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Abstract

In this paper, we demonstrate that payoffs linked to a committee member’s indi-

vidual vote may explain over-cautious behavior in committees. A committee of experts

must decide whether to approve or reject a proposed innovation on behalf of society.

In addition to a payoff linked to the adequateness of the committee’s decision, each

expert receives a disesteem payoff if he/she voted in favor of an ill-fated innovation.

An example is FDA committees, where committee members can be exposed to a dis-

esteem (negative) payoff if they vote to pass a drug that proves to be fatal for some

users. We show that no matter how small the disesteem payoffs are, information ag-

gregation fails in large committees: under any majority rule, the committee rejects

the innovation almost surely. We then show that this inefficiency can be mitigated by

pre-vote information pooling, but only if the decision is take under unanimity: in the

presence of disesteem payoffs, committee members will only vote efficiently if they are

all responsible for the final decision.
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1 Introduction

The logic for allocating a social decision to a group of experts rather than an individual

is clear: committees aggregate multiple sources of information and expertise, and therefore

allow for more informed decisions. The question we ask here is, does a committee effectively

utilize the information held by its members when, in addition to caring about making the

right decision, committee members also care about individually voting for the right decision?

Surprisingly, even though committee members still have an incentive to choose the right

option, this kind of idiosyncratic payoff can significantly bias the committee’s decision. Key

to this insight is the fact that when decisions are made by groups, each individual’s ability

to impact the final decision is diluted, and this dilution leads to biased decisions in large

committees.

A particularly salient example is the FDA advisory committees: the FDA currently has

50 distinct standing boards, or committees of medical experts, that are called upon to

decide whether or not to approve a new medical product, such as a pharmaceutical drug,

for general use. Presumably, each committee member, just like each individual in society,

prefers to accept safe drugs and reject bad drugs. However, if the committee passes a drug

that proves to have unexpected severe side-effects, committee members will receive a negative

(disesteem) payoff if they personally voted to approve the drug.1 For example, when Posicor,

a drug to relieve high blood pressure, resulted in the death of over 140 people, numerous

newspaper articles (including an article that received the prestigious Pulitzer Prize) singled

out individual committee members based on their vote: while the committee as a whole

made the wrong decision, only committee members who personally voted for the drug were

scrutinized.2

On one hand, it is unsurprising that FDA committees are cautious, since committee members

who face negative disesteem payoffs are more cautious than society at large. The main

1This payoff can be purely intrinsic (self-esteem), or as in Brennan and Pettit (2004) and Ellingsen and

Johannesson (2008), esteem payoffs can reflect an agent’s payoff from their general regard by other members

of society (also see the discussion of the relevant psychological and classical literature in Brennan and Pettit).

We argue that committee members are exposed to esteem payoffs to the extent that their voting decision

is made salient ex-post: If the committee votes to approve the innovation there is some probability of a

‘disastrous’ event, such as the death of patients, which causes ex-post scrutiny of the committee’s decision.

This scrutiny makes the committee members’ individual votes salient, either through media attention, social

and professional networks, or by causing internal deliberation. Moreover, since a committee’s decision to

correctly approve an innovation is unlikely to become salient, we consider a negative disesteem payoff to be

the relevant payoff in these applications.
2Other examples include hiring committees and juries. Hiring committee members might be held respon-

sible for a bad hire only if they voted for the candidate. Jury members might receive a negative intrinsic

payoff if they vote to free a suspect who then goes on to commit another crime.
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contribution of our work, however, is to show that the collective nature of the decision-

making process can magnify the caution of individual committee members. This mechanism

could explain claims that committees tend to be overly cautious when considering a change

from the status quo (see Li (2001)), and our empirical finding that larger FDA committees

are more likely to reject new drug applications: a simple OLS regression suggests that an

additional committee member decreases the likelihood that any member votes for approval by

1.3 percent, a decrease of 30 percent from the smallest to largest committee in our sample.3

Theoretically, our main result shows that this over-caution is particularly stark in the limit,

and no matter how small the disesteem payoffs are, a very large committee will always reject

the drug regardless of the information held by its members. As the size of the committee

increases, the chances that a single vote is pivotal diminishes and the incentive to avoid

potential disesteem magnifies.

Our analysis highlights that committees of experts are subject to a variant of a familiar

problem: decisions by groups require an aggregate decision-making approach and, as is

often the case when collective action is required to achieve a socially desirable result, the

process is susceptible to collective-action problems (as discussed in Olson (1965) and the

subsequent literature on collective action). Idiosyncratic payoffs in committees, such as

disesteem payoffs, can create a situation in which each member prefers a certain collective

action be taken (pass the innovation given a minimum number of signals to accept), but

lacks an individual motivation to contribute to the preferred result. Therefore, for large

committees, voting to accept given a signal of accept is a public good: all benefit from the

increased probability that good drugs are passed, but only the individual is subject to the

risk of disesteem payoffs. In committees, just as in society at large, public goods are generally

under-provided (as in the seminal contributions of Samuelson (1954) and Bergstrom et al.

(1986)), leading to over-caution of large committees of experts.

In our framework, a committee is composed of n experts who must vote simultaneously to

approve or reject an innovation using a q-rule, which specifies that the innovation is approved

only if more than a fraction q of the committee members vote for approval. Whether the

innovation is beneficial to society or not depends on an unobservable binary state of the

3We present this empirical finding in detail, complete with a discussion of alternative explanations, in

Appendix B. We have voting data on approve/disapprove decisions from 174 meetings spread over twenty-

one topical FDA committees. Each of the FDA panels in our sample consists of 11-15 regular members, but

for any particular decision, the size of the committee varies (in the range 3-26) due to two main factors. (1)

Absenteeism: permanent members frequently cancel on the meetings (members serve on a voluntary basis

and most of them are physicians and professors of medicine). (2) Invited members: often, individuals who

are not regular committee members, but who have expertise particularly relevant to the drug in question,

are invited to participate.
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world, which is revealed only if the innovation is approved.4 If the innovation is rejected

(status quo) committee members get a payoff of zero. If the innovation is rightfully approved,

each expert gets a positive payoff of W . However, if the innovation is wrongfully approved

then all committee members receive a negative payoff of C, and the committee members

that supported the approval receive an additional penalty of K.

We model the opinion (signal) of each expert as a noisy version of society’s state of the art

with respect to his field of expertise. Each expert’s opinion of whether a drug is safe or not

is the result of applying a small measure of white noise to a hypothetical ideal dictamen by

the state of the art, which in itself is a noisy reflection of the true state of the world, with

exogenous accuracy.5 This approach differs from the standard model of committee behavior,

where signals are generated by the state of the world, and hence a large committee that

aggregates the signals efficiently will never make an error.

We show that for each set of values of the exogenous parameters there is essentially a unique

equilibrium. We characterize this unique equilibrium and study the comparative statics.

Of most interest, by increasing K (the disesteem penalty) the committee acceptance rate

decreases. The relation between the acceptance rate and committee size, however, is non-

monotonic. As more experts join the committee there is potential for more information

aggregation, which may make the experts more confident about accepting the innovation.

On the other hand, the probability of being pivotal decreases, which exacerbates the free

riding problem. Eventually, this latter effect dominates. Similarly, we find that a decrease in

the noise of the experts’ signals generated by the state of the art may not necessarily increase

the committee’s acceptance rate, since less noise implies that agents can better predict the

actions of their peers, which can decrease their ex ante probability of being pivotal.

In the extensions of the model, we show that our main result persists even when committee

members pool their information before voting, unless the decision is made by unanimity.

The contrast between unanimity and other decision rules is particularly stark with an initial

round of cheap talk: with decision rules other than unanimity, committee members may

have an incentive to lie about their signal to induce other committee members to vote for

the innovation, resulting in non-truthful communication. Under a unanimity rule, however,

the innovation is only approved when all agents are exposed to the disesteem payoffs, which

implies that payoffs to all committee members are homogenous, resulting in truthful com-

munication and efficiency. Finally, we study a variation of the model in which the disesteem

payoffs get diluted as the committee’s size increases. We provide sufficient conditions on the

4In our FDA example, information on harmful side-effects of a drug is only generated if it is made generally

available.
5The state of the art can be thought of as the decision that an ideal computer, programmed with the

best available decision procedures and criteria for classifying all the evidence, would arrive at.
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speed of dilution of the disesteem payoffs for the main result to hold.

The paper is organized as follows. Section 2 introduces the payoff structure and the process

that generates each expert’s opinion (signal). Section 3 characterizes the symmetric equilibria

of the game, establishes the main result of the paper, and provides comparative statics.

Finally, Section 4 presents the extensions of the model. All proofs are relegated to Appendix

A. Appendix B contains a detailed discussion of the empirical analysis noted in footnote

3. Lastly, for completeness, a supplementary Appendix6 provides a general characterization

of information aggregation under the state of the art view of expertise, without disesteem

payoffs.7

Related Literature

This paper contributes to the game theoretic literature on information aggregation in com-

mittees (see Austen-Smith and Banks (1996) for an early reference and recent surveys by

Gerling et al. (2005) and Li and Suen (2009)). Our paper is most closely related to a sub-

set of the committee literature that considers information aggregation when voters have a

common interest in making the right decision and additional “idiosyncratic” payoffs that

condition on the individuals’ votes.

One branch of this literature studies information aggregation when committee members

receive an idiosyncratic (reputation) payoff whenever their vote matches the state, which is

revealed ex post. In Ottaviani and Sorensen (2001), the committee members only receive

reputation payoffs, which are independent of the decision adopted by the committee. Each

expert is of unknown ability type, where a “smart” expert receives a more precise signal

than a “dumb” expert. When the experts speak sequentially, the reputation payoffs give

rise to informational herding. When voting is simultaneous, the first best can be achieved

if the probability distribution over the binary state variable is not too skewed. Relatedly,

Levy (2007) considers the issue of transparency when committee members care about their

reputation for expertise.

In Visser and Swank (2007), committee members deliberate, prior to voting, on whether

to accept a project. The members are concerned about the value of the project and their

reputation for being well informed. The market, whose judgement the experts care about,

does not observe the value of the project, only the decision taken. Visser and Swank show

that reputation concerns make the a priori unconventional decision more attractive and lead

6Available online at http://mwpweb.eu/JustinValasek/.
7All the results in the absence of disesteem payoff are analogous to those of the literature on the Condorcet

jury theorem with strategic voters (see Austen-Smith and Banks (1996)), McLennan (1998) and Feddersen

and Pesendorfer (1998)). For the most general version of the Condorcet jury theorem, see Peleg and Zamir

(2012).
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committees to show a united front. As the number of committee members grows, however,

converging on the unconventional decision becomes a weaker indicator of signal concurrence,

which in turn lowers the reputation concerns and leads to overall better decisions.

While disesteem payoffs also realize according to the correctness of the individual’s vote, our

analysis differs from the existing literature on reputation concerns in that the idiosyncratic

payoffs condition on both state of the world and the committee’s decision. This allows us

to analyze behavior in situations where the information on (or the salience of) the accuracy

of the individual’s vote depends on the committee’s decision.

Another set of recent papers considers idiosyncratic payoffs in elections. Callander (2008)

analyzes voting under simple majority rule when voters wish for the the better candidate

to be elected, but want to vote for the winner. The idiosyncratic payoff for voting for the

winner (independently of the winning candidate’s quality) creates multiple symmetric equi-

libria, some with unusual properties. When considering optimal equilibria as the population

becomes large, Callander (2008) shows that in elections without a dominant front-running

candidate the better candidate is almost surely elected, whereas information cannot be fully

aggregated in races with a clear front-runner.

Morgan and Várdy (2012) study a model in which voters are driven by both instrumental and

purely expressive idiosyncratic payoffs. That is, a voter receives some consumption utility if

he/she votes in a pre-defined way (e.g. in accordance with one’s norms) that is irrespective

of the correct outcome and the implemented decision. Some voters will receive a signal

that is in conflict with their expressive motive. If the degree of conflict is low and thus the

expressive preferences are mostly shaped by facts (the signals) then Condorcet’s (1785) jury

theorem holds and large voting bodies make correct decisions. However, when expressive

preferences are relatively impervious to facts, then large voting bodies do no better than a

coin flip.

