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Abstract

The Chilean economy experienced a decade of sustained growth in aggregate output and

productivity after the 1982 financial crisis. This paper analyzes the role of resource alloca-

tive effi ciency on total factor productivity (TFP) in the manufacturing sector by applying

the methodology of Hsieh and Klenow (2009) to the establishment data from the Chilean

manufacturing census. We find that a reduction in resource misallocation accounts for about

40 percent of the growth in manufacturing TFP between 1983 and 1996. The improvement

in allocative effi ciency, moreover, is essentially driven by a reduction in the cross-sectional

dispersion of output distortion. In particular, a reduction in the least productive plants’

implicit output subsidies is the most important reason for the reduction in resource misal-

location during this period. Our evidence suggests that Chile’s banking reform during the

early and mid-1980s is likely to have played an important role in the observed improvement

in allocation.
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1 Introduction

Since the 2008 financial crisis has grown into a persistent recession across the Western economies,

there has been rising concern that the global economy might stagnate as Japan did in the 1990s.1

Historical experience provides both positive and negative answers to this cautionary tale.

Chile and Mexico provide two comparative cases, as in 1982 both countries experienced a

financial crisis as a consequence of sharply rising world interest rates and negative terms-of-

trade shocks. As shown by Panel (a) of Figure 1, after a declining by more than 20 percent

relative to the trend level, Chile’s real GDP per working-age population (15—64) started to

recover in the mid-1980s and by 1996 was 20 percent above the trend.2 In sharp contrast,

between 1982 and 1995 Mexico experienced zero economic growth and has grown only modestly

since then. A similar dichotomy is found when comparing Japan and Finland, which both

suffered a financial crisis in the early 1990s. While Japan’s economy has stagnated since then,

the Finnish economy recovered and has grown spectacularly. As many researchers have found,

total factor productivity (TFP) is one key factor explaining the divergent post-crisis paths

among the above economies. Chile and Finland experienced fast growth in aggregate TFP after

their financial crises, while Mexico and Japan did not.3 Therefore, understanding the evolution

of aggregate productivity and the potential policies that may influence its dynamics sheds light

on how the Western economies may emerge from the current recession, as Chile and Finland

did from theirs.4

Chile’s manufacturing TFP dynamics offers a useful lens to understanding how its macro-

economy recovered from the financial crisis. Similar to the pattern seen in its aggregate economy,

a takeoff occurred in the Chilean manufacturing sector after the 1982 crisis. Specifically, in the

late 1980s the manufacturing sector began a rapid increase in value-added. As shown in Panel

(b), aggregate TFP in the manufacturing sector closely tracked manufacturing value-added dur-

ing both the recession and the recovery. In particular, aggregate manufacturing TFP, relative

to the trend level, increased by more than 20 percent between 1983 and 1996, providing a strong

driving force for the aggregate manufacturing output during the recovery.

This paper studies the role of resource reallocation in the recovery of Chilean manufacturing

TFP after the 1982 crisis. We use establishment-level data from the Chilean manufacturing

census to address these three questions: How important is an improvement in allocative effi -

ciency in accounting for the fast growth in Chilean manufacturing TFP after the crisis? What

are the key distortions that have mitigated and, thus, contributed to this improvement in al-

locative effi ciency? What Chilean policy reforms might be potentially important in explaining

1See, for example, “Japanisation is the new word of fear,” in Financial Times, August 20/21, 2011.
2We assume that the trend level of real GDP per working-age person is 2 percent per year.
3See, for example, Bergoeing, Kehoe, Kehoe, and Soto (2007) for a comparison between Chile and Mexico;

Conesa, Kehoe, Ruhl (2007) for Finland; and Hayashi and Prescott (2002) for Japan.
4Ohanian (2010) finds that during the Great Recession, Total Factor Productivity dropped by an average of

7.1 percent for G7 countries other than the United States.
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the improvement in allocative effi ciency? To these ends, we employ the framework used in Hsieh

and Klenow (2009) to obtain plant-specific output and capital distortions (wedges), as well as

physical and revenue productivity measures (TFPQ and TFPR), for each year between 1980

and 1996.

Our results show that between 1983 and 1996, an improvement in allocative effi ciency ac-

counted for about 40 percent of the observed aggregate manufacturing TFP growth. Specifically,

allocative effi ciency improved by 19 percent during this period, or 1.46 percent per year, con-

tributing to a 3.68 percent annual growth rate in aggregate manufacturing TFP. The key factor

behind this improvement is a reduction in the cross-sectional dispersion in output distortions,

which accounts for essentially all the reduction in the cross-sectional dispersion of revenue pro-

ductivity during this period. Moreover, the cross-sectional correlation of physical and revenue

productivity shows a similar decline to the cross-sectional dispersion of revenue productivity,

suggesting an improvement in resource allocation among plants with different productivity.We

then quantify the improvement in allocative effi ciency among plants with different levels of

productivity. We group plants into quintiles based on their current year physical productivity

and decompose the cross-sectional dispersion of revenue productivity and output distortion into

two components: between-group and within-group variances. We find that the between-group

variance explains more than 60 percent of the decline in the overall dispersion of revenue produc-

tivity and output distortion. Furthermore, a reduction in the least productive group’s implicit

output subsidy accounts for more than half of the decrease in the between-group dispersion.

Consistent with this evidence, over time, the least productive plants’capital and labor shares

exhibit a significant decline.

It has been argued that the prevalance of self-loans by Chilean banks toward affi liated firms

within the business groups led to credit misallocation and the 1982—1983 financial crisis5. We

therefore make a first pass to assess the role that Chile’s banking reforms during the early and

middle 1980s played in the observed improvement in allocative effi ciency. Our regression results

suggest that in the early 1980s, Chilean plants with higher implicit output subsidy and thus

lower revenue productivity had, on average, a higher liability-asset ratio, suggesting that these

firms had preferential access to credit. Moreover, industries with a higher average liability-asset

ratio in the early 1980s enjoyed a faster improvement in allocative effi ciency since 1983, with

a correlation coeffi cient of 0.53. Such evidence suggests that Chile’s banking reforms during

the early and mid-1980s, which largely restricted making self-loans within business groups, are

likely important factors in reducing the resource misallocation between business group-affi liated

and independent firms.

Our work complements Petrin and Levinsohn (2012) and Oberfield (2013), two recent pa-

5See, for example, Diaz-Alejandro (1985), Harberger (1985), Galvez and Tybout (1985), Tybout (1986),
Edwards and Edwards (1991), McKinnon (1991), de la Cuadra and Valdes (1992), and Akerlof and Romer
(1993).
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pers that use the same manufacturing census data to examine the sources of Chilean aggregate

productivity changes between 1980 and 1995. Specifically, in Petrin and Levinsohn (2012), mis-

allocation of each input is implicitly captured by the gap between its value of marginal product

and its marginal cost. Accordingly, the reallocation term is measured by the weighted average

of changes in factor inputs across plants, with weights in the above-mentioned gaps for individ-

ual plants. Hence, this approach ignores the change in the allocative effi ciency when a plant’s

physical output changes, but inputs do not. Hsieh and Klenow, by contrast, measure specific

distortions based on a plant’s first-order conditions. As a result, Hsieh and Klenow’s decom-

position incorporates changes in allocative effi ciency due to changes in both factor inputs and

physical productivity. Oberfield (2013) obtains measures of both within- and across-industry

allocative effi ciency by extending Hsieh and Klenow’s approach. Our results are consistent with

Oberfield (2013), which finds that within-industry misallocation did not contribute much to the

fall in output during Chile’s 1982 recession. Our decomposition not only confirms this result,

but also finds that the role of allocative effi ciency becomes more important in the post-crisis

recovery phase. Moreover, to the best of our knowledge we are the first to link changes in policy

distortions as a result of banking reforms in Chile to the improvements in allocative effi ciency

achieved after the financial crisis.

This study is related to a rapidly expanding recent literature on the importance of micro-

distortions for aggregate productivity (Restuccia and Rogerson 2008; Guner, Ventura, and Xu

2008; Buera and Shin 2008; Buera, Kaboski, and Shin 2011; Midrigan and Xu 2010; Moll 2010).

