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Abstract5

Nowadays computers are in the middle of almost every economic6

transaction. These “computer-mediated transactions” generate huge7

amounts of data, and new tools are necessary to manipulate and ana-8

lyze this data. This essay offers a brief introduction to some of these9

tools and methods.10

Computers are now involved in many economic transactions and can capture11

data associated with these transactions, which can then be manipulated and12

analyzed using a variety of techniques. Conventional statistical and econo-13

metric techniques such as regression often work well but there are some prob-14

lems unique to big data sets that require different tools. There are several15

reasons for this.16

First, the sheer size of the data involved may require more sophisticated17

data manipulation tools. Second, we may have more potential predictors than18

appropriate for estimation, so we need to do some kind of variable selection.19

Third, large data sets may allow for more flexible relationships than simple20

∗Thanks to Jeffrey Oldham, Tom Zhang, Rob On, Pierre Grinspan, Jerry Friedman,
Art Owen, Steve Scott, Bo Cowgill, Brock Noland, Daniel Stonehill, and Gary King for
comments on earlier versions of this paper.
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linear models. Machine learning techniques such as decision trees, support21

vector machines, neural nets, deep learning and so on may allow for more22

effective ways to model complex relationships.23

In this essay I will describe a few of these tools for manipulating and an-24

alyzing big data. I believe that these methods have a lot to offer and should25

be more widely known and used by economists. In fact, my standard advice26

to graduate students these days is “go to the computer science department27

and take a class in machine learning.” There have been very fruitful collabo-28

rations between computer scientists and statisticians in the last decade or so,29

and I expect collaborations between computer scientists and econometricians30

will also be productive in the future.31

1 Tools for data manipulation32

Economists have historically dealt with data that fits in a spreadsheet, but33

that is changing as new more detailed data becomes available; see Einav34

and Levin [2013] for several examples and discussion. If you have more than35

a million or so rows in a spreadsheet, you probably want to store it in a36

relational database, such as MySQL. Relational databases offer a simple way37

to store, manipulate and retrieve data using a Structured Query Language38

(SQL) which is easy to learn and very useful for dealing with medium-sized39

data sets.40

However, if you have several gigabytes of data or several million observa-41

tions, standard relational databases become unwieldy. Databases to manage42

data of this size are generically known as “NoSQL” databases. The term is43

used rather loosely, but is sometimes interpreted as meaning “not only SQL.”44

NoSQL databases are more primitive than SQL databases in terms of data45

manipulation capabilities but can handle larger amounts of data.46

Due to the rise of computer mediated transactions, many companies have47

found it necessary to develop systems to process billions of transactions per48
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day. For example, according to Sullivan [2012], Google has seen 30 trillion49

URLs, crawls over 20 billion of those a day, and answers 100 billion search50

queries a month. Analyzing even one day’s worth of data of this size is51

virtually impossible with conventional databases. The challenge of dealing52

with data sets of this size led to the development of several tools to manage53

and analyze big data.54

These tools are proprietary to Google, but have been described in aca-55

demic publications in sufficient detail that open-source implementations have56

been developed. The list below has both the Google name and the name of57

related open source tools. Further details can be found in the Wikipedia58

entries associated with the tool names.59

Google File System [Hadoop Distributed File System] This system sup-60

ports files of to be distributed across hundreds or even thousands of61

computers.62

Bigtable [Cassandra] This is a table of data that lives in the Google File63

System. It too can stretch over many computers.64

MapReduce [Hadoop] This is a system for accessing manipulating data65

in large data structures such as Bigtables. MapReduce allows you to66

access the data in parallel, using hundreds or thousands of machines67

to do the particular data extraction you are interested in. The query68

is “mapped” to the machines and is then applied in parallel to dif-69

ferent shards of the data. The partial calculations are then combined70

(“reduced”) to create the summary table you are interested in.71

Go [Pig] Go is an open-source general-purpose computer language that makes72

it easier to do parallel data processing.73

Dremel [Hive, Drill,Impala] This is a tool that allows data queries to be74

written in a simplified form of SQL. With Dremel it is possible to run75

an SQL query on a petabtye of data (1000 terabytes) in a few seconds.76
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Though these tools can be run on a single computer for learning purposes,77