While Callander (2008) and Morgan and Várdy (2012) both demonstrate that idiosyncratic

payoffs can lead to a failure of information aggregation in large committees, the mechanism

we present here is quite different. In both of the above papers, idiosyncratic payoffs give

agents a direct incentive to vote for, say, candidate A regardless of the state of the world;

that is, information aggregation fails because the idiosyncratic payoffs run counter to the

common value payoff of electing the better candidate. In our analysis, however, information

aggregation fails despite idiosyncratic payoffs that reinforce common value payoffs: disesteem

payoffs realize only when the committee approves a bad drug.

Lastly, Li (2001) shows that committees might have an incentive to adopt a more conservative

decision rule, in the sense of requiring a higher information threshold, to induce members to

individually invest more in information gathering. Our results give a complementary expla-
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nation for why, even in situations where the committee decision rule is based on votes rather

than quantifiable evidence, committee members have an incentive to vote conservatively.

Interestingly, although we consider a different setting, in the comparative statics section we

detail a result that is related to Li (2001) in spirit: in some cases, increasing the number of

votes required for approval may, in equilibrium, increase the probability that the committee

passes good innovations.

2 The Model

An innovation is submitted for approval by a committee of n experts that operates according

to a q-rule: If strictly more than a fraction q of the committee members i ∈ {1, 2, ..., n} vote

in favor of approval then the innovation is approved, and otherwise it is rejected. We denote

the votes of each committee members i ∈ {1, 2, ..., n} by vi ∈ {a, r} and the decision of the

committee by X ∈ {a, r}, where a indicates accept and r indicates reject. The payoff to

each expert i depends on the decision of the committee, an underlying state of the world

ω ∈ {A,R}, and the expert’s vote vi:

U(vi, X, ω) =


0 if X = r

W if X = a, ω = A

−C if X = a, ω = R, vi = r

−(C +K) if X = a, ω = R, vi = a

where W,C,K > 0.

One interpretation of the structure of the payoffs is as follows: if the innovation is rejected,

then payoffs to all agents in the committee are zero, since the status quo is preserved and

no further information about the innovation’s quality is generated. If the innovation is

approved, then the quality of the innovation is revealed and the committee members receive

a common payoff and, depending on the state of the world and their vote, an individual

disesteem payoff. The common payoff is W or −C depending on whether the committee

has made the right decision with respect to the state of the world. The individual disesteem

payoff is only awarded in the case that the committee has made the wrong decision, and

is non-zero (−K) only for the agents that supported that wrong decision.8 If K is small

these payoffs represent a seemingly small departure from a pure common values situation,

8K can be thought of as the probability that the decision is disastrously wrong, e.g. side effects exist and

are fatal, multiplied by the negative payoff that accrues to committee members who supported the decision

to approve the drug.
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in which the payoffs to all committee members are identical in all possible events. However,

as our main result shows, for a sufficiently large committee this small departure implies a

large difference in equilibrium behavior.

2.1 The state of the art and expert’s opinions (signals)

We denote by pA ≡ p(ω = A) society’s prior belief on the state of the world. We think

of the committee members as experts in a relevant discipline for the decision at hand. We

model the knowledge of each member of the committee as an idiosyncratic departure from

the state of the art of that discipline. We denote the state of the art by t ∈ {a, r} and

let α denote the probability that the state of the art is wrong when it indicates that the

innovation should be rejected (α = p(ω = A|t = r), 0 < α < 1
2
), and let β denote the

probability that the state of the art is wrong when it indicates that the innovation should be

accepted (β = p(ω = R|t = a), 0 < β < 1
2
). Put in terms of our example of the FDA advisory

committees, there is a commonly available collection of evidence on the efficacy and safety of

the drug–a whole battery of data from clinical trials. The state of the art, t, can be thought

of as the decision which an ideal computer, programmed with the ideal decision procedures

of medical science and state of the art criteria for evaluating all data, would arrive at.

The state of the art is not directly observable to the experts. Instead, we think of an expert

as a coarse embodiment of the state of the art. The coarseness reflects idiosyncrasies at

the individual decision making level, such as possible errors of interpretation, conceptual

misunderstandings, lapses of attention (all these often classified as “human error”), but

also inspired hunches and extraordinary insights. We further assume that these individual

differences with respect to the state of the art are purely idiosyncratic, in the sense that

conditioning on t, the sincere opinions of different experts (which we henceforth refer to

as signals) are independent. Concretely, with probability 1 − ε the signal of expert i, si,

coincides with the state of the art (p(si = t|t) = 1 − ε, ε < 1
2
), and with probability ε it

differs with respect to the state of the art (p(si 6= t|t) = ε).9

2.1.1 Equilibrium Concept

In what follows we will use σi : {a, r} → [0, 1] to denote the possibly-mixed strategy according

to which member i sets vi = a with probability σi(a) after receiving signal si = a, and sets

vi = a with probability σi(r) after receiving signal si = a. Throughout the analysis we

9The state of the art can be thought of in an alternative, more constructive way. Rather than thinking

of the opinions of the experts as idiosyncratic distortions of a pre-existing state of the art, we can think of

the state of the art as the probability limit of the average of the signals
1

n
lim
n→∞

n∑
=1

si and explicitly set forth

conditions which would deem the signals conditionally independent given this limit.
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rely on the concept of Bayesian Nash equilibrium and focus on symmetric strategies only;

that is, conditioning on signals, all members use the same decision rule.10 Assuming that

all members other than i play according to strategy σ = (σ(a), σ(r)) we denote i’s expected

payoff from using strategy σi by: Eσ[U(σi, X, ω)|si].11

Definition 1 (Symmetric Equilibrium) A strategy, σ = (σ(a), σ(r)), is a symmetric

equilibrium if and only if for all i ∈ {1, 2, ..., n}, si ∈ {r, a} and, strategy of expert i, σi:

E[Uσ(σ,X, ω)|si] ≥ E[Uσ(σi, X, ω)|si]

3 Analysis

We first characterize the equilibria of the model and then present the main result and com-

parative statics. Denote by GK
n,q the game with disesteem payoffs K, decision rule q, and

n players. We show that, other than the babbling equilibrium in which all agents vote to

reject, each game GK
n,q has at most one equilibrium. We let pivi denote the event that among

all experts other than i, there are exactly bnqc votes for approval. Assuming that all other

members are using strategy σ, expert i finds it optimal to set vi = a upon observing signal si

if, and only if, his willingness to vote to reject the innovation Rsi(pA, α, β, ε, q, n,K,W,C, σ)

is nonpositive:12

Rsi(n, σ) = Kpσ(X = a, ω = R|si)−Wpσ(pivi, ω = A|si) + Cpσ(pivi, ω = R|si) ≤ 0 (1)

Note that if σ(a) = σ(r) = 0, then all probabilities in this inequality vanish. It follows that

it is always an equilibrium for the members to reject the innovation regardless of their signal

(referred to as the babbling equilibrium). However, in contrast to K = 0, when q < n−1
n

,

then σ(a) = σ(r) = 1 is not an equilibrium.13 As is also the case with K = 0, non-babbling

equilibria often involve mixed strategies.

10Restricting attention to symmetric strategies is common in the voting literature when voting is simulta-

neous; see for example Palfrey and Rosenthal (1985) and Feddersen and Pesendorfer (1997).
11Specifically

Eσ[U(σi, X, ω)|si] = σi(si)
∑

X∈{a,r}

∑
ω∈{A,R}

pσ(X,ω|vi = a, si)U(a,X, ω)

+ (1− σi(si))
∑

X∈{a,r}

∑
ω∈{A,R}

pσ(X,ω|vi = r, si)U(r,X, ω)

12Henceforth, we use the abbreviated notation Rsi(n, σ) ≡ Rsi(pA, α, β, ε, q, n,K,W,C, σ) unless we need

to stress the dependence of R on the other parameters.
13When K = 0, σ(a) = σ(r) = 1 is an equilibrium as long as q ≥ 1

n . With every member voting to accept,

the innovation is accepted by the committee for sure and expert i’s action has no impact on his payoff.
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Relying on the following Lemma and Corollary, we are able to fully characterize the mem-

bers’ willingness to reject functions (1), prove uniqueness of non-babbling equilibria, and

demonstrate how equilibria respond to changes in the exogenous parameters of the model.

Lemma 1

Suppose that at least one of σ(r) or σ(a) is strictly positive. If Rr(n, σ) ≤ 0, then Ra(n, σ) <

Rr(n, σ).

Lemma 1 implies that if an expert weakly prefers to set vi = a upon receiving signal r (i.e.

(1) holds when si = r) he will strictly prefer to set vi = a upon receiving signal a (i.e. (1)

holds strictly when si = a).14

Corollary 1 follows immediately from Lemma 1 and shows that in any other equilibrium of

GK
n,q, behavior is ordered in the sense that σ(a) > σ(r), and that a properly mixed action is

used after receiving at most one of the signals.

Corollary 1

Any equilibrium of any game GK
n,q has the following form: σ(r) = 0, σ(a) ≥ 0, or 0 < σ(r),

σ(a) = 1.

By virtue of Lemma 1, equilibria of the form σ(r) = 0, 0 < σ(a) < 1 are fully characterized

by solutions to the equation Ra(n, (σ(a), 0)) = 0 and equilibria of the form 0 < σ(r) <

1, σ(a) = 1 are fully characterized by solutions to the equation Rr(n, (1, σ(r))) = 0.15

This allows us to characterize the equilibria of the model using the following function:

R(n, z) =

{
Ra(n, (z, 0)) if z ≤ 1

Rr(n, (1, z − 1)) if z > 1

Where z = σa + σr. Importantly, in contrast to Ra and Rr, the last argument of R is one-

dimensional. Therefore, with all parameters other than z being held constant, the equilibria

of GK
n,q correspond to the values of z that are roots of R when z 6= 1, as the function is

continuous for all z 6= 1, or to a discontinuous crossing in case z = 1, which corresponds

to the equilibrium σ = (1, 0). We can now present the proposition characterizing the non-

babbling equilibrium:

14When K = 0 a stronger relation holds: Specifically, with the exception of the case in which everyone

votes to reject, agents always have a strictly smaller willingness to reject after observing si = a than after

observing si = r.
15 The reason is that by Lemma 1, if Ra(n, (σ(a), 0)) = 0, it must be the case that Rr(n, (σ(a), 0)) > 0

so (σ(a), 0) is an equilibrium. Similarly if Rr(n, (1, σ(r))) = 0 then Ra(n, (1, σ(r))) < 0 so (1, σ(r)) is an

equilibrium.
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Figure 1: From top left, clockwise (a) and (b) equilibria of the form σ(r) = 0, σ(a) > 1; (c)

an equilibrium of the form σ(r) > 0, σ(a) = 1; (d) equilibria of the form σ(r) = 0, σ(a) = 1;

(e) and (f) no equilibrium.

Proposition 1 (Equilibrium Characterization)

(1) If a non-babbling equilibrium z∗ exists, it is unique.

(2) If GK
n,q has a non babbling equilibrium, then so does GK

n,q′ for any q′ > q.

(3) If an equilibrium z∗ 6= 1 exists then ∂R(n,z∗)
∂z

> 0.

The difficulty in characterizing the set of roots of R(n, z) (and thereby the equilibria of the

game), stems from the fact that the function is non-monotonic, and discontinuous at z = 1.

However, there are (3) main properties of R that hold when K > 0, which taken together

give uniqueness. These are: (1) In each of the two continuous segments (z ∈ (0, 1] and

z ∈ (1, 2)) R has the single crossing property in z.16 This implies both that R has at most

one root in each of these two segments, and also that the crossing of the z axis must be

from negative to positive. (2) If Rr(n, 1) ≤ 0 then the jump at the discontinuity is positive,

which follows from Lemma 1. (3) R(n, 2) > 0, since if everyone votes a, it is strictly a best

response to deviate to voting r (for all values of q < n−1
n

).

These three properties place R(n, z) in one of the six classes shown in Figure 1, in each of

which either a non-babbling equilibrium does not exist, or it exists and is unique. First,

if R(n, z) has a crossing in (0, 1], then while property (2) tells us that the jump at the

16This result follows from applying the main result of Quah and Strulovici (2012); see the formal proof in

Appendix A for the details of Quah and Strulovici’s result, and for its application to our problem.
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discontinuity can either be negative (Figure 1 (a)) or positive (as in Figure 1 (b)), the second

continuous segment must start being positive, which by property (1) implies that there is no

crossing in (1, 2), since any crossing of the z axis must be from negative to positive.

