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Abstract

We discover a new currency strategy with highly desirable return and diversification prop-
erties, which uses the predictive capability of currency volatility risk premia for currency
returns. The volatility risk premium — the difference between expected realized and model-
free implied volatility — reflects the costs of insuring against currency volatility fluctuations,
and the strategy sells high-insurance-cost currencies and buys low-insurance-cost currencies.
The returns to the strategy are mainly generated by movements in spot exchange rates rather
than interest rate differentials, and the strategy carries a greater weight in the minimum-
variance currency strategy portfolio than both carry and momentum. Canonical risk factors
cannot price the returns from this strategy, which appear more consistent with time-varying

limits to arbitrage.
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Currency Portfolio.
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1 Introduction

For decades, both finance practitioners and academics have struggled to understand and ex-

1

plain currency fluctuations." More recently, the literature has focused on a closely-related

question, which is to document high returns to currency investment strategies such as carry

2 Analogous to the deficiency of definitive answers in the exchange rate

and momentum.
determination literature, there has been limited success in explaining these currency strat-
egy returns in terms of compensation for systematic risks. Moreover, the primary driver of
the historical performance of carry has been interest differentials rather than spot currency
returns.’

In this paper, we discover a new currency strategy with high average returns, excellent
diversification benefits relative to the set of previously discovered currency strategies, and
unusual properties that provide clues as to the underlying drivers of exchange rate movements.
The key to this new strategy is the significant predictive power of the currency volatility risk
premium (V RP) for exchange rate returns.* A useful summary statistic of the importance
of this new currency strategy (which we dub V RP), is that over the 1996 to 2011 period, in
a cross-section of up to 20 currencies, it has the highest weight (33%) in the global minimum
variance portfolio of five well-known currency strategies, including carry and momentum.

The high weight of VRP in the currency strategy portfolio is primarily a reflection of
its extremely desirable correlation properties relative to the other widely-studied currency

strategies, as V RP does not have the highest returns among the strategies considered. This

unusual low correlation partly arises from the excellent performance of V RP during crises,

!The difficulty of explaining and forecasting nominal exchange rates was first recorded in the seminal study
of Meese and Rogoff (1983). Over the past three decades, it has continued to be difficult to find theoretically
motivated variables able to beat a random walk forecasting model for currencies (e.g. see Engel, Mark and
West, 2008).

2See, for example, Lustig and Verdelhan (2007), Ang and Chen (2010), Burnside, Eichenbaum, Kleshchel-
ski, and Rebelo (2011), Lustig, Roussanov, and Verdelhan (2011), Barroso and Santa Clara (2013) and
Menkhoff, Sarno, Schmeling, and Schrimpf (2012a,b), who all build currency portfolios to study return pre-
dictability and/or currency risk exposure.

3We use interchangeably the terms spot currency returns and exchange rate returns to define the change
in nominal exchange rates over time; similarly we use interchangeably the terms excess returns or portfolio
returns to refer to the returns from implementing a long-short currency trading strategy that buys and sells
currencies on the basis of some characteristic.

4To be clear from the outset, our strategy does not trade volatility products. We simply use the currency
volatility risk premium as conditioning information to sort currencies, build currency portfolios, and uncover
predictability in currency excess returns and spot exchange rate returns.



and primarily from the fact that the currency excess returns of VRP are almost completely
obtained through prediction of spot currency returns rather than from interest rate differen-
tials. We investigate alternative explanations for the profitability and properties of V RP, and
find evidence most consistent with a simple mechanism with time-varying limits to arbitrage
in the currency market.

The currency volatility risk premium is the difference between expected future realized
volatility, and a model-free measure of implied volatility derived from currency options. A
growing literature studies the variance or the volatility risk premium in different asset classes,
including equity, bond, and foreign exchange (FX) markets.” In general, this literature has
shown that the volatility risk premium is on average negative: expected volatility is higher
than historical realized volatility, and since volatility is persistent, expected volatility is also
generally higher than future realized volatility. In other words, the volatility risk premium
represents compensation for providing volatility insurance. Therefore, akin to the interpreta-
tion in Garleanu, Pedersen, and Poteshman (2009), the currency volatility risk premium that
we construct can be interpreted as the cost of insurance against volatility fluctuations in the
underlying currency. When it is high — realized volatility is higher than the option-implied
volatility — insurance is relatively cheap, and vice versa.

We use the currency volatility risk premium to sort currencies into quintile portfolios at the
end of each month. The strategy is to buy currencies with relatively cheap volatility insurance,
i.e., the highest volatility risk premium quintile, and short currencies with relatively expensive
volatility insurance, i.e., the lowest volatility risk premium quintile. We track returns on this
trading strategy (V RP) over the subsequent period, meaning that these returns are purely out-
of-sample, conditioning only on information available at the time of portfolio construction.

The performance of V RP stems virtually entirely from the predictability of spot exchange
rates rather than from interest rate differentials. That is, currencies with relatively cheap
volatility insurance tend to appreciate over the subsequent month, while those with relatively
more expensive volatility insurance tend to depreciate over the next month. The observed

predictability of spot exchange rates associated with V R P is far stronger than that arising from

5See, for example, Carr and Wu (2009), Eraker (2008), Bollerslev, Tauchen, and Zhou (2009), Todorov
(2010), Drechsler and Yaron (2010), Han and Zhou (2011), Mueller, Vedolin and Yen (2011), Londono and
Zhou (2012) and Buraschi, Trojani and Vedolin (2013).



carry (which generates returns that are almost entirely driven by interest rate differentials,
and not by any predictive ability for spot rate changes) and currency momentum, as well as
other currency trading strategies that we consider. As mentioned earlier, this is part of the
reason for the excellent diversification benefits that the V RP strategy offers in a currency
portfolio.

There are several possible interpretations of our results, of which we consider two to be
most likely. One possibility is that V RP captures fluctuations in aversion to volatility risk,
so that currencies with high volatility insurance have low expected returns and vice versa.
Note that our result is cross-sectional, since we are long and short currencies simultaneously.
As a result, if this explanation were true, it would rely either on different currencies loading
differently on a global volatility shock, or indeed on market segmentation causing expected
returns on different currencies to be determined independently. We test this explanation
both using cross-sectional asset pricing tests of volatility risk premium-sorted portfolios on
a global FX volatility risk factor, as well as by estimating the loadings of currency returns
on various proxies for global volatility risk and building portfolios sorted on these estimated
loadings. Neither of these tests produces evidence consistent with the proposed explanation,
with the long-short strategy generated from estimated loadings on the global volatility risk
factor producing far inferior returns to V RP, which are also virtually uncorrelated with V RP
returns. In sum, the data appear to reject an explanation based on fluctuations in aversion
to global volatility risk.

The second explanation that we consider for our results relies on the presence of limits to
arbitrage, and its effects on the interaction between hedgers and speculators in the currency
market. There is a growing theoretical and empirical literature suggesting that such inter-
actions are important in asset return determination (see, for example, Acharya, Lochstoer,
and Ramadorai, 2013; Adrian, Etula, and Muir, 2013; and Gromb and Vayanos, 2010 for an
excellent survey of the literature). In the currency markets, this explanation comprises two
components. First, it requires time-variation in the amount of arbitrage capital available to
natural providers of currency volatility insurance (“speculators”), such as financial institu-
tions or hedge funds. Second, risk-averse natural “hedgers” of currencies such as multina-
tional firms, or financial institutions that inherit currency positions from their clients, should

be more willing to hedge and be more comfortable with holding (or entering into contracts
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denominated in) currencies with relatively inexpensive volatility insurance. Such institutions
will also be more likely to avoid positions in currencies with relatively expensive volatility
protection. The combination of these two ingredients would be sufficient to generate the
patterns that we see in the data.

A simple example may be helpful: assume that speculators face a shock to their available
arbitrage capital. This limits their ability to provide cheap volatility insurance, especially in
currencies in which they have large positions — for example, they may reduce their outstanding
short put option positions in the currencies in which they trade. These limits on speculators’
ability to satisfy demand for volatility insurance increases net demand in the options market
for the specific currencies in which they are most active, increasing current option prices and
making hedging more expensive. As in Garleanu, Pedersen, and Poteshman (2009), this net
demand imbalance would show up in a lower volatility risk premium for the currencies thus
affected. Given the high cost of volatility insurance, natural hedgers scale back on the amount
of spot currency they are willing to hold, or are reluctant to get into new expensive hedges.
This net demand will predictably depress spot prices, leading to relatively low returns on the
spot currency position. When capital constraints loosen, we should see the opposite behavior,
i.e., a reversal in both the volatility risk premium and the spot currency position.

In the cross-section of currencies, this mechanism implies that, in a world with limited and
time-varying arbitrage capital, an institution wishing to hedge against risk (or deleveraging) in
one currency position rather than another will generate excess demand for volatility insurance
for the currency to which it is more exposed, in turn increasing the spread in volatility risk
premia across currencies.

This explanation for our baseline result has additional testable implications. Most obvi-
ously, the explanation implies that the returns from the V' RP strategy, post-formation, should
be temporary, i.e., there should be reversion in currency returns once arbitrage capital returns
to the market. Confirming this prediction, we find that currency volatility risk-premium
sorted portfolio returns reverse over a holding period of a few months. Moreover, at times

when funding liquidity is lower (i.e., times of high capital constraints on speculators), and

SShort put options is a favoured strategy of many hedge funds; see Agarwal and Naik (2004), for example.
Also see Fung and Hsieh (1997) for how lookback options can be used to capture the returns to momentum
trading strategies implemented by hedge funds.



demand for volatility protection is higher (i.e., times of increased risk aversion of natural
hedgers), we should find that the spread in the cost of volatility insurance across currencies,
and the spread in spot exchange rate returns across portfolios should both increase. In our
empirical analysis, we find that when the TED spread — a commonly used proxy for funding
liquidity (see, for example, Garleanu and Pedersen, 2011) — increases, the returns on VRP
are substantially higher. Fluctuations in risk aversion, as proxied by changes in the VIX, add
significant additional explanatory power when interacted with the TED spread. Next, we
measure capital flows to currency and global macro hedge funds, and find that when hedge
fund flows are high, signifying increased funding and thus lower hedge fund capital constraints,
the returns to V RP are lower and vice versa, providing useful evidence in support of the limits
to arbitrage explanation.

Finally, we inspect the positioning of commercial and financial traders in the FX market.
We find that commercial traders tend to sell currencies which are more expensive to insure
and buy currencies which are cheaper to insure; by contrast, financial traders appear to trade
in a way that is exactly opposite to that of commercial traders. This pattern of trading
behavior serves to corroborate our other evidence suggesting that VV RP returns are driven by
the interaction of natural hedgers and speculators in currency markets.”

The paper is structured as follows. Section 2 defines the volatility risk premium and
its measurement in currency markets. Section 3 describes our data and some descriptive
statistics. Section 4 presents our main empirical results on the volatility risk premium-sorted
strategy, Section 5 reports formal asset pricing tests, while Section 6 investigates two alterna-
tive mechanisms that could explain our findings. Section 7 concludes. A separate Internet

Appendix provides robustness tests and additional supporting analyses.

2 Foreign Exchange Volatility Risk Premia

Volatility Swap. A volatility swap is a forward contract on the volatility “realized” on the

underlying asset over the life of the contract. The buyer of a volatility swap written at time

"This evidence links our work to another important stream of the exchange rate literature on forecasting
currency returns using currency order flow. For example, Froot and Ramadorai (2005), Evans and Lyons
(2005) and Rime, Sarno and Sojli (2010) show that order flow has substantial predictive power for exchange
rate movements.



t, and maturing at time t + 7, receives the payoff (per unit of notional amount):
VPt,T = (RV;‘,,T - SWt,T) (1)

where RV, . is the realized volatility of the underlying, SW; ; is the volatility swap rate, and
both RV, and SW,; are defined over the life of the contract from time ¢ to time ¢ + 7, and
quoted in annual terms. However, while the realized volatility is determined at the maturity
date t 4+ 7, the swap rate is agreed at the start date t.

The value of a volatility swap contract is obtained as the expected present value of the
future payoff in a risk-neutral world. This implies, because V P, ; is expected to be 0 under
the risk-neutral measure, that the volatility swap rate equals the risk-neutral expectation of

the realized volatility over the life of the contract:

SWi, = EZ[RV;,] (2)

-1 tJrT

2
. O3ds,

where E2 [-] is the expectation under the risk-neutral measure Q, RV;, = /7

and o2 denotes the (stochastic) volatility of the underlying asset.

Volatility Swap Rate. We synthesize the volatility swap rate using the model-free
approach derived by Britten-Jones and Neuberger (2000), and further refined by Demeterfi,
Derman, Kamal and Zou (1999), Jiang and Tian (2005), and Carr and Wu (2009).

Building on the pioneering work of Breeden and Litzenberger (1978), Britten-Jones and
Neuberger (2000) derive the model-free implied volatility entirely from no-arbitrage conditions
and without using any specific option pricing model. Specifically, they show that the risk-
neutral expected integrated return variance between the current date and a future date is fully
specified by the set of prices of call options expiring on the future date, provided that the
price of the underlying evolves continuously with constant or stochastic volatility but without
jumps.

Demeterfi, Derman, Kamal, and Zou (1999) show that the Britten-Jones and Neuberger
(2000) solution is equivalent to a portfolio that combines a dynamically rebalanced long po-
sition in the underlying, and a static short position in a portfolio of options and a forward
that together replicate the payoff of a “log contract.”® The replicating portfolio strategy cap-

tures variance exactly, provided that the portfolio of options contains all strikes with the

8The log contract is an option whose payoff is proportional to the log of the underlying at expiration
(Neuberger, 1994).



appropriate weights to match the log payoff. Jiang and Tian (2005) further demonstrate that
the model-free implied variance is valid even when the underlying price exhibits jumps, thus
relaxing the diffusion assumptions of Britten-Jones and Neuberger (2000).