real applications use large clusters of computers such as those provided by78

Amazon, Google, Microsoft and other cloud computing providers. The ability79

to rent rather than buy data storage and processing has turned what was80

previously a fixed cost into a variable cost and has lowered the barriers to81

entry for working with big data.82

2 Tools for data analysis83

The outcome of the big data processing described above is often a “small”84

table of data that may be directly human readable or can be loaded into an85

SQL database, a statistics package, or a spreadsheet.86

If the extracted data is still inconveniently large, it is often possible to87

select a subsample for statistical analysis. At Google, for example, I have88

found that random samples on the order of 0.1 percent work fine for analysis89

of economic data.90

Once a dataset has been extracted it is often necessary to do some ex-91

ploratory data analysis along with consistency and data-cleaning tasks. This92

is something of an art which can be learned only by practice, but there are93

data cleaning software tools such as OpenRefine and DataWrangler that can94

be used to assist in this task.95

Data analysis in statistics and econometrics can be broken down into four96

categories: 1) prediction, 2) summarization, 3) estimation, and 4) hypothesis97

testing. Machine learning is concerned primarily with prediction; the closely98

related field of data mining is also concerned with summarization. Econo-99

metricians, statisticians, and data mining specialists are generally looking100

for insights that can be extracted from the data. Machine learning special-101

ists are often primarily concerned with developing computers systems that102

can provide useful predictions and perform well in the presence of challeng-103

ing computational constraints. Data science, a somewhat newer term, is104
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concerned with both prediction and summarization, but also with data ma-105

nipulation, visualization, and other similar tasks. The terminology is not106

standardized in these areas, so these statements reflect general usage, not107

hard-and-fast definitions. Other terms used computer assisted data analysis108

include knowledge extraction, information discovery, information harvesting,109

data archeology, data pattern processing, and exploratory data analysis.110

Much of applied econometrics is concerned with detecting and summariz-111

ing relationships in the data. The most common tool used to for summariza-112

tion is (linear) regression analysis. As we shall see, machine learning offers113

a set of tools that can usefully summarize more complex relationships in the114

data. We will focus on these regression-like tools since those are the most115

natural for economic applications.116

In the most general formulation of a statistical prediction problem, we117

are interested in understanding the conditional distribution of some variable118

y given some other variables x = (x1, . . . , xP ). If we want a point prediction119

we could use the mean or median of the conditional distribution.120

In machine learning, the x-variables are usually called “predictors” or121

“features.” The focus of machine learning is to find some function that pro-122

vides a good prediction of y as a function of x. Historically, most work in123

machine learning has involved cross-section data where it is natural to think124

of the data being IID or at least independently distributed. The data may125

be “fat,” which means lots of predictors relative to the number of observa-126

tions, or “tall” which means lots of observations relative to the number of127

predictors.128

We typically have some observed data on y and x and we want to compute129

a “good” prediction of y given new values of x. Usually “good” means it130

minimizes some loss function such as the sum of squared residuals, mean of131

absolute value of residuals, and so on. Of course, the relevant loss is that132

associated with new observations of x, not the observations used to fit the133

model.134
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When confronted with a prediction problem of this sort an economist135

would think immediately of a linear or logistic regression. However, there136

may be better choices, particularly if a lot of data is available. These in-137

clude nonlinear methods such as 1) neural nets, 2) support vector machines,138

3) classification and regression trees, 4) random forests, and 5) penalized139

regression such as lasso, lars, and elastic nets.140

I will focus on the last three methods in the list above, since they seem141

to work well on the type of data economists generally use. Neural nets and142

support vector machines work well for many sorts of prediction problems, but143

they are something of a black box. By contrast it is easy to understand the144

relationships that trees and penalized regressions describe. Much more detail145

about these methods can be found in machine learning texts; an excellent146

treatment is available in Hastie et al. [2009], which can be freely downloaded.147

Other suggestions for further reading are given at the end of this article.148

3 General considerations for prediction149

Our goal with prediction is typically to get good out-of-sample predictions.150

Most of us know from experience that it is all too easy to construct a predictor151

that works well in-sample, but fails miserably out-of-sample. To take a trivial152

example, n linearly independent regressors will fit n observations perfectly153

but will usually have poor out-of-sample performance. Machine learning154

specialists refer to this phenomenon as the “overfitting problem.”155

There are three major techniques for dealing with the overfitting problem156

which are commonly used in machine learning.157

First, since simpler models tend to work better for out of sample forecasts,158

machine learning experts have come up with various ways penalize models for159

excessive complexity. In the machine learning world, this is known as “reg-160

ularization” and we will encounter a some examples later one. Economists161

tend to prefer simpler models for the same reason, but have not been as162
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explicit about quantifying complexity costs.163