Second, if R has no roots in (0, 1], and is always negative in (0, 1], then by property (2), the

jump at the discontinuity must be positive. If the second continuous segment starts being

negative, then there must be a crossing in (1, 2) (Figure 1 (c)), since by property (3), R(n, 2)

is strictly positive. Furthermore, by property (1) the crossing must be unique. If the second

segment starts being positive, then we have an equilibrium at z = 1 (Figure 1 (d)), and no

crossing in (1, 2).

Finally, if R has no roots in (0, 1], and is always positive in (0, 1] then, once more, the second

segment must start being positive, which implies that R has no roots in (1, 2) and therefore

no roots at all (Figure 1 (e) and (f)).

It is worthwhile to note two main qualitative differences between the cases K = 0 and

K > 0 regarding the willingness to reject function R: First, when K = 0 the jump at the

discontinuity must always be positive, which excludes the cases shown in Figure 1 (a) and

(e). Second, when K = 0, property (3) does not hold, and in particular R(n, 2) = 0.

We denote the unique non-babbling equilibrium of GK
n,q (if it exists) by σKn,q and its one

dimensional representation by zKn,q = σKn,q(a) + σKn,q(r).
17 Throughout what follows, we alter-

nate between the σKn,q and zKn,q based on convenience. Proposition 1 allows us to characterize

the effect of increasing K, which is captured by the following Corollary.

Corollary 2 (Comparative statics: K)

If z∗ 6= 1 then
∂z∗n,q

∂K
> 0. It then follows that pzKn,q

(X = a) and in particular, both pzKn,q
(X =

a|t = a) and pzKn,q
(X = a|t = r) are decreasing in K.

Corollary 2 follows immediately from observing in equation (1) that as long as z = σ(a)+σ(r)

is positive, increasing K simply shifts R upwards. As shown in each of the cases depicted in

Figure 1 in which the non-babbling equilibrium exists,18 this upwards shift causes the new

crossing to take place at z′ < zKn,q. Generically, a small enough change of K at an equilibrium

z∗ = 1 preserves this as the unique equilibrium of the game.19

17Given zKn,q, the actual values of σKn,q(a) and σKn,q(r) can be recovered as σKn,q(a) = zKn,q and σKn,q(r) = 0

if zKn,q ≤ 1 and σKn,q(a) = 1 and σKn,q(r) = zKn,q − 1 if zKn,q > 1.
18With the exception of the one corresponding to z∗n,q = 1.
19There is a simple argument, that essentially provides the same result as Corollary 2 without requiring

Proposition 1 (single crossing). Let z∗∗n,q denote the maximum crossing (in case there are many). Since we

know that when all other agents vote to accept, any agent i finds it strictly optimal to reject (R(n, 2) > 0),

this last crossing at z∗∗n,q must be from bottom to top (with the exception of a possible tangency). It follows

that if
∂z∗∗n,q

∂K exists it must be positive.
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The straightforward intuition for Corollary 2 is that K indexes the conflict of interest among

committee members. For any q < n−1
n

(all decision rules excluding unanimity), a positive

K implies that if the members believe that the innovation should be approved, any given

expert i would rather have the rest of the committee to approve it, and hedge against the

disesteem payoff by setting vi = r. The motive for avoiding potential disesteem is increasing

in K. Therefore, to sustain positive approval rates at higher values of K it is necessary that

all committee members are relatively more pivotal, and/or for P (X = a|ω = R) to decrease.

Part (3) of Proposition 1 implies that in equilibrium the only way of doing this is by lowering

z.20

The second part of corollary 2 tells us that a higher K makes committees more cautious.

Whether the expected outcome is better or worse from a social standpoint depends on the

particular social welfare function. In applications of the model such as the FDA approval

process, the social welfare function might be by and large independent of the payoffs of

committee members. In general, given the imperfection of the state of the art (α, β > 0),

there is an unavoidable tradeoff between the probability of approving bad drugs p(X =

a|ω = R) and the probability of rejecting good drugs p(X = r|ω = A), making any welfare

judgment conditional on society’s valuation of the various outcomes.

Large Committees

While the welfare implications of positive K for small committees depend on the particular

social welfare function, the consequences of K are stark for sufficiently large n. In order to

compare, we first characterize large committee outcomes for K = 0 (G0
n,q).

Proposition 2 (Convergence to the state of the art)

When K = 0 and committee members act according to the non-babbling equilibrium, the

decision of the committee converges almost surely to the state of the art for all q ∈ (0, 1) as

n approaches infinity.

Proposition 2 states the analogous result to Feddersen and Pessendorfer’s (1998) Proposition

3 (proved in the supplementary appendix as Corollary 2): in the absence of disesteem payoffs,

regardless of q, decisions by large committees almost surely converge to the state of the art.

This gives us an appropriate benchmark for our main result: as n grows, the behavior of

the committee given any equilibrium of GK
n,q converges to its behavior under the babbling

strategy. That is, the committee converges to always rejecting the innovation.

20It is important to note that this is a property of the equilibrium and not a global property of R, as

follows from inspecting the sketches in Figure 1.
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Proposition 3 (The probability of acceptance converges to 0 as n→∞)

Let K > 0 and consider the sequence of games GK
n,q and any sequence of symmetric strategy

profiles σn, such that for each n, σn is an equilibrium of GK
n,q. We let pσn(X = a) denote

the probability that the committee accepts the innovation in game GK
n,q, playing according

to σn. Then, pσn(X = a)→ 0 as n→∞. That is, for all δ > 0, there exists nδ such that for

all n > nδ, pσn(X = a) < δ.

The proof of Proposition 3 has two parts, which can be illustrated by reference to the RHS

and LHS of the following rearrangement of equation (1), representing expert i’s willingness

to vote to accept the innovation upon receiving signal si, when all other members play

according to σ,

Wpσ(pivi, ω = A|si)− Cpσ(pivi, ω = R|si) ≥ Kpσ(X = a, ω = R|si) (1′)

First, we show that under any q-rule, LHS converges to zero as n approaches infinity. Next

we show that, due to the state of the art layer, the RHS, while decreasing under some

{σa, σr}, is always strictly bounded away from zero. Intuitively, as the size of the committee

grows, the probability of influencing the committee decision, and hence of obtaining W rather

than −C, approaches zero. The probability the negative disesteem payoff realizes, however,

is bounded away from zero.

Corollary 3 (Behavior)

Let K > 0. There exists n∗ such that for all n > n∗, σn(a) < q
1−ε , where σn is any symmetric

equilibrium of GK
n,q.

Proposition 3 and its corollary implies a striking difference in the equilibrium behavior of

committees of sufficiently large size with respect to their behavior with no disesteem payoffs

no matter how small these disesteem payoffs are. In particular, Proposition 2 shows that

the unique non-babbling equilibrium of G0
n,q converges to the decision of a single agent with

representative preferences and direct access to the state of the art. In contrast, Proposition

3 tells us that no matter how small, when K > 0, and for sufficiently large n, the committee

essentially always rejects the innovation, implying that it will wrongly reject the innovation

with high probability.

It is worth noting precisely how Proposition 3 depends on the state of the art view of

expertise. If the signals of the experts were independent conditioning on the state of the

world, as is frequently assumed in the literature on information aggregation, then under any

strategy σ such that σ(r) < q−ε
1−ε the RHS of (1′) would converge to 0 at the same rate as the

LHS. This allows for the possibility of an equilibrium where the committee votes optimally,

since under optimal voting, the probability of the event that the committee wrongly approves

the innovation becomes negligible as n grows. However, our analysis of the state of the art
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view of expertise shows that if there is even a minuscule probability that the state of the

art does not correctly identify the state of the world, then the incentive for the committee

members to protect themselves against disesteem payoffs dominates, and large committees

reject the innovation almost surely.

3.1 Comparative Statics

In this section, we characterize the marginal effect of changes in the exogenous parameters

on the non-babbling equilibrium z∗. The following is a Corollary of Proposition 1:

Corollary 4 (Signs)

For all parameter values such that z∗(pA, α, β, ε, q, n,K,W,C) exists and is different from 1,

we have:

• ∂z∗

∂W
> 0,

∂z∗

∂C
< 0.

• ∂z∗

∂pA
> 0,

∂z∗

∂α
> 0 and

∂z∗

∂β
< 0.

• z∗ is weakly increasing in q.21

In order to establish the first two sets of results we rely on the characterization of the

willingness to reject R, summarized in Figure 1. Note that the effects of α = p(ω = A|t = r)

and β = p(ω = R|t = a) have opposite signs; a higher α and a lower β both map onto a

greater likelihood of ω = A, which shifts the expert’s willingness to reject, R, down. Since

R is increasing in z at all equilibria, the unique non-babbling equilibrium under a higher α

(or lower β) must occur at a higher z.

In terms of the effect of q on z∗, we use the result of Quah and Strulovici (2012) to show that

the negative of the willingness to reject, −R, has the single crossing property in bnqc. Thus,

it follows that in any non-babbling equilibrium, the willingness of any committee member

i to vote to accept the innovation is increasing in the decision threshold bnqc. This result

also has an intuitive explanation: Fixing the behavior of all other agents, an increase of bnqc
from m to m′, has two effects. First, it makes the committee less likely to accept, and thus

reduces i’s exposure to the disesteem payoffs. Second, conditional on being pivotal, i infers

that the other agents have received a greater number of a signals under m′ than under m,22

and thus assigns a higher probability on ω = A. Since both these effects lower the agent’s

21q affects z∗ through bnqc and therefore z∗ is discontinuous and not differentiable in q.
22Formally, under m′, the distribution of the number of a signals conditional on i being pivotal first order

stochastically dominates the same distribution under m.
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Figure 2: Monotonicity of z and non-monotonicity of p(X = a|ω) and p(X = a|t) in q.

Parameters: ε = 0.3, W = 3, C = 4, K = 1/3, pA = 0.5, α = 0.4, β = 0.3, n = 101. Left

graph: z is monotonic in q, yet p(X = A|t) (middle graph) p(X = a|ω) (right graph) are

not. The dashed lines represent p(X = a|t = r) and p(X = a|ω = R) and the continuous

lines p(X = a|t = a) and p(X = a|ω = A).

willingness to reject the unique non-babbling equilibrium under a higher q must occur at a

(weakly) higher z.

Note, however, that the overall effect of an increase in q on the probability that the committee

accepts the innovation depends on whether the increase in z is high enough to outweigh the

increase in the decision threshold. In general, the relation between q and the probability

of acceptance is non-monotonic and, somewhat surprisingly, as shown in Figure 2, a higher

value of q may imply a higher acceptance probability p(X = a).

The comparative statics with respect to n and ε are non-monotonic, and therefore cannot be

generally classified by sign. However, these non-monotonicities represent interesting cases

that we explore further. Fixing the behavior of all members other than i, increasing n has

two effects: (1) Fixing the fraction of a signals received by other experts, i’s confidence on

his inference on the state of the world increases. Therefore, conditional on i being pivotal,

voting for a becomes less ‘risky.’ (2) The probability of i being pivotal decreases, and

therefore so does the importance of his payoffs that condition on being pivotal. Thus, the

relative salience of disesteem payoffs–which accrue regardless of whether he is pivotal or not–

increases. Proposition 3 shows that for large enough increases in n, (2) always predominates.

However, for small increases in n this may not be the case, as seen in Figure 3.

The case of ε is also interesting. On the one hand, a smaller ε implies that any expert’s

signal is more likely to reflect the state of the art, and indirectly the state of the world. From

this perspective, any given member i becomes more willing to vote for a upon receiving an

a signal. On the other hand, a lower ε implies that all else equal, i has a better prediction

of how the other experts will vote. In particular, under a smaller ε, holding the strategy
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Figure 3: Non-monotonicity of σ(a), p(X = a|t = a) and p(X = a|ω = A) in n. The

jaggedness of the figures is due to the discreteness of the problem (we are interested in the

“low frequency variation”). Parameters: ε = 0.3, W = 3, C = 4, pA = 0.5, α = 0.4, β = 0.3

Top Figures: q = 0.5, z is weakly monotonic, yet p(X = a|t = a) and p(X = a|ω = a) is

non-monotonic. Bottom Figures: q = 0.75, None of z, p(X = a|t = a) and p(X = a|ω = A)

are monotonic. The smooth lines represent the case K = 1
3
. As a benchmark, the dotted

lines represent the situation with no disesteem payoff (K = 0).

used by other experts constant, upon receiving an a signal i is more confident that other

members will vote a.23 Therefore, conditional on receiving signal a expert i is less likely to

be pivotal, and has a smaller incentive for vote a than with the higher ε. These competing

effects can result in non-monotonicity, which can be seen in the example shown in Figure 4.