It is also part of the empirical literature that uses micro-data to measure the extent of micro-

level misallocation. Following the methodology of Hsieh and Klenow (2009), this literature

consistently finds large potential aggregate TFP gains from eliminating misallocation. For

example, these studies found that Argentina could increase its TFP by 50—60 percent (Neumeyer

and Sandleris, 2010), Bolivia by 52—70 percent (Machicado and Birbuet, 2011), Colombia by

50 percent (Camacho and Conover, 2010), and Uruguay by 50—60 percent (Casacuberta and

Gandelman, 2009). Our paper focuses on the dynamics of Chilean manufacturing TFP during

the period following the financial crisis and the potential policies contributing to such a change.

Our findings provide empirical support for Buera and Shin (2010)’s argument that a reduc-

tion in idiosyncratic distortions preceded domestic financial market development in emerging

economies. In their theoretical framework, economic reforms occur in two stages: in the first,

idiosyncratic output distortions are removed; in the second stage, borrowing constraints are

relaxed. As a consequence, massive capital outflows accompany TFP growth during the first

stage of reform. Consistent with Buera and Shin (2010), our evidence shows that a reduction in

output distortion, rather than the capital distortion, is the key to explain the improvement in

Chilean manufacturing TFP between 1983 and 1996. Furthermore, we show that for the case

of Chile output distortions may result from preferential credit policy, which is widely available

in emerging countries. Consequently, banking reforms by restricting prefential credit policy are
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likely to play important roles in reducing output distortion.

The rest of the paper proceeds as follows: in section 2, we briefly describe the monopolistic

competition model of Hsieh and Klenow (2009) used to measure the effect of distortion on

productivity. In section 3, we describe the dataset used in the analysis and how we compute

idiosyncratic distortions at the plant level. In section 4, we present our empirical findings. In

section 5, we present the Chilean economy’s institutional background for the period examined.

In addition, we assess the importance of the banking reforms in the improvement of resource

allocation. Section 6 concludes. The appendix describes the data construction, provides the

derivation of aggregate TFP using plant-specific wedges and its decomposition, and presents a

simple model to capture the effect of banking reforms on allocative effi ciency.

2 Theoretical Framework

This section describes the linkage between an economy’s aggregate productivity and resource

misallocation resulting from firm-level distortions by using a theoretical framework proposed by

Hsieh and Klenow (2009) (“HK”hereafter). A representative final good producer faces perfectly

competitive output and input markets. The final good producer combines the output Ys of S

manufacturing industries using a Cobb-Douglas production technology with share θs. We set

final output as the numeraire such that its price P = 1. In turn, each industry output Ys is

produced by combining Ms differentiated goods Ysi produced by individual firms using a CES

technology with elasticity parameter δ. The production function for each differentiated product,

Ysi is given by a Cobb-Douglas function of firm-level productivity Asi, capital Ksi and labor Lsi

with labor share αs. Capital elasticity across firms within a given industry is assumed to be the

same as αs. Following HK (2009), we introduce two types of distortions: an output distortion

that takes the form of a tax on revenues, and a capital distortion that takes the form of a tax

on capital services.6 The problem of a firm i in industry s is described below

max
Psi,Ksi,Lsi

(1− τysi)PsiAsiKαs
si L

1−αs
si︸ ︷︷ ︸

Ysi

−WLsi − (1 + τksi)RKsi

st : Ysi = Ys

[
Ps
Psi

]σ
,

where W is the wage rate and R is the gross interest rate. As shown in HK (2009) the output

distortion affects the marginal revenue product of both factors in a symmetric manner and,

thus, does not distort the capital-labor ratio. By contrast, a capital distortion, 1 + τksi, makes

capital services more costly relative to labor services, distorting the capital-labor ratio below

the first-best level.
6 In an appendix, available upon request, we consider the effect of labor-specific distortions by augmenting the

production function with materials as input.
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Following Foster, Haltiwanger, and Syverson (2008), we define revenue productivity as

TFPRsi = PsiYsi
Kαs
si L

1−αs
si

= PsiAsi and physical productivity as TFPQsi = Ysi
Kα
siL

1−α
si

= Asi. It

is easy to show that TFPRsi follows as

TFPRsi =
σ

σ − 1

(
R

αs

)α( W

1− αs

)1−αs (1 + τksi)
αs

(1− τysi)
.

Intuitively, the higher that 1 + τksi is, and the lower that 1 − τysi is, the lower is the output
relative to the first-best level. Accordingly, the price Psi and, thus, TFPRsi are above the

first-best level. Recall that without distortions, revenue productivity should be equalized across

plants. This is because more resources are allocated to plants with higher TFPQ, leading to

higher output and lower prices, which then lowers TFPR.

2.1 Aggregate TFP

We measure TFP in each industry s as TFPs ≡ Ys
Kαs
s L1−αs

s
, where Ks =

Ms∑
i=1

Ksi and Ls =

Ms∑
i=1

Lsi.

In Appendix 7.2, we show that TFPs can be expressed as

TFPs =

[
Ms∑
i=1

(
Asi

(1−τysi)
(1+τksi)

αs

)σ−1] σ
σ−1

[
Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
α(σ−1)+1

]αs [Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

]1−αs , (1)

where Ms is the number of firms in industry s. Note that if we eliminate all the idiosyncratic

distortions, i.e., 1 − τysi = 1 + τksi = 1, we obtain the effi cient TFP, which we denoted as

As =
(∑Ms

i=1A
σ−1
si

) 1
σ−1
. It is easy to show that the manufacturing TFP at each sector can be

rewritten as

TFPs =

(
Ms∑
i=1

{
Asi

TFPRs
TFPRsi

}σ−1) 1
σ−1

, (2)

where TFPRs = σ
σ−1

[
(1− αs)

Ms∑
i=1

(1− τysi) PsiYsiPSYS
/W

]αs−1 [
αs

Ms∑
i=1

(1−τysi)
1+τksi

PsiYsi
PSYS

/R

]−αs
. For

each manufacturing sector, we calculate the ratio of actual TFP to the effi cient TFP and

aggregate this ratio across all sectors using the Cobb-Douglas aggregator,

Y

Y e
=

S∏
s=1

(
Ms∑
i=1

{
Asi

As

TFPRs
TFPRsi

}σ−1) θs
σ−1

.

2.2 Log-Normal Case

We want to understand the forces driving aggregate TFP by decomposing it into different

components. To this end, we assume that Asi, (1− τysi), and (1 + τksi) follow a joint log normal
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distribution. Using the Central Limit Theorem and assumingMs →∞, we obtain the following
decomposition for aggregate TFP (see Appendix 7.3 for details):

log TFPs = log TFP es −
σ

2
var (log TFPRsi)−

αs(1− αs)
2

var log (1 + τksi) . (3)

The term var (log TFPRsi) captures resource misallocation across firms, and var log (1 + τksi)

captures the distortions that drive the capital-labor ratio, KsiLsi
, away from the first-best outcome.

In order to further understand the driving forces of the time variation in the TFPR dispersion,

we decompose var (log TFPRsi) as

var (log TFPRsi) = var [log (1− τysi)] + α2svar log (1 + τksi) (4)

− 2αscov [log (1− τysi) , log (1 + τksi)] .

The first term on the right side of equation (4) captures the resource misallocation due to output

distortion, while the second term describes capital-specific distortion.

2.3 Size Distribution

Resource misallocation also influences the distribution of plant size, measured as individual

plants’value added. In our model, the dispersion of firm size translates into a dispersion of firm

output,

PsiYsi = Y
1− 1

σ
si PsY

1
σ
s . (5)

Since σ ≥ 1, equation (5) implies that larger firms should have higher output. Moreover,

Ysi =
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)αsσ (1− αs
W

)σ(1−αs)
Ys. (6)

Combining equations (5) and (6), we have

PsiYsi ∝
[
Asi (1− τysi)
(1 + τki)

αs

]σ−1
. (7)

Absent distortions, more productive firms tend to be larger. If Asi and 1 − τysi are negatively
correlated (or Asi and 1 + τksi are positively correlated), more (less) productive firms tend to

be smaller (larger) than the effi cient size. As a result, the size dispersion becomes smaller. This

implies that when there are frictions, the effi cient size distribution is more dispersed than is the

actual size distribution.