Second, it is conventional to divide the data into separate sets for the164

purpose of training, testing and validation. You use the training data to165

estimate a model, the validation data to choose your model, and the testing166

data to evaluate how well your chosen model performs. (Often validation167

and testing sets are combined.)168

Third, in the training stage, it may be necessary to estimate some “tuning169

parameters” of the model. The conventional way to do this in machine170

learning is to use k-fold cross validation.171

1. Divide the data into k roughly equal subsets and label them by s =172

1, . . . , k. Start with subset s = 1.173

2. Pick a value for the tuning parameter.174

3. Fit your model using the k − 1 subsets other than subset s.175

4. Predict for subset s and measure the associated loss.176

5. Stop if s = k, otherwise increment s by 1 and go to step 2.177

Common choices for k are 10, 5, and the sample size minus 1 (“leave178

one out”). After cross validation, you end up with k values of the tuning179

parameter and the associated loss which you can then examine to choose180

an appropriate value for the tuning parameter. Even if there is no tuning181

parameter, it is useful to use cross validation to report goodness-of-fit mea-182

sures since it measures out-of-sample performance which is what is typically183

of interest.184

Test-train and cross validation, are very commonly used in machine learn-185

ing and, in my view, should be used much more in economics, particularly186

when working with large datasets. For many years, economists have re-187

ported in-sample goodness-of-fit measures using the excuse that we had small188

datasets. But now that larger datasets have become available, there is no189
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reason not to use separate training and testing sets. Cross-validation also190

turns out to be a very useful technique, particularly when working with rea-191

sonably large data. It is also a much more realistic measure of prediction192

performance than measures commonly used in economics.193

4 Classification and regression trees194

Let us start by considering a discrete variable regression where our goal is to195

predict a 0-1 outcome based on some set of features (what economists would196

call explanatory variables or predictors.) In machine learning this is known197

as a classification problem. Economists would typically use a generalized198

linear model like a logit or probit for a classification problem.199

A quite different way to build a classifier is to use a decision tree. Most200

economists are familiar with decision trees that describe a sequence of de-201

cisions that results in some outcome. A tree classifier has the same general202

form, but the decision at the end of the process is a choice about how to203

classify the observation. The goal is to construct (or “grow”) a decision tree204

that leads to good out-of-sample predictions.205

Ironically, one of the earliest papers on the automatic construction of de-206

cision trees was co-authored by an economist (Morgan and Sonquist [1963]).207

However, the technique did not really gain much traction until 20 years later208

in the work of Breiman et al. [1984] and his colleagues. Nowadays this predic-209

tion technique is known as “classification and regression trees”, or “CART.”210

Consider the simple example shown in Figure 1, where we are trying to211

predict survivors of the Titanic using just two variables, age and which class212

of travel the passenger purchased.213

Here is a set of rules that can be read off of this tree (more of a bush,214

really):215

• class 3: predict died (370 out of 501)216

• class 1 or 2 and younger than 16: predict lived (34 out of 36)217
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class >= 2.5

age >= 16

class >= 1.5

died
370 / 501

died
145 / 233

lived
174 / 276

lived
34 / 36

yes no

Figure 1: A classification tree for survivors of the Titanic. See text for
interpretation.

• class 2 or 3 and older than 16: predict died (145 out of 233)218

• class 1, older than 16: predict lived: (174 out of 276)219

The rules fit the data reasonably well, misclassifying about 30% of the220

observations in the testing set.221

This classification can also be depicted in the “partition plot” shown in222

Figure 2 which shows how the tree divides up the space of (age, class) pairs.223

Of course, the partition plot can only be used for 2 variables while a tree224

representation can handle an arbitrarily large number.225

It turns out that there are computationally efficient ways to construct226

classification trees of this sort. These methods generally are restricted to227

binary trees (two branches at each node). They can be used for classifi-228

cation with multiple outcomes (“classification trees”) , or with continuous229

dependent variables (“regression trees.”)230

Trees tend to work well for problems where there are important nonlin-231
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Figure 2: The simple tree model predicts death in shaded region. White
circles indicate survival, black crosses indicate death.

earities and interactions. As an example, let us continue with the Titanic232

data and create a tree that relates survival to age. In this case, the rule233

generated by the tree is very simple: predict “survive” if age < 8.5 years.234

We can examine the same data with a logistic regression to estimate the235

probability of survival as a function of age:236

Estimate Std. Error t value Pr(>|t|)237

(Intercept) 0.464813 0.034973 13.291 <2e-16 ***238

age -0.001894 0.001054 -1.796 0.0727 .239

The tree model suggests that age is an important predictor of survival impor-240

tant, while the logistic model says it is barely important. This discrepancy is241

explained in Figure 3 where we plot survival rates by bins. Here we see that242

survival rates for those under 10 years old were elevated compared to older243

passengers, except for the very oldest group. So what mattered for survival244

is not so much age, but whether the passenger was a child or a senior. It245
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Figure 3: The figure shows the fraction of the population that survived for
different age groups (0-10,10-20, and so on). The error bars are computed
using the Wilson method.

would be difficult to discover this fact from a logistic regression alone.1246

Trees also handle missing data well. Perlich et al. [2003] examined several247

standard data sets and found that “logistic regression is better for smaller248

data sets and tree induction for larger data sets.” Interestingly enough, trees249

tend not to work very well if the underlying relationship really is linear,250

but there are hybrid models such as RuleFit (Friedman and Popescu [2005])251

which can incorporate both tree and linear relationships among variables.252

However, even if trees may not improve on predictive accuracy compared253

to linear models, the age example shows that they may reveal aspects of the254

data that are not apparent from a traditional linear modeling approach.255

1It is true that if you knew that there was a nonlinearity in age, you use age dummies in
the logit model to capture this effect. However the tree formulation made this nonlinearity
quite apparent.