4 Extensions

We first consider the effect of information pooling of the experts’ signals on the collective

action problem introduced by disesteem payoffs. Since committees of experts most often

discuss prior to voting, the committee members can then share their private signals with the

other members of the committee. Second, we characterize the extent to which Proposition

3 is robust to dilution of disesteem payoffs. It is reasonable that the size of the disesteem

payoff is smaller in a larger committee, since more individuals share the blame for approving

a bad innovation. The main result still obtains, however, as long as the speed of dilution is

“slow enough.”24

23Note that equilibria are always ordered, in the sense that σ(a) > σ(r).
24In a different vein, a possible extension of our model is to include disesteem payoffs that are realized when

the committee rejects the innovation and esteem payoffs that accrues to members who supported a successful
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Figure 4: Non-monotonicity of z, p(X = a|t = a), and p(X = a|ω = A) in ε. Parameters:

n = 25, W = 3, C = 4, pA = 0.5, α = 0.4, β = 0.3. Note that z is non-monotonic. Despite

the initial rise in z, p(X = a|t = a) is weakly decreasing throughout, and p(X = a|ω = A) is

non-monotonic. The smooth lines represent the case of K = 1
3
. As a benchmark, the dotted

lines represent the situation with no disesteem payoff (K = 0).

4.1 Information Pooling

Suppose each member reveals his private signal to the committee prior to voting, which

implies that the precision of the information available to individual committee members is

increasing in n. Since each expert now has the same information set, {s1, ..., sn} ≡ {si}n,

symmetric strategies imply that every member chooses to approve or reject the innovation

with the same probability, which we denote by σ(s1, s2, ..., sn).

Corollary 5 (Robustness to Increasing Precision)

Let K > 0 and let each committee member observe the full set of signals {si}n. Following

the notation of Proposition 3, for any q-rule, pσn(X = a) → 0 as n → ∞. That is, for all

δ > 0, there exists nδ such that for all n > nδ, pσn(X = a) < δ.

Corollary 5 follows directly from Proposition 3 since that result holds under perfect signals

(ε = 0). More specifically, the structure of each expert’s decision rule is unchanged, with

the only difference being that the probabilities condition on the full set of signals:

Kpσ(X = a, ω = R|{si}n)−Wpσ(pivi, ω = A|{si}n) + Cpσ(pivi, ω = R|{si}n) ≤ 0 (1′′)

Corollary 5 extends Proposition 3 and shows that under pooling of private signals, large

committees will reject innovations almost surely.

In contrast to Corollary 5, without disesteem payoffs (K = 0) and under information pooling,

there always exists a single-agent efficient equilibrium. We call an equilibrium single-agent

innovation. Notice that Proposition 3 is robust to such “idiosyncratic” payoffs if they are sufficiently close

to zero, which follows from the fact that the RHS of (1′) is bounded away from zero for any equilibrium

where the innovation is accepted with positive probability.
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efficient if for every realization of signals (s1, s2, ..., sn), the committee approves the innova-

tion if, and only if, it would be approved by a single-agent committee whose only member

has access to (s1, s2, ..., sn).25 This disparity with respect to K > 0 stems from the fact

that with disesteem payoffs and any q-rule different from unanimity (q < n−1
n

), payoffs are

heterogeneous since it is only the experts who vote to accept that are exposed to disesteem

payoffs. Hence, even though the experts agree on the optimal committee outcome, the col-

lective action problem remains and each expert will face an incentive to free-ride and vote

to reject.

Given Corollary 5, the result of the following proposition is remarkable: under unanimity

and K > 0 a single-agent efficient equilibrium exists, and this is true also if the experts have

the option to misrepresent their signals. In appendix A, we present a formal model with an

initial stage of costless communication.

Proposition 4 (Efficiency under Unanimity)

Let K = 0 and consider any q < 1. Under information pooling there exists a single-agent

efficient equilibrium, even if experts are able to mis-represent their signals. This is only true

for K > 0 when n−1
n
≤ q < 1 (unanimity).

The intuition for the proof of Proposition 4 is simple: Assuming all experts observe the

full set of signals and, if approval is single-agent efficient, then no agent has an incentive to

deviate. This is true when K = 0 because the payoff of each committee member coincides, for

all possible outcomes, with that of the single agent. This is also the case under unanimity and

K > 0, since each expert’s vote is pivotal when the committee accepts and thus the expert

faces exactly the same decision problem as the representative single agent. Furthermore, by

mis-representing his signal, an expert is only able to alter the final outcome in the same way

as he would by correctly presenting his signal and modifying his vote (see also Coughlan

(2000)).

Proposition 4 shows that costless communication can lead to efficiency in the presence of dis-

esteem payoffs, but only if it is paired with a unanimity rule. This result supports Coughlan

(2000) argument for why certain committees, such as juries, are better off using a unanimity

rule, despite its disadvantages (see Feddersen and Pesendorfer (1998)).

Our analysis of information aggregation under information pooling yields the following two

insights. First, it shows that, to the extent that it provides committee members with more in-

formation, information sharing cannot overcome the collective action problem in committees.

Second, it highlights the fact that in our setting, the conflict of interest among committee

members depends on the decision rule.

25This representative agent receives a payoff of 0 if the innovation is rejected, W if it is accepted and

ω = A and −(C +K) if he accepts it and ω = R.
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4.2 Dilution of Disesteem Payoffs

Lastly, we discuss the extent to which our result is robust to dilution of disesteem payoffs. It

is reasonable that the size of the disesteem payoff is smaller in a larger committee, since more

individuals share the blame for approving a bad innovation. The main result still obtains,

however, as long as the speed of dilution is “slow enough.” Consider the following variation

of the sequence of games (GK
n ) analyzed in Section 3. We let the game (G

f(n)
n ) be just as

(GK
n ) with the exception of the disesteem component of the payoffs, which we define in a

slightly more general way. In particular let the payoff function be given by:

U(X, vi, ω) =


0 if X = r

W if X = a, ω = A

−C if X = a, ω = R, vi = r

−(C + fn(n, {vi}ni=1)) if X = a, ω = R, vi = a

Where for each n, f(n, {vi}ni=1) > 0 and is bounded from below by some deterministic func-

tion gn of n, gn : N+ → R such that the sequence gn(n) converges to 0 at a lower speed

than 1√
n
. That is, for all n, fn(n, {vi}ni=1) ≥ gn(n), where lim

n→∞

√
ngn(n)→∞.

Note that the games (GK
n ) of Section 3 are a special case of this formulation, as f(n) = K

being constant in n certainly has the required property ( lim
n→∞

√
nK → ∞). This definition

also accommodates other interesting cases; for example, let f(n, {vi}ni=1) = K
log(n)

.

Proposition 5

Let (fn) be a sequence of functions satisfying the properties discussed above and consider the

sequence of games Gfn
n,q and any sequence of symmetric strategy profiles σn, such that for each

n, σn is an equilibrium of Gfn
n,q. We let pσn(X = a) denote the probability that the committee

accepts the innovation in game Gfn
n,q, playing according to σn. Then, pσn(X = a) → 0 as

n→∞. That is, for all δ > 0, there exists nδ such that for all n > nδ, pσn(X = a) < δ.

The proof of Proposition 5 is analogous to the proof of Proposition 3, and follows by simply

dividing both sides of (1′′) by gn.

5 Conclusion

In this paper, we detail the effect of idiosyncratic disesteem payoffs on information aggrega-

tion in committees. We show that under the “state of the art” model of expertise, disesteem

payoffs lead large committees to be over-cautious and reject new innovations as individ-

ual committee members seek to save face and avoid being blamed for a bad decision. If
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committee members communicate prior to voting, then over-caution can be addressed by

a unanimity rule: if all committee members are responsible for approval, then communica-

tion will be effective and the committee will choose the option that maximizes their ex-ante

aggregate payoff.

Our paper suggests multiple areas for further study. First, our paper shows that the predic-

tions of models of information aggregation in committees can be sensitive to the standard

assumption that experts’ signals are generated by the state of the world. It is unlikely that

the state of the art decision perfectly identifies the true state of the world; that is, due to

imperfect evidence, even the “best” decision might be wrong ex post. If experts’ signals are

generated by an imperfect state of the art, then information aggregation no longer results

in fully accurate decisions. Additionally, the state of the art model implies a particular cor-

relation structure between experts’ signals, and the general implications of this correlation

warrant further study.

Second, our paper shows that idiosyncratic payoffs can affect information aggregation even

when they reinforce common payoffs. Specifically, idiosyncratic payoffs can distort decisions

when they introduce asymmetry in payoffs. This asymmetry need not be large; we show here

that even a marginal deviation from common payoffs can distort outcomes in large commit-

tees. Asymmetry can occur either due to informational asymmetry, e.g. when information

regarding the adequacy of a drug is only revealed when the drug is passed, or if the saliency

of individual votes vary with the committee outcome. One particularly relevant environment

is a political setting, where idiosyncratic payoffs can be interpreted as changes in reelection

probabilities. Voting records of politicians are heavily scrutinized in US legislatures, and

the saliency of a particular representative’s vote might condition on the legislative outcome.

Therefore, a particularly interesting area for future study might be the effect of idiosyncratic

payoffs on information aggregation in legislatures.
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Appendix A: Proofs

We begin by noting that our game is equivalent to a single layer game (that does not make

reference to the state of the world ω, but just to the state of the art t) with the following

payoff function:

U(X, vi, ω) =



0 if X = r

Wp(ω = A|t = a)− Cp(ω = R|t = a) if X = a, t = a, vi = r

−(Cp(ω = R|t = r)−Wp(ω = A|t = r)) if X = a, t = r, vi = r

Wp(ω = A|t = a)− (C +K)p(ω = R|t = a) if X = a, t = a, vi = a

−((C +K)p(ω = R|t = r)−Wp(ω = A|t = r)) if X = a, t = r, vi = a

Unless otherwise stated we establish the following results, by analyzing the slightly more

general game with the following payoff structure:26

U(X, vi, ω) =



0 if X = r

W ′ if X = a, t = a, vi = r

−C ′ if X = a, t = r, vi = r

W ′ −K1 if X = a, t = a, vi = a

−C ′ −K2 if X = a, t = r, vi = a

Our game is a special case of this second one. However this second structure is strictly

more general. For instance, in our game we would always have K1 = Kp(ω = R|t = a),

K2 = Kp(ω = R|t = r) which implies K1 < K2 since β < 1−α. Denote the set of all agents

j 6= i, such that vj = a, by Hi, and let pivi, denote the event |Hi| = bnqc. Expert i finds it

optimal to set vi = a upon receiving signal si, when all other agents are using strategy σ if,

and only if, Rsi(pA, α, β, ε, q, n,K1, K2,W,C, σ), abbreviated Rsi(n, σ), is nonpositive :

Rsi(n, σ) = K1pσ

(
|Hi|+ 1

n
> q, t = a|si

)
+K2pσ

(
|Hi|+ 1

n
> q, t = r|si

)
−W ′pσ(pivi, t = a|si) + C ′pσ(pivi, t = r|si) ≤ 0

Proof of Lemma 1:

Assume Rr(n, σ) ≤ 0, and that at least one of σ(r) or σ(a) is strictly positive. Then:

−W ′pσ(pivi|t = a)paε+ C ′pσ(pivi|t = r)(1− pa)(1− ε) +

26We are abusing notation slightly, as we are just referring to the structure of the payoff function. The

coincidence of W and C in the representations above and below does not mean that they are equal.
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K1pσ

(
|Hi|+ 1

n
> q|t = a

)
paε+K2pσ

(
|Hi|+ 1

n
> q|t = r

)
(1− pa)(1− ε) ≤ 0

≡ paε

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
≤

(1− pa)(1− ε)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
⇒ paε

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
< 0

Since
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+1
n

> q|t = r
))

< 0 , given that since by assumption

at least one of σ(a) and σ(r) is positive, and therefore p
(
|Hi|+1
n

> q|t = r
)
> 0.