In reality, apart from idiosyncratic distortions, the dispersion of revenue productivity may

result from other frictions, such as overhead labor, quasi-fixed capital, idiosyncratic demand

and cost factors. Therefore, we also examine an alternative measure of resource misallocation:
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the covariance between TFPQ and physical output, as implied by equation (6).7 Intuitively, in

the absence of distortions, more productive firms will produce more. This prediction is robust

to a wide range of models. The presence of idiosyncratic output or capital wedges essentially

adds noise to the profitability of plants, thus reducing such a correlation. It is easy to show that

the covariance between physical output and TFPQ is linked to the covariance between physical

and revenue productivity.

cov (log Ysi, logAsi)

σvar (logAsi)
= 1− cov (log TFPRsi, logAsi)

σvar (logAsi)
(8)

Equation (8) implies that there is a one-to-one mapping between the covariance using TFPQ and

physical output and the covariance between physical and revenue productivity, both normalized

by the dispersion of physical productivity.8 For example, without idiosyncratic distortions,

the left side of equation (8) is simply the correlation between TFPQ and physical output,

corr (log Ysi, logAsi) , and equal to one, which implies cov (log TFPRsi, logAsi) = 0. Such a

relationship allows us to proxy the covariance between physical productivity and physical output

with the covariance between physical and revenue productivity. We can further decompose this

covariance as

cov (logAsi, log TFPRsi) = corr (logAsi, log TFPRsi) std (logAsi) std (log TFPRsi) . (9)

Accordingly, a decrease in the dispersion of TFPR will increase the covariance of physical and

revenue productivity and such an effect would be larger, the larger is the correlation between

physical and revenue productivity.

3 Empirical Implementation

This section describes the empirical implementation of our theoretical model. We first describe

the data. We then introduce how to measure various distortions using plant-level information.

3.1 The Data

We use Chilean manufacturing census data from 1980 to 1996. The census is an annual survey of

manufacturing plants, collected by the ENIA, which covers firms employing at least 10 workers.9

The data contain information on plant balance sheets at the 4-digit level of aggregation. The

survey reports data on value added, employment, wages, materials, investments, liabilities,

assets, and capitals in different categories. Most of the variables are recorded in nominal terms.

7See Bartlesman, Haltiwanger, and Scarpetta (2013).
8 In addition, the covariance between TFPQ and physical output is linked to the covariance between TFPQ

and employment cov(log Ysi,logAsi)
var(logAsi)

= 1 + cov(logLsi,logAsi)
var(logAsi)

− αscov(log 1+τksi,logAsi)
var(logAsi)

. Due to the possible movement
of the covariance of TFPQ and capital wedge, we prefer using the covariance of TFPQ and TFPR as proxy for
the covariance between physical output and TFPQ.

9ENIA stands for Encuesta Nacional Industrial Annual (Annual National Industrial Survey).
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We employ different deflators, collected from Liu (1990), to compute for real values with 1980

as base year. These deflators include output price deflator, price deflators for different capital

goods, intermediate material input price deflator, etc. The appendix 7.1 describes the procedure

to construct plant level capital stock and our data sampling.

We use a plant’s employment numbers as measurement of plant labor input.10 During our

sample period, Chile experienced a dramatic change in labor unions’bargaining power. Accord-

ing to Edwards and Edwards (2000), the 1980 labor market reform allowed union affi liation

to be voluntary. It also decentralized collective bargaining to the firm-level. For example, the

revised labor law stipulated that in the absence of a new collective agreement, the old contract

would continue to be in effect while the negotiations proceeded. As a result, the employers’

new contract offer would have to contain a wage adjustment that matched accumulated infla-

tion. Along with the decentralization of collective bargaining, some firm-level unions bargained

more successfully than others.11 The heterogeneity of union bargaining power at the firm level

motivates us to use the employment as our measure of plant labor input. A robustness check

using the wage bill as measure of plant labor input is provided in Section 4.5.2.

Given that our focus is on tracking the dynamic changes in measures of allocative effi ciency,

we eliminate plants with incomplete data from the sample.12 Most of our analysis will focus

on the subsample labeled “unbalanced panel,” which contains plants for which we have full

information (value-added, labor, capital, and wages) for all years. In other words, we omit the

plants from the database that systematically reported negative and zero value added, as well as

those that reported having no employees, no fixed assets, and no wages in some year. We also

omit plants at the top and bottom 0.2 percent of the wage distribution of wage in each year

(see Appendix 7.1 for details). After deleting these plants, we arrived at an average number

of 1,437 plants per year. For comparison, we also computed the corresponding statistics for a

balanced panel, that is, the plants that survived from 1980 to 1996.

Table 1 compares the number of plants, the employment distribution and the employment

share by subgroups in 1983 between the unbalanced panel and the entire sample. As shown by

the share of plants in each subgroup, our screening strategy somewhat over-samples the plants

with few employees. For example, the share of plants with fewer than 50 employees is 76.8 and

80.6 percent, in the full sample and in the unbalanced panel respectively. In Section 4.5.3, we

perform robustness checks using the balanced panel.

3.2 Computing Distortions

To calculate distortions, we set the ratio of the rental price-to-capital to 10 percent and the

elasticity of substitution, σ, to 3. The capital share in sector s, αs, corresponds to the U.S.

10See also Bartlesman, Haltiwanger and Scarpetta (2013) and Petrin and Levinsohn (2012).
11According to Table 1 in Palacio (2006), between 1990 and 2004, in Chile unions negotiated 64 percent of the

collective contracts and represented 72 percent of the number of workers who engaged in collective bargaining.
12We will perform several robustness checks to test the impact of this cleaning procedure.
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capital shares, as in Hsieh and Klenow (2009), that are taken from the NBER productivity

database.

We compute distortions (or wedges) and productivity as follows:

1 + τksi =
α

1− α
WLsi
RKsi

(10)

1− τysi =
σ

σ − 1

WLsi
(1− α)PsiYsi

(11)

Asi =
Ysi

Kαs
si L

1−αs
si

= κs
(PsiYsi)

σ
σ−1

Kαs
si L

1−αs
si

, (12)

where κs = (PsYs)
− 1
σ−1 /Ps. Although we do not observe κs, relative productivity– and, hence,

reallocation gains– are unaffected by setting κs = 1 for each industry s.13

We then use measured Asi to construct

TFP es =

(
Ms∑
i=1

Aσ−1si

) 1
σ−1

= κs

Ms∑
i=1

(
(PsiYsi)

σ
σ−1

Kαs
si L

1−αs
si

)σ−1 1
σ−1

.

We follow HK and drop 1 percent of the tails of the distributions of TFPR, log
(
TFPRsi/TFPRs

)
,

and TFPQ, log

(
AsiM

1
σ−1
s /As

)
, for each year and recalculate the firm’s wage bill, capital, and

revenue, as well as physical and revenue productivity. At this stage, we calculate the industry

shares θs = PsYs/Y.

4 Main Results

In this section, we first describe the evolution of various measures of productivity dispersion

and plant-size distribution over time. We then decompose the aggregate TFP growth. After

this, we explore the resource misallocation and reallocation of factor inputs among plants with

different productivity. Finally, we conduct a robustness check of our main results.

4.1 Productivity Dispersion

For the rest of section 4, we choose two years, 1983 and 1996, to characterize the dynamics of

productivity and plant-size distributions. The initial year 1983, corresponds to the peak of the

financial crisis, while 1996 is the last year in our sample. Panel (a) of Figure 2 plots the distrib-

ution of TFPQ, log

(
AsiM

1
σ−1
s /As

)
, for 1983 and 1996. The distribution of TFPQ in 1983 has

a fat left tail, which is consistent with policies in place during 1983 that favored the survival of

(relatively) less effi cient plants. Over time, the TFPQ dispersion became narrower, indicating

that these ineffi cient plants either exited the sample or increased their physical productivity

13Since the level of aggregate TFP in each period influences the growth rate of TFP, we multiply the TFP
calculated under the assumption κs = 1 by (PsYs)

− 1
σ−1 /Ps to obtain the actual TFP in each period.
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faster than the industry average. Table 2 shows that this pattern is consistent across several

measures of dispersion: the standard deviation of TFPQ fell from 1.454 to 1.332 between 1983

and 1996; the ratio of the 75th to the 25th percentile of TFPQ dropped from 2.135 to 1.912;

and the ratio of the 90th to the 10th percentiles dropped from 3.805 to 3.553.14

Panel (b) of Figure 2 plots the distribution of TFPR, log
(
TFPRsi/TFPRs

)
, for the same

two years. Similar to that of physical productivity, the distribution of revenue productivity is

less dispersed in 1996 than 1983, reflecting an improvement in allocative effi ciency since 1983.