11



4.1 Pruning trees256

One problem with trees is that they tend to overfit the data. The most257

widely-used solution to this problem is to “prune” the tree by imposing some258

complexity cost for having too many branches. This penalty for complexity259

is a form of regularization, which was mentioned earlier.260

So, a typical tree estimation session might involve dividing your data261

into 10 folds, using 9 of the folds to grow a tree with a particular complexity,262

and then predict on the excluded fold. Repeat the estimation with different263

values of the complexity parameter using other folds and choose the value264

of the complexity parameter that minimizes the out-of-sample classification265

error. (Some researchers recommend being a bit more aggressive than that266

and choosing the complexity parameter that is one standard deviation lower267

than the loss-minimizing value.)268

Of course, in practice, the computer program handles most of these details269

for you. In the examples in this paper I mostly use default choices, but in270

practices these default will often be tuned. As with any other statistical271

procedure, skill, experience and intuition are helpful in coming up with a272

good answer and diagnostics, exploration, and experimentation are just as273

useful with these methods as with regression techniques.274

There are many other approaches to creating trees, including some that275

are explicitly statistical in nature. For example, a “conditional inference276

tree,” or ctree for short, chooses the structure of the tree using a sequence277

of hypothesis tests. The resulting trees tend to need very little pruning.278

(Hothorn et al. [2006]) An example for the Titanic data is shown in Figure 4.279

One might summarize this tree by the following principle: “women and280

children first . . . particularly if they were traveling first class.” This simple281

example again illustrates that classification trees can be helpful in summa-282

rizing relationships in data, as well as predicting outcomes.283
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Figure 4: A ctree for survivors of the Titanic. The black bars indicate fraction
of the group that survival.

4.2 Economic example: HMDA data284

Munnell et al. [1996] examined mortgage lending in Boston to see if race285

played a significant role in determining who was approved for a mortgage.286

The primary econometric technique was a logistic regression where race was287

included as one of the predictors. The race effect indicated a statistically288

significant negative impact on probability of getting a mortgage for black289

applicants. This finding prompted lively subsequent debate and discussion,290

with 725 citations on Google Scholar as of July 2013.291

Here I examine this question using the tree-based estimators described in292

the previous section. The data consists of 2380 observations of 12 predictors,293

one of which was race. Figure 5 shows a conditional tree estimated using the294

R package party. (For reasons of space, I have omitted variable descriptions295

which are readily available on the web site.)296

The tree fits pretty well, misclassifying 228 of the 2380 observations for an297

error rate of 9.6%. By comparison, a simple logistic regression does slightly298
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better, misclassifing 225 of the 2380 observations, leading to an error rate299

of 9.5%. As you can see in Figure 5, the most important variable is dmi300

= “denied mortgage insurance”. This variable alone explains much of the301

variation in the data. The race variable (black) shows up far down the tree302

and seems to be relatively unimportant.303

dmi
p < 0.001

1

no yes

ccs
p < 0.001

2

≤ 3 > 3

dir
p < 0.001

3

≤ 0.431 > 0.431

ccs
p < 0.001

4

≤ 1 > 1

Node 5 (n = 1272)

ye
s

no

0
0.2
0.4
0.6
0.8
1

pbcr
p < 0.001

6

yes no

Node 7 (n = 37)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 8 (n = 479)

ye
s

no

0
0.2
0.4
0.6
0.8
1

mcs
p = 0.011

9

≤ 1 > 1

Node 10 (n = 48)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 11 (n = 50)

ye
s

no

0
0.2
0.4
0.6
0.8
1

pbcr
p < 0.001

12

no yes

lvr
p = 0.001

13

≤ 0.953 > 0.953

dir
p < 0.001

14

≤ 0.415 > 0.415

black
p = 0.021

15

no yes

Node 16 (n = 246)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 17 (n = 71)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 18 (n = 36)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 19 (n = 10)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 20 (n = 83)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Node 21 (n = 48)

ye
s

no

0
0.2
0.4
0.6
0.8
1

Figure 5: HMDA tree. The black bars indicate the fraction of each group
that were denied mortgages. The most important determinant of this is the
variable dmi, “denied mortgage insurance.”