Now,

Ra(n, σ) =

(1− ε)pa
(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
−

ε(1− pa)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
< εpa

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
−

(1− ε)(1− pa)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
= Rr(n, σ)

The strict inequality follows from the facts that:

(1)
(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+1
n

> q|t = a
))

< 0 and(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+1
n

> q|t = r
))

< 0 (proved above)

(2) ε < 1
2

and therefore (1− ε) > ε. (Lemma 1)

Proof of Corollary 1:

The proof of Corollary 1 proceeds by showing that if an equilibrium σ(a), σ(r) is not bab-

bling (σ(a) = σ(r) = 0) then it necessarily must be in one of the two categories (1) σ(r) = 0,

σ(a) > 0, or (2) σ(r) > 0, σ(a) = 1 . So suppose the equilibrium is not a babbling equi-

librium. There are two possibilities: either σ(r) = 0 or σ(r) > 0. If σ(r) = 0, then we are

done, since by assumption the equilibrium is not babbling, and therefore it must be the case

that σ(a) > 0, in which case the equilibrium is in category (1). So assume σ(r) > 0. Then

for a player to be best responding it must be the case that Rr(n, σ) ≤ 0, as otherwise he

would find it strictly better to set vi = r (contradicting σ(r) > 0). By Lemma 1 this implies
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Ra(n, σ) < Rr(n, σ) ≤ 0, and therefore the expert finds it strictly optimal to set vi = a. It

must therefore be the case that σ(a) = 1 and the equilibrium is in category (2). (Corollary 1)

Proof of Proposition 1:

We begin by showing part (1). The proof establishes that R(n, z) has the single crossing

property in z ∈ (0, 2]. Given that Rr(n, (1, 1)) > 0 for all q < n−1
n

,27 it follows that any

crossing must actually take place in (0, 2), so it suffices to show that R(n, z) has the single

crossing property in z ∈ (0, 2). We proceed as follows: (A) We first show that Ra(n, (z, 0))

has the single crossing property for z ∈ (0, 1] and Rr(n, (1, z − 1)) has the single crossing

property for z ∈ [1, 2). We do so by relying on the main result of Quah and Strulovici (2012)

which provides sufficient and necessary conditions for non-negative sums of functions having

the single crossing property to also have the single crossing property. And then (B) we use

Lemma 1 to argue that if R(n, z) has a crossing in (0, 1) then it cannot have one in [1, 2).

(A) Ra(n, (z, 0)) has the single crossing property for z ∈ (0, 1] and, Rr(n, (1, z − 1)) for z ∈ [1, 2).

Note that for z ∈ (0, 1], Ra(n, (z, 0)), is just

Ra(n, (z, 0)) = Kpz(X = a, ω = R|a)−Wpz(pivi, ω = A|a) + Cpz(pivi, ω = R|a).

Which is a special case of the general form:

G(y) : D1pz(pivi|t = r) +D2pz

(
|Hi|
n
> q|t = a

)
+

D3pz

(
|Hi|
n

> q|t = r

)
−D4pz(pivi|t = a). 28

where D1, D2, D3 and D4 are nonnegative constants. The result will follow as a direct

application of Lemma 1 in the appendix of Quah and Strulovici (2012). For convenience we

reproduce the Lemma and the relevant definitions below (as they apply to our paper).

Definition 2 (Quah and Strulovici (2012)) Let S be partially ordered set. A function

f : S → R satisfies the single crossing property (SCP) if:

• f(s) ≥ (>)0 =⇒ f(s′) ≥ (>)0 whenever s′ > s.

Note that G(z) has at most one solution if and only if it satisfies (SCP).29 G(z) is a non-

27Given that as long as the decision rule is not unanimity, if all other agents surely accept the innovation,

any agent’s unique best reply is to reject it.
28We suppress explicitly noting the dependence on n as throughout this section n is kept constant.
29Note G(0) = 0 so in principle it could satisfy (SCP) by being constant at 0 for all z or by remaining

constant for an interval and then becoming positive. This possibility can be ruled out by verifying that there

exist points arbitrarily close to 0 whose image under G is not 0.
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negative linear combination of functions that satisfy (SCP ) in (0, 1).30 In their work, Quah

and Strulovici provide necessary and sufficient conditions under which such linear combina-

tions also satisfy (SCP ).

Definition 3 (Quah and Strulovici (2012)) A pair of functions f : S → R and g :

S → R satisfy the signed ratio monotonicity property (SR) if:

a) If g(s) < 0 and f(s) > 0 then − g(s)
f(s)
≥ − g(s′)

f(s′)
when s′ > s.

b) If g(s) > 0 and f(s) < 0 then −f(s)
g(s)
≥ −f(s′)

g(s′)
when s′ > s.

Lemma 2 (Quah and Strulovici (2012) (Lemma 1 in the Appendix))

Let F = {fi}1≤i≤M be a family of functions satisfying (SCP ) such that any two members

satisfy (SR). Then
M∑
i=1

αifi, where αi ≥ 0 for all i, satisfies (SCP ).

Consider the family of functions (1) py(pivi|t = r), (2) py

(
|Hi|
n
> q|t = a

)
, (3) py

(
|Hi|
n
> q|t = r

)
and (4) −pz(pivi|t = a), and notice that they all satisfy (SCP ) when z ∈ (0, 1]. The first 3

are nonnegative, so any pair among them satisfies (SR). It therefore suffices to show that

all the pairs formed by (4) and each of (1), (2) and (3) satisfy (SR).

Lemma 3

All pairs in the family {pz(pivi|t = r), pz

(
|Hi|
n
> q|t = a

)
, pz

(
|Hi|
n
> q|t = r

)
,−pz(pivi|t =

a)} satisfy (SR) for z ∈ (0, 1].

Proof of Lemma 3:

As stated above, we just need to check the pairs involving −pz(pivi|t = a), as all other pairs

involving components with the same sign satisfy the condition vacuously.

(1) −pz(pivi|t = a) and pz(pivi|t = r) . In this case, the condition is equivalent to pz(pivi|t=a)
pz(pivi|t=r)

being non-increasing in z.

pz(pivi|t = a) =

(
n− 1

bnqc

)
µbnqca (1− µa)n−1−bnqc and

pz(pivi|t = r) =

(
n− 1

bnqc

)
µbnqcr (1− µr)n−1−bnqc

where µa = (1− ε)z and µr = εz. Therefore:

30They do so trivially, as each of the four functions ((1) pz(pivi|t = r), (2) pz

(
|Hi|
n > q|t = a

)
, (3)

pz

(
|Hi|
n > q|t = r

)
and (4) −pz(pivi|t = a)) are 0 when evaluated at z = 0, and then either always positive

(the first 3) or alway negative (the 4th).
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pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)bnqc(
1− (1− ε)z

1− εz

)n−1−bnqc
This expression is non-increasing in z, if for all z, z′ ∈ (0, 1] where z < z′ we have(

1− (1− ε)z
1− εz

)
≥
(

1− (1− ε)z′

1− εz′

)
which can be seen to be true whenever ε ≤ 0.5.

(2) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = a

)
. This case amounts to showing that the hazard

ratio of the binomial distribution evaluated at bnqc is decreasing for all success probabilities

between 0 and (1− ε).31 More generally, we will show that the hazard ratio evaluated at k:(
m
k

)
µka(1− µa)m−k

m∑
j=k+1

(
m
j

)
µja(1− µa)m−j

, is decreasing in µa ∈ [0, 1) for all m.

The hazard ratio is decreasing if, and only if, its multiplicative inverse is increasing, which

is true since:
m∑

j=k+1

(
m
j

)
µja(1− µa)m−j(

m
k

)
µka(1− µa)m−k

=
m∑

j=k+1

(
m
j

)(
m
k

) ( µa
1− µa

)j−k
.

and µa
1−µa is strictly increasing in µa ∈ [0, 1) as required.

(3) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = r

)
. The analogous expression to the inverse hazard

ratio in this case (as a function of z) is:

m∑
j=k+1

(
m
j

)(
m
k

) ( (εz)j(1− εz)m−j

((1− ε)z)k(1− (1− ε)z)m−k

)
.

The derivative of
(

(εz)j(1−εz)m−j

((1−ε)z)k(1−(1−ε)z)m−k

)
w.r.t. z is:(

(εz)j(1− εz)m−j−1

z((1− ε)z)k(1− (1− ε)z)m−k+1

)
((j − k) + z((1− 2ε)m− j(1− ε) + kε))

The sign of this expression just depends on the sign of the linear function of z , (j − k) +

z((1−2ε)m−j(1−ε)+kε) which can be straightforwardly verified to be always non-negative

for ε < 0.5, and k < j ≤ m. We therefore have that the sum above is nondecreasing in z

and pz(pivi|t=a)
pz

(
|Hi|
n
>q|t=a

) is nonincreasing in z, as required. (Lemma 3)

We can therefore apply Quah and Strulovici’s Lemma (Lemma 2 above) to conclude that

G(z) can have at most one other solution (other than σ(a) = 0), in the interval z ∈ [0, 1]. We

end by noting that the “extreme” configuration z = 1, corresponding to σ(a) = 1, σ(r) = 0

31These are the bounds for µa as z varies between 0 and 1.
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requires just G(1) ≤ 0 and not the more restrictive G(1) = 0. The definition of (SCP ) also

implies that any crossing must take place from below the x-axis. But this means that either

G(z) is negative throughout the range (with the exception of G(0) = 0), in which case z = 1

defines an equilibrium provided that Rr(n, z) ≥ 0 (and is the only one), or it crosses the

x-axis, but if this is the case then having G(1) ≤ 0 would require a second crossing, which

we have shown to be impossible.

We now verify the analogous steps for the case z ∈ [1, 2)

For z ∈ (0, 1], Rr(n, (1, z − 1)), is just

Rr(n, (1, z − 1)) = Kpz(X = a, ω = R|r)−Wpz(pivi, ω = A|r) + Cpz(pivi, ω = R|r).
Once more, it is a special case of the form:

M(z) : D′1pz(pivi|t = r) +D′2pz

(
|Hi|
n

> q|t = a

)
+

D′3pz

(
|Hi|
n

> q|t = r

)
−D′4pz(pivi|t = a) = 0.

for some nonnegative constants D′1, D
′
2, D

′
3 and D′4. However, z now belongs to [1, 2). Since

M(z) and G(z) have the same form, analogous arguments to those used in (1) (2) and

(3) above apply, the main difference being that now µa = (1 − ε) + ε(z − 1) and µr =

(1− ε)(z − 1) + ε. Or letting y = z − 1, µa = (1− ε) + εy and µr = (1− ε)y + ε, y ∈ [0, 1).

Lemma 4

All pairs in the family {pz(pivi|t = r), pz

(
|Hi|
n
> q|t = a

)
, pz

(
|Hi|
n
> q|t = r

)
,−pz(pivi|t =

a)} satisfy (SR) for z ∈ [1, 2).

Proof of Lemma 4:

As above we just need to check the pairs involving −pz(pivi|t = a), as all other pairs,

involving components with the same sign, satisfy the condition vacuously.

(1) −pz(pivi|t = a) and pz(pivi|t = r) . In this case, the condition is equivalent to pz(pivi|t=a)
pz(pivi|t=r)

being non-increasing in z.

pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)bnqc−n+1(
(1− ε) + εy

(1− ε)y + ε

)bnqc
This expression is non-increasing in y, if for all y, y′ ∈ (0, 1] where y < y′ we have(

(1− ε) + εy

(1− ε)y + ε

)
≥
(

(1− ε) + εy′

(1− ε)y′ + ε

)
which can be seen to be true whenever ε ≤ 0.5.

(2) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = a

)
. The argument presented above (for z ∈ (0, 1])

just relied on µa ∈ [0, 1), which contains the full range of µa, (1 − ε, 1), for z ∈ (1, 2), so it

applies directly to this case.
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(3) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = r

)
. The analogous expression32 to the inverse haz-

ard ratio in this case (as a function of z) is:

m∑
j=k+1

(
m
j

)(
m
k

) (((1− ε)y + ε)j((1− ε)(1− y))m−j

((1− ε) + εy)k(ε(1− y))m−k

)
.

