statistically significant 
mean difference at 5% error level;  * statistically significant mean difference at 10% error level.	
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(4) Discussion and Conclusion  
The numerical analysis provides some key results in this paper.  We observe that when 
both the anti-poaching unit/patrol leader and the poaching unit/gang leader play their 
mixed strategy Nash equilibrium strategies they achieve higher payoffs on average as 
compared with the uniform random strategy.  This holds true for a wide range in values 
for the poaching efficiency parameter, .  The numerical analysis also reveals that on av-
erage there is no incentive for either the patrol leader or the gang leader to deviate from 
the Nash equilibrium.  This occurs in the range 3%  8%, i.e. when we observe sta-
ble distributions of population over a long time horizon.  This corroborates the analytical 
proof of the uniqueness of the mixed strategy Nash equilibrium.  The base-case value of 

 7% is estimated from secondary data in the literature.  We have considered what 
would occur if  were to increase i.e. poaching units/gangs become more effective.  The 
population distributions are no longer stable, the variances in the distributions increase 
significantly, and the sub-populations start to descend towards extinction over time.   

The different random strategies achieve higher payoffs for both the leaders com-
pared to the non-random strategy.  This result mirrors findings from other studies on evo-
lutionary fitness of strategies in zero-sum antagonistic games between strategic oppo-
nents (Adami C et al., 2012; Cohen & Newman, 1989; Kerr et al., 2002; Kirkup & Riley, 
2004).  The numerical results also suggest that non-random strategies lead to extinction 
of sub-populations when  increases.  The incentive for both the patrol leader and the 
gang leader to deviate from playing the Nash strategy is stronger once the poaching off-
take rate increases beyond eight percent.  The differences in average payoffs between the 
Nash strategies and other random strategies become statistically significant.  At the same 
time however we observe that the population stocks decline rapidly, and that population 
distributions are no longer stable.   

We noted earlier that the mixed strategy Nash equilibrium probabilities would be 
identical to those of the uniform random strategy if the sub-populations were evenly dis-
tributed across seasonal patches in the conceptual space.  The probabilistic nature of 
choosing patches by both the patrol leader and the gang leader, in conjunction with the 
set of migration coefficients, leads to uneven seasonal population distributions in our 
numerical analyses.  We have confirmed that the Nash strategy is superior to the uniform 
random strategy for both the patrol leader and the gang leader.  The superiority of the 
Nash strategy stems from the nature of the game of poaching and protection, in that the 
players behave strategically with each other.  Deviations from the Nash for either player 
would merit careful consideration.  

This paper has considered the theoretical implications of optimal strategies on the 
population dynamics of an endangered species.  The model is generally applicable to oth-
er species, and it can also be scaled up for more realistic analysis.  Different growth func-
tions and biological parameters can be used in the model to better suit the modeling of 
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different species’ population dynamics.  The set of migration coefficients in Table 2 can 
be modified to reflect different proportions of the sub-populations that migrate from one 
patch to another.  For simplicity we assumed a costless choice of patch to poach and pa-
trol in the conceptual space.  The model can be modified to account for heterogeneity in 
patrolling and poaching costs in the different seasonal patches.  The model can be applied 
to an empirical setting if data were to be made available on poaching and patrolling.  In 
scaling up this model one could think about adding more seasonal patches in the space, 
adding more anti-poaching units/patrols, and adding more poaching units/gangs to reflect 
a more realistic setting. 

As we noted earlier  (E. Bulte et al., 2004)state that models which link ecological 
theory and natural resource economics should expand their scope beyond the notion of 
steady state equilibrium by incorporating variability, complexity, scale, and uncertainty 
into economic models.  Our paper has considered purely the strategic aspects of poaching 
and protection when smart opponents face each other.  We introduced uncertainty into 
our model through the strategic location choices of a poaching unit and an anti-poaching 
patrol.  Spatial-temporal strategic decisions by the poaching unit and the anti-poaching 
patrol caused the number of elephants killed to become a stochastic process.  The model 
provides insight into the effects of different strategies on the long-term population dy-
namics of an endangered species, and thereby links the spatial-temporal dynamics of spe-
cies migration with the economic game of poaching and protection.   
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Appendix: Derivation of the mixed strategy Nash equilibrium, and 
a proof of its uniqueness 
(Nouweland, 2007) lists three conditions for the existence of a mixed strategy Nash equi-
librium in two-player zero-sum games.  

Condition 1:  A pair of mixed strategies ,  is a mixed Nash equilibrium if and 
only if the strategy of one player (gang leader) is a best response to the strategy of the 
other player (patrol leader) and vice-versa.    

Condition 2:  If ,  ,  is a strategy profile and every action ∈  

∈  that the gang (patrol) leader plays with positive probability 0 
0  is at least as good a response to   as every other action, then   is a best re-
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sponse to  .  For the gang (patrol) leader this would mean ,
,   , ,  for all ∈  ∈ .  