One way to gauge whether a variable is important is to exclude it from304

the prediction and see what happens. When this is done, it turns out that305

the accuracy of the tree based model doesn’t change at all: exactly the same306

cases are misclassified. So there is a plausible decision tree model that ignores307

race that fits the observed data just as well as a model that includes race.308
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5 Boosting, bagging and bootstrap309

There are several useful ways to improve classifier performance. Interestingly310

enough, the some of these methods work by adding randomness to the data.311

This seems paradoxical at first, but adding randomness turns out to be a312

helpful way of dealing with the overfitting problem.313

Bootstrap involves choosing (with replacement) a sample of size n from a314

data set of size n to estimate the sampling distribution of some statistic.315

A variation is the “m out of n bootstrap” which draws a sample of size316

m from a dataset of size n > m.317

Bagging involves averaging across models estimated with several different318

bootstrap samples in order to improve the performance of an estimator.319

Boosting involves repeated estimation where misclassified observations are320

given increasing weight in each repetition. The final estimate is then a321

vote or an average across the repeated estimates.322

Econometricians are well-acquainted with the bootstrap rarely use the323

other two methods. Bagging is primarily useful for nonlinear models such324

as trees. (Friedman and Hall [2005].) Boosting tend to improve predictive325

performance of an estimator significantly and can be used for pretty much326

any kind of classifier or regression model, including logits, probits, trees, and327

so on.328

It is also possible to combine these techniques and create a “forest” of329

trees that can often significantly improve on single-tree methods. Here is a330

rough description of how such “random forests” work.331

Random forests refers to a technique that uses multiple trees. A typical332

procedure uses the following steps.333

1. Choose a bootstrap sample of the observations and start to grow334

a tree.335
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2. At each node of the tree, choose a random sample of the predictors336

to make the next decision. Do not prune the trees.337

3. Repeat this process many times to grow a forest of trees338

4. The final classification is then determined by majority vote among339

all the trees in the forest340

This method produces surprisingly good out-of-sample fits, particularly341

with highly nonlinear data. In fact, Howard [2013] claims “ensembles of342

decision trees (often known as Random Forests) have been the most successful343

general-purpose algorithm in modern times.” He goes on to indicate that344

“the algorithm is very simple to understand, and is fast and easy to apply.”345

See also Caruana and Niculescu-Mizil [2006] who compare several different346

machine learning algorithms and find that ensembles of trees perform quite347

well. There are a number variations and extensions of the basic “ensemble of348

trees” model such as Friedman’s “Stochastic Gradient Boosting” (Friedman349

[1999]).350

One defect of random forests is that they are a bit of a black box—351

they don’t offer simple summaries of the data. However, they can be used352

to determine which variables are “important” in predictions in the sense of353

contributing the biggest improvements in prediction accuracy.354

Note that random forests involves quite a bit of randomization; if you355

want to try them out on some data, I strongly suggest choosing a particular356

seed for the random number generator so that your results can be reproduced.357

I ran the random forest method on the HMDA data and found that it358

misclassified 223 of the 2380 cases, a small improvement over the logit and359

the ctree. I also used the importance option in random forests to see how360

the predictors compared. It turned out that dmi was the most important361

predictor and race was second from the bottom which is consistent with the362

ctree analysis.363
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6 Variable selection364

Let us return to the familiar world of linear regression and consider the prob-365

lem of variable selection. There are many such methods available, including366

stepwise regression, principal component regression, partial least squares,367

AIC and BIC complexity measures and so on. Castle et al. [2009] describes368

and compares 21 different methods.369

6.1 Lasso and friends370

Here we consider a class of estimators that involves penalized regression.371

Consider a standard multivariate regression model where we predict yt as a372

linear function of a constant, b0, and P predictor variables. We suppose that373

we have standardized all the (non-constant) predictors so they have mean374

zero and variance one.375

Consider choosing the coefficients (b1, . . . , bP ) for these predictor variables

by minimizing the sum of squared residuals plus a penalty term of the form

λ
P∑

p=1

[(1− α)|bp|+ α|bp|2]

This estimation method is called elastic net regression; it contains three other376

methods as special cases. If there is no penalty term (λ = 0), this is ordinary377

least squares. If α = 1 so that there is only the quadratic constraint, this378

is ridge regression. If α = 0 this is called the lasso, an acronym for “least379

absolute shrinkage and selection operator.”380

These penalized regressions are classic examples of regularization. In381

this case, the complexity is the number and size of predictors in the model.382

All of these methods tend to shrink the least squares regression coefficients383

towards zero. The lasso and elastic net typically produces regressions where384

some of the variables are set to be exactly zero. Hence this is a relatively385

straightforward way to do variable selection.386
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It turns out that these estimators can be computed quite efficiently, so387

doing variable selection on reasonably large problems is computationally fea-388

sible. They also seem to provide good predictions in practice.389

6.2 Spike and slab regression390

Another approach to variable selection that is novel to most economists is391

spike-and-slab regression, a Bayesian technique. Suppose that you have P392

possible predictors in some linear model. Let γ be a vector of length P393

composed of zeros and ones that indicate whether or not a particular variable394

is included in the regression.395

We start with a Bernoulli prior distribution on γ; for example, initially396

we might think that all variables have an equally likely chance of being in397

the regression. Conditional on a variable being in the regression, we specify a398

prior distribution for the regression coefficient associated with that variable.399