The derivative of
(

((1−ε)y+ε)j((1−ε)(1−y))m−j

((1−ε)+εy)k(ε(1−y))m−k

)
w.r.t. y is:(

(1− ε)(y(1− ε) + ε)j−1((1− y)(1− ε))m−j−1

(1− (1− y)ε)k+1(ε(1− y))m−k

)
(j(1− ε)− εk + y(jε− k(1− ε)))

The sign of this expression just depends on the sign of the linear function of z, j(1 − ε) −
εk + z(jε− k(1− ε)) which can be straightforwardly verified to be always non-negative for

ε < 0.5, and k < j ≤ m. We therefore have that the sum above is nondecreasing in z and
pz(pivi|t=a)

pz
(
|Hi|
n
>q|t=a

) is nonincreasing in z, as required. (Lemma 4)

(B) If R(n, z) has a crossing in z ∈ [1, 2), the it does not have a crossing in z ∈ (0, 1).

If there is a crossing with z ∈ [1, 2) then Rr(n, (1, 0)) ≤ 0, as the crossing must be from

below the x−axis. By Lemma 1, this implies Ra(n, (1, 0)) < Rr(n, (1, 0)) ≤ 0, and therefore

there can’t be any crossing in z ∈ (0, 1) (Part (1) Proposition 1)

So far we have shown that when a non-babbling equilibrium exists it is unique. We now go

on to the proof of part (2) of Proposition 1. For that purpose we study the willingness to

reject, as a function of m = bnqc and denote it R(m) (Ra(m) and Rr(m) when referring to

the two continuous segments (as functions of σ)).33

Lemma 5

−R(m) has the single crossing property (as a function of m = bnqc), for m ∈ {0, 1, 2, ..., n−
1}, for all z ∈ (0, 2).

The proof shows that when z ∈ (0, 2), the family

{−pz(pivi|t = r),−pz (|Hi| > m|t = a) ,−pz (|Hi| > m|t = r) , pz(pivi|t = a)} satisfies (SR).

As argued in the proof of Lemma 3, Ra(m) and Rr(m) are both nonnegative linear combi-

nations of this family of functions (they only differ in the values of the coefficients in the

linear combination). Lemma 2 from Quah and Strulovici (2012) then immediately leads to

the result.

32As above, we let y=z-1, and therefore y ∈ [0, 1).
33Note that the dependence of Rsi(pA, α, β, ε, q, n,K,W,C, σ) on q is only through the number of votes

required for acceptance, that is bnqc.
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Proof of Lemma 5:

We only need to check the pairs involving pz(pivi|t = a), as all other pairs, involving com-

ponents with the same sign, satisfy the condition vacuously.

(1) −pz(pivi|t = r) and pz(pivi|t = a) . In this case, the condition is equivalent to pz(pivi|t=r)
pz(pivi|t=a)

being non-increasing in m, or equivalently pz(pivi|t=a)
pz(pivi|t=r) being non-decreasing in m.

(1a) When z ∈ (0, 1],
pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)m(
1− (1− ε)z

1− εz

)n−1−m
Note that(

1− ε
ε

)m+1(
1− (1− ε)z

1− εz

)n−1−(m+1)

>

(
1− ε
ε

)m(
1− (1− ε)z

1− εz

)n−1−m
if and only if:(

1− ε
ε

)
>

(
1− (1− ε)z

1− εz

)
. Which is true for all ε < 1

2
.

(1b) When z ∈ (1, 2),
pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)m−n+1(
(1− ε) + εy

(1− ε)y + ε

)m
where y = z − 1. Note that,(

1− ε
ε

)m−n+2(
(1− ε) + εy

(1− ε)y + ε

)m+1

>

(
1− ε
ε

)m−n+1(
(1− ε) + εy

(1− ε)y + ε

)m
if and only if:(

1− ε
ε

)
>

(
(1− ε)y + ε

(1− ε) + εy

)
. Which is true for all ε < 1

2
.

(2) p(pivi|t = a) and −p (|Hi| > m|t = a). This case amounts to showing that the hazard

ratio of the binomial distribution is non-decreasing in m ∈ {0, ..., n− 1}. That is:(
n−1
m

)
µma (1− µa)n−1−m

n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

, is non-decreasing in m, for all µa ∈ (0, 1).34

Consider m ∈ {0, ..., n− 2} (so m+ 1 ≤ n− 1). Then we require:(
n−1
m

)
µma (1− µa)n−1−m

n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

≤
(
n−1
m+1

)
µm+1
a (1− µa)n−1−(m+1)

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≡ m+ 1

n− 1−m
≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

34Note that for z ∈ (0, 1], µa = (1−ε)z and for z ∈ (1, 2), µa = (1−ε)+ε(z−1). In either case µa ∈ (0, 1).
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But we can write,

(
µa

1− µa

) n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

=

(1− µa)
(

n−1∑
h=m+2

( h
n−h)

(
n−1
h

)
µha(1− µa)n−1−h + µna

1−µa

)
(1− µa)

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≥

n−1∑
h=m+2

( h
n−h)

(
n−1
h

)
µha(1− µa)n−1−h

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≥

m+1
n−m−1

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

=
m+ 1

n−m− 1

as required.

(3) p(pivi|t = a) and −p
(
|Hi|
n
> q|t = r

)
. We need to verify:

≡ m+ 1

n− 1−m
≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

Using the same arguments as in (2) above we have:

≡ m+ 1

n− 1−m
≤
(

µr
1− µr

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

Since
µa

1− µa
≥ µr

1− µr
, given that σ(a) ≤ σ(r) throughout our region of interest.35

We can therefore apply Lemma 2 (from Quah and Strulovici (2012)) to conclude that R(m)

has the single crossing property in m = bnqc, whenever z ∈ (0, 2). (Lemma 5)

Suppose that there exists a non-babbling equilibrium for some q. Let q′ > q and m = bnqc,
m′ = bnq′c. Evaluated at m we have that either (1) Ra(m) = 0, or (2) Rr(m) = 0 (depending

on what kind of equilibrium we have).36 Assume that it is of form (1).37 By Lemma 5 we

35When z ∈ (0, 1], σ(r) = 0 and σ(a) > 0. When z ∈ (1, 2), σ(r) < 1 and σ(a) = 1.
36If the equilibrium occurs at z = 1, and is of the form Ra(m, (1, 0)) < 0 and Rr(m, (0, 1)) > 0, then

Ra(m′, (1, 0)) < 0. If Rr(m
′, (0, 1)) ≥ 0, then z = 1 is also an equilibrium at m′. If Rr(m

′, (0, 1)) < 0 then

the last case considered in this paragraph applies.
37It will be readily seen that the argument applies to the other case.
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know that −Ra(m) = 0 has the single crossing property in m, and therefore evaluated at

m′ > m, Ra(m
′) ≤ 0.

If Ra(m
′) = 0 then we have an equilibrium, so assume Ra(m

′) < 0. Now lets fix m′ and

look at Ra as a continuous function of z, Ra(m
′, (z, 0)). If Ra(m

′, (1, 0)) ≥ 0 then we have

an equilibrium, since given that Ra(m
′, (z, 0)) is continuous in z, it must have crossed the

z-axis in order to change sign. If at z = 1, Ra(m
′, (1, 0)) < 0, then either Rr(m

′, (1, 0)) ≥ 0

(in which case we have an equilibrium at z = 1), or Rr(m
′, (1, 0)) < 0. In this case, there

are two possibilities: either Rr(m
′, (1, 1)) ≤ 0 (which can only be possible if m′ = n− 1), in

which case we have an equilibrium (z = 2); or Rr(m
′, (1, 1)) > 0. Then due to the continuity

of Rr(m
′, (1, z − 1)) as a function of z, it must cross the z axis at some point in order to

change signs, so we have an equilibrium. (part (2), Proposition 1)

To finish the proof of Proposition 1, we go on to part (3). Note that, excluding z = 1,

R(pA, α, β, ε, q, n,K,W,C, z) is continuously differentiable in all variables with the exception

of n and q. So for any exogenous parameter θ different from n and q, and at all equilibria

z∗ 6= 1, we have that:

∂z∗(pA, α, β, ε, q, n,K,W,C)

∂θ
= −

∂R(pA,α,β,ε,q,n,K,W,C,σ
∗)

∂θ
∂R(pA,α,β,ε,q,n,K,W,C,z∗)

∂z

As shown in the proof of the uniqueness of the non-babbling equilibrium, as a function

of z, R(pA, α, β, ε, q, n,K,W,C, z) vanishes at most once, and when it does, the crossing

is from negative to positive. Relying on the implicit function theorem, this implies that
∂R(pA, α, β, ε, q, n,K,W,C, z

∗)

∂z
> 0 (where z∗ is just shorthand for z∗(pA, α, β, ε, q, n,K,W,C)).

The following lemma therefore immediately follows:

Lemma 6

For all pA, α, β ε, K, W and C, such that z∗(pA, α, β, ε, q, n,K,W,C) exists and does not

equal one, we have:

∂z∗(pA, α, β, ε, q, n,K,W,C)

∂θ
(>)(=)(<)0 if and only if

∂R(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂θ
(<)(=)(>)0.

Part (3) of Proposition 1 follows from Lemma 6 and the single crossing property, which

implies that any crossing is from below, and hence ∂R(pA,α,β,ε,q,n,K,W,C,z
∗)

∂θ
> 0 when z∗ exists

and is different from 1.

For the case in which z∗ = 1, note that increasing K shifts both continuous branches of R

upwards (R as a function of z). Thus, for a small enough increase z∗ = 1 continues to be

an equilibrium, otherwise the new equilibrium (if it exists), must necessarily be at z < 1 .
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Since Rr shifts up, there can’t be any crossing with z ∈ (1, 2]. (Part (3) Proposition 1)

Proof of Proposition 3:

We prove the proposition by contradiction. That is, suppose that there exists a sequence

of symmetric strategy profiles σn such that for each n, σn is an equilibrium of GK
n,q and

pσn(X = a) does not converge to 0. This implies that there exists δ > 0 such that for every

m, there exists nm > m with pσnm (X = a) > δ.

Let i be any expert. Then, by expression (1”) i finds it optimal to set vi = a upon receiving

signal si if and only if:

Wpσn (pivi, ω = A|si)− Cpσn (pivi, ω = R|si) ≥ Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
(1′)

The argument is divided into two parts. First, we show that if pσn(X = a) > δ then

Kpσn

(
|Hi|+1
n

> q, ω = R|si
)
≥ Kδmin{βp(t = a|si), (1 − α)p(t = r|si)}. Second, we show

that the LHS of (1′) has an upper bound that is independent of σn and which converges

to 0. Then putting the two together we arrive at a contradiction of the assumption that

pσn(X = a) does not converge to 0.

Part one: lower bound on the RHS

Note that:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
= Kpσn

(
|Hi|+ 1

n
> q, ω = R, t = a|si

)
+ Kpσn

(
|Hi|+ 1

n
> q, ω = R, t = r|si

)
= Kpσn

(
|Hi|+ 1

n
> q, ω = R|t = a

)
p(t = a|si)

+ Kpσn

(
|Hi|+ 1

n
> q, ω = R|t = r

)
p(t = r|si)

where the second equality follows from the fact that conditional on t, si is independent of

the state of the world ω and of the other committee members’ signals.

Now note that pσn(X = a) = pσn(X = a|t = a)p(t = a) + pσn(X = a|t = r)(1− p(t = a)).

It must therefore be the case that at least one of (I) pσn(X = a|t = a) > δ or (II) pσn(X =

a|t = r) > δ holds. First lets assume (I) holds, pσn(X = a|t = a) > δ.

Note that pσn(X = a|t = a) ≤ pσn

(
|Hi|+1
n

> q|t = a
)

where Hi = {j 6= i : vj = a}, and

therefore (I) implies pσn

(
|Hi|+1
n

> q|t = a
)
> δ which in turn implies pσn( |Hi|+1

n
> q, ω =

R|t = a) > δp(ω = R|t = a), since:

pσn

(
|Hi|+ 1

n
> q, ω = R|t = a

)
= pσn

(
|Hi|+ 1

n
> q|ω = R, t = a

)
p(ω = R|t = a)
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= pσn

(
|Hi|+ 1

n
> q|t = a

)
p(ω = R|t = a)

where the last equality follows from the fact that the voting behavior of the members only

depends on their signals and these are independent from ω conditional on t. We can therefore

conclude that:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
≥ Kδp(ω = R|t = a)p(t = a|si) = Kδβp(t = a|si)

If (I) does not hold, then it must be the case that (II) holds, pσn(X = a|t = r) > δ, case in

which we obtain pσn( |Hi|+1
n

> q, ω = R|t = r) > δp(ω = R|t = r) and we can conclude:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
≥ Kδp(ω = R|t = r)p(t = r|si) = Kδ(1− α)p(t = a|si).