The risk-neutral expectation of the return variance between two dates ¢t and ¢t + 7 can be
formally computed by integrating option prices expiring on these dates over an infinite range

of strike prices:

Ftﬂ— 1 o0

1
B [RVZ] = ( L PR + ﬁctAK)dK) )
0 Fir

where P, ;(K) and C;,(K) are the put and call prices at ¢ with strike price K and maturity
date t 4+ 7, [} - is the forward price matching the maturity date of the options, S; is the price
of the underlying, x = (2/7) exp (i ,7), and i, , is the 7-period domestic riskless rate.

The risk-neutral expectation of the return variance in Equation (3) delivers the strike price
of a variance swap F [RV2Z ], and is referred to as the model-free implied variance.

Even though variance emerges naturally from a portfolio of options, it is volatility that
participants prefer to quote, as the payoff of a variance swap is convex in volatility and
large swings in volatility, as we observed during the recent financial crisis, are more likely to
cause large profits and losses to counterparties. Therefore, our empirical analysis focuses on

volatility swaps, and we synthetically construct the strike price of this contract as
EZ[RV;,] =/ EZ [RV2] (4)

and refer to it as model-free implied volatility.

While straightforward, this approach is subject to a convexity bias. The main complication
in valuing volatility swaps arises from the fact that the strike of a volatility swap is not
equal to the square root of the strike of a variance swap due to Jensen’s inequality, i.e.,
E2 [RV,,] < E2 [RV;?T]. The convexity bias that arises from the above inequality leads
to imperfect replication when a volatility swap is replicated using a buy-and-hold strategy of
variance swaps (e.g., Broadie and Jain, 2008). Simply put, the payoff of variance swaps is
quadratic with respect to volatility, whereas the payoff of volatility swaps is linear.

We deal with this bias in approximation in two ways. First, we measure the convexity

bias using a second-order Taylor expansion as in Brockhaus and Long (2000) and find that



it is empirically small.” More importantly, when we re-do our empirical exercise with model-
free implied variances, we find virtually identical results. Hence the convexity bias has no
discernible effect on our results and the approximation in Equation (4) works well in our
framework, which explains why it is widely used by practitioners (e.g., Knauf, 2003).

Computing model-free implied volatility requires the existence of a continuum in the cross-
section of option prices at time ¢ with maturity date 7. In the FX market, over-the-counter
options are generally quoted in terms of Garman and Kohlhagen (1983) implied volatilities
at fixed deltas. Liquidity is generally spread across five levels of deltas. From these quotes,
we extract five strike prices corresponding to five plain vanilla options, and follow Jiang and
Tian (2005), who present a simple method to implement the model-free approach when option
prices are only available on a finite number of strikes.

Specifically, we use a cubic spline around these five implied volatility points. This inter-
polation method is standard in the literature (e.g., Bates, 1991; Campa, Chang, and Reider,
1998; Jiang and Tian, 2005; Della Corte, Sarno, and Tsiakas, 2011) and has the advantage
that the implied volatility smile is smooth between the maximum and minimum available
strikes. We then compute the option values using the Garman and Kohlhagen (1983) valu-
ation formula,'® and use trapezoidal integration to solve the integral in Equation (3). This
method introduces two types of approximation errors: (i) the truncation errors arising from
observing a finite number, rather than an infinite set of strike prices, and (ii) a discretization
error resulting from numerical integration. Jiang and Tian (2005), however, show that both
errors are small, if not negligible, in most empirical settings. In Internet Appendix Table A.3,
we present results for different interpolation methods (Castagna and Mercurio, 2007) as well

as a model-free approach that is robust to price jumps (Martin, 2012).

Volatility Risk Premium. In this paper we study the predictive information content
in volatility risk premia for future exchange rate returns. To this end, we work with the

ex-ante payoff or ‘expected volatility premium’ to a volatility swap contract. The volatility

9Brockhaus and Long (2000) show that EZ [RV; ] = 1/ B2 [RVZ,] — where m and V? denote the

mean and variance of the future realized variance, respectively, under the risk-neutral measure Q. E;@ [RV; 7]

V2
8m3/2

is certainly less than or equal to \/E2 [RV2.] due to the Jensen’s inequality, and V?/8m3/? measures the
convexity error.

10T his valuation formula can be thought of as the Black and Scholes (1973) formula adjusted for having
both domestic and foreign currency paying a continuous interest rate.
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risk premium can be thought of as the difference between the physical and the risk-neutral
expectations of the future realized volatility.!! Formally, the 7-period volatility risk premium
at time ¢ is defined as

VRP,, = E} [RV;,] — EX[RV;,] (5)

where Ef [] is the conditional expectation operator at time ¢ under the physical measure
PP. Following Bollerslev, Tauchen, and Zhou (2009), we proxy E} [RV;,] by simply using the
lagged realized volatility, i.e., E} [RVi,] = RV, . = 1/ @ Sor_ori,, where 1y is the daily
log return on the underlying security. This approach is widely used for forecasting exercises
— it makes VRP, ; directly observable at time ¢, requires no modeling assumptions, and is
consistent with the stylized fact that realized volatility is a highly persistent process. Thus, at
time ¢, we measure the volatility risk premium over the [t,¢ + 7] time interval as the ex-post
realized volatility over the [t — 7,¢] interval and the ex-ante risk-neutral expectation of the
future realized volatility over the [t,¢ + 7| interval, i.e., VRP;; = RV, ., — E;@ RV ).

For our purposes, we view currencies with high V R P, ; as those which are relatively “cheap”
to insure at each point in time ¢, as their expected realized volatility under the physical measure
(i.e., the variable against which agents hedge) is lower than the cost of purchasing option-based
insurance — which is primarily driven by expected volatility under the risk-neutral measure.
Conversely, those currencies with relatively low V RP,; are more “expensive” to insure at
time t. Our adoption of this terminology closely follows the logic in Garleanu, Pedersen, and
Poteshman (2009), who provide theory and empirical evidence to support the conjecture that

end-user demand for options has effects on their prices when dealers cannot perfectly hedge.

3 Data and Currency Portfolios

We now describe the data and the construction of currency portfolios that we employ in our

analysis.

Exchange Rate Data. We collect daily spot and one-month forward exchange rates vis-

a-vis the US dollar (USD) from Barclays and Reuters via Datastream. The empirical analysis

A number of papers define the volatility risk premium as difference between the risk-neutral and the
physical expectation. Here we follow Carr and Wu (2009) and take the opposite definition as it naturally
arises from the long-position in a volatility swap contract.

9



uses monthly data obtained by sampling end-of-month rates from January 1996 to August
2011. Our sample consists of the following 20 countries: Australia, Brazil, Canada, Czech
Republic, Denmark, Euro Area, Hungary, Japan, Mexico, New Zealand, Norway, Poland,
Singapore, South Africa, South Korea, Sweden, Switzerland, Taiwan, Turkey, and United

” A number

Kingdom. We refer to this cross-section as “Developed and Emerging Countries.
of currencies in this sample may not be traded in large amounts, even though quotes on forward
contracts (deliverable or non-deliverable) are available.!? Hence, we also consider a subset of
the most liquid currencies, which we refer to as “Developed Countries.” This sample includes:

Australia, Canada, Denmark, Euro Area, Japan, New Zealand, Norway, Sweden, Switzerland,

and the United Kingdom.

Currency Option Data. We employ daily data from January 1996 to August 2011 on
over-the-counter (OTC) currency options, obtained from JP Morgan.

The OTC currency option market is characterized by specific trading conventions. While
exchange traded options are quoted at fixed strike prices and have fixed calendar expiration
dates, currency options are quoted at fixed deltas and have constant maturities. More impor-
tantly, while the former are quoted in terms of option premia, the latter are quoted in terms
of Garman and Kohlhagen (1983) implied volatilities on baskets of plain vanilla options.

For a given maturity, quotes are typically available for five different combinations of plain-
vanilla options: at-the-money delta-neutral straddles, 10-delta and 25-delta risk-reversals,
and 10-delta and 25-delta butterfly spreads. The delta-neutral straddle combines a call and a
put option with the same delta but opposite sign — this is the at-the-money (ATM) implied
volatility quoted in the FX market. In a risk reversal, the trader buys an out-of-the money
(OTM) call and sells an OTM put with symmetric deltas. The butterfly spread is built up
by buying a strangle and selling a straddle, and is equivalent to the difference between the
average implied volatility of an OTM call and an OTM put, and the implied volatility of a
straddle. From these data, one can recover the implied volatility smile ranging from a 10-delta

put to a 10-delta call.!® To convert deltas into strike prices, and implied volatilities into option

12 According to the Triennial Survey of the Bank for International Settlements (2013), the top 10 currencies
account for about 90 percent of the average daily turnover in FX markets.

13Tn market jargon, a 25-delta call is a call whose delta is 0.25 whereas a 25-delta put is a put with a delta
equal to —0.25.
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prices, we employ domestic and foreign interest rates, obtained from JP Morgan, which are
equivalent to those obtained using Datastream and Bloomberg.

This recovery exercise yields data on plain-vanilla European call and put options on 20
currency pairs vis-a-vis the US dollar, with maturity of one year. Practitioner accounts suggest
that natural hedgers such as corporates prefer hedging using intermediate-horizon derivative
contracts to the more transactions-costs intensive strategy of rolling over short term positions
in currency options, and hence the one-year volatility swap is a logical contract maturity to

detect interactions between hedgers and speculators.'*

Hedge Fund Flows. To construct a measure of new arbitrage capital available to
hedge funds, we use data from a large cross-section of hedge funds and funds-of-funds from
January 1996 to December 2011, which is consolidated from data in the HFR, CISDM, TASS,
Morningstar, and Barclay-Hedge databases, and comprises of roughly US$ 1.5 trillion worth
of assets under management (AUM) towards the end of the sample period. Patton and
Ramadorai (2013) provide a detailed description of the process followed to consolidate these
data.

We select the subset of 634 funds from these data, those self-reporting as currency funds
or global macro funds, and construct the net flow of new assets to each fund as the change
in the fund’s AUM across successive months, adjusted for the returns accrued by the fund
over the month — this is tantamount to an assumption that flows arrive at the end of the
month, following return accrual. We then normalize the figures by dividing them by the
lagged AUM, and then value-weight them across funds to create a single aggregate time-series

index of capital flows to currency and global macro funds.

Positions on Currency Futures. We also employ weekly data from the Commitments
of Traders, a report issued by the Commodity Futures Trading Commission (CFTC). The
report aggregates the holdings of participants in the US futures markets (primarily based in
Chicago and New York). It is typically released every Friday and reflects the commitments of
traders for the prior Tuesday. The CFTC provides a breakdown of aggregate positions held

by commercial traders and financial (or non-commercial) traders. The former are merchants,

14 This is different from currency options per se, which tend to be most liquid at shorter maturities of one
and three months.
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foreign brokers, clearing members or banks using the futures market primarily to hedge their
business activities. The latter are hedge funds, financial institutions and individual investors
using the futures market for speculative purposes. We collect weekly data from January 1996
to August 2011 on the Australian dollar, Brazilian real, Canadian dollar, Euro, Japanese
yen, Mexican peso, New Zealand dollar, South African rand, Swiss franc, and British pound
relative to the USD dollar.

In our empirical analysis, we use positions on currency futures for two exercises. Firstly, we
construct an aggregate hedging measure of FX risk as in Acharya, Lochstoer, and Ramadorai
(2013), and report a detailed description of this measure in the Appendix. Secondly, we
examine whether the buying and selling actions of different players in the futures market

follow the pattern implied by the V RP strategy.

Currency Excess Returns. We define spot and forward exchange rates at time ¢ as
S; and F}, respectively. Exchange rates are defined as units of US dollars per unit of foreign
currency such that an increase in S; indicates an appreciation of the foreign currency. The
excess return on buying a foreign currency in the forward market at time ¢ and then selling it
in the spot market at time ¢ + 1 is computed as RX; 11 = (S;11 — Fi) /St, which is equivalent
to the spot exchange rate return minus the forward premium RX;.; = ((Sip1 — St) /S:) —
((Fy — S¢) /St). According to the CIP condition, the forward premium approximately equals
the interest rate differential (F; —S;) /S; ~ i; — i}, where i, and i} represent the domestic
and foreign riskless rates respectively, over the maturity of the forward contract. Since CIP
holds closely in the data at daily and lower frequency (e.g., Akram, Rime and Sarno, 2008),
the currency excess return is approximately equal to an exchange rate component (i.e., the
exchange rate change) minus an interest rate component (i.e., the interest rate differential):

RXpp1 = ((Sta1 — Se) /Se) — (i — 47).

Carry Trade Portfolios. At the end of each period t, we allocate currencies to five
portfolios on the basis of their interest rate differential relative to the US, (i — i;) or forward
premia since — (Fy — S;) /Sy = (if —i;) via CIP. This exercise implies that Portfolio 1 com-
prises 20% of all currencies with the highest interest rate differential (lowest forward premia)
and Portfolio 5 comprises 20% of all currencies with the lowest interest rate differential (high-

est forward premia), and we refer to the long-short portfolio formed by going long Portfolio 1

12



and short Portfolio 5 as CAR. We compute the excess return for each portfolio as an equally
weighted average of the currency excess returns within that portfolio, and individually track
both the interest rate differential and the spot exchange rate component that make up these
excess returns.

Lustig, Roussanov, and Verdelhan (2011) study these currency portfolio returns using their
first two principal components. The first principal component implies an equally weighted
strategy across all long portfolios, i.e., borrowing in the US money market and investing in
foreign money markets. We refer to this zero-cost strategy as DOL. The second principal
component is equivalent to a long position in Portfolio 1 (investment currencies) and a short
position in Portfolio 5 (funding currencies), and corresponds to borrowing in the money mar-
kets of low yielding currencies and investing in the money markets of high yielding currencies.
We refer to this long/short strategy as C AR in our tables — and we use both DOL and CAR

in risk-adjustment below.

