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Abstract

Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that insurance markets may “un-
ravel”. This memo clarifies the distinction between these two notions of unraveling in the context of
a binary loss model of insurance. I show that the two concepts are mutually exclusive occurrences.
Moreover, I provide a regularity condition under which the two concepts are exhaustive of the set
of possible occurrences in the model. Akerlof unraveling characterizes when there are no gains
to trade; Rothschild and Stiglitz unraveling shows that the standard notion of competition (pure
strategy Nash equilibrium) is inadequate to describe the workings of insurance markets when there
are gains to trade.

1 Introduction

Akerlof (1970) and Rothschild and Stiglitz (1976) have contributed greatly to the understanding of the
potential problems posed by private information on the workings of insurance markets. Akerlof (1970)
shows how private information can lead to an equilibrium of market unraveling, so that the only unique
equilibrium is one in which only the worst quality good (i.e. the “lemons”) are traded. Rothschild and
Stiglitz (1976) show that private information can lead to an unraveling of market equilibrium, in which
no (pure strategy) competitive equilibrium exists because insurance companies have the incentive to
modify their contracts to cream skim the lower-risk agents from other firms.

While the term unraveling has been used to describe both of these phenomena, the distinction
between these two concepts is often unclear, arguably a result of each paper’s different approach to
modeling the environment. Akerlof (1970) works in the context of a “supply and demand” environment
with a fixed contract or asset (e.g. a used car), whereas Rothschild and Stiglitz (1976) work in the
context of endogenous contracts in a stylized environment with only two types (e.g. high and low
types).

This memo develops a generalized binary loss insurance model that incorporates the forces high-
lighted in both Akerlof (1970) and Rothschild and Stiglitz (1976). Using this unified model, I show
that the equilibrium of market unraveling (in Akerlof) is a mutually exclusive occurrence from the
unraveling of market equilibrium (in Rothschild and Stiglitz). Moreover, under the regularity condi-
tion that the type distribution has full support, one of these two events must occur: either there is a
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Competitive (Nash) Equilibrium of no trade (Akerlof unraveling) or a Competitive (Nash) Equilibrium
does not exist (Rothschild and Stiglitz unraveling). Thus, not only are these two concepts of unravel-
ing different, but they are mutually exclusive and generically exhaustive of the potential occurrences
in an insurance market with private information.

The mutual exclusivity result is more or less obvious in the canonical two-type binary loss model.
The market unravels a la Rothschild and Stiglitz when the low type has an incentive to cross-subsidize
the high type in order to obtain a more preferred allocation. This willingness of the good risk to
subsidize the bad risk is precisely what ensures the market will not unravel a la Akerlof. Conversely,
if the market unravels a la Akerlof, then the good risk is not willing to subsidize the bad risk, which
implies an absence of the forces that drive non-existence in Rothschild and Stiglitz.

The intuition for the exhaustive result is also straightforward, but perhaps more difficult to see
in the context of the stylized two-type model. When the type distribution has full support, trade
requires cross-subsidization of types. If some low-risk agent is willing to cross-subsidize higher-risk
agents, then the equilibrium will unravel a la Rothschild and Stiglitz (1976). Competitive (Nash)
equilibriums cannot sustain cross-subsidization and break down when agents want to provide it. In
contrast, if no agents are willing to cross-subsidize the worse risks in the population, then there exists
a unique Nash equilibrium at the endowment: no one on the margin is willing to pay the average cost
of worse risks, and any potential contract (or menu of contracts) unravels a la Akerlof (1970).

The logic can be seen in the canonical two-types case. Here, the analogue of the full support
assumption is to assume the bad risk will experience the loss with certainty. The only way for the
low type (good risk) to obtain an allocation other than her endowment is to subsidize the high type
(bad risk) away from her endowment. If the low type is willing to do so, the equilibrium unravels a la
Rothschild and Stiglitz. If the low type is unwilling to do so, the equilibrium unravels a la Akerlof.

In the two type model, the assumption that the bad risk experiences the loss with certainty is
clearly restrictive. However, more generally the full support assumption is quite weak. It imposes no
restriction on the mass of types anywhere in the distribution. For example, it is satisfied if insurers
believe there is a one-in-a-million chance that an applicant might know s/he will experience the loss
with arbitrarily high probability. Indeed, any finite type distribution (e.g. the two-type model of
Rothschild and Stiglitz) can be approximated arbitrarily closely with type distributions that have
full support. In this sense, the existence of pure strategy competitive equilibria of the type found by
Rothschild and Stiglitz (1976) that yield outcomes other than the endowment is a knife-edge result.
This highlights the importance of recent and future work to aid in our understanding of how best to
model competition in insurance markets.