For example, we might use a Normal prior with mean 0 and a large variance.400

These two priors are the source of the method’s name: the “spike” is the401

probability of a coefficient being non-zero; the “slab” is the (diffuse) prior402

describing the values that the coefficient can take on.403

Now we take a draw of γ from its prior distribution, which will just404

be a list of variables in the regression. Conditional on this list of included405

variables, we take a draw from the prior distribution for the coefficients. We406

combine these two draws with the likelihood in the usual way which gives us407

a draw from posterior distribution on both γ and the coefficients. We repeat408

this process thousands of times using a Markov Chain Monte Carlo (MCMC)409

tehnique which give us a table summarizing the posterior distribution for γ410

and the coefficients and the associated prediction of y.411

We end up with a table of thousands of draws from the posterior distri-412

butions of γ, β, and y which we can summarize in a variety of ways. For413

example, we can compute the average value of γp which shows the posterior414

probability variable p is included in the regressions.415
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predictor BMA CDF(0) lasso spike-slab
GDP level 1960 1.000 1.000 - 0.9992
Fraction Confucian 0.995 1.000 6 0.9730
Life expectancy 0.946 0.942 5 0.9610
Equipment investment 0.757 0.997 1 0.9532
Sub-Saharan dummy 0.656 1.000 - 0.5834
Fraction Muslim 0.656 1.000 - 0.6590
Rule of law 0.516 1.000 - 0.4532
Open economy 0.502 1.000 3 0.5736
Degree of Capitalism 0.471 0.987 - 0.4230
Fraction Protestant 0.461 0.966 - 0.3798

Table 1: Comparing variable selection algorithms. See text for discussion.

6.3 Economic example: growth regressions416

We illustrate the lasso and spike and slab regression with an example from417

Sala-i-Mart́ın [1997]. This involves examining a multi-country set of pre-418

dictors of economic growth in order to see which variables appeared to be419

the most important. Sala-i-Mart́ın [1997] looked at all possible subsets of420

regressors of manageable size. Ley and Steel [2009] investigated the same421

question using Bayesian techniques related to, but not identical with, spike-422

and-slab, while Hendry and Krolzig [2004] examined an iterative significance423

test selection method.424

Table 1 shows 10 predictors that were chosen by Sala-i-Mart́ın [1997], Ley425

and Steel [2009], lasso, and spike-and-slab. The table is based on that426

in Ley and Steel [2009] but metrics used are not strictly comparable across427

models. The “BMA” and “spike-slab” columns are posterior probabilities of428

inclusion; the “lasso” column is just the ordinal importance of the variable429

with a dash indicating that it was not included in the chosen model; and the430

CDF(0) measure is defined in Sala-i-Mart́ın [1997].431

The lasso and the Bayesian techniques are very computationally efficient432

and on this ground would likely be preferred to exhaustive search. All 4433

of these variable selection methods give similar results for the first 4 or 5434

19



variables, after which they diverge. In this particular case, the data set435

appears to be too small to resolve the question of what is “important” for436

economic growth.437

7 Time series438

The machine learning techniques described up until now are generally applied439

to cross-sectional data where independently distributed data is a plausible440

assumption. However, there are also techniques that work with time series.441

Here we describe an estimation method which we call Bayesian Structural442

Time Series (BSTS) that seems to work well for variable selection problems443

in time series applications.444

Our research in this area was motivated by Google Trends data which445

provides an index of the volume of Google queries on specific terms. One446

might expect that queries on [file for unemployment] might be predictive447

of the actual rate of filings for initial claims, or that queries on [Orlando448

vacation] might be predictive of actual visits to Orlando. Indeed, Choi and449

Varian [2009, 2012], Goel et al. [2010], Carrière-Swallow and Labbé [2011],450

McLaren and Shanbhoge [2011], Arola and Galan [2012], Hellerstein and451

Middeldorp [2012] and many others have shown that Google queries do have452

significant short-term predictive power for various economic metrics.453

The challenge is that there are billions of queries so it is hard to determine454

exactly which queries are the most predictive for a particular purpose. Google455