Momentum Portfolios. At the end of each period ¢, we form five portfolios based on
exchange rate returns over the previous 3-months. We assign the 20% of all currencies with
the highest lagged exchange rate returns to Portfolio 1, and the 20% of all currencies with
the lowest lagged exchange rate returns to Portfolio 5. We then compute the excess return
for each portfolio as an equally weighted average of the currency excess returns within that
portfolio. A strategy that is long in Portfolio 1 (winner currencies) and short in Portfolio 5

(loser currencies) is then denoted as MOM.'5

Value Portfolios. At the end of each period ¢, we form five portfolios based on the

6 We assign the 20% of all currencies with the lowest real

level of the real exchange rate.!
exchange rate to Portfolio 1, and the 20% of all currencies with the highest real exchange
rate to Portfolio 5. We then compute the excess return for each portfolio as an equally

weighted average of the currency excess returns within that portfolio. A strategy that is long

15Consistent with the results in Menkhoff, Sarno, Schmeling and Schrimpf (2012b), sorting on lagged
exchange rate returns or lagged currency excess returns to form momentum portfolios makes no qualitative
difference to our results below. The same is true if we sort on returns with other formation periods in the

range from 1 to 12 months.
16We compute the real exchange rate at the end of each month as RER; = S;/PPP;, where S; is the

nominal exchange rate and PPP; is the purchasing power parity rate. We collect the PPP data published
annually every March by the OECD, and retrieve monthly data by forward filling, i.e., we use the last available
PPP rate until the next February. For Singapore and Taiwan, we use data from the PENN World Table.
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in Portfolio 1 (undervalued currencies) and short in Portfolio 5 (overvalued currencies) is then

denoted as VAL.

Risk Reversal Portfolios. At the end of each period t, we form five portfolios based
on out-of-the-money options. We compute for each currency in each time period the risk
reversal, which is the implied volatility of the 10-delta call less the implied volatility of the 10-
delta put, and assign the 20% of all currencies with the lowest risk reversal to Portfolio 1, and
the 20% of all currencies with the highest risk reversal to Portfolio 5. We then compute the
excess return for each portfolio as an equally weighted average of the currency excess returns
within that portfolio. A strategy that is long in Portfolio 1 (high-skewness currencies) and

short in Portfolio 5 (low-skewness currencies) is then denoted as RR.

Volatility Risk Premia Portfolios. At the end of each period ¢, we group currencies
into five portfolios using the 1-year volatility risk premium constructed as described earlier.
We allocate 20% of all currencies with the highest expected volatility premia, i.e., those which
are cheapest to insure, to Portfolio 1, and 20% of all currencies with the lowest expected
volatility premia, i.e., those which are expensive to insure, to Portfolio 5. We then compute
the average excess return within each portfolio, and finally calculate the portfolio return from
a strategy that is long in Portfolio 1 (cheap wvolatility insurance) and short in Portfolio 5

(expensive volatility insurance), and denote it V RP.

4 The VRP Strategy: Empirical Evidence

4.1 Summary Statistics and the Returns to VRP

Table 1 presents summary statistics for the annualized average realized volatility RV, ;, syn-
thetic volatility swap rate SW;, = E;@ [RV; ], and volatility risk premium VRP,, = RV, —
SW, for the 1-year maturity (7 = 1) (in what follows, we drop the 7 subscript, as it is always
1 year).

The table shows that, on average across developed currencies, RV, equals 10.68 percent,
with a standard deviation of 2.88 percent, and SW; equals 11.31 percent, with a standard
deviation of 2.75 percent. The average volatility risk premium V RP; across these currencies,

which is the difference of these two variables, is equal to —0.62 percent, with a standard
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deviation of 1.58 percent. For the full sample of developed and emerging countries, RV,
and SW; are slightly larger than for the sample of only developed currencies, and so is the
volatility risk premium, V RF;, which equals —0.92 on average. We might expect to see this
— the average price that natural hedgers have to pay to satisfy their demand for volatility
insurance is larger when including emerging market currencies.

Table 2 describes the returns generated by our short expensive-to-insure, long cheap-to-
insure currency strategy, reporting summary statistics for the five portfolios that are obtained
when sorting on the volatility risk premium. In this table, P is the long portfolio that buys
the top 20% of all currencies with the cheapest volatility insurance, P; buys the next 20% of
all currencies ranked by expected volatility premia, and so on till the fifth portfolio, Ps which
is the portfolio that buys the top 20% of all currencies which are the most expensive to insure.
V RP essentially buys P, and sells Pg, with equal weights, so that VRP = Py, — Ps.

The table reveals several facts about V RP. First, there is a strong general tendency of
portfolio returns to decrease as we move from P;, towards Ps; the decrease is not monotonic
for developed countries, but it is monotonic for the full sample for the FX returns component.
Second, the V RP return stems mainly from the long portfolio, P;,. Third, the return from P;,
can be almost completely attributed to spot rate changes. Finally, the bottom panel of Table
2 shows the transition matrix between portfolios. This shows that there is currency rota-
tion across quintile portfolios such that the steady-state transition probabilities are identical.
Thus the performance of the strategy cannot simply be attributed to long-lived positions in
particular currencies.

The returns to VRP are very robust. We describe a few robustness checks before pro-
ceeding further. First, we compute volatility risk premia using simple at-the-money implied
volatility rather than the more complicated model-free implied volatility. We also implement
the simple variance swap formula of Martin (2012). In both cases, results are virtually iden-
tical for developed countries and improve for developed and emerging countries. We report
these results in Internet Appendix Table A.3. Second, in our empirical work we also experi-
ment with an AR(1) process for RV to form expectations of RV rather than using lagged RV
over the previous 12 months. Again, we find that the results are virtually identical to those
reported in Table 2. Third, we report the net of transactions costs returns to V RP and other

currency strategies in Internet Appendix Table A.2, and show that these are similar to those
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reported in Table 2, especially for the more liquid Developed sample of countries. Fourth, in
Internet Appendix Table A.7, we check whether a simple strategy based on sorting currencies
by the difference between longer-term and short-term realized volatility effectively captures
the returns from V RP. Using definitions of “long-term” ranging from six to 24 months and
“short-term” from one to six months, we find that while there are a number of high-return
portfolios in the set, there is substantial variation in these returns across portfolios, leading
to concerns of potential data-mining. Finally, we show in Internet Appendix Table A.4 that
the identities of the currencies most often found in the “corner” V RP portfolios are not easily
recognizable from other currency strategies such as carry. We formalize this last exercise
by explicitly comparing the returns of VRP to the conventional set of currency strategies

considered in the literature thus far, which we present in the next section.

4.2 Comparing V RP with Other Currency Strategies

In Table 3, we present the returns to a number of long-short currency strategies computed using
only time ¢ — 1 information, to compare the predictability generated by strategies previously
proposed in the literature with the new V RP strategy that we propose. We compare CAR,
MOM, VAL, and RR with our V RP based strategy. We report results for both subsamples
(Developed, and Developed and Emerging) in our data.

Panel A of the table shows the results for the portfolio ezxcess returns (including interest-
rate differentials) generated by these trading strategies. Consistent with a vast empirical
literature (e.g., Lustig, Roussanov, and Verdelhan, 2011, Burnside, Eichenbaum, Kleshchelski,
and Rebelo, 2011, and Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a), C AR delivers a
very high average excess return — indeed, the highest of all strategies considered. The Sharpe
ratio of the carry trade is 0.61 for the sample of developed countries, and 0.74 for the full
sample. M OM also generates positive excess returns, albeit less striking than carry, which is
consistent with the recent evidence in Menkhoff, Sarno, Schmeling, and Schrimpf (2012b) that
the performance of currency momentum has weakened substantially during the last decade;
the Sharpe ratio is 0.27 for both samples of countries. Both VAL and RR do very well, with
Sharpe ratios of 0.62 and 0.48 respectively.

In contrast, the V RP strategy that we introduce generates a Sharpe ratio of 0.48 and 0.29

for the two samples of countries considered, signifying that it outperforms the momentum
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strategy. The V RP strategy works better for the developed countries in our sample than for
the whole sample of developed and emerging countries. One plausible explanation for this
is that there is a greater prevalence of hedging using more sophisticated instruments such as
currency options in developed markets than in emerging markets.

Panel A of the table suggests that the returns to the V RP strategy are somewhat modest
in comparison with those of the other strategies that we provide as comparison. However,
Panel B of the table introduces the main benefit of the V RP strategy, namely that the
lion’s share of its returns accrue as a result of spot rate predictability. This predictability is
virtually twice as large as the best competitor strategy over the sample period, generating an
annualized mean spot exchange rate return of 4.4% for the developed countries, and 3.72%
for the full cross-section of all 20 countries in our sample. In contrast, the exchange rate
return from C'AR is close to zero for both samples, and while other strategies, notably VAL,
have relatively better performance in predicting movements in the spot rate than C' AR, the
preponderance of their returns stem from interest rate differentials.

Several of the other moments presented in Panel B of Table 3 are also worth highlighting.
First, the returns from V RP display desirable skewness properties, as its unconditional skew-
ness is positive (albeit small for the full sample), and the maximum drawdown is comparable
to that of MOM and far better (i.e., higher) than that of CAR. Another way to see this,
of course, is to compare the (very different) returns to RR and VRP, as RR is constructed
to replicate a long high skewness-short low skewness portfolio. Finally, the table shows that
the portfolio turnover of the V RP strategy (measured in terms of changes in the composition
of the short and long legs of the V RP strategy, Freqs and Freqy, in Table 3) is reasonable —
lying in between the very low turnover of C AR and the high turnover of MOM. This means
that the V RP strategy is likely to perform well also for lower rebalancing periods and that
transaction costs — which are known to be relatively small in currency markets — are unlikely

to impact significantly on the performance of VRP.

4.3 Combining V RP with Other Currency Strategies

Panel C of Table 3 documents the correlation of the V RP strategy with the other strategies,
and finds that the strategy tends to be negatively correlated with C AR (with correlations of
-0.18 and -0.21 for the two samples) and only mildly positively correlated with MOM (with
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correlations of 0.09 and 0.10 for the two samples). The correlation with V AL for Developed
countries is higher, but at 0.23 there is substantial orthogonal information in the strategy
— indeed several of the other strategies are much more highly correlated with one another.
Apart from showing that the strategy is distinct from those already studied in the literature,
this also implies that combining VRP with CAR, MOM, VAL, and RR may well yield
sizable diversification benefits to an investor. It is also useful to note that the correlations for
the excess returns from the strategies, presented in the table, are very close in magnitude to
the correlations acquired from the exchange rate component of these returns — in other words,
it is the currency component of the returns to this strategy that is the proximate source of
the diversification benefits.

Figure 1 provides a graphical illustration of the differences in the performance of the
strategies highlighted in Table 2, and restricts the plot to the sample of Developed Countries
to conserve space. The figure plots the one-year rolling Sharpe ratio for these strategies, and
makes visually clear the marked difference in the evolution of risk-adjusted returns of VRP
relative to the others. While there is a substantial improvement in the Sharpe ratio of VRP
during the recent crisis, the strategy is not driven entirely by this episode — the Sharpe ratio
has been relatively stable over the sample period, and appears to be no more volatile than
the Sharpe ratio of CAR and MOM.

Table 4 shows the subsample performance of the currency component of these strategies
as a complement to Figure 1. It is clear that the performance of V RP is greater in crisis
and NBER recession periods. However it is important to highlight that, outside of these
recession periods, the return to V RP is still large and positive, and higher than that of all
the competitor strategies. Even if V RP were to be used primarily as a hedge for a canonical
currency strategy, it has very desirable properties, delivering positive returns outside of crisis
periods, and very high returns within crisis periods.

Figure 2 plots the cumulative wealth of the strategies over the sample period (again, only
for the Developed Countries), decomposing it into its two constituents: the exchange rate
component (FX) and the interest rate gain component (yield). Both CAR and M OM have
a positive yield component, although in the case of the carry trade the yield component is
the sole positive driver of the carry return because the cumulative FX return component is

negative. For M OM, most of the excess return is driven by spot predictability, so the yield
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component has a positive but relatively minor contribution to momentum returns. V RP
returns are different in that they are made up of a mildly negative yield component (for both
sample of countries considered), and therefore the component due to spot return predictability
is in fact larger than the full portfolio return. The performance of V RP is similar to VAL,
except that VAL also has positive yield, but far lower currency returns.

Taken together, the results from this section suggest that, while the carry trade strategy is
— taken in isolation — the best performing strategy in terms of excess returns and delivers the
highest Sharpe ratio, the V RP strategy has creditable excess returns overall, an important
tendency to deliver returns during crisis periods that are far higher than the crashes commonly
experienced with the carry trade, and far stronger predictive power for exchange rate returns,
which is a unique feature relative to alternative currency trading strategies. The importance
of these last two features of the V RP strategy is twofold. First, a currency investor would
likely gain a great deal of diversification benefit from adding V RP to a currency portfolio
to enhance risk-adjusted returns. Second, a spot currency trader interested in forecasting
exchange rate fluctuations (as opposed to currency excess returns) would greatly value the
signals provided by VRP.

To shed light on the added value of the V RP strategy for a currency investor, we compute
the optimal currency portfolio for an investor who uses all of the five strategies considered
here: CAR, VAL, RR, MOM, and V RP. Specifically, consider a portfolio of N assets with
covariance matrix ¥. The global minimum variance portfolio is the portfolio with the lowest
return volatility and represents the solution to the following optimization problem: min w'Xw
subject to the constraint that the weights sum to unity, w’c = 1,where w is the N x 1 vector of
portfolio weights on the risky assets, ¢ is a N x 1 vector of ones, and ¥ is the N x N covariance
matrix of the asset returns. The weights of the global minimum variance portfolios are given
by w = L,EZ;_lf We compute the optimal weights for both the Developed and Developed &
Emerging samples, and report the results graphically in Figure 3.

The results show that the optimal weight assigned to the V RP strategy is the highest
across all five currency strategies, equalling 33 percent or a full third of the portfolio, and the
same in both samples of currencies. The Sharpe ratio of the minimum volatility portfolio
for the Developed sample, for instance, is quite impressive and equal to 0.92. However, it

would drop substantially to 0.79 if the investor had no access to the V RP strategy (i.e., only
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employs the other four currency strategies). Similarly for the Developed & Emerging sample.
These findings confirm the value of V RP in a currency portfolio despite its return not being
the highest among the strategies considered. It has extremely desirable correlation properties
which cannot be replicated using information from any of the other well-studied currency

strategies.