Moreover, the left tail has become significantly thinner, implying that the less-productive plants’

revenue productivity became closer to the industry mean. Again, Table 2 suggests that this

pattern is consistent across different measures of the dispersion in revenue productivity. Note

that, consistent with our model, revenue productivity is less dispersed than physical produc-

tivity, as our model predicts that prices and physical productivity are negatively correlated.

The numbers in Table 2 are also consistent with greater distortions in Chile than in the United

States. The standard deviation of TFPR in 1996 is 0.58, much larger than the level of the

United States in 1998, which was 0.45.

To explore the resource misallocation among firms of different physical productivity, and

how the degree of resource allocation changes over time, we compute the correlation between

physical and revenue productivity. Table 2 shows that physical and revenue productivity are

positively correlated. For example, in 1983 the correlation between physical and revenue was

0.694. The key reason for this positive correlation, as suggested by the negative correlation

between physical productivity and 1 − τy, is that firms with higher productivity are subject
to larger idiosyncratic distortions. Panel (c) of Figure 2 shows that since 1983, this positive

correlation declined steadily until the early 1990s. A potential explanation, as Table 3 suggests,

is that the correlation between physical productivity and 1− τy increased from —0.755 in 1983

to —0.703 in 1996. A simultaneous decline in the dispersion of distortions and the correlation

between physical and revenue productivity leads to a fall in its covariance, as shown in Panel

(c) of Figure 2.15 This suggests that over time, more productive firms tend to produce more.

This fact provides additional evidence in favor of an improvement in resource allocation.

The improvement in allocative effi ciency led to changes in the size distribution after the

crisis. In Panel (d) of Figure 2, we plot the effi cient versus actual plant size distribution in both

1983 and 1996. Consistent with the distribution of physical productivity, the effi cient plant size

distribution became less dispersed and by 1996 had a thinner left tail. The actual plant size

distributions in both years are less dispersed than their corresponding effi cient size distribution,

14With plant labor input measured as wage bills, between 1983 and 1996 for physical productivity, the standard
deviation fell from 1.21 to 1.073; the ratio of the 75th to the 25th percentile dropped from 1.639 to 1.329; and
the ratio of the 90th to the 10th percentiles dropped from 3.134 to 2.778. These measures of Chilean physical
productivity dispersion in 1996 are higher than their U.S. counterparts in 1998, which are 0.85, 1.22 and 2.22,
respectively (see Hsieh and Klenow, 2009).
15Consistent with the dynamics of covariance of physical and revenue productivity, we find the covariance

between physical productivity and employment increased steadily during the 1980s and leveled off in the 1990s.
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especially on the left tail. This suggests that many small plants were implicitly subsidized and

produced more than their counterparts that did not receive implicit subsidies. Following the

approach of Hsieh and Klenow (2009), in Table 3 we show how the initial relative size of big

versus small plants would change if there were no idiosyncratic distortions within each industry.

The rows are the initial (actual) plant size quantiles, and the columns are bins of effi cient plant

size relative to actual size: 0—50 percent (the plant should shrink in size by one-half or more),

50—100 percent, 100—200 percent, and 200+ percent (the plant should at least double in size).

We see that the column with the most plants is the 0-50 percent for every initial size quantile.

In particular, most small plants (those in the bottom quantile) should have shrunk by half or

more compared to their actual size in 1983. The actual plant-size distribution in 1996 is closer

to its effi cient distribution than it was in 1983, especially on the left tail. In 1996, the fraction

of small plants that should shrink by at least 50 percent has dropped to 19.3 percent. This

pattern is consistent with the fact that, over time, the correlation between physical productivity

and 1 − τysi increases. Accordingly, less productive plants were subsidized less and thus were
downsized, while more productive plants became less distorted and thus produced more. Also

note that the size distribution moves further to the left, implying an increase in the proportion

of small plants.

4.2 Decomposition of Aggregate Productivity Growth

We now decompose aggregate TFP growth to explore the contribution of different components.

Table 4 provides the percentage TFP gains from removing idiosyncratic distortions in each

industry. In 1983, the aggregate manufacturing TFP would gain 60.2 percent by moving to

effi cient allocation in each industry. However, the magnitude of TFP gains has a downward

trend over time. By 1996, TFP gains dropped to around 35.2 percent. Therefore, allocative

effi ciency improved by 19 percent (1.60/1.35-1) between 1983 and 1996, or 1.46 percent per year.

The aggregate manufacturing TFP grew at an annual rate of 3.68 percent per year between

1983 and 1996. Thus, our results suggest that about 39.7 percent (1.46/3.68) of aggregate

manufacturing TFP growth during this period may be attributed to better resource allocation.

An alternative approach to examine the contribution of improved in allocative effi ciency to

the within-industry manufacturing TFP growth is to run a panel regression of the log difference

in aggregate TFP against the log difference in our measured allocative effi ciency, TFPs,tTFP es,t
. The

regression includes year dummies to capture the aggregate shocks, while a constant is included

to capture the trend growth rate. The empirical specification is as follows

∆ log TFPs,t = α+ β∆ log

(
TFPs,t
TFP es,t

)
+ γt + εs,t.

The estimated β = 0.606, and is statistically significant at 1 percent. This implies that in 1983

and 1996, a 1 percentage increase in allocative effi ciency would, on average, contribute to 0.6
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percent increase in aggregate TFP16.

To what extent is the improvement in allocative effi ciency attributable to the change in the

variance of revenue productivity, as opposed to a change in the capital-specific distortion? To

answer this question, we re-order equation (3) as follows:

log TFP e − log TFP =
σ

2
var (log TFPRi) +

α(1− α)

2
var log (1 + τki) . (13)

Accordingly, total allocative effi ciency can be decomposed into two components as captured by

the right side of equation (13). Panel (a) of Figure 3 plots the evolution of these two factors

over time. Clearly, the dispersion of TFPR tracks the total resource misallocation closely, as

both measures decline steadily since 1983. By contrast, the capital-specific distortion barely

changed. Panel (b) of Figure 3 plots the secular movement in var (log TFPR) and its different

components in equation (4). It is clear that almost all the decline in the dispersion of revenue

productivity can be accounted for by the decline in the dispersion of the output distortion.

Therefore, from here on we focus on the variations in dispersion in revenue productivity and

the output distortion.

4.3 Misallocation across Plants of Different Productivity

In this section, we quantify the improvement of resource allocation among firms with different

levels of physical productivity. To this end, we classify firms into quintiles based on their physical

productivity in each year. We then decompose the variance of log TFPR into between- and

within-group variation as follows:

V ars(log TFPRsi) =
1

Ms

Q∑
q

Nq∑
i

(
log TFPRsqi − log TFPRs

)2
︸ ︷︷ ︸

overall variation

=
1

Ms

Q∑
q

NqV ar(log TFPRsi)q︸ ︷︷ ︸
within−group component

+
1

Ms

Q∑
q

Nq

(
log TFPRsq − log TFPRs

)2
︸ ︷︷ ︸

between−group component

,

where log TFPRsqi is the log of TFPR for plant i that belongs to quintile q in the s industry;

log TFPRs is the mean of log TFPR for industry s; and log TFPRsq is the mean of log TFPR

for quintile q within industry s.

The between-group component captures the dispersion of revenue productivity across groups

of firms with different physical productivity. By definition, this component eliminates the

idiosyncratic factors that may potentially drive the dispersion of revenue productivity (e.g. a

reduction of measurement error over time or volatility of idiosyncratic demand shocks) and

provides a clear picture of the degree of resource misallocation across different productivity

16We thank one of the anonymous referees for suggesting this empirical formulation.
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groups. By contrast, while the within-group component may still capture the degree of resource

misallocation within each quintile, it may be driven by other idiosyncratic factors.

Panel (a) of Figure 4 shows that the decline in the variance of revenue productivity since 1983

is mostly accounted for by the between-group variance, which is responsible for 64.3 percent of

the decline in the variance of revenue productivity.17 This finding suggests that improvements

in resource allocation across firms of different productivity, rather than a reduction in the

measurement error or volatility of idiosyncratic shocks, played a crucial role in driving the

decline of the dispersion in revenue productivity.