Putting these two cases together it follows that it must be the case, as claimed, that:

Kpσn

(
|Hi|+1
n

> q, ω = R|si
)
≥ Kδmin{βp(t = a|si), (1− α)p(t = r|si)}

Part Two: The LHS has an upper bound wich converges to 0

Note that:

pσn (pivi, ω = A|si) = pσn (pivi, ω = A, t = a|si) + pσn (pivi, ω = A, t = r|si)

= pσn(pivi|t = a, ω = A, si)p(t = a, ω = A|si)
+ pσn(pivi|t = r, ω = A, si)p(t = r, ω = A|si)

= pσn(pivi|t = a)p(t = a, ω = A|si)
+ pσn(pivi|t = r)p(t = r, ω = A|si)

where the second equality follows from Bayes’ rule, and the third equality from the indepen-

dence of signals (among them and from the state of the world), conditional on the state of

the art. Given that there is an analogous expression for pσn(pivi, ω = R|si), it follows that

the the LHS of (1′) is equal to :

C1pσn(pivi|t = a) + C2pσn(pivi|t = r) (*)

where C1 and C2 are constants that only depend on the exogenous parameters of the game

other than n. In particular they do not depend on the strategy used by the agents. Now note

that pσn(pivi|t = a) = pσn(|Hi| = bnqc|t = a) and pσn(pivi|t = r) = pσn(|Hi| = bnqc|t = r),

where |Hi| = |{j 6= i : vj = a}|. Letting µa,n = p(vj = a|t = a) = (1− ε)σn(a) + εσn(r) and

µr,n = pσn(vj = a|t = r) = εσn(a) + (1− ε)σn(r) and given the independence of the signals

of different agents conditional on the state of the art we have:

pσn(pivi|t = a) =

(
n− 1

bnqc

)
µbnqca,n (1− µa,n)n−1−bnqc and

pσn(pivi|t = r) =

(
n− 1

bnqc

)
µbnqcr,n (1− µr,n)n−1−bnqc
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The fact that the LHS of (1′′) is bounded above by an expression that is independent of σn

and that this upper bound converges to 0, now follows from the above expressions and the

following lemma.

Lemma 7 (Convergence of binomial points of mass)

The set {
(
n−1
bnqc

)
pbnqc(1 − p)n−1−bnqc : 0 ≤ p ≤ 1} is bounded above by a function f(n) such

that lim
n→∞

f(n)→ 0.

Proof of Lemma 7:

We prove the lemma by using Stirling’s formula to establish an upper bound for the set

{
(
n−1
bnqc

)
pbnqc(1− p)n−1−bnqc : 0 < p < 1} and showing that this upper bound converges to 0.

By Stirling’s formula

(
lim
n→∞

n!√
2πn(n

e )
n = 1

)
we have that for any ε > 0 there exists n1 such

that if n > n1 then:(
n− 1

bnqc

)
pbnqc(1− p)n−1−bnqc

< (1− ε)

(n−1)!√
2π(n−1)(n−1

e )
n−1

bnqc!√
2πbnqc( bnqc

e )
bnqc

(n−1−bnqc)!√
2π(n−1−bnqc)( (n−1−bnqc)

e )
(n−1−bnqc)

pbnqc(1− p)n−1−bnqc

= (1− ε)
(

n− 1

2πbnqc(n− 1− bnqc)

) 1
2
(

(n− 1)q

bnqc

)bnqc(
(n− 1)(1− q)
n− 1− bnqc

)n−1−bnqc
×
(
p

q

)bnqc(
1− p
1− q

)n−1−bnqc
Note that pbnqc(1 − p)n−1−bnqc is strictly concave for sufficiently large n (q < 1 − 1

n
) and

uniquely maximized at p = bnqc
n−1 . At the maximum p∗ we have:(

n− 1

bnqc

)
(p∗)bnqc(1− p∗)n−1−bnqc

= (1− ε)
(

n− 1

2πbnqc(n− 1− bnqc)

) 1
2
(

(n− 1)q

bnqc

)bnqc(
(n− 1− nq + q)

n− 1− bnqc

)n−1−bnqc
×
(

nq

(n− 1)q

)bnqc(
n− 1− nq

n− 1− nq + q

)n−1−bnqc(bnqc
nq

)bnqc(
n− 1− bnqc
n− 1− nq

)n−1−bnqc
= (1− ε)

(
n− 1

2πbnqc(n− 1− bnqc)

) 1
2

We therefore have that for all n > n1 and for all p ∈ (0, 1)(
n− 1

bnqc

)
pbnqc(1− p)n−1−bnqc < (1− ε)

(
n− 1

2πbnqc(n− 1− bnqc)

) 1
2

Moreover (1− ε)
(

n−1
2πbnqc(n−1−bnqc)

) 1
2

converges to 0 at rate 1√
n
. (Lemma 7)

To end the proof letm be such that for all n > m, (C1+C2)f(n) < Kδmin{βp(t=a|si),(1−α)p(t=r|si)}
2

and pick nm > m such that pσnm (X = a) > δ (which exists by the assumption that pσn(X =
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a) does not converge to 0). It follows that:

Wpσnm (pivi, ω = A|si)− Cpσnm (pivi, ω = R|si) = C1pσnm (pivi|t = a) + C2pσnm (pivi|t = r)

<
Kδmin{βp(t = a|si), (1− α)p(t = r|si)}

2

< Kpσnm

(
|Hi|+ 1

n
> q, ω = R|si

)
So (1′) is violated. As i was arbitrary, this shows that every single expert strictly prefers

to set σnm(si) = 0. Moreover we can pick n large enough so that this is the case for both

signals. For σnm to be an equilibrium it must be the case that members are best respond-

ing and therefore σnm(a) = 0 and σnm(r) = 0, which contradicts pσnm (X = a) > δ which

in turn contradicts the assumption that pσnm (X = a) does not converge to 0 as n → ∞.

(Proposition 3)

Proof of Corollary 3: The corollary holds trivially if beyond some point in the sequence

the games have no non-babbling equilibria. So we assume this is not the case and focus on

the maximal subsequence such that all along the games have non-babbling equilibria. Pick

nδ such that pσn(X = a) < δ < p(t=a)
8

for the unique non-babbling symmetric equilibrium

σn of GK
n,q. Pick n∗ > nδ large enough such that for all n > n∗:

n∑
m=bnqc

(
n

m

)
qm(1− q)n−m >

1

4
. Such n∗ exists as this is the probability that the fraction of

successes in n trials is greater or equal to q, where trials are independent and the probability

of success of any one trial is q, and the binomial distribution can be approximated arbitrarily

well (close to its mean) by the normal distribution which is symmetric. So in particular this

probability converges to 1
2
.

Suppose the statement of the corollary is not true and pick m > n∗ such that σm is a

symmetric equilibrium of GK
m,q and σm(a) ≥ q

1−ε . Letting µa = (1− ε)σ(a) + εσ(r), we have

µa ≥ q and therefore:

pσm(X = a|t = a) =
n∑

m=bnqc

(
n

m

)
µma (1− µa)n−m ≥

n∑
m=bnqc

(
n

m

)
qm(1− q)n−m >

1

4

⇒ pσm(X = a) = pσm(X = a|t = a)p(t = a) + pσm(X = a|t = r)p(t = r) > 1
4
p(t = a) a

contradiction, as we picked δ < p(t=a)
8

. (Corollary 3)

Proof of Corollary 4:

Fully writing Ra and Rr as a function of all the parameters of the model we have that:

Rr(pA, α, β, ε, q, n,K,W,C, σ) =

− (W (1− β)− Cβ)pσ∗(pivi|t = a)pAε+ (C(1− α)−Wα)pσ∗(pivi|t = r)(1− pA)(1− ε) +

35



Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
pAε+K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− pA)(1− ε)

and

Ra(pA, α, β, ε, q, n,K,W,C, σ) =

− (W (1− β)− Cβ)pσ∗(pivi|t = a)pA(1− ε) + (C(1− α)−Wα)pσ∗(pivi|t = r)(1− pA)ε+

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
pA(1− ε) +K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− pA)ε

(Ia)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂W
=

− (1− β)pσ∗(pivi|t = a)pAε− αpσ∗(pivi|t = r)(1− pA)(1− ε) < 0.

and
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂W
=

− (1− β)pσ∗(pivi|t = a)pA(1− ε)− αpσ∗(pivi|t = r)(1− pA)ε < 0.

By Lemma 6 we therefore have
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂W
> 0.

(Ib)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂C
=

βpσ∗(pivi|t = a)pAε+ (1− α)pσ∗(pivi|t = r)(1− pA)(1− ε) > 0.

and
∂Ra(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂C
=

βpσ∗(pivi|t = a)pA(1 − ε) + (1 − α)pσ∗(pivi|t = r)(1 − pA)ε > 0. By Lemma 6 we therefore

have
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂C
< 0.

(IIa)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂pA
=

− (W (1− β)− Cβ)pσ∗(pivi|t = a)ε− (C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
ε−K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− ε)

The sign of which is the same as that of

−(W (1− β)− Cβ)pσ∗(pivi|t = a)ε+Kβpσ∗
(
|Hi|+1
n

> q|t = a
)
ε

(C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)

(1− ε)
− 1

But Rr(pA, α, β, ε, q, n,K,W,C, σ
∗) = 0 implies

−(W (1− β)− Cβ)pσ∗(pivi|t = a)ε+Kβpσ∗
(
|Hi|+1
n

> q|t = a
)
ε

(C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)

(1− ε)
= −1− pA

pA

Similarly
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂pA
=

− (W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε)− (C(1− α)−Wα)pσ∗(pivi|t = r)ε+

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
(1− ε)−K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
ε
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The sign of which is the same as that of

−(W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε) +Kβpσ∗
(
|Hi|+1
n

> q|t = a
)

(1− ε)

(C(1− α)−Wα)pσ∗(pivi|t = r)ε+K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)
ε

− 1

But Ra(pA, α, β, ε, q, n,K,W,C, σ
∗) = 0 implies

−(W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε) +Kβpσ∗
(
|Hi|+1
n

> q|t = a
)

(1− ε)

(C(1− α)−Wα)pσ∗(pivi|t = r)ε+K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)
ε

= −1− pA
pA

By Lemma 6 the above imply that
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂pA
> 0.

(IIb)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂α
=

− (W + C)pσ∗(pivi|t = r)(1− pA)(1− ε)−Kpσ∗
(
|Hi|+ 1

n
> q|t = r

)
(1− ε)(1− pA) < 0

∂Ra(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂α
=

− (W + C)pσ∗(pivi|t = r)(1− pA)ε−Kpσ∗
(
|Hi|+ 1

n
> q|t = r

)
ε(1− pA) < 0

So by Lemma 6,
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂α
> 0.

(IIc)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂β
=

(W + C)pσ∗(pivi|t = a)pA)ε+Kpσ∗

(
|Hi|+ 1

n
> q|t = a

)
εpA > 0

∂Ra(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂β
=

(W + C)pσ∗(pivi|t = a)pA)(1− ε) +Kpσ∗

(
|Hi|+ 1

n
> q|t = a

)
(1− ε)pA > 0

So by Lemma 6,
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂β
< 0.

(III) Let q′ > q andm = bnqc, m′ = bnqc. Evaluated atm we have that eitherRa(m, (σ
∗(a), 0)) =

0 or Rr(m, (1, σ
∗(r)) = 0 (depending on what kind of equilibrium we have). Assume that

it is of form (1) and therefore evaluated at σ∗(r) = 0 and σ∗(a) > 0, Ra(m, (σ
∗(a), 0)) = 0.