2 Model

Agents have wealth w and face a potential loss of size l which occurs with probability p, which is
distributed in the population according to the c.d.f. F (p) with support Ψ.1 In contrast to Rothschild

1The model is adapted from Hendren (ming), which derives the no-trade condition analogue of Akerlof in the binary
loss environment but does not provide any discussion of competitive equilibriums.
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and Stiglitz (1976), I do not impose any restrictions on F (p).2 It may be continuous, discrete, or
mixed. I let P denote the random variable with c.d.f. F (p), so that realizations of P are denoted
with lower-case p. Agents of type p have vNM preferences given by

pu (cL) + (1− p)u (cNL)

where u is increasing and strictly concave, cL (cNL) is consumption in the event of (no) loss. I
define an allocation to be a set of consumption bundles, cL and cNL, for each type p ∈ Ψ, A =

{cL (p) , cNL (p)}p∈Ψ.
I assume there exists a large set of risk-neutral insurance companies, J , which each can offer

menus of contracts Aj =
{
cjL (p) , cjNL (p)

}
p∈Ψ

to maximize expected profits3. Following Rothschild

and Stiglitz (1976), I define a Competitive Nash Equilibrium as an equilibrium of a two stage game. In
the first stage, insurance companies offer contract menus, Aj . In the second stage, agents observe the
total set of consumption bundles offered in the market, AU = ∪j∈JAj , and choose the bundle which
maximizes their utility. The outcome of this game can be described as an allocation which satisfies
the following constraints.

Definition 1. An allocation A = {cL (p) , cNL (p)}p∈Ψ is a Competitive Nash Equilibrium if

1. A makes non-negative profits
ˆ
p∈Ψ

[p (w − l − cL (p)) + (1− p) (w − cNL (p))] dF (p) ≥ 0

2. A is incentive compatible

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (cL (p̃)) + (1− p)u (cNL (p̃)) ∀p, p̃ ∈ Ψ

3. A is individually rational

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

4. A has no profitable deviations: For any Â = {ĉL (p) , ĉNL (p)}p∈Ψ, it must be that

ˆ
p∈D(Â)

[p (w − l − cL (p)) + (1− p) (w − cNL (p))] dF (p) ≤ 0

where

D
(
Â
)

=

{
p ∈ Ψ|max

p̂
{pu (ĉL (p̂)) + (1− p)u (ĉNL (p̂))} > pu (cL (p)) + (1− p)u (cNL (p))

}
2To my knowledge, Riley (1979) was the first paper to discuss this environment with a continuum of types.
3In contrast to Rothschild and Stiglitz (1976), I allow the insurance companies to offer menus of consumption bundles,

consistent with the real-world observation that insurance companies offer applicants menus of premiums and deductibles.
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The first three constraints require that a Competitive Nash Equilibrium must yield non-negative
profits, must be incentive compatible, and must be individually rational. The last constraint rules out
the existence of profitable deviations by insurance companies. For A to be a competitive equilibrium,
there cannot exist another allocation that an insurance company could offer and make positive profits
on the (sub)set of people who would select the new allocation (given by D

(
Â
)
).

2.1 Mutually Exclusive Occurrences

I first show that, in this model, the insurance market has the potential to unravel in the sense of
Akerlof (1970).

Theorem 1. The endowment, {(w,w − l)}p∈Ψ, is the unique Competitive Nash Equilibrium if and
only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ\ {1} (1)

Proof. The no-trade theorem of Hendren (ming) shows that Condition (1) characterizes when the
endowment is the only allocation satisfying incentive compatibility, individual rationality, and non-
negative profits. Now, suppose A = {(w − l, l)} and consider any allocation, Â 6= {(w − l, l)}p∈Ψ.
Suppose Â delivers positive profits. Because A is the endowment, I can WLOG assume all agents
choose Â (since Â can provide the endowment to types p at no cost). But then Â would be an
allocation other than A satisfying incentive compatibility, individual rationality, and non-negative
profits, contradicting the no-trade theorem of Hendren (ming).

The market unravels a la Akerlof (1970) if and only if no one is willing to pay the pooled cost of
worse risks in order to obtain some insurance. This is precisely the logic of Akerlof (1970) but provided
in an environment with an endogenous contract space. When Condition (1) holds, no contract or menu
of contracts can be traded because they would not deliver positive profits given the set of risks that
would be attracted to the contract. This is precisely the unraveling intuition provided in Akerlof
(1970) in which the demand curve lies everywhere below the average cost curve. Notice that when this
no-trade condition holds, the endowment is indeed a Nash equilibrium. Since no one is willing to pay
the pooled cost of worse risks to obtain insurance, there exist no profitable deviations for insurance
companies to break the endowment as an equilibrium.

Theorem 1 also shows that whenever the no-trade condition holds, there must exist a Competitive
Nash Equilibrium. Thus, whenever the market unravels a la Akerlof (1970), the competitive equilib-
rium cannot unravel a la Rothschild and Stiglitz (1976). Unraveling in the sense of Akerlof (1970) is
a mutually exclusive occurrence from unraveling in the sense of Rothschild and Stiglitz (1976).

Two-type case To relate to previous literature, it is helpful to illustrate how Theorem 1 works in
the canonical two-type model of Rothschild and Stiglitz (1976). So, let Ψ =

{
pL, pH

}
with pH > pL

denote the type space and let λ denote the fraction of types pH . When pH < 1, Corollary 1 of
Hendren (ming) shows that the market cannot unravel a la Akerlof.4 Hence, the mutual exclusivity of

4If pH < 1, then equation (1) would be violated at pH = 1 by the assumption of strict concavity of u.
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Akerlof and Rothschild and Stiglitz holds trivially. But, when pH = 1, the situation is perhaps more
interesting. To see this, Figure 1 replicates the canonical Rothschild and Stiglitz (1976) graphs in the
case when pH = 1.