To further show the direction of resource reallocation, we plot the different elements of the

between-group variance in Panel (b) of Figure 4. The average TFPR of the bottom quintile

experienced the fastest convergence to the mean, followed by the top quintile.18 This result

implies that the main reason for the decline in the between-group variance is that the average

revenue productivity of the bottom and top quintiles converged to the mean. Moreover, given

the positive correlation between physical and revenue productivity in 1983, the convergence of

both the bottom and top quintiles of revenue productivity to the mean implies that the revenue

productivity of the least (most) productive plants became larger (smaller).19

We would like to measure the extent to which the decline in the dispersion of output distor-

tions is attributed to the changes in the distribution of idiosyncratic distortions among plants

of different TFPQ. Accordingly, we decompose the variance of output distortion into between-

and within-group components in a similar fashion as what we did for the variance of log TFPR.

This variance is computed as follows:

vars [log (1− τysi)] =
1

Ms

Q∑
q

Nq∑
i

(
log (1− τyqi)− log (1− τy)

)2
︸ ︷︷ ︸

overall variation

=
1

Ms

Q∑
q

NqV ar log (1− τyi)q︸ ︷︷ ︸
within−group component

+
1

Ms

Q∑
q

Nq

(
log (1− τy)q − log (1− τy)

)2
︸ ︷︷ ︸

between−group component

.

Panel (c) of Figure 4 shows that the between-group variance still plays a dominant role

in the decline of the dispersion in output distortion. The contribution of the between-group

17We compute the contribution of the changes in the between-group component between 1983 and 1986 in

changes in variance of TFPR of the same period as

∆ 1
N

Q∑
q

Nq(log TFPRq−log TFPR)2

∆V ar(log TFPR)
, where ∆x = x1996 − x1983.

18Again, for each quintile q, we calculate its contribution to the overall change in between-group component

as
∆
Nq
N (log TFPRq−log TFPR)2

∆between−group component . The measured contribution of the bottom and top quintiles to the between-group
component are 64.8 and 31.2 percent, respectively.
19 In contrast to the pattern of between-group variances, elements of within-group variance across all quintiles

follow similar dynamics. The results are available upon request.
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variance to the decline in the variance of total output distortion is 61.4 percent20. As suggested

by Panel (d), this decline is mainly driven by the convergence of the output distortion of the

bottom quintile to the industry mean, followed by that of the top quintile.21 Such a change

in output distortions would naturally trigger resource reallocation across firms with different

productivity, as we examine in the next section.

4.4 Reallocation of Factors

We now provide additional evidence that capital and labor were reallocated across firms of

different productivity. We first examine the distribution of capital and labor between 1983 and

1996, plotted in the top two panels of Figure 5. Over time, the distribution of both capital and

labor became more dispersed. In particular, the density of small plants in terms of capital and

labor increased significantly. This result is consistent with the above finding that the implicit

subsidization of less-productive plants decreased significantly over time.

The bottom two panels of Figure 5 plot the dynamics of capital and labor, respectively, for

the bottom TFPQ quintiles. Between 1983 and 1990, the bottom quintile’s labor input declined

significantly relative to the industry mean, while after 1990 this process slowed down. The

corresponding changes in capital stock exhibit a similar pattern, though this process accelerated

in the late 1980s.

A decline in capital and labor of plants in the bottom quintile results from a decline in the

idiosyncratic distortions they face relative to TFPQ.22 This is because an increase in the relative

TFPQ of plants in the bottom quintile, as we found previously, tends to increase the bottom

quintile’s demand for capital and labor. Therefore, it is interesting to ask to what extent the

increase of revenue productivity of plants in the bottom quintile relative to the industry mean

is attributable to changes in TFPQ of the bottom quintile (holding constant the relationship

between TFPQ and idiosyncratic distortions) and to the change in idiosyncratic distortions

relative to TFPQ. Appendix 7.2 shows that the relative change in TFPR of the qth TFPQ

quintile can be decomposed into two components:

∆
[
log TFPRsq − log TFPRs

]
=

(
1− 1

σ

)
∆
[
logAsi |q −logAs

]
(14)

− 1

σ

[
αs∆

(
logKsi |q −∆logKs

)
+ (1− αs) ∆

(
logLsi |q −logLs

)]
,

20We compute the contribution of between-group variance to the decline in total output distortion as

∆ 1
Ms

Q∑
q

Nq

(
log(1−τy)

q
−log(1−τy)

)2
∆var log(1−τyi)

.
21We compute the contribution of each quintile q to the changes in between-group variance as
Nq
Ms

(
log(1−τy)q−log(1−τy)

)2
1
Ms

Q∑
q

Nq

(
log(1−τy)

q
−log(1−τy)

)2 . Accordingly, the contributions of the bottom and top quintiles are 58.6 and

38.3 percent, respectively.
22See equations (21) and (22) in Appendix 7.2.

15



where logXsi |q=
(∑Nq

i=1 logXsi

)
/Nq, logXs =

(∑N
i=1 logXsi

)
/N for X = A, K or L. The

first argument on the right side of equation (14) denotes the change in TFPQ (holding constant

the relationship between TFPQ and idiosyncratic distortions) and the second shows the change

in idiosyncratic distortions relative to TFPQ. We find that around 40 percent of the increase

in the average TFPR of plants in the bottom quintile is attributable to a faster decline of their

implicit distortions relative to their TFPQ, which, despite an increase in their TFPQ, led to

the decline in both capital and labor of those least productive plants.

To summarize, our evidence suggests that between 1983 and 1996, around 40 percent of

Chile’s aggregate manufacturing TFP growth is attributable to the improvement in allocative

effi ciency, shown as a fall in the dispersion of revenue productivity. Among those wedges, the

reduction in the dispersion of output distortions plays a dominant role in the reduction of

the revenue productivity dispersion. In particular, a reduction in the least-productive plants’

implicit output subsidy and, to a lesser degree, the most-productive plants’ implicit output

tax constitutes the most important factors that explain the reduction in resource misallocation

during this period.

4.5 Robustness Checks

In this section, we conduct robustness checks for our main findings. We first vary the elasticity of

substitution among differentiated goods. We then measure plant labor input as wage bills. After

that, we restrict our sample to a balanced panel of plants. Finally, we link revenue productivity

with a plant’s exit probability to shed light on the main source of revenue productivity variation

in our sample.

4.5.1 Elasticity of Substitution

We check the sensitivity of the TFP gains resulting from removing idiosyncratic distortions

to alternative values of the elasticity of substitution of differentiated goods. Table 5 reports

the TFP gains by removing idiosyncratic distortions within-industry for σ = 3 and σ = 5. As

expected, TFP gains increase for all years when σ = 5. Between 1983 and 1996, the allocative

effi ciency increased by 12.9 percent (1.66/1.47-1), or a gain of 0.99 percent per year. This

increase is less than its counterpart (19 percent or 1.46 percent per year) under σ = 3. Intuitively,

when σ is larger, TFPR gaps close more slowly in response to a reallocation of inputs from low

to high TFPR plants.

4.5.2 Labor Input Measured by the Wage Bill

In our baseline calculations, we use employment to measure plant labor input. Our logic is

that in the presence of collective bargaining, wage bills would conflate the quantity of labor

with idiosyncratic wage rates at the plant level. However, plants may differ in hours worked or
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worker skills, which could mean that wages per worker are a better measure of the plant labor

input. In this section, we examine the robustness of our main results by using the wage bill as

the measure of plant labor input.

Table 7 reports the TFP gains of moving to effi cient allocation across years. It is noted

that the TFP gains are larger than their counterparts in the baseline calculation, suggesting

that the wage difference tends to amplify TFPR difference. For example, in 1996, the TFP

gains from removing idiosyncratic distortions are 40.3 percent, as compared with 35.2 percent

in the baseline calculation.23 In terms of the growth of the allocative effi ciency between 1983

and 1996, the allocative effi ciency improved by 21 percent, or 1.64 percent per year, which is

larger than the growth rate of allocative effi ciency (1.46 percent per year) under our baseline

calculation.24 Therefore, we conclude that our main results are robust to alternative measures

of plant labor input.

4.5.3 Balanced versus Unbalanced Panel

In our benchmark sample, a plant could enter or exit at any time. To examine the quantitative

importance of the extensive margin versus the intensive margin in terms of allocative effi ciency

and its improvement over time, we now restrict the sample to plants that survived the whole

period (1980—1996), which we denote as the balanced panel. The total number of observations

for the whole sample period is now 9,129, with 537 in each year.