5 Pricing VRP Returns

In this section we carry out both cross-sectional and time-series asset pricing tests to determine

whether V RP returns can be understood as compensation for systematic risk.

5.1 Time-Series Regressions

As a first step, Table 5 simply regresses the time-series of V RP returns on a number of risk
factors proposed in the literature. First, Panel A confirms the results found in Tables 2 and 3,
by using DOL, CAR, MOM, VAL, and RR as right-hand side variables, and shows that for
both Developed and Developed and Emerging samples, there is substantial alpha relative to
these factors. Panel B uses the three Fama-French factors and adds equity market momentum,
denoted MOME. Again, V RP has alpha relative to these factors which is virtually identical
to that in the prior panel. Finally, Panel C of Table 5 employs the Fung-Hsieh (2004) factor
model, which has been used in numerous previous studies; see for example, Bollen and Whaley
(2009), Ramadorai (2013), and Patton and Ramadorai (2013). The set of factors comprises
the excess return on the S&P 500 index; a small minus big factor constructed as the difference
between the Wilshire small and large capitalization stock indexes; excess returns on portfolios
of lookback straddle options on currencies, commodities, and bonds, which are constructed
to replicate the maximum possible return to trend-following strategies on their respective
underlying assets; the yield spread of the US 10-year Treasury bond over the 3-month T-bill,
adjusted for the duration of the 10-year bond; and the change in the credit spread of Moody’s
BAA bond over the 10-year Treasury bond, also appropriately adjusted for duration. Yet
again, the table shows that the alpha of V RP is virtually unaffected by the inclusion of these

factors.
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5.2 Cross-Sectional Tests

Our cross-sectional tests rely on a standard stochastic discount factor (SDF) approach (Cochrane,
2005), and we focus on a set of risk factors in our investigation that are motivated by the ex-
isting currency asset pricing literature. We begin by briefly reviewing the methods employed,
and denote excess returns of portfolio 4 in period ¢ + 1 by RX] +1- The usual no-arbitrage
relation applies, so risk-adjusted currency excess returns have a zero price and satisfy the

basic Euler equation:

E[My1 RX,y] = 0. (6)

with a linear SDF M; = 1—bV/(f; — ), where f; denotes a vector of risk factors, b is the vector
of SDF parameters, and p denotes factor means.

This specification implies a beta pricing model in which expected excess returns depend
on factor risk prices A, and risk quantities (3, which are the regression betas of portfolio excess

returns on the risk factors:

E[RX'] = N8, (7)

for each portfolio i (see e.g., Cochrane, 2005).

The relationship between the factor risk prices in equation (7) and the SDF parameters in
equation (6) is simply given by A = X b, where X is the covariance matrix of the risk factors.
Thus, factor risk prices can be easily obtained via the SDF approach, which we implement
by estimating the parameters of equation (6) via the generalized method of moments (GMM)
of Hansen (1982).!'" We also present results from the more traditional two-stage procedure of
Fama and MacBeth (1973) in our empirical implementation.

In our asset pricing tests we consider a two-factor linear model that comprises DO L and one
additional risk factor, which is one of CAR and VOLpx. DOL denotes the average return
from borrowing in the US money market and equally investing in foreign money markets.
CAR is the carry portfolio described earlier. VOLpx is a global FX volatility risk factor

constructed as the innovations to global FX volatility, i.e., the residuals from an autoregressive

!"Estimation is based on a pre-specified weighting matrix and we focus on unconditional moments (i.e., we
do not use instruments other than a constant vector of ones) since our interest lies in the performance of the
model to explain the cross-section of expected currency excess returns (see Cochrane, 2005; Burnside, 2011).
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model applied to the average realized volatility of all currencies in our sample, as in Menkhoff,
Sarno, Schmeling, and Schrimpf (2012a).!8

In assessing our results, we are aware of the statistical problems plaguing standard asset
pricing tests, recently emphasized by Lewellen, Nagel, and Shanken (2010). Asset pricing
tests can often be highly misleading, in the sense that they can indicate strong but illusory
explanatory power through high cross-sectional R? statistics, and small pricing errors, when
in fact a risk factor has weak or even non-existent pricing power. Given the relatively small
cross-section of currencies in our data, as well as the relatively short time span of our sample,
these problems can be severe in our tests. As a result, when interpreting our results, we only
consider the cross-sectional R? and Hansen-Jagannathan (H.J) tests on the pricing errors,
if we can confidently detect a statistically significant risk factor, i.e., if the GMM estimates
clearly point to a statistically significant market price of risk A on a factor.

Table 6 reports GMM estimates of b, portfolio-specific 3’s, and implied \’s, as well as
cross-sectional R? statistics and the HJ distance measure (Hansen and Jagannathan, 1997).
In the table, standard errors are constructed as in Newey and West (1987) with optimal lag
length selection according to Andrews (1991). Besides the GMM tests, we employ traditional
Fama-MacBeth (FMB) two-pass OLS regressions to estimate portfolio betas and factor risk
prices. Note that we do not include a constant in the second stage of the FMB regressions, i.e.
we do not allow a common over- or under-pricing in the cross-section of returns - however our
results are virtually identical when we replace the DOL factor with a constant in the second
stage regressions.!? Since DOL has virtually no cross-sectional relation to portfolio returns,
it serves the same purpose as a constant that allows for common mispricing.

Panels A and B of Table 6 show clearly how neither of the risk factors considered enters the
SDF with a statistically significant risk price A, and that this is the case for both the developed
countries and the full sample. As expected, the FMB results in the table are qualitatively, and

18Tn Internet Appendix Table A.8 and A.9, we also consider innovations to global average precentage bid-ask
spreads in the spot market (BASFx) and the option market (BASyy). BASpx is constructed by averaging
over a month the daily average bid-ask spread of the spot exchange rates. BASy is constructed by averaging
over a month the daily average bid-ask spread of the 1-year at-the-money implied volatilities. Innovations
are computed as the residuals to a first-order autoregressive process. Higher bid-ask spreads indicate lower
liquidity, so that our aggregate measures can be seen as global proxies for the FX spot market and the FX
option market illiquidity, respectively.

19 Also see Lustig and Verdelhan (2007) and Burnside (2011) on the issue of whether or not to include a
constant in these regressions.
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in most cases also quantitatively identical to the one-step GMM results. The bottom part of
the panels show that there is little cross-sectional variation across the 5 portfolios sorted by
the cost of currency insurance, which is what we confirm more formally in the asset pricing
tests.

The best performing SDF in these tests includes DOL and VOLpx, and generates a
respectable cross-sectional R? (0.27), but the market price of risk is insignificantly different
from zero. The H.J test delivers large p-values for the null of zero pricing errors in all cases
but we attach no information to this result given the lack of clear statistical significance of the
market price of risk. We also carried out asset pricing tests using the same methods and risk
factors in which we attempt to price only the exchange rate component of the returns from
V RP. In that exercise, the results are equally disappointing in that all risk factors included
in the various SDF specifications are statistically insignificant.

Overall, the asset pricing tests reveal that it is not possible to understand the returns
from the V RP strategy as compensation for global risk, using the carry risk factor, global
volatility risk, or illiquidity in the FX market of the kind used in the literature. These results
are consistent with our earlier results that indicate that V RP returns are very different from
the returns of conventional currency strategies, and hence their source is likely to stem from
a different mechanism than compensation for canonical sources of systematic risk. Therefore,

we now turn to examining potential explanations.

6 Understanding the Drivers of VRP

We consider two possible alternative explanations for our results. The first is Aversion
to Volatility Risk. It might be the case that the currency-specific volatility risk premium
captures fluctuations in aversion to volatility risk. As a result, currencies with relatively
expensive volatility insurance would have low expected returns and vice versa.

Our V RP strategy is cross-sectional, since we are long and short currencies simultaneously.
As a result, if this explanation were correct, it would rely either on different currencies loading
differently on a global volatility shock, or indeed on market segmentation causing expected
returns on different currencies to be determined independently. This latter possibility is very

difficult to evaluate, and if our strategy did indeed provide evidence of this, it would have
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far-reaching consequences.

To evaluate the first of these possibilities, i.e., currencies loading differently on a global
volatility shock, we describe above the ineffectiveness of using the global FX volatility risk
factor of Menkhoff, Sarno, Schmeling, and Schrimpf (2012a) to price the returns from our
portfolio. However, it could be the case that this proxy is not the best suited to capture the
returns from our strategy, and we try other possibilities. We do so by estimating the loadings
of currency returns on various proxies for global volatility risk, and building portfolios sorted

on these estimated loadings. Specifically, we estimate the following regression:
RXit = o; + ﬁlGVOLt + Eits

for each currency i. Here GVOL is a proxy for global volatility risk premia and we employ
various measures, including the average volatility risk premium across our currencies (with
equal weights); the first principal component of the currencies’ volatility risk premia; and
the equity volatility risk premium computed as the difference between the time-¢ one-month
realized volatility on the S&P500 and the VIX index.

We estimate these regressions using rolling windows of 36 months. After obtaining esti-
mates of the (3, coefficients, we sort currencies into five portfolios on the basis of these [,
estimates. Finally, we construct a long-short strategy which buys currencies with low betas
and sells currencies with high betas. In essence, this strategy exploits differences in exposure
of individual currencies to global measures of volatility risk premia, which is a direct test of
the above hypothesis.

The results using our three measures for GVOL are qualitatively identical and we report
in Table 7 the results for GVOL set equal to the average volatility risk-premium across the
currencies in our sample. Internet Appendix Tables A.5 and A.6 contains results for the other
two measures. The table shows that the performance of this strategy is strictly inferior to
the performance of the V RP strategy, and the correlation between the returns from the two
strategies is tiny. On the basis of this evidence, we conclude that there is little support for
V RP returns being driven by aversion to global volatility risk in the data.

The second possible explanation that we consider is Limits to Arbitrage, in the spirit
of Acharya, Lochstoer, and Ramadorai (2013). According to this explanation, the returns

to V RP arise from the interaction between natural hedgers of FX risk, and currency market
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speculators. When the risk-bearing capacity of currency-market speculators is affected by
shocks to the availability of arbitrage capital, this will make currency options across the
board more expensive, with particular impacts on those currencies to which speculators have
high exposure. This will result in selling pressure on expensive-to-insure currencies as natural
hedgers such as corporations sell pre-existing currency holdings, abandon expensive currency
hedges, and become more reluctant to denominate contracts in these currencies. Conversely,
this mechanism results in relatively less pressure on cheap-to-insure currencies, for which
natural hedgers are happy to hold higher inventories or take on more “real” currency exposure.
This yields the positive long-short returns in the V RP portfolio.

This explanation has implications which we test in Table 8. The table presents coefficients
from predictive time-series regressions of the exchange rate component of VRP on a number
of conditioning factors implied by this mechanism. We report results from the exchange rate
component of V RP since we are primarily interested in understanding the predictive power
for spot exchange rates, but the results for excess returns are, not surprisingly, qualitatively
identical and quantitatively very similar.?’

The first column in both panels shows the univariate regression of the exchange rate
component of VRP on the 12-month rolling average of the lagged TED spread. @~ When
funding liquidity is lower (i.e., times of high capital constraints on speculators), we should
find that the expected (exchange rate) return from V RP should increase, and Table 8 provides
strong confirmation for this for developed countries. While the sign of the coefficient on TED
is positive for the full sample of countries, it is not statistically significant. This could be
because the TED spread is possibly less useful as a proxy for funding liquidity constraints in
emerging markets.

The second column shows that when the 12-month rolling average of changes in VIX (our
proxy for increases in the risk aversion of market participants, yielding both greater limits to
arbitrage and an increased desire to hedge) is positive, V RP returns increase (significantly for
the sample of developed countries), again consistent with the limits to arbitrage explanation.
This is similar to the results in Nagel (2012), who shows that a strategy of liquidity provision in
equity markets has returns which are highly correlated with VIX. Similarly, the third column

shows that a general financial distress indicator (FSI, constructed by the Federal Reserve Bank

20Gee the Internet Appendix for a detailed description of the conditioning factors used for this exercise.
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of St. Louis) that captures the principal component of a variety of liquidity and volatility
indicators is statistically significant.

The fourth column of the table interacts TED with changes in VIX, and finds strong
statistically significant predictive power of this interaction for the FX returns on our strategy in
both developed and emerging countries, suggesting that when funding liquidity is constrained
and risk aversion is high, V RP returns increase.

The next three columns check the predictive ability for VRP of market participants’
positioning information. The first two of these columns use the (normalized) net short
futures position of (both commercial and financial) traders on the Australian dollar (AU D)
and the Japanese yen (JPY) relative to the USD dollar, respectively.?! For Developed as well
as Developed and Emerging samples, at times when there is greater futures-related hedging
of the AUD by FX traders, the returns to the VRP strategy increase. However, we find
no real impact for the net short position on the JPY. The final column of the table adds in
measures of capital flows into hedge funds. When aggregate capital flows into hedge funds are
high, signifying that they experience fewer constraints on their ability to engage in arbitrage
transactions, we find that returns for our V RP strategy are lower and vice versa.

The final three rows of Table 8 consider several of the variables described above simul-
taneously to test their joint and separate explanatory power. We include TED, changes in
VIX and the interaction separately to avoid potential collinearity in the regressions as these
variables are highly correlated with one another. More generally, it is clear that the vari-
ables used in the univariate regressions are likely to contain a substantial common component.
Nonetheless, we find that all these variables retain their signs and are generally statistically
significant in these multivariate predictive regressions, offering support to the limits to arbi-
trage explanation of our results.