By Lemma 5 we know that −Ra(m, (σ(a), 0)) has the single crossing property in m, and

therefore evaluated at m′ > m, genericall Ra(m
′, (σ∗(a), 0)) ≤ 0.38 If Ra(m

′, (σ∗(a), 0)) = 0

then we have an equilibrium, otherwise we fix fix m′ and look at Ra(m
′, (σ∗(a), 0)) as a

38Being a linear combination of different non-linear functions, with non-zero slopes at almost every point,

Ra and Rr have non zero slopes at almost every point.
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function of σ(a). As Ra(m
′, (σ∗(a), 0)) < 0 and Ra has the single crossing property in σ(a),

the equilibrium (which exists by virtue of 5 ) must either involve σ(a) > σ∗(a), or be of the

form σ(a) = 1 and σ(r) > 0. (Corollary 4)

Proof of Corollary 5:

In what follows, RHS and LHS are defined analogously to RHAS and LHS in the proof of

Proposition 3.

Part One: Positive lower bound on RHS

RHS :
∑
S

[
K
∑
t=a,r

pσ,m−i(X = a, ω = R|t)p(t|{si}n)

]
pm−i({si}n|si,m−i)

Take lbn = min{K
∑

t=a,r pσ,m−i(X = a, ω = R|t)p(t|{si}n)}. For each n:

RHS ≥
∑
S

(lbn)pm−i({si}n|si,m−i) = lbn

By the proof of Proposition 3, K
∑

t=a,r pσ,m−i(X = a, ω = R|t)p(t|{si}n) has a positive

lower bound for each {si}n, therefore lbn, and by extension RHS, also has a positive lower

bound.

Part Two: The LHS has an upper bound which converges to 0

LHS :
∑
S

[
W
∑
t=a,r

pσ,m−i(pivi|t)p(t, ω = A|{si}n)− (1)

C
∑
t=a,r

pσ,m−i(pivi|t)p(t, ω = R|{si}n)

]
pm−i({si}n|si,m−i) (2)

Similarly to above, take ubn = max{K
∑

t=a,r pσ,m−i(X = a, ω = R|t)p(t|{si}n)}. For each

n:

LHS ≤
∑
S

(ubn)pm−i({si}n|si,m−i) = ubn

First, by the proof of Proposition 3 and Lemma 1, ubn has an upper bound that converges

to zero for each {si}n (that is, since Lemma 1 holds for any p, the fact that µa,n and µr,n

condition on the set of messages does not affect the result). (Corollary 5)

Proof of Proposition 4: Consider an extended game with the following signal-pooling

stage. After receiving their signals, experts simultaneously send public messages, mi ∈ {r, a}.
We denote the profile of messages by m = (m1, ...,mn). A strategy for expert i is a speech

function θi(si) : {a, r} → [0, 1] indicating the probability that expert i sends message a given

signal si and a voting rule νi(si,m) : {a, r} × {a, r}n → [0, 1]. As in the rest of the paper,
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we focus on symmetric strategies, such that θi = θ and νi = ν for all i. We denote the

single-agent decision rule by d(s1, s2, ..., sn) ∈ {a, r}, representing his choice of whether to

accept or reject the proposal after observing (s1, s2, ..., sn).

We show that ν(si, (m1, ...,mi−1,mi,mi+1, ...,mn)) = d(m1, ...,mi−1, si,mi+1, ...,mn) (second

stage strategy), and θ(a) = 1 and θ(r) = 0 (first stage strategy), is a sequential equilibrium

of the game when (K = 0, q < 1) or (K > 0, q = n−1
n

). We proceed by construction; assume

that all experts other than i play according to these strategies.

Second stage:

Suppose expert i finds himself at information set (si, (m1, ...,mi, ...,mn)). Then given the

first stage strategy of the other experts, he believes that the true vector of signals is

(m1, ..., si, ...,mn). If K = 0 and 1
n
< q < n−1

n
then, given the other experts’ second stage

strategies, i’s vote does not alter the outcome. Therefore, he finds it weakly optimal to vote

according to d(m1, ..., si, ...,mn).

Assume instead that K ≥ 0 and q = n−1
n

(unanimity). If d(m1, ...,mi, ...,mn) = 1 then, given

the other experts’ second stage strategy, i’s vote is pivotal. His preferred vote is therefore

vi = a, since he faces the exact same payoffs as a single agent representative who observes

(m1, ..., si, ...,mn). When d(m1, ...,mi, ...,mn) = 0, i’s vote is never pivotal, and it is weakly

optimal for him to set vi = r.39

In comparison, if K > 0 and q < n−1
n

then the proposed strategy configuration is not an

equilibrium: when d(m1, ...,mi, ...,mn) = 1 expert i can profitably deviate, without affecting

the committee’s decision, by keeping his first stage strategy constant and altering his second

stage strategy to set ν(si, (m1, ...,mi, ...,mn)) = 0.

Signal sharing stage:

Given the other experts’ first stage strategy, all the second stage information sets (from

i’s perspective) are of the form (si, (s1, ...,mi, ..., sn)). Note that for any vector of signals

(s1, ..., si, ..., sn), i prefers the outcome X = d(s1, ..., si, ..., sn). Given the second-stage strate-

gies, X = d(s1, ..., si, ..., sn) if i sets mi = si. If, however, i sets m′i 6= si, then with positive

probability X = d(s1, ...,m
′
i, ..., sn) 6= d(s1, ..., si, ..., sn). He thus finds it optimal to reveal

his true signal.

It follows that ν(si, (m1, ...,mi, ...,mn)) = d(m1, ..., si, ...,mn), and θ(a) = 1 and θ(r) = 0 is

a sequential equilibrium of the game. On the equilibrium path, agents correctly reveal their

information, and the outcome is d(s1, ..., si, ..., sn). (Proposition 4)

39Analogous arguments follow for the cases with K = 0 and q ≤ 1
n or n−1

n ≤ q < 1.
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Appendix B: Empirical Work

In this appendix, we utilize the rich set of data on decision-making in FDA boards to

investigate whether there is correlation between the size of the committee and the rate

of rejection of new drug applications. We find a weak negative relation between committee

size and the proportion of approval votes out of the total number of votes cast. This finding

could be explained by the mechanism we present in the paper, and the theoretical result

that the approval rate is vanishing for sufficiently large committees.

In the United States, the Food and Drug Administration (FDA) must approve or reject new

drugs by means of an assessment procedure called a “new drug application” (similarly a

“biologic license application” for biologic products and “premarket approval” for medical

devices). In most instances, the FDA has the option to refer a matter of drug approval to

an expert committee for consideration. The members of the panel will then discuss scientific

issues based on the studies provided by the sponsor company and then independently and

simultaneously vote on approval; i.e. whether the benefits of the drug outweigh risks. As

noted in the FDA’s guidelines for voting procedures: “Since all members vote on the same

question, the results help FDA gauge a committee’s collective view on complex, multi-faceted

issues.”40

We collect data from FDA committee meetings held between January 2008 and August

2013.41 The data comes from official meeting minutes (or 24 hour summary documents)

downloaded via http://www.fda.gov. We only consider records from meetings that dis-

cuss drug/device/blood-product applications (NDA, sNDA, BLA, sBLA, PMA, sPMA) and

where the approval question is posed in a single question. We have voting data on the ap-

prove/disapprove question from 174 FDA meetings across 21 different topical committees.

In four cases, the FDA convened a joint meeting between two panels and in all these cases

the Drug Safety and Risk Management Committee was part of the session.

For each meeting, the source reports the number of voting members present. This number

varies between 3 and 26 in our sample and the average committee size is 13.14 members.

The committee size varies for different reasons. First, the official number of permanent

members vary across the topical committees; e.g. the Arthritis Drugs Committee has 11

permanent members, whereas the Dermatologic and Ophtalmic Drugs Committee has 15

permanent members. However, the actual number of permanent members is typically lower

40Guidance for FDA Advisory Committee Members and FDA Staff: Voting Procedures for Advisory

Committee Meetings. August 2008.
41Prior to the FDA Amendments Act of 2007 the voting was sequential. Throughout the second half 2007,

voting by “a show of hands” was replaced by a mechanical device whereby each member votes independently

(Urfalino and Costa (2013)).
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Model 1 Std. Error Model 2 Std. Error

Constant 0.807∗∗∗ (0.095) 0.46 (0.166)

# of voting members −0.013∗ (0.007) −0.009 (0.009)

Committee fixed effects − +

Mean fraction of y votes 0.642 0.642

R2 0.0191 0.235

Adjusted R2 0.0134 0.129

Num. Obs. 174 174

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 1: Models 1 and 2. The dependent variable is the fraction of yes votes. The standard

errors are heteroskedasticity robust.

due to many vacancies. Second, members often cancel on the meetings (meeting attendance

and cancellations are stated in the official meeting minutes). Finally, the FDA invites a

number of temporary voting members (including one patient representative) who are hand

picked specialists or serve on other advisory committees. The average proportion of invited

members out of the total number of voting members is 0.6.

Table 1 reports the results from an OLS regression of the fraction of acceptance votes in

a session on the total number of voting members (Model 1). The table also reports the

proportion of yes-votes (in favor of approval) out of the total number of votes. In the

regressions we ignore abstentions, which are few and mostly due to declarations of conflict of

interest. As reported in the Table the partial correlation associated to the number of voting

members is negative with a p-value of 0.0819. We also ran a logit model of a binary variable

taking a value of one if a simple majority of the committee members approved and zero

otherwise. The results from this regression are similar to the OLS regression: the coefficient

of the size variable is negative and the p-value is 0.111.

Some of the variation in size is due to variation in the number of permanent members across

different topical committees, which raises the concern that the negative effect of size found in

the ‘naive’ OLS regression is due to systematic differences in the medical products sent to the

individual committees. For example, if the products generated in the area of Dermatologic

and Ophtalmic Drugs are more likely to be “bad” (in terms of tour model, a lower pA) than

in the area of “Arthritis Drugs,” then the negative correlation could be driven by the fact

that the Dermatologic and Ophtalmic Drugs Committee has 15 permanent members whereas

the Arthritis Drugs Committee has only 11. To explore this possibility, in Model 2 (also

reported in Table 1), we include 20 dummies to account for committee fixed effects in the
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Coefficient Std. Error

Constant 0.539∗∗∗ (0.112)

Fraction of invited members 0.131 (0.174)

R2 0.004

Adjusted R2 −0.003

Num. Obs. 144

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 2: The dependent variable is the fraction of yes votes. Standard errors are robust to

heteroskedasticity.

second regression. In the four cases where the meeting is joint between two committees, we

assign the meeting to the Drug Safety and Risk Management Committee. We find that most

of the committee dummies are significant, and while the sign on the “size” variable remains

negative and of similar size (−0.00900 with fixed effects versus −0.0125), the significance of

the coefficient drops, as reflected in the higher p-value, 0.2856.

Another concern is that the variation in committee size is endogenous, since the FDA invites

additional, temporary, members to participate in the approval decision of individual medical

products. This could explain the finding of a negative coefficient on committee size if,

for example, temporary members are more likely to be added for ‘difficult’ decisions that

have a higher downside risk (or in the terms of our model, a larger C). In order to study

this possibility, we regress the proportion of yes votes out of total votes on the proportion

of invited temporary voting members. We report the result in Table 2. For this specific

regression we only have 140 observations, as for most meetings of PMA-committees there

was no information available on the number of invited members. If endogenous variation in

committee size is behind the negative relationship we find in the ‘naive’ regression, we would

expect the proportion of invited members to be negatively correlated with the proportion of

yes votes. However, we find that the sign of the “proportion of invited member” coefficient

is not statistically significant (p-value=0.454), and is actually positive.

Lastly, we address a separate issue. The majority decision of an FDA board is not binding,

and the final decision rests on FDA’s division director. Therefore, in a legal sense, the

decision of the committee is purely advisory. However, there is evidence of a norm for

following the majority decision of the expert committee and the chairman usually has the

task of breaking eventual voting ties. In our sample, 90 percent of the final FDA decisions

follow the recommendation of the committee. However, the non-binding nature of committee

decisions raises the following possibility: if the FDA is aware of a bias towards rejection

42



in larger committees, they may try to counteract this bias by over-ruling close rejection

outcomes in larger committees. Due to the small number of final decisions that go against

the majority decision, we are not able explore this hypothesis statistically. Out of 174

committee meetings, we have the final FDA decision in 161 instances (some applications are

still awaiting an answer from the division director) and out of these the FDA overturned

16 committee decisions. The committees recommended approval 117 times and the FDA

overturned 11 of these applications (9.4 percent) and the average size of the “overturned”

panels is 13.4. Further, the committees rejected 44 applications and the FDA overturned 5

of these recommendations (11.6 percent) and the average size of these five boards is 14.4.
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