The right column of Table 5 reports the TFP gains of moving to effi cient allocation under the

balanced panel. Compared with the benchmark case, under the balanced panel the TFP gains

are now smaller, suggesting that part of the resource misallocation comes from the extensive

margin. Over time, TFP gains also decline. Between 1983 and 1996, Chilean allocative effi ciency

increased by 12.5 percent, or 0.96 percent per year. These numbers are again smaller than

their counterparts in the benchmark case (19 percent and 1.46 percent), suggesting that about

one-third of the overall improvement in resource allocation comes from the extensive margin.

Aggregate manufacturing TFP for the balanced panel grew by 2.89 percent per year. Therefore,

an improvement in allocative effi ciency contributed to about 33.2 percent (0.96/2.89) of the

total TFP growth in Chile that took place between 1983 and 1996, a magnitude closer to the

benchmark case (39.7 percent).

Another margin we examine is whether changes in the distribution of physical productivity

between 1983 and 1986 originate from the extensive or intensive margin. Intuitively, both the

exit of less productive plants and their faster growth of physical productivity than the industry

average would lead to a thinner left tail. To this end, we plot the distribution of physical

productivity for the balanced panel in Figure 6. We find that changes in distribution of physical

23Using the wage bill as the measure of plant labor input, Hsieh and Klenow (2009) report a value of 36.1 percent
of TFP gains in 1998 for U.S. manufacturing plants moving to effi cient resource allocation within industries.
24Moreover, the dominant role of the decline in the variance of TFPR and output wedge in the improvement

of allocative effi ciency is robust to the measure of plant labor input as wage bills.
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productivity share a similar pattern with the unbalanced panel, that is, over time the left tail

of physical productivity became much thinner. This indicates that firms with different physical

productivity initially in 1983 had a different growth rate for physical productivity between 1983

and 1996. To confirm this conjecture, we classify firms in the balanced panel into quintiles

accordingly to their physical productivity in 1983. We then compute the average growth rate

of physical productivity between 1983 and 1996 for each quintile. Consistent with Figure 6,

plants with lower initial physical productivity had enjoyed faster growth in TFPQ during our

sample period (Table 6). This suggests that between 1983 and 1996, changes in idiosyncratic

distortions, especially on the initially low TFPQ plants, not only contributed to an improvement

of resource allocation among incumbent firms, but also to their faster productivity growth.

Finally, for the unbalanced panel the positive correlation between TFPQ and TFPR in the

data may be driven by selection effects, as firms with high implicit taxes are induced to exit

unless they also have high TFPQ. Hence, even if plant-level effi ciency and idiosyncratic distor-

tions are uncorrelated, the observed plant-level frictions and effi ciency could potentially exhibit

positive correlation due to selection. As a result, the fall the positive correlation in the data

may simple reflect the selection effect. As a robustness check we compute the covariance and

correlation between physical and revenue productivity using the balanced panel. We find a

similar magnitude in the decline for correlation and covariance of physical and revenue produc-

tivity. This result suggests that the main driving force for the observed decline in covariance of

physical and revenue productivity is a fall in the underlying correlation between effi ciency and

micro-distortions.

4.5.4 Selection and Revenue Productivity

Our model assumes homogeneous markup across firms. Accordingly, revenue productivity dis-

persion reflects the dispersion of idiosyncratic distortions. In reality, however, within-industry

dispersion in revenue productivity or prices may reflect idiosyncratic demand shift or market

power variations (see Foster, Haltiwanger, and Syverson 2008). To distinguish the source of

TFPR dispersion, we next look at the correlation of TFPR with plant exit.

To this end, we define exit as ξijt = 1 if plant i in industry j at year t exit at t+ 1. We then

run the following pooled Probit regression25 (with industry and time dummies)

Pr(ξijt = 1) = F (βR0 + βR1 log(TFPRijt) + βQ1 log(TFPQijt)).

If the revenue productivity dispersion is mainly driven by idiosyncratic distortions, the estimated

coeffi cient for TFPR tends to be positive, βR1 > 0, suggesting that low TFPR firms are less likely

to exit. If, instead, variations in market power dominate revenue productivity dispersions, then

25We thank one of the anonymous referees for suggesting this analysis. See Hsieh and Klenow (2009) and Yang
(2012) for a similar test.
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the estimated coeffi cient for TFPR tends to be negatively, since low TFPR firms tend to have

less market power and thus are more likely to exit.

Table 8 shows that lower revenue productivity is associated with a lower probability of

exit. A one-log-point decrease in TFPR is associated with 22.9 percent lower probability of

exit. On the other hand, lower physical productivity is associated with higher probability of

exit, consistent with the prediction of the standard model. The fact that a lower TFPR plants

have a lower probability of exit suggests that the main driving force of revenue productivity

dispersion across Chilean manufacturing plants is idiosyncratic distortions.

5 Banking Reforms and Changes in Allocative Effi ciency

What are the potential sources of resource misallocation among Chilean manufacturing plants

and what policies might have led to an improvement of allocative effi ciency observed during

the 1980s? It has been argued in the literature that in Chile the presence of business groups

(so called “grupo”) might have distorted the allocation of bank credit between firms owned or

controlled by business groups and independent firms before and during the financial crisis. It

is also noteworthy that Chile conducted a series of banking reforms in the 1980s. Therefore,

we make a first pass in linking the preferential credit policy by Chilean banks to our measured

idiosyncratic distortions and assess the potential roles that Chile’s banking reforms might have

played in the observed improvement of resource allocation after the 1982 financial crisis.

5.1 Preferential Credit Policy and Distortions

In this section, we first document the widespread presence of preferential credit policy among

Chilean banks towards the affi liated firms to motivate our following empirical exercises. We then

characterize the link between our measures of idiosyncratic distortions and a plant’s leverage

position and the link between the degree of resource misallocation and an industry’s leverage

position.

5.1.1 Preferential Bank Loan towards Affi liated Firms

Before the banking reform occurred during the early and mid-1980s, all the major business

groups in Chile were organized around one or more banks, which were used to channel credit

to the firms they owned or controlled. For example, in 1979 business groups directly controlled

10 major banks, whose equity represented more than 80 percent of all private bank equity.

Accordingly, firms in business groups were in a relatively favored financial position.26 This is

evident in the rates of debt growth. In 1980 and 1981, independent firms absorbed debt at a

26According to Tybout (1986), in 1978, when Chile’s capital accounts was still relatively closed, group-affi liated
firms enjoyed financial costs that average 14 percent a year, while independent firms were paying an average of
22 percent.
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real rate that exceeded their operating earnings rate by only a few percentage points. Yet, the

group-affi liated firms absorbed debt at rates that exceeded their returns on equity by close to

30 percent over the two-year period (Galvez and Tybout, 1985). In late 1982, the proportion

of credit that banks had granted to the firms directly related to the controlling business groups

became alarmingly high. In fact, some of the banks had granted almost half of their loans to

the controlling grupos (Table 4-2 of Edwards and Edwards, 1987).

The preferential credit access by group-affi liated firms is reflected by the drastically different

investment growth that occurred in 1981 in the presence of high interest rates. According

to Galvez and Tybout (1985), in 1981 independent firms reduced the rate of fixed capital

investment from 7 percent in 1980 to —6 percent. By contrast, group-affi liated firms reduced

the rate of fixed capital investment from 11 percent in 1980 to 8 percent in 1981, suggesting

these firms adjusted their investment plan by too little in reaction to rising interest rates and

financed the continuing expansion with additional debt.

Another potential channel for preferential access to bank loans by group-affi liated Chilean

firms to translate into output distortion is through working capital used to finance the purchase

of intermediate inputs. Edwards and Edwards (1987, pp.65) argue that in late 1970s there was a

strong credit demand, by all sorts of firms, to finance working capital. Also, according to Corbo

and Sanchez (1985), all the firms in their survey ranked the increasing cost to finance working

capital as the number one negative shock during the 1981—1983 financial crisis, suggesting the

major role bank loans played in funding of working capital. In addition, the findings of Oberfield

(2013) suggest that during Chilean financial crisis, deteriorating financing conditions increased

the cost of working capital required to purchase imported intermediates inputs.

5.1.2 Leverage Position and Distortions

Even though in our data it is not possible to identify which plants belong to the business

groups, in this section we make a first pass of relating a plant’s leverage position to measured

distortions. Intuitively, group-affi liated firms had a larger leverage position. To establish the

linkage between leverage and distortions, we regress TFPR, different wedges, and TFPQ on the

liability-asset ratio, total liabilitytotal assets , with sectoral fixed effects. For example, for TFPR, we specify

log
TFPRsi

TFPRs
= β0 + β1 log

(
total liability
total assets

)
+ εsi.