Next, we examine post-formation portfolio returns. If the limits to arbitrage explanation
is correct, the predictability of volatility insurance costs cannot be long-lived. According to
this explanation, either speculators face a shock that reduces their available arbitrage capital
and limits their ability to provide cheap volatility insurance, or there is an increase in hedger

risk aversion causing their demand for hedging to increase. As a result, net demand for

2L AU D is taken as representative of a typical high-interest currency bought by carry traders, whereas JPY
is a traditional ‘safe haven’ currency.
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volatility insurance increases, making hedging more expensive, which will be reflected in a
lower volatility risk premium, i.e., more expensive currency options. In the face of high
volatility insurance costs, natural hedgers scale back on the amount of spot currency they
are willing to hold, predictably depressing spot prices and leading to relatively low returns
on the spot currency position. When capital constraints loosen, however, we should see
the opposite behavior, i.e., the volatility risk premium reverts to the mean, and reversals in
currency returns.

This yields an additional testable implication, namely, reversal in post-formation cumula-
tive returns on the V RP strategy, which is exactly what we find in Figure 4. The figure plots
cumulative post-formation risk-adjusted excess returns (left panel) and risk-adjusted currency
returns (right panel) over periods of 1,2,...,20 months for the V RP-sorted portfolios, for
both samples of countries examined.?? Returns in the post-formation period are overlapping,
as we form new portfolios each month, but track these portfolios for 20 months.

In the figure, the excess returns increase and peak after 3 months for the Developed
Countries sample and 4 months for the full sample, and subsequently decline. Looking at spot
exchange rate returns, the peak in cumulative post-formation exchange rate return occurs
around 4 months for the developed sample and 5-6 months for the full sample. This evidence
of a reversal appears consistent with the prediction of the limits to arbitrage explanation of
the economic source of V RP predictive power. Moreover the relatively high frequency of
the reversal suggests that an explanation based on risk aversion to volatility combined with
market segmentation, an explanation described earlier, is somewhat less likely.

Finally, we examine whether the observed buying and selling actions of different players
in the currency market follow the pattern implied by the limits to arbitrage explanation, i.e.,
that currencies in the high volatility-insurance portfolio are sold and those in the low volatil-
ity insurance portfolio are bought by natural hedgers, with speculators taking the opposite
position. We do so using the CFTC data on the position of commercial and financial traders

in FX markets, essentially taking the currencies ranked by their volatility insurance costs, and

22Gpecifically, we plot returns net of the exposure to carry trade risk, i.e., we use the residuals from a
regression of VRP returns on CAR, so that the returns can be considered as alphas over and above carry
trade returns. Using raw portfolio returns or their exchange rate component produces a very similar pattern
for the full sample, and a virtually identical pattern for the developed sample, as expected given that we know
already from previous analyses that C AR has little pricing power for V RP portfolios.
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documenting the traders’ positions (cumulative net positions), rather than returns.? We view
the CFTC position data as a proxy for cumulative order flow across different segments of FX
market participants and a large proportion of the total FX market, given that there is evidence
that the CFTC position data and currency order flow capture very similar information (e.g.,
Klitgaard and Weir, 2004).

The results of this exercise are reported in Figure 5, which plots the cumulative position
in the currencies in the V RP portfolio for financial and commercial traders. We find that the
position of commercial traders follows exactly the pattern implied by the limits to arbitrage
explanation — such traders sell expensive-insurance currencies and buy cheaper-insurance cur-
rencies. Financial traders display exactly the opposite behavior, with a strongly negative
position in the V RP portfolio, acting as market-makers that provide liquidity to satisfy the
buying (selling) demand for low (high)-insurance currencies.?!

Taken together, the results in this section lend support to a limits to arbitrage explanation
for the predictability of spot exchange rates associated with VRP. There is a growing
theoretical and empirical literature that highlights the role of limits to arbitrage and the
interaction between hedgers and speculators in asset markets, and we view our results as
suggestive that currency markets may be another venue in which such mechanisms are at

work.

7 Conclusions

We show that the currency volatility risk premium has substantial predictive power for the
cross-section of currency returns. Sorting currencies by their volatility risk premia gener-
ates economically significant returns in a standard multi-currency portfolio setting. This

predictive power is specifically related to spot exchange rate returns, and not to interest

23To allow for meaningful cross-currency comparisons, we need to ensure that net positions are comparable
across currencies, as their absolute size differs across currencies. We therefore divide net positions by their
standard deviation computed over a rolling window of 3 month.

24We also replicate this exercise using a data set on customer order flow in the FX market from a major bank
over the sample period from January 2001 to December 2010. The data cover all currencies in our “Developed”
sample with the exception of the Danish Krone, and order flow is measured as net buying pressure against the
US dollar (i.e., buyer-initiated minus seller-initiated trades). The flow data are categorized into two groups:
commercial and financial customers. The results, available upon request, suggest a qualitatively identical
pattern to the one obtained using the CFTC data.
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rate differentials, and the spot rate predictability is much stronger than that observed from
carry, currency momentum, currency value, or risk-reversal strategies. Moreover, the returns
from the volatility risk premium strategy are largely uncorrelated with these other currency
strategies, thus providing a substantial diversification gain to investors.

We find that currencies for which volatility insurance is relatively cheap predictably appre-
ciate, while currencies for which volatility hedging using options is relatively more expensive
predictably depreciate. Standard risk factors cannot price the returns from the long-short
portfolio that we construct from these components. We consider two candidate explanations
for these findings, and provide suggestive evidence that they can be rationalized in terms of the
time-variation of limits to arbitrage capital and the incentives of hedgers and speculators in
currency markets. Overall, the results in our paper provide new insights into the predictabil-
ity of exchange rate returns, an area in which evidence has been difficult to obtain. We also
introduce a new currency strategy with useful diversification properties into the expanding

and important research area on this topic.
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Table 1. Volatility Risk Premia

This table presents summary statistics for the 1-year volatility risk premium (V RP) defined as difference
between the realized volatility (RV) and the synthetic volatility swap rate (SW). RV is computed at time
t using daily exchange rate returns over the previous year. SW is constructed at time ¢ using the implied

‘th

volatilities across O different deltas from 1-year currency options. @Q; refers to the j** percentile. AC indicates
the 1-year autocorrelation coefficient. VPR, RV, and SW are expressed in percent per annum. The sample
period comprises daily data from January 1996 to August 2011. Exchange rates are from Datastream whereas
implied volatility quotes are proprietary data from JP Morgan.

VRP RV SW VRP RV SW
Developed Developed €& Emerging

Mean —0.62 10.68 11.31 —0.92 10.82 11.74
Sdev 1.58 2.88 2.75 1.78 3.10 3.22
Skew 0.54 1.85 1.42 —0.31 2.12 2.07
Kurt 5.97 6.86 5.29 7.88 7.85 8.06
Qs —3.06 7.15 7.7 —3.67 7.23 8.36
(o5 1.65 18.40 16.76 1.57 19.43 17.86
AC —0.19 0.33 0.53 —0.17 0.27 0.46
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Table 2. Volatility Risk Premia Portfolios

This table presents descriptive statistics of five currency portfolios sorted on the 1-year volatility risk
premia at time ¢ — 1. The long (short) portfolio P, (Pg) contains the top 20% of all currencies with the
highest (lowest) volatility risk premium. H/L denotes a long-short strategy that buys Pr and sells Pg. The
table also reports the first order autocorrelation coefficient (AC4), the annualized Sharpe ratio (SR), and the
frequency of portfolio switches (Freq). Panel A displays the overall excess return, whereas Panel B reports
the exchange rate component only. Panel C presents the transition probability from portfolio i to portfolio j
between time ¢t and time ¢ + 1. 7 indicates the steady state probability. Returns are expressed in percentage
per annum. The strategies are rebalanced monthly from January 1996 to August 2011. Exchange rates are
from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.

Panel A: Excess Returns

Py Py Py Py Pg H/L Py Py Py Py Pg H/L
Developed Developed & Emerging
Mean 470 224 1.04 1.78 0.67 4.03 3.59 1.93 1.34 1.40 1.26  2.34
Sdev 9.08 9.27 9.76 10.07 9.72 8.33 9.32 8.68 8.89 10.44 8.81 8.18
Skew —0.05 0.19 0.09 -0.17 -0.26 0.28 -0.09 0.05 -0.21 -0.29 -0.39 0.12
Kurt 3.13 5.14 5.80 3.85 3.82  3.47 3.09 4.79 3.85 4.16 3.73 3.26
SR 0.52 0.24 0.11 0.18 0.07 0.48 0.39 0.22 0.15 0.13 0.14 0.29
ACh 0.10 0.04 0.13 0.15 0.01 0.04 0.10 0.14 0.15 0.13 0.11  0.05
Freq 0.24 044 0.52 0.48 0.32 0.32 0.26 043 0.53 0.48 0.27  0.27
Panel B: FX Returns
Mean 493 2.06 1.26 1.60 0.52  4.40 3.51 1.62 1.37 0.82 —-0.21 3.72
Sdev 9.0 9.24 9.63 9.96 9.64 8.35 9.26  8.62 874 10.31 8.75  8.17
Skew —0.12 0.15 0.06 —-0.18 -0.26 0.28 -0.18 0.00 —-0.26 —-0.31 -0.47 0.12
Kurt 3.17 524 5.88 4.06 3.83 361 3.07 4.80 4.02 4.36 3.94 3.50
SR 0.54 0.22 0.13 0.16 0.05 0.53 0.38 0.19 0.16 0.08 —0.02 0.46
ACq 0.10 0.03 0.11 0.13 —-0.01 0.04 0.10 0.13 0.13 0.10 0.10 0.04
Freq 0.24 044 0.52 0.48 0.32 0.32 0.26 0.43 0.53 0.48 0.27  0.27
Panel C: Transition Matrix

Pr, 0.77 0.18 0.03 0.01 0.01 0.75 0.20 0.03 0.01 0.01
P, 0.17 0.56 0.20 0.06 0.02 0.16 0.57 0.20 0.05 0.02
P 0.03 0.20 0.49 0.20 0.08 0.03 0.22 0.48 0.22 0.05
P, 0.01 0.05 0.21 0.52 0.21 0.01 0.08 0.23 0.52 0.16
Pg 0.00 0.02 0.08 0.21 0.69 0.01 0.02 0.05 0.19 0.73
T 0.19 0.20 0.20 0.20 0.20 019 023 020 0.19 0.18
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Table 3. Currency Strategies

This table presents descriptive statistics of currency strategies formed using time ¢ — 1 information. CAR
is the carry trade strategy that buys (sells) the top 20% of all currencies with the highest (lowest) interest
rate differential relative to the US dollar. Similarly, MOM is the momentum strategy that buys (sells)
currencies with the highest (lowest) past 3-month exchange rate return, VAL is the value strategy that buys
(sells) currencies with lowest (highest) real exchange rate, RR is the risk reversal strategy that buys (sells)
currencies with the lowest (highest) 1-year 10-delta risk reversal, and VRP is the volatility risk premium
strategy that buys (sells) currencies with the highest (lowest) 1-year volatility risk premium. The table also
reports the first order autocorrelation coefficient (ACY), the annualized Sharpe ratio (SR), the Sortino ratio
(S0), the maximum drawdown (M DD), and the frequency of portfolio switches for the long (Freqr) and
the short (Fregg) position. Panel A displays the overall currency excess return whereas Panel B reports the
exchange rate return component only. Panel C presents the sample correlations of the currency excess returns.
Returns are expressed in percentage per annum. The strategies are rebalanced monthly from January 1996
to August 2011. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data
from JP Morgan.

Panel A: Excess Returns
CAR MOM VAL RR VRP CAR MOM VAL RR VRP

Developed Developed € Emerging
Mean 6.49 2.58 5.78 5.30 4.03 7.42 2.22 3.55 5.38 2.34
Sdev 10.66 9.55 9.38 11.40 8.33 9.97 8.30 8.90 10.60 8.18
Skew -0.92 0.35 —-0.26 —0.72 0.28 -0.92 -0.03 -0.15 -0.14 0.12
Kurt 5.65 3.86 3.50 6.58 3.47 4.53 2.95 3.17 4.43 3.26
SR 0.61 0.27 0.62 0.46 0.48 0.74 0.27 0.40 0.51 0.29
SO 0.72 0.50 0.94 0.58 0.87 0.94 0.47 0.62 0.75 0.49
MDD -037 -0.16 -0.14 -—-0.37 -0.18 -0.21 -0.13 —-0.14 -0.24 -0.18
ACy 0.09 0.00 —0.03 0.07 0.04 0.01  —0.09 0.01 0.08 0.05
Freqy, 0.13 0.48 0.09 0.17 0.24 0.15 0.49 0.07 0.22 0.26
Freqg 0.07 0.43 0.07 0.27 0.32 0.16 0.46 0.06 0.26 0.27
Panel B: FX Returns
Mean 0.34 2.03 2.95 1.42 4.40 —0.65 1.45 0.06 0.22 3.72
Sdev 10.66 9.57 9.44 11.48 8.35 9.99 8.16 8.89  10.60 8.17
Skew —0.93 0.42 —-0.29 -0.75 0.28 —1.05 —-0.02 -0.16 -0.21 0.12
Kurt 5.82 4.17 3.51 6.83 3.61 4.84 3.13 3.19 4.74 3.50
SR 0.03 0.21 0.31 0.12 0.53 —0.07 0.18 0.01 0.02 0.46
SO 0.04 0.40 0.47 0.15 0.93 —0.08 0.30 0.01 0.03 0.75
MDD —-043 —-0.20 -0.24 —-0.40 -0.19 -0.35 -0.15 —-0.27 -0.29 -0.18
ACy 0.11 0.00 —0.02 0.08 0.04 0.03 -0.12 0.01 0.08 0.04
Freqy, 0.13 0.48 0.09 0.17 0.24 0.15 0.49 0.07 0.22 0.26
Freqg 0.07 0.43 0.07 0.27 0.32 0.16 0.46 0.06 0.26 0.27
Panel C: Correlations
CAR 1.00 —0.17 0.44 0.68 —0.18 1.00 —0.03 0.54 0.57 —0.21
MOM —0.17 1.00 -0.17 -0.17 0.09 —0.03 1.00 -0.14 -0.15 0.10
VAL 0.44 —0.17 1.00 0.49 0.23 0.54 —-0.14 1.00 0.64 —0.10
RR 0.68 —0.17 0.49 1.00 -0.01 0.57 —-0.15 0.64 1.00 -0.12
VRP -0.18 0.09 0.23 -0.01 1.00 -0.21 0.10 -0.10 -0.12 1.00
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This table presents descriptive statistics of foreign exchange (FX) returns to currency strategies formed
using time ¢ — 1 information. C AR is the carry trade strategy that buys (sells) the top 20% of all currencies
with the highest (lowest) interest rate differential relative to the US dollar. Similarly, M OM is the momentum
strategy that buys (sells) currencies with the highest (lowest) past 3-month exchange rate return, VAL is the
value strategy that buys (sells) currencies with lowest (highest) real exchange rate, RR is the risk reversal
strategy that buys (sells) currencies with the lowest (highest) 1-year 10-delta risk reversal, and VRP is the
volatility risk premium strategy that buys (sells) currencies with the highest (lowest) 1-year volatility risk
premium. Returns are expressed in percentage per annum. The strategies are rebalanced monthly from
March 2001 to November 2001, and from December 2007 to June 2009 (Panel A), from January 1996 to
December 2006 (Panel C), and from January 2007 to August 2011 (Panel D). January 1996 to August 2011.
Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.