Condition 3:  If ∈ ∆  ∈ ∆  is a best response to ∈ ∆  ∈ ∆  and the 
gang (patrol) leader plays action ∈  ∈  with a positive probability, i.e. 
0 0 , then   is at least as good a response to   as every other action.  
For the gang (patrol) leader this would mean , ,   

, ,  for all ∈  ∈ .  
Using Condition 1 we can state that a pair of mixed strategies ,  is a mixed 

strategy Nash equilibrium if, for the gang (patrol) leader and every alternative mixed 
strategy ∈ ∆  ( ∈ ∆ ) of the gang (patrol) leader, it holds that ,

,  , , .  This entails that at a Nash equilibrium a 
player in the game will be indifferent between the action choices when the expected pay-
offs from these actions are equal to each other i.e. , ,  and 

, ,  where , 1,2, … ,  and . Given the payoff matrix in 
Figure 3 we can define the associated expected payoffs to the gang leader and the patrol 
leader for the individual location choices or actions.  When there are two seasonal patch-
es i.e. 2, we have the expected payoffs for the gang leader of choosing patches 1 and 
2.  

  
E 1, . 0 .  (1) 
E 2, . . 0 (2) 

  
Similarly we define the expected payoffs for the patrol leader of choosing patches 

1 and 2.  
 

E , 1 . 0 .  (3) 
E , 2 . 0 .  (4) 

 
Setting (1) = (2) and (3) = (4) we solve for the Nash equilibrium values of the sys-

tem with two seasonal patches.  
 
∗  , ∗  ,  ∗  , and  ∗  .  

 
When there are three seasonal patches i.e. 3, we have the expected payoffs 

for the gang leader of choosing patches 1, 2, and 3.  
 
1, . 0 . .  (5) 
2, . . 0 .  (6) 
3, . . . 0 (7) 
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Similarly we define the patrol leader’s expected payoffs for his actions of choos-
ing seasonal locations a, b, &	c.  

 
, 1 . . .  (8) 
, 2 . . .  (9) 
, 3 . .  (10) 
 
Setting (5) = (6) = (7), and (8) = (9) = (10), and using that 1  and 

1  we solve for the Nash equilibrium values of the system with three sea-
sonal patches.  
 

∗  , ∗  , ∗  ,  

 

 ∗  , ∗  , ∗  .   

 
First we prove the uniqueness of the Nash equilibrium for the system with two 

seasonal patches.  We use the approach followed by (Nouweland, 2007) who uses Condi-
tion 2 and Condition 3 to show that a mixed strategy, which is not the Nash equilibrium, 
cannot be a best response to any strategy that is a best response to it.  We derive the fol-
lowing useful identities, which equal zero at the Nash equilibrium values.  Any devia-
tions from the Nash equilibrium values would mean that the identities would no longer 
equal zero.  

 
(1) – (2): 1, 2, . .  
(3) – (4): , 1 , 2 . .  
 
Consider the first case of the gang leader deviating from the Nash equilibrium: 

 ,  .  We will accordingly have (3) – (4)  0, and by Condition 2 we 

know that 0.  But if 0 then we will have (1) – (2)  0, and by Condition 3 we 

know that 0, which contradicts  for , 0.  In the second case of the 

gang leader deviating from the Nash equilibrium we consider  ,  .  

We will accordingly have (3) – (4)  0, and by Condition 2 we know that 0.  But if 
0 then we will have (1) – (2)  0, and by Condition 3 we know that 0, which 

contradicts  for , 0.  The other two cases of the gang leader deviating 

from the Nash equilibrium i.e.  &  , and  &  

are mathematically not feasible since 1 by definition, and the latter two cases 
violate this condition.   
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Let us now consider the first case of the patrol leader deviating from the Nash 

equilibrium:  ,  .  We will accordingly have (1) – (2)  0, and by 

Condition 2 we know that 0.  But if 0 then we will have (3) – (4)  0, and by 

Condition 3 we know that 0, which contradicts  for , 0.  In the 

second case of the patrol leader deviating from the Nash equilibrium we consider 

 ,  .  We will accordingly have (1) – (2)  0, and by Condition 2 we know 

that 0.  But if 0 then we will have (3) – (4)  0, and by Condition 3 we know 

that 0, which contradicts  for , 0.  The other two cases of the pa-

trol leader deviating from the Nash equilibrium i.e.  &  , and 

 &  are mathematically not feasible since 1 by definition, and 

the latter two cases violate this condition.  This proves that a mixed strategy other than 
the Nash equilibrium is not a best response to any mixed strategy that is a best response 
to it.  Using Condition 1 we have shown that there is no mixed strategy Nash equilibrium 
in which the patrol leader and gang leader plays a strategy that is different from 

∗, ∗	 , ∗, ∗  in a system with two seasonal patches.  ∎    

 Now we prove the uniqueness of the Nash equilibrium for a system with three 
seasonal patches.  Again we make use of the following identities that equal zero at the 
Nash equilibrium values.  

 
(5) – (6): 1, 2, . .  
(5) – (7): 1, 3, . . .  
(8) – (9): , 1 , 2 . .  
(8) – (10): , 1 , 3 . .  
 