If the preferential credit access by group-affi liated firms is the main distortion driving our results,

we should observe that firms with a higher liability-asset ratio have lower revenue productivity

and a higher output wedge, 1 − τYsi . Table 9 reports estimates of β1 for different measures of
distortions. We see that for both 1980 and 1981 plants with a higher liability-asset ratio had a

higher output subsidy and a lower TFPR
TFPR

. Moreover, these plants tended to have lower physical

productivity. Thus, our finding points to preferential credit policy as one plausible source of
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the observed idiosyncratic distortions.

Similarly, if group-affi liated firms are disproportionally represented by some particular in-

dustries, we should observe that those industries tend to be subject to greater resource mis-

allocation before the banking reform, assuming that the preferential credit policy is the main

policy distortion. We therefore check the cross-industry correlation between an industry’s me-

dian liability-asset ratio and the different measures of its misallocation. Table 10 shows that in

both 1980 and 1981, industries with a larger median liability-asset ratio had a larger variance of

revenue productivity, output distortions and physical productivity. This positive correlation got

strengthen as Chilean economy moved towards the financial crisis. Therefore, our evidence sug-

gests that before the banking reforms, bank’s preferential credit policy towards affi liated firms

were likely to be an important driver for resource misallocation among Chilean manufacturing

plants.

5.2 Banking Reforms and Changes in Distortions

Is it possible that banking reforms in Chile played a role in the observed improvement of

allocative effi ciency? In this section, we first document Chile’s banking reforms that took place

in the early and middle 1980s and their impact on the banks’self-loans. We then assess the role

of banking reforms by examining at the industry level the relationship between the industry’s

initial leverage position and the change in the allocative effi ciency since 1983.

5.2.1 Chile’s Banking Reforms

In response to the alarmingly large share of bank loans made to affi liated firms, Chile conducted

a series of banking reforms started in the middle of a banking crisis. In the late 1981, the

Superintendency of Banks adopted measures that limited the amount of bank exposure to

a single enterprise and to a bank’s own subsidiaries. But it was not until 1982 that a set

of comprehensive measures were approved that tightened bank supervision. The regulation

included a more precise definition of the limit on loans to a single enterprise that took into

account the interlocking ownership of firms. In June 1982, the Superintendency of Banks

announced a new self-loan limit of 5 percent of a bank’s total loans, meaning a 100 percent

of a bank’s equity. Two weeks later, the target was changed to a complete ban on self-loans to

shell companies, and the limit on self-loans to productive companies was reduced to 2.5 percent

of total loans.

Meanwhile, for the first time in the early 1980s, the Superintendency attempted to classify

loans on a risk scale. In April 1981, its required the classification of the 300 largest debtors.

However, it turned out that as of June 1982, when the overall result of the classification pro-

cedure was published, only 6 percent of loans were considered to be at risk. According to

Held (1989), the Superintendency of Banks did not review the classification of loans made by at
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least some important banks, and self-loans among the business groups comprising the respective

banks had simply not been classified.

Chile’s new banking legislation was enacted in 1986 (Law No. 18,756) and supplemented in

1988 (Law No. 18707) and 1989 (Law No. 18818). A major issue in the new banking law was the

establishment of stringent restrictions on the power of banks to do business with related parties.

The various loans granted to firms owned by the same group of shareholders were viewed as a

single individual loan subject to relevant loan limitation – 5 percent or 25 percent of the bank’s

equity, depending on whether valid guarantees were involved (Article 84, No. 2). In addition,

the agreed-upon terms for such debt had to be made at market value. The Superintendency of

Banks was also legally empowered to object to various kinds of contracts executed by the bank

and the related parties (Article 19 bis).

Following the series of banking reforms, the preferential credit access by group-affi liated

firms in Chile was largely eliminated. Figure 7, which replicates Figure 7 of Held and Jimenez

(1999), illustrates the substantial reduction of self-loan between June 1982 and 1998, both as a

proportion of bank’s equity and as a proportion of banks’total loans. The ratio of self-loans to

banks’equity dropped from 160 percent in 1983 to about 20 percent in 1986 and has remained

at that level since then. Similarly, the share of self-loans in banks’total loan portfolio declined

from 16 percent in 1983 to around 2 percent by 1988. Such an outcome suggests that the

Superintendency of Banks succeeded in preventing business groups from advancing preferential

credit access to their affi liated firms.

In addition, the reorganization of the banking sector led to a severe curtailing of banking

cartels. Between 1982 and 1985, the government intervened in 21 financial institutions; 14 were

liquidated and the rest were rehabilitated and privatized. A vigorous bank recapitalization

program was carried out in 1985 and 1986, based on selling stocks in those banks to small-scale

stockholders. In the late 1986, the Herfindahl concentration index for Chile’s banking sector

was 0.102, compared to 0.082 in late 1988. During the same period, the share of the five main

institutions in total loans fell from 61 percent to 55 percent.

5.2.2 Leverage Position and Improved Allocation

To assess the contribution of banking reforms to improved allocation, we explore the link be-

tween the magnitudes of different measures of an industry’s improvement in allocation and its

initial leverage position during 1980—1982. Our evidence suggests that plants with initially

higher liability-asset ratios had lower physical and revenue productivity initially. Accordingly,

industries with higher liability-asset ratios before the banking reforms are likely to be subject to

more severe resource misallocation due to the presence of self-loans. Therefore, if the banking

reforms were important for the allocative effi ciency gain in Chile after the financial crisis, we

should observe a larger improvement in allocation for industries with higher initial liability-asset
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ratio.

Table 11 reports the cross-industry correlation of the initial liability-asset ratio during 1980-

1982 with the allocative effi ciency gain between 1983 and 1996, and changes in dispersion of

physical and revenue productivity. We use the industry’s value-added shares in the manufac-

turing sector as weights when computing correlation coeffi cients. The correlation of the initial

leverage position with the allocative effi ciency gain during this period is 0.53, and its correlation

with the decline in the dispersion of TFPR is 0.47. This suggests that the banking reforms in

Chile are likely to be important in the resource reallocation via the stringent restrictions on the

power of banks to do business with related parties.

Another interesting finding is that industries with a higher initial liability-asset ratio in

1980—1982 also experienced a faster decline in the dispersion of TFPQ between 1983 and 1996,

with a weighted correlation coeffi cient of 0.42. A possible explanation is that according to

the new banking law, the Superintendency of Banks requires all banks to rate the quality

of all loans above a certain size according to their risks. In addition, the Superintendency

receives this information monthly and can compare risk ratings given by different banks to

the same companies. This reform would tend to increase banks’ incentive to monitor and

screen the business groups’self-loans, raising the intermediation cost for business-affi liated firms.

Accordingly, managers in group-affi liated firms would exert more effort to increase their plants’

productive effi ciency by, for example, better inventory management, streamlining production

lines, closing ineffi cient plants, and reassigning workers. All these process innovations would

likely contribute to an increase in TFPQ.

A positive relationship between the industry’s initial leverage position and improvements

in allocative effi ciency is puzzling from the perspective of standard models of financial frictions

(e.g. Buera and Shin, 2010 and Moll, 2010). According to these models, an increase in an

economy’s overall leverage ratio implies an improvement in resource allocation. In Appendix

7.4, we develop a simple model to formalize the idea that the banking reform leads to both an

improvement in resource allocation and a lower overall leverage position of an economy. The key

ingredient in the model is the heterogeneity of entrepreneurs: a fraction of them own both a bank

and a project while the remaining entrepreneurs only own a project. Accordingly, the collateral

constraint on the project belonging to the entrepreneur who also owns a bank is essentially not

binding, while it is binding for a project belonging to the independent entrepreneur. This creates

idiosyncratic distortions that resemble output distortion. And banking reforms, by restricting

the share of self-loans in the net worth of the entrepreneur who owns a bank, leads to a decline

in the dispersion of TFPR.

Apart from the banking reforms, other policy reforms Chile implemented during this period

might also have contributed to the allocative effi ciency gain established in this paper. For

example, the 1984 corporate tax reform lowered the tax on retained earnings and eliminated the

preferential treatment of a firm’s debt liabilities. By eliminating the taxation of retained profits,
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this policy reform might have allowed larger and more productive firms to accumulate more

internal funds for further investment, rather than to distribute these funds as dividends from

retained earnings. As a result, larger firms expanded their production scales. The contribution

of corporate tax reforms to better resource allocation in Chile is clearly an interesting issue for

future research.