Table 4. Currency Strategies: Sub-Samples

Panel A: NBER Recession Periods

CAR MOM VAL RR VRP CAR MOM VAL RR VRP
Developed Developed € Emerging
Mean  —9.59 11.32 4.62 —7.96 11.54 —-7.97 7.07 0.10 —4.80 6.50
Sdev 17.11 15.40 12.03 19.07 10.11 14.69 10.49 9.92  15.20 9.38
Skew  —0.44 0.28 —-0.63 —0.90 0.12 —0.80 0.17 —-0.15 —-0.08 —0.45
Kurt 3.71 2.87 3.43 4.13 2.26 2.84 2.77 2.95 2.54 2.88
SR —0.56 0.74 0.38 —0.42 1.14 —0.54 0.67 0.01 —0.32 0.69
MDD -0.40 -0.16 -0.12 -0.41 —-0.09 -0.32 —-0.07 -0.18 —-0.29 —-0.09
ACy 0.35 0.12 —0.09 0.23 0.27 0.17 —-0.04 0.09 0.31 0.22
Panel B: non-NBER Recession Periods
Mean 2.09 0.40 2.65 3.08 3.14 0.64 0.46 0.05 1.11 3.23
Sdev 9.06 8.11 8.95 9.57 7.99 8.92 7.68 8.73 9.61 7.96
Skew  —0.87 0.04 —-0.16 0.11 0.26 -0.92 -0.19 -0.16 -0.17 0.26
Kurt 4.50 2.48 3.30 4.16 4.02 4.90 2.90 3.22 5.55 3.70
SR 0.23 0.05 0.30 0.32 0.39 0.07 0.06 0.01 0.12 0.41
MDD -0.31 -0.21 -0.22 -0.15 -0.16 -0.31 -0.20 -0.22 -0.20 -0.16
ACy -0.07 -0.09 -0.02 -0.04 -0.03 —-0.06 —0.15 0.00 —-0.02 -0.02
Panel C: Pre-Crisis Period
Mean 1.91 0.81 3.00 2.94 2.18 1.09 0.71 0.58 1.28 3.04
Sdev 8.33 7.90 9.78 9.43 7.99 9.16 7.68 9.25 10.12 8.53
Skew —0.91 —-0.02 -0.31 0.32 0.07 —1.06 0.01 —-0.25 —0.24 0.19
Kurt 4.92 2.46 3.26 4.14 3.46 5.20 2.59 3.10 5.41 3.47
SR 0.23 0.10 0.31 0.31 0.27 0.12 0.09 0.06 0.13 0.36
MDD -031 —-0.16 -024 -0.15 -0.19 -0.31 -0.14 -0.23 -0.18 -0.18
ACy -0.05 -0.11 -0.03 -0.02 —-0.01 —-0.08 —-0.14 -0.02 -0.03 0.02
Panel D: Crisis Period

Mean —3.34 4.88 2.81 —2.13 9.61 —4.73 3.17 —-1.15 —-2.25 5.30
Sdev 14.80 12.69 8.67 15.31 9.05 11.70 9.23 8.05 11.72 7.29
Skew  —0.66 0.50 —-0.22 -—1.13 0.54 —-0.89 —0.10 0.12 -0.12 -0.07
Kurt 4.02 3.57 4.27 5.63 3.42 3.90 3.56 3.41 3.67 3.39
SR —0.23 0.38 0.32 —-0.14 1.06 —0.40 0.34 -0.14 -0.19 0.73
MDD -0.43 -0.16 -0.12 -0.40 —-0.08 -0.31 -0.13 -0.15 -0.29 —-0.10
ACy 0.22 0.09 0.01 0.18 0.09 0.17  —0.10 0.12 0.25 0.10
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Table 5. Exchange Rate Returns and Risk Factors

This table presents time-series regression estimates. The dependent variable is the volatility risk premium
strategy (VRP) that buys (sells) currencies with the highest (lowest) l-year volatility risk premium. As
explanatory variables, we use the currency strategies described in Table 3 in Panel A, the Fama and French
(1992) and the equity momentum factors in Panel B, and the Fung and Hsieh (2004) factors in Panel C. Newey
and West (1987) with Andrews (1991) optimal lag selection are reported in parenthesis. The superscripts a, b,
and c indicate statistical significance at 10%, 5%, and 1%, respectively. Returns are annualized. The strategies
are rebalanced monthly from January 1996 to August 2011. Exchange rates are from Datastream whereas
implied volatility quotes are proprietary data from JP Morgan. Fama and French (1992) factors are from
French’s website whereas the Fung and Hsieh (2004) factors are from Hsieh’s website.

Panel A: Currency Factors

a DOL CAR MOM VAL RR R?
Developed
0.05° 0.14 —0.220 0.11 0.10 —0.04 0.05

(0.02) (0.09) (0.09)  (0.08) (0.13) (0.12)

Developed & Emerging
0.04* —0.04 —0.31°¢ 0.09 0.32° 0.08 0.15
(0.02) (0.07)  (0.09)  (0.08) (0.11) (0.09)

Panel B: Equity Factors

Q RS, SMB HML MOME R?
Developed
0.05® —0.07 —0.05 —0.09¢ —0.05 0.01

(0.02) (0.06) (0.05)  (0.05) (0.03)

Developed € Emerging
0.05* —0.07¢ —0.10* —0.10® —0.05% 0.03
(0.02) (0.04) (0.05)  (0.05) (0.03)

Panel C: Hedge Fund Factors
@ Bond Curr  Comm  FEquity Size Bond Credit
Trend Trend Trend Market Spread Market Spread R?
Developed
0.05° 0.14 -0.17 0.09 —0.04 —0.05 —0.09 0.07 0.01
(0.02) (0.12) (0.11) (0.17) (0.05) (0.05) (0.11) (0.21)
Developed & Emerging
0.04° 0.35 —0.03 0.08 —0.02 —0.10® —0.16° —0.07 0.06
(0.02) (0.1) (0.13) (0.16) (0.04) (0.05) (0.07) (0.10)
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Table 7. $-Sorted Portfolios: Average Volatility Risk Premia

This table presents descriptive statistics of S-sorted currency portfolios. Each § is obtained by regressing
individual currency excess returns on the average volatility risk premia using a 36-month moving window. The
long (short) portfolio Pr, (Ps) contains the top 20% of all currencies with the lowest (highest) 5. H/L denotes a
long-short strategy that buys Pr and sells Pg. The table also reports the first order autocorrelation coefficient
(ACy), the annualized Sharpe ratio (SR), and the frequency of portfolio switches (Freq). Panel A displays the
overall excess return, whereas Panel B reports the exchange rate component only. Panel C presents the pre-
and post-formation s, and the pre- and post-formation interest rate differential (if) relative to the US dollar.
Standard deviations are reported in brackets whereas standard errors are reported in parentheses. Returns
are expressed in percentage per annum. The strategies are rebalanced monthly from January 1996 to August
2001. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP

Morgan.
Panel A: Excess Returns
Pr P, P P Ps H/L Pr P, P Py Pg H/L
Developed Developed & Emerging
Mean 5.54 1.70 3.46 2.06 6.76 —1.23 4.16 2.22 3.33 3.34 5.43 —1.27
Sdev 9.50 10.48 9.09 10.17 1190 10.91 8.61  10.00 9.49 9.97 11.38 10.67
Skew 0.27 0.05 —-0.52 —0.04 —0.36 0.80 0.04 0.38 —0.29 —-0.25 —0.67 1.14
Kurt 3.04 4.55 5.03 4.53 4.93 6.78 2.35 4.83 4.79 3.99 5.45 8.15
SR 0.58 0.16 0.38 0.20 0.57 —0.11 0.48 0.22 0.35 0.33 0.48 —0.12
SO 1.11 0.25 0.52 0.30 0.81 —0.19 0.88 0.37 0.50 0.49 0.66 —0.22
MDD  -0.19 -0.27 -0.31 -0.30 -0.27 -0.35 -0.19 -0.27 -0.32 -0.27 -0.27 —-0.35
ACh 0.03 0.01 0.19 0.12 0.10 0.03 0.04 0.05 0.18 0.11 0.12 0.01
Freq 0.18 0.25 0.32 0.29 0.09 0.09 0.16 0.18 0.28 0.26 0.10 0.10
Panel B: FX Returns
Mean 6.39 1.91 3.07 1.18 4.69 1.70 5.10 2.35 2.78 1.56 3.21 1.90
Sdev 9.41 1041 9.06 10.08 11.88 10.97 8.52 9.94 9.44 9.82 11.33 10.72
Skew 0.30 0.04 —-0.56 —0.07 —0.38 0.87 0.06 0.37 —-0.33 -0.31 -0.76 1.30
Kurt 3.11 4.54 5.15 4.43 4.98 7.02 2.34 4.88 4.84 3.99 5.65 8.75
SR 0.68 0.18 0.34 0.12 0.39 0.15 0.60 0.24 0.29 0.16 0.28 0.18
SO 1.33 0.28 0.46 0.17 0.56 0.28 1.13 0.39 0.42 0.23 0.38 0.35
MDD  -0.16 -0.25 -0.32 -0.32 —-0.29 -0.32 -0.16 —-0.25 —-0.33 -0.29 -0.29 —-0.22
AC, 0.02 0.01 0.19 0.12 0.10 0.05 0.04 0.04 0.18 0.09 0.11 0.02
Freq 0.18 0.25 0.32 0.29 0.09 0.09 0.16 0.18 0.28 0.26 0.10 0.10
Panel C: Portfolio Formation

pre-if —-0.85 —0.21 0.39 0.88 2.08 —-0.94 -0.13 0.55 1.78 2.22

post-if —0.85 —0.19 0.41 0.90 2.09 —-0.97 -0.10 0.56 1.79 2.24

pre-f8 —-0.35 —0.14 0.13 0.35 0.60 —-0.42 -0.17 0.12 0.40 0.81

[0.46] [0.50] [0.46] [0.32] [0.32] [0.71] [0.73] [0.61] [0.51]  [0.56]

post-8 —0.26 —0.29 0.15 0.06 0.11 —-0.26 —0.22 0.09 0.14 0.08

(0.11) (0.10) (0.08) (0.08) (0.06) (0.09) (0.11) (0.08) (0.06) (0.07)
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Figure 1. Rolling Sharpe Ratios

The figure presents for developed countries the 1-year rolling Sharpe ratios of currency strategies formed using ¢ — 1 information. C AR is the carry strategy that buys
(sells) the top 20% of all currencies with the highest (lowest) interest rate differential relative to the US dollar. Similarly, MOM is the momentum strategy that buys
(sells) currencies with the highest (lowest) past 3-month exchange rate return, VAL is the value strategy that buys (sells) currencies with lowest (highest) real exchange
rate, RR is the risk reversal strategy that buys (sells) currencies with the lowest (highest) 1-year 10-delta risk reversal, and V RP is the volatility risk premium strategy
that buys (sells) currencies with the highest (lowest) 1-year volatility risk premium. The strategies are rebalanced monthly from January 1996 to August 2011. Exchange
rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan. In Internet Appendix Figure A.1 presents the 1-year rolling Sharpe
ratios for developed & emerging countries.
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Figure 2. Currency Strategies and Payoffs

The figure presents for developed countries the cumulative wealth to currency strategies formed using ¢t — 1 information. The strategies are rebalanced monthly from
January 1996 to August 2011, and described in Figure 1. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
In Internet Appendix Figure A.2 presents the cumulative wealth to currency strategies for developed & emerging countries.
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Figure 3. Global Minimum Volatility Portfolios

The figure presents the global minimum volatility portfolio (MVP) and the efficient frontier (solid line) built using the currency strategies described in Figure 1. The
portfolio weights (N x 1) are reported in parentheses and computed as w = (£7')/(¢/2 7)) where ¥ is the N x N covariance matrix of the strategies’ returns, ¢ is a
N x 1 vector of ones, and N denotes the number of strategies. The dashed line denotes the efficient frontier that excludes the volatility risk premium (VRP) strategy.
Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
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Figure 4. Reversal in the Volatility Risk Premium Strategy

This figure presents cumulative average returns to the volatility risk premium (V RP) strategy after portfolio formation. VRP buys (sells) the top 20% of all currencies
with the highest (lowest) 1-year volatility risk premia. Post-formation returns are constructed for 1,2, ..., 20 months following the formation period. This is equivalent to
building new portfolios every month and recording them for the subsequent 1,2, ...,20 months (using overlapping horizons). We cumulate risk-adjusted (with respect to
the carry trade strategy) excess returns and exchange rate returns. The strategies are rebalanced monthly from January 1996 to August 2011. Exchange rates are from
Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
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Figure 5. Futures Net Positions and Volatility Risk Premium Strategy

The figure presents the net position on currency futures in the volatility risk premium (VRP) strategy. We rank currencies by volatility risk premia into four baskets at
time ¢, and then compute the average net position on futures at time ¢. Finally, we take the difference between the first (currencies with the cheapest volatility insurance)
and the last (currencies with the most expensive volatility insurance) portfolio. The net (long minus short) position on futures is standardized over a 3-month rolling
window. Commercial traders use the futures market primarily to hedge their business activities whereas financial (or non-commercial) traders use the futures market for
speculative purposes. The data runs from January 1996 to August 2011 at weekly frequency (collected every Tuesday). Exchange rates are from Datastream, implied
volatility quotes are proprietary data from JP Morgan, whereas futures positions are from the Commodity Futures Trading Commission (CFTC).
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This Internet Appendix provides a detailed description of additional tests and robustness

checks.