Trends classifies the queries into categories, which helps a little, but even then456

we have hundreds of categories as possible predictors so that overfitting and457

spurious correlation are a serious concern. BSTS is designed to address these458

issues. We offer a very brief description here; more details are available in459

Scott and Varian [2012a,b].460

Consider a classic time series model with constant level, linear time trend,461

and regressor components:462
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• yt = µ+ bt+ βxt + et.463

The “local linear trend” is a stochastic generalization of this model where464

the level and time trend can vary through time.465

• Observation: yt = µt + zt + e1t = level + regression466

• State 1: µt = µt−1 + bt−1 + e2t = random walk + trend467

• State 2: zt = βxt = regression468

• State 3: bt = bt−1 + e3t = random walk for trend469

It is easy to add an additional state variable for seasonality if that is ap-470

propriate. The parameters to estimate are the regression coefficients β and471

the variances of (eit) for i = 1, . . . , 3. We can then use these estimates to472

construct the optimal Kalman forecast.473

For the regression we use the spike-and-slab variable choice mechanism474

described above. A draw from the posterior distribution now involves a draw475

of variances of (e1t, e2t), a draw of the vector γ that indicates which vari-476

ables are in the regression, and a draw of the regression coefficients β for477

the included variables. The draws of µt, bt, and β can be used to construct478

estimates of yt and forecasts for yt+1. We end up with an (estimated) pos-479

terior distribution for the metric of interest. If we seek a point prediction,480

we could average over these draws, which is essentially a form of Bayesian481

model averaging.482

As an example, consider the non-seasonally adjusted data for new homes483

sold in the U.S. (HSN1FNSA) from the St. Louis Federal Reserve Economic484

Data. This time series can be submitted to Google Correlate, which then485

returns the 100 queries that are the most highly correlated with the series.486

We feed that data into the BSTS system which identifies the predictors with487

the largest posterior probabilities of appearing in the housing regression are488

shown in Figure 6. Two predictors, [oldies lyrics] and [www.mail2web] ap-489

pear to be spurious so we remove them and re-estimate, yielding the results490
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in Figure 7. The fit is shown in Figure 8 which shows the incremental con-491

tribution of the trend, seasonal, and individual regressors components.492
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Figure 6: Initial predictors.
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Figure 7: Final predictors.

8 Econometrics and machine learning493

There are a number of areas where there would be opportunities for fruitful494

collaboration between econometrics and machine learning. I mentioned above495

that most machine learning uses IID data. However, the BSTS model shows496

that some of these techniques can be adopted for time series models. It is497

also be possible to use machine learning techniques to look at panel data and498

there has been some work in this direction.499

Econometricians have developed several tools for causal modeling such500

as instrumental variables, regression discontinuity, and various forms of ex-501

periments. (Angrist and Krueger [2001].) Machine learning work has, for502

the most part, dealt with pure prediction. In a way this is ironic, since the-503

oretical computer scientists, such as Pearl [2009a,b] have made significant504

contributions to causal modeling. However, it appears that these theoretical505

advances have not as yet been incorporated into machine learning practice506

to a significant degree.507
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Figure 8: Incremental plots. The plots show the impact of the trend, sea-
sonal, and a few individual regressors. The residuals are shown on the bot-
tom. 23



8.1 Causality and prediction508

As economists know well there is a big difference between correlation and509

causation. A classic example: there are often more police in precincts with510

high crime, but that does not imply that increasing the number of police in511

a precinct would increase crime.512

The machine learning models we have described so far have been entirely513

about prediction. If our data was generated by policymakers who assigned514

police to areas with high crime, then the observed relationship between police515

and crime rates could be highly predictive for the historical data, but not516

useful in predicting the causal impact of explicitly assigning additional police517

to a precinct.518

To enlarge on this point, let us consider an experiment (natural or de-519

signed) that attempts to estimate the impact of some policy, such as adding520

police to precincts. There are two critical questions.521

• Which precincts will receive additional police in the experiment and522

policy implementation and how will this be determined? Possible as-523

signment rules could be 1) random, 2) based on perceived need, 3)524

based on cost of providing service, 4) based on resident requests, 5)525

based on a formula or set of rules, 6) based on asking for volunteers,526

and so on. Ideally the assignment procedure in the experiment will be527

similar to that used in the policy. A good model for predicting which528

precincts will receive additional police under the proposed policy can529

clearly be helpful in estimating the impact of the policy.530

• What will be the impact of these additional police in both the exper-531

iment and the policy? As Rubin [1974] and many subsequent authors532

have emphasized, when we consider the causal impact of some treat-533

ment we need to compare the outcome with the intervention to what534

would have happened without the intervention. But this counterfactual535

cannot be observed, so it must be predicted by some model. The better536
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predictive model you have for the counterfactual, the better you will be537