The vertical axis is consumption in the event of a loss, cL; the horizontal axis is consumption in
the event of no loss, cNL. Point 1 is the endowment {w − l, w}. Because pH = 1, the horizontal line
running through the endowment represents both the indifference curve of type pH and the actuarially
fair line for type pH . Notice that type pH prefers any allocation bundle that lies above this line
(intuitively, she cares only about consumption in the event of a loss).

The low type indifference curve runs through the endowment (point 1) and intersects the 45-degree
line parallel to her actuarially fair line. As noted by Rothschild and Stiglitz (1976), the outcomes in
this environment depend crucially on the fraction of low versus high types. Figure 1 illustrates the
two cases. If there are few pH types (λ is large), then point 2 is a feasible pooling deviation from
the endowment. When such a deviation is feasible, unraveling a la Akerlof does not occur: the low
type is willing to pay the pooled cost of the worse risks. But, the existence of such a deviation is
precisely what breaks the existence of a competitive equilibrium in Rothschild and Stiglitz (1976).
Point 2 involves pooling across types and cannot be a competitive equilibrium. Hence, if the market
unravels a la Akerlof, the endowment is the unique competitive equilibrium. If the market unravels
a la Rothschild and Stiglitz, there exists implementable allocations other than the endowment and
Akerlof’s notion of unraveling does not occur.

As one might gather from Figure 1, when types are arbitrarily close to 1, the only feasible com-
petitive equilibrium is the endowment. I now make this point in the more general setting that does
not require any mass of types at pH = 1.
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2.2 Exhaustive Occurrences

I now show that no only are these two notions of unraveling mutually exclusive, but they are also,
exhaustive of the possibilities that can occur in model environments when the type distribution satisfies
the following regularity condition.

Assumption 1. (Full support near p = 1) F(p) < 1 for all p < 1

Assumption 1 assumes that one cannot rule out the chance of risks arbitrarily close to p = 1.
In other words, I assume there does not exist a highest risk type, p̄, such that p̄ < 1.5 With this
assumption, an insurance company cannot offer any insurance contract other than the endowment
without being worried it will be selected by more than one type. Thus, in order to provide insurance,
types must be cross-subsidized.

I now show that competitive equilibriums cannot sustain cross-subsidization, an insight initially
provided in Rothschild and Stiglitz (1976).

Lemma 1. (Rothschild and Stiglitz (1976)) Suppose A is a Competitive Nash Equilibrium. Then

pcL (p) + (1− p) cNL (p) = w − pl ∀p ∈ Ψ

Proof. Suppose there exists p such that pcL (p) + (1− p) cNL (p) > w − pl. Assume without loss of
generality that at least two firms are offering point A. Then an insurance company could offer a new
allocation, Â, which provides the endowment to type p, so that type p now chooses the allocation
offered by remaining firms (essentially dumping type p onto other insurance companies). Therefore,
pcL (p)+(1− p) cNL (p) ≤ w−pl for all p ∈ Ψ. So, condition (1) implies pcL (p)+(1− p) cNL (p) = w−pl
for all p.

Given Lemma 1, it is straightforward to see that there cannot exist any Competitive Nash Equi-
librium other than the endowment since trade requires cross-subsidization toward types near p = 1.

Theorem 2. Suppose Assumption 1 holds. Then, there exists a Competitive Nash Equilibrium if and
only if Condition (1) holds.

Proof. Suppose Condition (1) does not hold. Then, clearly there exists a profitable deviation from the
endowment. But, Lemma 1 and Assumption 1 ensure that no allocation other than the endowment
can be a Competitive Nash Equilibrium.

When Assumption1 holds, trade requires risk types to be willing to enter risk pools which pool ex-
ante heterogeneous types. Such ex-ante pooling is not possible in a Competitive Nash Equilibrium. So,
when the no-trade condition (1) does not hold, there does not exist any Competitive Nash Equilibrium:
the equilibrium unravels a la Rothschild and Stiglitz (1976).

5Note that this assumption can be satisfied with any small amount of mass of types; it is only a condition on the
support of the distribution.
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3 Conclusion

This memo uses a generalized binary model of insurance to highlight the distinction between Akerlof’s
notion of unraveling, in which an equilibrium exists in which no trade can occur, and Rothschild and
Stiglitz’ notion of unraveling, in which a standard notion of competitive equilibrium (pure strategy
Nash) cannot exist. In the latter case, there are (Pareto) gains to trade; but when the type distribution
has full support near p = 1, the realization of these gains to trade require cross-subsidization of types.
Such cross-subsidization cannot be sustained under the canonical notion of competition.6 Hence,
Akerlof unraveling shows when private information can lead to the absence of trade in insurance
markets. Rothschild and Stiglitz unraveling shows that the canonical model of competition (Nash
equilibrium) is inadequate to describe the behavior of insurance companies in settings where there are
potential gains to trade.
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