A

Data Construction

Below we provide a detailed description of the predictive variables used in Table 8.

TED denotes the spread between the 3-month LIBOR and 3-month T-bill rate. We use

the rolling average over the past 12-month window.

AV IX is the change in the VIX index. We use the rolling average over the past 12-month

window.

AFST is the change in the St. Louis Fed Financial Stress index. We use the rolling

average over the past 12-month window.

HED is the aggregate hedging measure on foreign exchange risk based on currency
futures positions of commercial (com) and financial (fin) traders from the Commodity
Futures Trading Commission (CFTC). We first measure the hedging position on each

of the market segment as . .

HED; = LT
i1+ Liy

where S} (L) denotes the short (long) futures position at time ¢, and ¢ denotes either

commercial or financial traders. The normalization means that the net positions are

measured relative to the aggregate open interest in the previous period, respectively.!

Finally, we construct the aggregate hedging measure on foreign exchange risk as
HED, = HED{™ + HED/™,

and winsorize it at 99%. We the aggregate hedging measure on foreign exchange risk
for the Australian dollar (AUD) and the Japanese yen (JPY) relative to the US dollar

as these currency pairs are typically used for the carry trade strategy.

!'When the normalizing component is equal to zero, we simply use previous period non-zero value.



e Fund Flows denotes capital flows into hedge funds. We measure it as the AUM-weighted
net flow of currency and global macro funds scaled by the lagged AUM. Specifically, we
employ the AUM and the returns for 634 currency and global macro funds from Patton

and Ramadorai (2013). For each fund i, we measure time-t net flow as follows
Flow; = AUM; — AUM; | (1+71y) .

We then construct the AUM-weighted net flow scaled by the lagged AUM as

£ . Flow!
Flow; = Y_ wi | ——"
P E T AUM
where .
i AUM;_,
W= =
TLYTAUM

and x indicates the available number of hedge funds at time t.
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Table A.2. Currency Strategies: Net of Bid-Ask

This table presents descriptive statistics of currency strategies formed using time ¢ — 1 information. CAR
is the carry trade strategy that buys (sells) the top 20% of all currencies with the highest (lowest) interest
rate differential relative to the US dollar. Similarly, MOM is the momentum strategy that buys (sells)
currencies with the highest (lowest) past 3-month exchange rate return, VAL is the value strategy that buys
(sells) currencies with lowest (highest) real exchange rate, RR is the risk reversal strategy that buys (sells)
currencies with the lowest (highest) 1-year 10-delta risk reversal, and VRP is the volatility risk premium
strategy that buys (sells) currencies with the highest (lowest) 1-year volatility risk premium. The table also
reports the first order autocorrelation coefficient (ACY), the annualized Sharpe ratio (SR), the Sortino ratio
(S0), the maximum drawdown (M DD), and the frequency of portfolio switches for the long (Freqr) and
the short (F'regs) position. Panel A displays the overall currency excess return whereas Panel B reports
the exchange rate return component only. Panel C presents the sample correlations of the currency excess
returns. Returns are expressed in percentage per annum and adjusted for transaction costs. The strategies
are rebalanced monthly from January 1996 to August 2011. Exchange rates are from Datastream whereas
implied volatility quotes are proprietary data from JP Morgan.

Panel A: Excess Returns
CAR MOM VAL RR VRP CAR MOM VAL RR VRP

Developed Developed & Emerging
Mean 5.74 1.87 5.03 4.55 3.31 6.35 1.21 2.50 4.23 1.29
Sdev 10.66 9.55 9.38 11.39 8.33 9.96 8.30 8.90 10.60 8.17
Skew —0.93 0.35 —-0.26 —0.72 0.28 —-094 -0.04 -0.15 -0.15 0.13
Kurt 5.65 3.85 3.49 6.57 3.47 4.55 2.96 3.17 4.45 3.28
SR 0.54 0.20 0.54 0.40 0.40 0.64 0.15 0.28 0.40 0.16
SO 0.64 0.36 0.81 0.50 0.70 0.80 0.25 0.44 0.58 0.26
MDD -038 —-0.19 -0.15 -0.37 -0.21 -0.22 —-0.15 -0.15 —-0.25 —0.21
ACy 0.09 0.00 —0.03 0.07 0.04 0.01  —-0.09 0.01 0.08 0.04
Freqr, 0.13 0.48 0.09 0.17 0.24 0.15 0.49 0.07 0.22 0.26
Freqgs 0.07 0.43 0.07 0.27 0.32 0.16 0.46 0.06 0.26 0.27
Panel B: FX Returns
Mean 0.24 1.63 2.88 1.21 4.17 —0.84 0.83 —0.02 —-0.03 3.38
Sdev 10.67 9.58 9.44 1148 8.35 9.99 8.18 8.89  10.59 8.16
Skew —0.93 0.42 —-0.29 -0.75 0.28 —-1.04 -0.02 -0.16 -0.21 0.12
Kurt 5.82 4.17 3.51 6.82 3.61 4.83 3.13 3.19 4.73 3.50
SR 0.02 0.17 0.31 0.11 0.50 —0.08 0.10 0.00 0.00 0.41
SO 0.03 0.32 0.46 0.13 0.88 —0.10 0.17 0.00 0.00 0.68
MDD —-043 —-0.21 -0.24 -040 -0.19 -0.37 -0.18 —-0.28 -0.29 -—0.18
ACy 0.11 0.00 —0.02 0.08 0.04 0.03 —-0.12 0.01 0.08 0.04
Freqr, 0.13 0.48 0.09 0.17 0.24 0.15 0.49 0.07 0.22 0.26
Freqg 0.07 0.43 0.07 0.27 0.32 0.16 0.46 0.06 0.26 0.27
Panel C: Correlations
CAR 1.00 —0.16 0.44 0.68 —0.18 1.00 —0.03 0.54 0.57 —0.21
MOM —0.16 1.00 -0.17 —-0.17 0.10 —0.03 1.00 -0.13 -0.15 0.10
VAL 0.44 -0.17 1.00 0.48 0.23 0.54 -0.13 1.00 0.64 —0.10
VRP 0.68 —-0.17 0.48 1.00 -0.01 0.57 —-0.15 0.64 1.00 -0.12
RR —0.18 0.10 0.23 —0.01 1.00 —0.21 0.10 -0.10 -0.12 1.00




Table A.3. Currency Strategies: VRP Measures

This table presents descriptive statistics of currency strategies sorted on the 1-year volatility risk premia,
defined as the realized volatility (RV;) minus the synthetic volatility swap rate (SW;). V RP denotes a strategy
where SW; is computed by interpolating implied volatilities using the cubic spline method (Jiang and Tian,
2005). VRP,, denotes a strategy where SW, is constructed by interpolating implied volatilities using the
Vanna-Volga method (Castagna and Mercurio, 2007). V RP,,, denotes a strategy where SW; is set equal
to the at-the-money implied volatility. V RP;; denotes a strategy where SW; is computed using the simple
variance swap method (Martin, 2012). The table also reports the first order autocorrelation coefficient (AC ),
the annualized Sharpe ratio (SR), the Sortino ratio (SO), the maximum drawdown (M D D), and the frequency
of portfolio switches for the long (Freqr,) and the short (Freqg) position. Panel A displays the overall currency
excess return whereas Panel B reports the exchange rate return component only. Panel C presents the sample
correlations of the currency excess returns. Returns are expressed in percentage per annum. The strategies
are rebalanced monthly from January 1996 to August 2011. Exchange rates are from Datastream whereas
implied volatility quotes are proprietary data from JP Morgan.

Panel A: Excess Returns
VRP VRP,,, VRP, VRP VRP,,, VRP,

Developed Developed & Emerging
Mean 4.03 4.35 4.01 2.34 3.05 3.53
Sdev 8.33 8.21 8.24 8.18 8.18 7.95
Skew 0.28 —0.04 0.12 0.12 —0.02 0.25
Kurt 3.47 3.46 3.34 3.26 3.23 3.32
SR 0.48 0.53 0.49 0.29 0.37 0.44
SO 0.87 0.85 0.82 0.49 0.62 0.82
MDD —0.18 -0.21 —-0.18 —0.18 —-0.20 —0.18
ACh 0.04 0.02 0.11 0.05 0.05 0.07
Freqr, 0.24 0.26 0.24 0.26 0.25 0.23
Freqs 0.32 0.35 0.33 0.27 0.31 0.28
Panel B: FX Returns
Mean 4.40 4.11 4.00 3.72 3.03 4.05
Sdev 8.35 8.20 8.23 8.17 8.17 7.95
Skew 0.28 —0.06 0.09 0.12 —0.01 0.24
Kurt 3.61 3.61 3.45 3.50 3.43 3.63
SR 0.53 0.50 0.49 0.46 0.37 0.51
SO 0.93 0.78 0.80 0.75 0.59 0.89
MDD —0.19 -0.21 -0.19 —0.18 -0.21 -0.19
ACh 0.04 0.02 0.11 0.04 0.04 0.06
Freqr, 0.24 0.26 0.24 0.26 0.25 0.23
Freqs 0.32 0.35 0.33 0.27 0.31 0.28
Panel C: Correlations
VRP 1.00 0.84 0.84 1.00 0.82 0.87
VRP,tm 0.84 1.00 0.90 0.82 1.00 0.91
VRP;; 0.84 0.90 1.00 0.87 0.91 1.00




0'T] 98 [gcol 9F [1zol 8T [800] L [80°0] L [60°0] S qyvz
l00'T] 221 [geol oL [1z0]l Lz [e170] ST [60°0] 2T [20°0] € amr
o'T] 29  [6L0l €¢ [L00/ ¢ [600/9 — [50°0] € AY.T
oT] 20 [erols [8zol 61 [egolee [pTol 9T [£0°0] @ ans
001] 29 [600]9 [200/¢ [e10l8 [szo) LT [9%°0] 1€ NTd
0o0T] 29  [990l ¥% [61°0] €T [o1°0] L [FOO] € — NXIN
00'T] 29 [sT0ler [8s1°0l2r [s10l 0T [200]¢  [gvO] ST MY T
oo'T] g¢  [9g0l 0z [ggol ST [s00] €  [200] %  [8T0] OT ANH
0011 29 [F00l ¢ [ezol LT [pe0l €c [61°0) €1 [91°0] TT MZD
00T] 29 [e90l ey [00l¢ [200l¢ [sT0]OT [L0°0]¢G TH4
[00'T] e81  [21°0] 1€ [12°0] 6¢ [FCO] 9% [S20] 9% [€1°0] GC [00T] 68T [gz0] 0F [sz0] [ezol ev [eT0l 82 [eT°0) 22 MAS
[00'T] 28T [¢00] 6  [0z0] 8¢ [1z0] 6¢ [8z0] ¢ [92°0] 67 [00T] 28T [81°0] ¥¢  [L1°0] 10l 82 [pT0] ¥% [92°0l 67 dZN
[o0'T] ¢81 [61°0] ¢¢ [11°0] 12 [12°0] 6¢ [8€°0] €9 [€1°0] G2 [00'1] ¢81 [gz0] 7  [91°0)] [col s¢  [og0] 9 [110] 12 MON
[00'T] #8T  [21°0] 1€ [11°0] 12 [21°0] 2z [81°0] P& [1¥°0] 9L [00'T] #8T  [F20]l ¥% [80°0] leT0l ¥z [9T°0) 08 [8€°0) T2 Ad[l
[00'T] 281 [gzol €7 [91°0] 0¢ [2e0] 6¢ [12°0) OF [80°0] ST [00'T) 28T [8z0] €¢ [gzo] 17 [8z0] €¢ [FT°0] @N [L00) T dJdgD
[00'T] €91 [900] 6  [0F70l €9 [2£0] 09 [s1°0] ¥T [€0°0] G [007T] €91 [9z0l a¥ [gv0] [cz0] 9¢  [L0°0] 2T [€0°0] & qynd
[00°T] 281 [e1°0] ¥&¢ 230 28 [Lz0l 16 [eT°0] G2 — [00T] 28T [ee0l 29 [sP0] [21°0] 1€ [50°0] S - MMd
[00'T] 28T [¢00] 6  [L00] €T [oz0] 8% [1¥°0] L. [12°0] OF [00'T] 28T [g00] 6  [80°0] [ce'0] g9 [ze0] 09 [0z0l 8¢ AHO
[00'T] 28T [90°0] 1T [0z0] L& [gz0] 17 [ze0] 6¢ [12°0] 6¢ [00T] 28T [21°0] 1€ [21°0] [0z0] L& [og0] 9 [LT0l2e  avo
[00°T] 281 — [60°0] LT [oT0] 8T [ee0] 65 [0S0 €6 [00'T] 28T  [60°0] 9T  [90°0] [oT°0] 61 [82°0] 28 [8F°0l 68 @V
burbuowisy g3 %w&&wamQ padojana (T
107, S 2 &7 2 T 107, S Tl & e T

‘WeSI0IN J[ woly eyep Arejorrdoid axe sejonb
A119e10A por[dll SeOIOUM WDALISDID(] THOIJ oI Sojel 9SUuRYOXH 'TT(g ISNSNY 01 966T Alenue[ wWoIj A[YIUOW PIOULR[RCDI 9I€ SOI399eI)s o], I0)SOAUI INO
0} 9[qr[IeAR ST ADUSLIND 91} (20,],) SO} JO Ioquinu [B10} ) pue orjojriod uoAls e ut sreadde AOUSIIMD © SOUWIT) JO IOQUINT 91} UMD OTyel Sk Pandurod st
Aouenboij oy T, "sorjojrod ermold FSLI AJ[IIR[OA OAT] O]} JO OB SIOIUS ADUSLIND ® (S10xorIq Ul AoUeNDOIJ 07} puR) SO} JO Ioquunu 1) sjuesald a[qe) ot T,

umopealgqg AdUadin) :SOIO0J}I0J elwald MSIY AJ[IIC[OA ‘F°'V O[qelL



Table A.5. §-Sorted Portfolios: Principal Component of Volatility Risk Premia

This table presents descriptive statistics of 8-sorted currency portfolios. Each § is obtained by regressing
individual currency excess returns on the first principal component of volatility risk premia using a 36-month
moving window. The long (short) portfolio Pr, (Ps) contains the top 20% of all currencies with the lowest
(highest) 8. H/L denotes a long-short strategy that buys Py, and sells Pg. The table also reports the first order
autocorrelation coefficient (ACY), the annualized Sharpe ratio (SR), and the frequency of portfolio switches
(Freq). Panel A displays the overall excess return, whereas Panel B reports the exchange rate component only.
Panel C presents the pre- and post-formation s, and the pre- and post-formation interest rate differential (if)
relative to the US dollar. Standard deviations are reported in brackets whereas standard errors are reported
in parentheses. Returns are expressed in percentage per annum. The strategies are rebalanced monthly from
January 1996 to August 2001. Exchange rates are from Datastream whereas implied volatility quotes are
proprietary data from JP Morgan.