Consider the first case of the gang leader deviating from the Nash equilibrium: 

 ,  , &  .  The sign of (8) – 

(9) is ambiguous, while the sign of (8) – (10) is unambiguously greater than zero.  Sup-
pose (8) – (9) 0 and (8) – (10) 0.  Then by Condition 2 we know that 0 and 

0.  This would imply that (5) 0, (6) 0, & (7)	 0.  This in turn would imply 
that (5) – (6) 0 and (5) – (7) 0.  Using Condition 3 we know that 0, which con-

tradicts .  Now suppose (8) – (9) 0 and (8) – (10) 0.  By Condi-

tion 2 we know that 0 and 0.  This implies that (5) 0, (6) 0, & (7) 0.  
This would imply that (5) – (6) 0, and using Condition 3 we would have 0, 

which contradicts  .  
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The proof by contradiction in the case of , 

 , &  holds by symmetry.  The case of 

 ,  , &  is straightforward since the 

signs of (8) – (9) and (8) – (10) would be unambiguously greater than zero.   

Consider next the case of ,  , & 

 . The sign of (8) – (9) is unambiguously less than zero, but the sign of (8) 

– (10) is ambiguous.  Suppose (8) – (9) 0 and (8) – (10) 0.  Then by Condition 2 we 
know that 0 and 0.  This would imply that (5) 0, (6) 0, & (7) 0.  This 
in turn would imply that (5) – (6) 0, and by Condition 3 0, which contradicts  

 .  Now suppose (8) – (9) 0 and (8) – (10) 0.  By Condition 2 

this implies 0 and 1, and thereby (5) . . .  We also 
derive (6) . 0, and (7) . 0.3  Thereby we derive (5) – (6) 0,4 and we 

can infer from Condition 3 that 0, which contradicts  .       

The proof by contradiction in the case of , 

 , &  holds by symmetry.  The case of 

,  , &  is straightforward since the 

signs of (8) – (9) and (8) – (10) would be unambiguously less than zero.  We have shown 
that , , ∗, ∗, ∗	  is not a best response to ∗, ∗, ∗	 .  Next we prove that 
any deviation from ∗, ∗, ∗	  is not optimal for the patrol leader.   

Let us begin with the case of  ,  , 

.  The sign of (5) – (7) is unambiguously less than zero while the sign of 

(5) – (6) is ambiguous.5  Suppose (5) – (6) 0 and (5) – (7) 0.  Then by Condition 2 
we know that 0 and 0.  This would imply that (8) , (9) , and (10) 
0.  This is turn implies that (8) – (10) 0 and (9) – (10) 0.  Using Condition 3 we can 

infer that 0  and 0 , which contradicts  and 

 .  Now suppose (5) – (6) 0 and (5) – (7) 0.  Then by Condition 2 we 

know that 0  or that 1.  This would imply that (8) .

																																																													
3 Note that since ∗ 0 is only possible when , we will have 

. . . 0.  

4 (5) – (6) 0 (see footnote 

3).   
5 Note that the sign and magnitude of  does not matter since it drops out of identities (5) – (6) and (5) – 
(7).    
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. , (9) .  , and (10) . .  Therefore (8) – (9) 0, and (8) – (10) 

0.  Using Condition 3 we can infer that 0, which contradicts .  

In the case of  ,  and  , we 

note that (5) – (7) 0 always and that since p  enters as a positive term in (5) – (6) we 
have the same case of ambiguity in the sign of (5) – (6).       

Next we consider the case of  ,  and 

.  The sign of (5) – (6) is unambiguously greater than zero while the sign of 

(5) – (7) is ambiguous.  Suppose (5) – (6) 0 and (5) – (7) 0.  Then by Condition 2 
we know that 0 and 0 or that 1.  This in turn implies that (8) 0, (9) 

, and (10) .  Therefore we would have (8) – (9) 0, and (10) – (9) 
0.  Using Condition 3 we can infer that 0,  0, and 1.  Now suppose 

(5) – (6) 0 and (5) – (7) 0.  Then by Condition 2 we know that 0 and 0 or 
that 1.  This in turn implies that (8) , (9) , and (10) 0.  Therefore we 
would have (8) – (10) 0 and (10) – (9) 0.  Using Condition 3 we can infer that 
0.   

Finally we consider the case of  ,  and 

.  The signs of both (5) – (6) and (5) – (7) are unambiguously greater 

than zero.  By Condition 2 we know that 0 and 0 or that 1.  This implies 
(8) 0 and (10) . .  We now have (8) – (10) 0 and by Condition 3 we know 
that 0.  ∎  

We have shown that a mixed strategy other than the Nash equilibrium is not a best 
response to any mixed strategy that is a best response to it.  Using Condition 1 we have 
shown that there is no mixed strategy Nash equilibrium in which the patrol leader and 

gang leader plays a strategy that is different from ∗ , ∗ , ∗	 , ∗ , ∗ , ∗	  for the sys-

tem with three seasonal patches.	
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