able to estimate the causal effect, an observation that is true for both538

pure experiments and natural experiments.539

So even though a predictive model will not necessarily allow one to con-540

clude anything about causality by itself, such a model may help in estimating541

the causal impact of an intervention when it occurs.542

To state this in a slightly more formal way, consider the identity from543

Angrist and Pischke [2008], page 11:544

observed difference in outcome = average treatment effect on the treated

+ selection bias

If you want to model the average treatment effect as a function of other545

variables, you will usually need to model both the observed difference and546

the selection bias. The better your predictive model for those components,547

the better predictions you can make about the average treatment effect. Of548

course, if you have a true randomized treatment-control experiment, selection549

bias goes away and those treated are an unbiased random sample of the550

population.551

To illustrate these points, let us consider the thorny problem of estimat-552

ing the causal effect of advertising on sales. (Lewis and Rao [2013].) The553

difficulty is that there are many confounding variables, such as seasonality or554

weather, that cause both increased ad exposures and increased purchases by555

consumers. Consider the (probably apocryphal) story about an advertising556

manager who was asked why he thought his ads were effective. “Look at this557

chart,” he said. “Every December I increase my ad spend and, sure enough,558

purchases go up.” Of course, seasonality can be observed and included in559

the model. However, generally there will be other confounding variables that560

affect both exposure to ads and the propensity of purchase, which makes561

causal interpretations of relationships problematic.562
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The ideal way to estimate advertising effectiveness is, of course, to run a563

controlled experiment. In this case the control group provides an estimate of564

what would have happened without ad exposures. But this ideal approach565

can be quite expensive, so it is worth looking for alternative ways to predict566

the counterfactual. One way to do this is to use the Bayesian Structural Time567

Series method described earlier. In this case, a model based on historical time568

series data can, in some cases, be used to estimate what would have happened569

in the absence of the advertising intervention. See Brodersen et al. [2013] for570

an example of this approach.571

9 Model uncertainty572

An important insight from machine learning is that averaging over many573

small models tends to give better out-of-sample prediction than choosing a574

single model.575

In 2006, Netflix offered a million dollar prize to researchers who could576

provide the largest improvement to their existing movie recommendation577

system. The winning submission involved a “complex blending of no fewer578

than 800 models” though they also point out that “predictions of good quality579

can usually be obtained by combining a small number of judiciously chosen580

methods.” (Feuerverger et al. [2012].) It also turned out that a blend of the581

best and second-best model outperformed both of them.582

Ironically, it was recognized many years ago that averages of macroeco-583

nomic model forecasts outperformed individual models, but somehow this584

idea was rarely exploited in traditional econometrics. The exception is the585

literature on Bayesian model averaging which has seen a steady flow of work;586

see Steel [2011] for a survey.587

However, I think that model uncertainty has crept in to applied econo-588

metrics through the back door. Many papers in applied econometrics present589

regression results in a table with several different specifications: which vari-590
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ables are included in the controls, which variables are used as instruments,591

and so on. The goal is usually to show that the estimate of some interesting592

parameter is not very sensitive to the exact specification used.593

One way to think about it is that these tables illustrate a simple form of594

model uncertainty: how an estimated parameter varies as different models are595

used. In these papers the authors tend to examine only a few representative596

specifications, but there is no reason why they couldn’t examine many more597

if the data were available.598

In this period of “big data” it seems strange to focus on sampling un-599

certainty, which tends to be small with large data sets, while completely600

ignoring model uncertainty which may be quite large. One way to address601

this is to be explicit about examining how parameter estimates vary with602

respect to choices of control variables and instruments.603

10 Summary and further reading604

Since computers are now involved in many economic transactions, big data605

will only get bigger. Data manipulation tools and techniques developed for606

small datasets will become increasingly inadequate to deal with new prob-607

lems. Researchers in machine learning have developed ways to deal with608

large data sets and economists interested in dealing with such data would be609

well advised to invest in learning these techniques.610

I have already mentioned Hastie et al. [2009] which has detailed descrip-611

tions of all the methods discussed here but at a relatively advanced level.612

James et al. [2013] describes many of the same topics at an undergraduate-613

level, along with R code and many examples.2614

Venables and Ripley [2002] contains good discussions of these topics with615

emphasis on applied examples. Leek [2013] presents a number of YouTube616

2There are several economic examples in the book where the tension between predictive
modeling and causal modeling is apparent.
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videos with gentle and accessible introductions to several tools of data anal-617

ysis. Howe [2013] provides a somewhat more advanced introduction to data618

science that also includes discussions of SQL and NoSQL databases. Wu619

and Kumar [2009] gives detailed descriptions and examples of the major al-620

gorithms in data mining, while Williams [2011] provides a unified toolkit.621

Domingos [2012] summarizes some important lessons which include “pitfalls622

to avoid, important issues to focus on and answers to common questions.”623
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