Panel A: Excess Returns

Pr P, P P Ps H/L Pr P, P Py Pg H/L
Developed Developed & Emerging
Mean 5.76 2.07 2.72 1.45 7.15 —1.40 3.69 2.62 3.13 2.48 5.70 —2.00
Sdev 9.51  10.45 8.84 1066 11.69 10.80 8.61 9.97 10.13 9.37 11.19 10.65
Skew 0.24 0.03 —0.51 0.00 —-0.38 0.79 0.08 0.35 —-0.20 -049 -0.49 0.96
Kurt 3.03 4.58 5.33 4.17 5.20 6.94 2.43 4.78 4.22 5.58 4.65 6.46
SR 0.61 0.20 0.31 0.14 0.61 —0.13 0.43 0.26 0.31 0.26 0.51 —0.19
SO 1.15 0.30 0.42 0.20 0.86 —0.22 0.80 0.43 0.47 0.38 0.71 —0.36
MDD  —-0.17 -0.26 -0.31 -0.33 —-0.26 —0.36 -0.24 —-0.23 —-031 -0.29 -0.26 —0.33
ACh 0.01 0.01 0.21 0.11 0.08 0.04 0.08 0.06 0.15 0.14 0.08 —0.01
Freq 0.15 0.25 0.31 0.29 0.11 0.11 0.14 0.17 0.22 0.23 0.11 0.11
Panel B: FX Returns
Mean 6.52 2.26 241 0.67 5.02 1.50 4.59 2.56 2.49 1.15 3.52 1.06
Sdev 9.43  10.40 8.79 10.53 11.67 10.88 8.52 9.90 10.06 9.25 11.17 10.75
Skew 0.28 0.02 —-0.55 —0.04 —0.40 0.86 0.10 0.34 —-0.22 —-0.58 —0.61 1.14
Kurt 3.08 4.56 5.48 4.11 5.25 7.16 2.40 4.85 4.25 5.48 4.84 7.02
SR 0.69 0.22 0.27 0.06 0.43 0.14 0.54 0.26 0.25 0.12 0.32 0.10
SO 1.36 0.33 0.38 0.09 0.60 0.24 1.04 0.42 0.37 0.17 0.42 0.20
MDD  —-0.15 -0.25 -0.32 -0.33 —-0.28 —0.32 -0.20 -0.21 -0.32 -0.30 -0.32 —0.23
AC, 0.00 0.01 0.22 0.10 0.07 0.05 0.07 0.06 0.14 0.13 0.08 0.00
Freq 0.15 0.25 0.31 0.29 0.11 0.11 0.14 0.17 0.22 0.23 0.11 0.11
Panel C: Portfolio Formation

pre-if  —0.77 —0.18 0.31 0.78 2.13 —0.89 0.06 0.64 1.33 2.17

post-if —0.69 —0.24 0.38 0.84 2.13 —0.94 0.10 0.68 1.34 2.18

pre-f3 —-0.11 —0.05 0.05 0.11 0.21 —-0.11 —-0.05 0.05 0.11 0.21

[0.12) [0.13] [0.12] [0.11] [0.14] [0.12] [0.13] [0.12] [0.11]  [0.14]

post-B  —0.10 —0.04 0.04 0.02 0.07 —0.07 —0.05 0.02 0.03 0.02

(0.04) (0.02) (0.03) (0.04) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)




Table A.6. §-Sorted Portfolios: Equity Volatility Risk Premium

This table presents descriptive statistics of S-sorted currency portfolios. Each § is obtained by regressing
individual currency excess returns on the US equity volatility risk premium using a 36-month moving window.
The volatility risk premium is defined as the 1-month realized volatility on the S&P500 minus the VIX index.
The long (short) portfolio Py, (Ps) contains the top 20% of all currencies with the lowest (highest) 5. H/L
denotes a long-short strategy that buys Py, and sells Pg. The table also reports the first order autocorrelation
coefficient (AC1), the annualized Sharpe ratio (SR), and the frequency of portfolio switches (Freq). Panel

A displays the overall excess return, whereas Panel B reports the exchange rate component only.

Panel

C presents the pre- and post-formation ’s, and the pre- and post-formation interest rate differential (if)

relative to the US dollar. Standard deviations are reported in brackets whereas standard errors are reported

in parentheses. Returns are expressed in percentage per annum. The strategies are rebalanced monthly from

January 1996 to August 2001. Data are from Datastream.

Panel A: Excess Returns

Pr P, P P Ps H/L Pr P, P Py Pg H/L
Developed Developed & Emerging
Mean 6.22 3.65 2.43 2.33 3.50 2.72 7.04 2.46 3.52 1.98 3.29 3.76
Sdev 11.04 10.24 10.19 10.47 8.73  10.07 10.85  10.37 9.67 10.37 7.59 9.96
Skew —-0.58 —0.17 0.02 —0.06 0.30 -1.10 -0.72 -0.28 —-0.04 043 —-0.19 -—-1.08
Kurt 4.98 4.41 4.21 4.56 3.714 7.83 6.03 4.05 4.31 4.69 2.62 10.41
SR 0.56 0.36 0.24 0.22 0.40 0.27 0.65 0.24 0.36 0.19 0.43 0.38
SO 0.78 0.56 0.38 0.33 0.73 0.33 0.88 0.36 0.56 0.32 0.71 0.47
MDD  —-0.27 -0.28 -0.32 —-0.28 —-0.20 -0.32 -0.23 —-0.30 —-0.30 -—-0.28 —0.20 —0.25
ACh 0.11 0.12 0.24 0.06 —0.05 0.03 0.14 0.15 0.21 0.04 0.00 0.05
Freq 0.12 0.25 0.29 0.30 0.16 0.16 0.16 0.25 0.32 0.33 0.17 0.17
Panel B: FX Returns
Mean 4.55 3.15 2.18 2.43 3.68 0.87 4.74 1.28 3.12 2.16 3.76 0.98
Sdev 10.97 10.22 10.04 10.42 8.76  10.18 10.72  10.33 9.48 10.30 7.62 10.03
Skew —-0.61 —0.21 0.00 —0.06 0.32 -—-1.17 —-0.80 —0.35 —0.08 0.43 —-0.19 -—-1.23
Kurt 5.07 4.57 4.14 4.55 3.84 8.21 6.37 4.17 4.20 4.77 2.68 11.27
SR 0.41 0.31 0.22 0.23 0.42 0.09 0.44 0.12 0.33 0.21 0.49 0.10
SO 0.57 0.47 0.34 0.34 0.75 0.10 0.59 0.18 0.50 0.35 0.80 0.12
MDD -0.29 -0.29 -0.32 -0.27 -—-0.21 -0.36 -024 -0.34 -0.28 —-0.27 -0.21 —0.30
ACq 0.10 0.12 0.23 0.06 —0.05 0.04 0.12 0.15 0.20 0.04 0.00 0.05
Freq 0.12 0.25 0.29 0.30 0.16 0.16 0.16 0.25 0.32 0.33 0.17 0.17
Panel C: Portfolio Formation

pre-if 1.67 0.50 0.25 —-0.10 -0.18 2.31 1.17 0.40 —-0.18 —047

post-i f 1.70 0.54 024 —-0.15 —-0.12 2.33 1.21 0.38 —-0.26 —0.41

pre-f3 —-0.23 —-0.14 —-0.08 —0.02 0.07 -0.23 —-0.14 —-0.08 —0.02 0.07

[0.15] [0.12] [0.12] [0.10]  [0.11] [0.15] [0.12] [0.12] [0.10]  [0.11]

post-B —0.04 —0.03 0.00 0.09 0.02 —0.04 —0.03 0.00 0.09 0.02

(0.03) (0.02) (0.02) (0.03) (0.06) (0.03) (0.02) (0.02) (0.03) (0.06)




This table presents selected descriptive statistics of realized volatility spread (RV Spg) strategies formed
using time ¢ — 1 information. The strategy buys (sells) the top 20% of all currencies with the highest (lowest)
volatility spread defined as long-maturity (L) minus short-maturity (5) realized volatility. Realized volatilities
are constructed using daily exchange rate returns. The table reports the annualized Sharpe ratio based on
the overall excess (exchange rate) returns in Panel A (Panel B), the sample correlation with the carry trade
(CAR) strategy in Panel C, and the sample correlation with the volatility risk premium (V RP) strategy in
Panel D. The strategies are rebalanced monthly from January 1996 to August 2011. Exchange rates are from

Table A.7. Volatility Spread Strategies

Datastream.
Lye  Lnvo  Lviz Lais Lvoa Lye  Lavo  Lai2 Lais Lvsoa
Developed (G10) Developed & Emerging (G20)
Sharpe Ratios: Fxcess Returns
St 0.60 0.41 0.39 0.58 0.45 0.64 0.38 0.45 0.39 0.38
Sma 0.59 0.45 0.49 0.34 0.45 0.53 0.45 0.49 0.31 0.21
Swms 0.53 0.52 0.45 0.24 0.31 0.43 0.40 0.17 0.20 0.32
Swe 0.19 0.12 0.02 0.02 0.04 0.07 0.01 0.08
Sharpe Ratios: FX Returns
St 0.60 0.44 0.43 0.60 0.47 0.59 0.34 0.41 0.35 0.34
Sma 0.60 0.47 0.49 0.36 0.47 0.53 0.41 0.43 0.27 0.17
Sa 0.54 0.53 0.47 0.27 0.32 0.44 0.37 0.15 0.17 0.28
Swe 0.22 0.15 0.04 0.04 0.04 0.09 0.01 0.07
Correlation with CAR: Fxcess Returns
Sy —0.11 -0.17 -0.24 —-0.20 -0.28 0.02 0.03 -0.02 0.05 —0.03
Sy —0.12  —-0.07 -0.09 -—-0.10 -0.23 —0.05 0.02 0.04 0.03 —-0.01
Sys —0.20 -0.17 -0.10 -0.12 —0.24 —0.12 0.00 0.06 0.08 0.00
Swme -0.13 -0.03 -0.04 —-0.13 0.14 0.15 0.13 —-0.01
Correlation with VRP: Excess Returns

St 0.20 0.30 0.26 0.23 0.16 0.00 0.03 0.02 0.02 —0.08
Swma 0.28 0.30 0.30 0.19 0.09 0.13 0.18 0.09 0.02 —-0.09
Srs 0.32 0.39 0.38 0.23 0.09 0.12 0.17 0.11 —-0.05 -0.13
Swe 0.14 0.11 0.04 -0.10 0.01 0.03 -0.06 —0.13
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Figure A.1. Rolling Sharpe Ratios: Developed & Emerging Countries

The figure presents for developed & emerging countries the 1-year rolling Sharpe ratios of currency strategies formed using ¢ — 1 information. C AR is the carry strategy
that buys (sells) the top 20% of all currencies with the highest (lowest) interest rate differential relative to the US dollar. Similarly, MOM is the momentum strategy
that buys (sells) currencies with the highest (lowest) past 3-month exchange rate return, VAL is the value strategy that buys (sells) currencies with lowest (highest) real
exchange rate, RR is the risk reversal strategy that buys (sells) currencies with the lowest (highest) 1-year 10-delta risk reversal, and V RP is the volatility risk premium
strategy that buys (sells) currencies with the highest (lowest) 1-year volatility risk premium. The strategies are rebalanced monthly from January 1996 to August 2011.
Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
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Figure A.2. Currency Strategies and Payoffs: Developed & Emerging Countries

The figure presents for developed & emerging countries the cumulative wealth to currency strategies formed using t — 1 information. The strategies are rebalanced monthly
from January 1996 to August 2011, and described in Figure A.1. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP
Morgan.
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Figure A.3. Rolling Portfolio Weights: Developed Countries

The figure presents the weights of the global minimum volatility portfolio computed over a rolling windows of 3 years. The dashed lines denote the 95% confidence
interval. The sample period runs from January 1996 to August 2011. The strategies are rebalanced monthly from January 1996 to August 2011, and described in Figure
A.1. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
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Figure A.4. Rolling Portfolio Weights: Developed & Emerging Countries

The figure presents the weights of the global minimum volatility portfolio computed over a rolling windows of 3 years. The dashed lines denote the 95% confidence
interval. The sample period runs from January 1996 to August 2011. The strategies are rebalanced monthly from January 1996 to August 2011, and described in Figure
A.1. Exchange rates are from Datastream whereas implied volatility quotes are proprietary data from JP Morgan.
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