6 Conclusion

Chile’s aggregate TFP grew spectacularly and became the country’s engine of output growth in

the decade following its 1982 financial crisis. In this paper, we use micro data on manufacturing

firms to assess the role that resource reallocation played in aggregate productivity growth during

this period. We find that the cross-sectional allocative effi ciency significantly improved and

contributed to about 40 percent of the aggregate TFP growth between 1983 and 1996. Moreover,

this improvement in allocative effi ciency was essentially driven by a reduction in the cross-

sectional dispersion of output distortion. Interestingly, a reduction in the least productive plants’

implicit output subsidy and the corresponding increase in their average revenue productivity

were the most important reasons for the reduction in resource misallocation during this period.

Consequently, factor inputs were reallocated from the least productive plants toward more

productive ones.

We have provided a first pass in linking a series of Chile’s banking reforms during the

early and mid-1980s to the observed improvement in resource allocation. The regression results

suggest that in the early 1980s, Chilean plants with higher implicit output subsidy and thus

lower revenue productivity had, on average, a higher liability-asset ratio, suggesting preference

credit access by these firms. Moreover, industries with a higher average liability-asset ratio

in the early 1980s enjoyed a faster improvement in allocative effi ciency since 1983, with a

correlation coeffi cient of 0.53. Such evidence suggests that Chile’s banking reforms during

the early and mid-1980s, which largely restricted self-loans within business groups, were likely

important factors in reducing the resource misallocation between business group-affi liated and

independent firms.

Given the importance of output distortions in the improvement of resource allocation, the

next question is: what are the origins of these distortions, and what is the quantitative impor-

tance of various policy reforms in reducing such distortions?27 A related issue is why similar

reforms have not happened in other countries after a financial crisis−for example, in Japan and
Mexico. Answers to these questions are important for shedding light on how Western economies

can emerge from their current recession as Chile did in the mid-1980s. We address some of these

issues in our ongoing research.

27To our knowledge, Buera, Moll, and Shin (2011) is the first attempt to provide a theory for idiosyncratic
distortions. They show that well-intended policy intervention during a period of market failure may evolve into
idiosyncratic distortions.
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7 Appendix

In this appendix, we first describe the procedure for data construction and sampling. We then

derive the agregate TFP and decompose it into various components. Finally, we present a

simple model to capture the idea that banking reforms, by restricting self-loans, contribute to

the improvement in allocative effi ciency.

7.1 Data Construction and Sampling

The construction of capital series follows Liu (1990). There are five categories of capital good:

buildings, machines, vehicles, furniture and others. First, we deflate investment and capital for

each category using category-specific deflators. Most plants have capital stock available for two

years 1980 and 1981. However, some plants may have missing capital information later in the

sample. For plants having capital available in 1980, we use the perpetual inventory method

to update forward the capital using real investment following the law of motion for capital.

For the plants without capital in 1980, we generate their capital backward starting from the

year when capital and investment information is available. We assume a depreciation rate of 5

percent for building, 10 percent for machines and 20 percent for vehicles, and zero for furniture

and others. Finally, the aggregate real capital series for the manufacturing sector is the sum

of capital stock for each category using the 1980 base series. For those plants where the 1980

capital information is missing, we aggregate using the 1981 based series.

We clean the dataset in the following steps. First, we keep the plants which enter/exit at

maximum twice, and those that stay in the sample at least for five consecutive years. We drop

the plant in all years with the top 0.1 percent of investment and firms in all years with missing

and negative observations in investment, number of labor, capital, value added and wage. In

the original data, we find plants with at least 10 workers. We drop plants in all years with 0.2

percent tail of wage in each year.

7.2 Derivation of Aggregate TFP

In this section, we derive (1) and (3). Again, we use the growth accounting TFPs = Ys
Kαs
s L1−αs

s
.

The first-order conditions of a firm i in industry s imply

MRPLsi = W/ (1− τysi) (15)

MRPKsi = R (1 + τksi) / (1− τysi) , (16)

From the first-order conditions, we obtain

Ksi

Lsi
=
W

R

αs
1− αs

1

1 + τksi
. (17)
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We can express Lsi and Ksi as functions of Ys. Equation (16) implies

αs [(1− τysi)Psi]
σ

σ − 1
Asi

(
Ksi

Lsi

)αs−1
= (1 + τksi)R. (18)

Note also:

Psi =

(
Ysi
Ys

)− 1
σ

Ps =

(
AsiK

α
siL

1−α
si

Ys

)− 1
σ

P =

(
Asi (Ksi/Lsi)

α Lsi
Ys

)− 1
σ

Ps (19)

=

(
Asi (Ksi/Li)

αs−1Ksi

Ys

)− 1
σ

Ps. (20)

Plugging (19) into (18) and using (17), we get

Lsi =
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

(
σ − 1

σ

)σ (R
α

)αs(1−σ)( W

1− αs

)αs(σ−1)−σ
Ys. (21)

Plugging (20) into (18) and using (17), we get

Ksi =
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)−1( W

1− αs

)(αs−1)(σ−1)
Ys. (22)

We now compute Ysi

Ysi = Asi

(
Ksi

Lsi

)αs
Lsi

= Asi

[
Wsi

R

αs
1− αs

1

1 + τksi

]αs
Lsi

=
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)ασ (1− αs
W

)σ(1−αs)
Ys. (23)

Using (21) and (22), we can rewrite L and K as

Ls =

Ms∑
i=1

Lsi = Ys

Ms∑
i=1

Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)( W

1− αs

)αs(σ−1)−σ
, (24)

Ks =

Ms∑
i=1

Ksi = Ys

Ms∑
i=1

Aσ−1si (1− τysi)σ

(1 + τki)
αs(σ−1)+1

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)−1( W

1− αs

)(αs−1)(σ−1)
. (25)
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Plugging (24) and(25) into the definition of TFP, we get

TFPs =
1[(

Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)+1

(
σ−1
σ

)σ ( R
αs

)αs(1−σ)−1 (
W
1−αs

)(αs−1)(σ−1))]αs
1[

Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

(
σ−1
σ

)σ ( R
αs

)αs(1−σ) (
W
1−αs

)αs(σ−1)−σ]1−αs

=

[
σ
σ−1

(
W
1−αs

)1−αs (
R
αs

)αs]σ
[
Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)+1

]αs [Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

]1−αs . (26)

Finally, using (23), we have

Ys =

[
Ms∑
i=1

Y
σ−1
σ

si

] σ
σ−1

=

Ms∑
i=1

(
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)αsσ (1− αs
W

)σ(1−αs)
Ys

)σ−1
σ


σ
σ−1

= Ys

[
σ − 1

σ

(αs
R

)αs (1− αs
W

)(1−αs)]σ [Ms∑
i=1

(
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1] σ
σ−1

,

which gives

σ

σ − 1

(
W

1− αs

)1−αs ( R
αs

)αs
=

[
Ms∑
i=1

(
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1] 1
σ−1

. (27)

Substituting (27) for σ
σ−1

(
1

1−αs

)1−αs (
R
αs

)αs
in the numerator of (26), we get equation (1) .

To derive equation (14), we rewritte TFPR for an individual plant as

TFPRsi = A
1− 1

σ
si

(
Kαs
si L

1−αs
si

)− 1
σ PsY

1
σ
s (28)

= A
1− 1

σ
si A

1
σ
−1

si

(1 + τksi)
αs

1− τysi
σ

σ − 1

(
R

αs

)αs ( W

1− αs

)1−αs
. (29)

Equation (29) implies that if an increase in (1+τksi)
αs

1−τysi is accompanied by a proportional increase

in A
1− 1

σ
si , then changes in TFPR show up as an increase in TFPQ (holding constant the rela-

tionship between TFPQ and TFPR). On the other hand, when (1+τksi)
αs

1−τysi increases while Asi

stays unchanged, then the relationship between TFPQ and idiosyncratic distortions (TFPR)
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changes. Taking log difference to (28) , we have

∆ log TFPRsi =

(
1− 1

σ

)
∆ logAsi −

1

σ
[αs∆ logKsi + (1− αs) ∆ logLsi] + ∆ logPsY

1
σ
s . (30)

Taking average of both sides of (30) across all firms for the qth quintile and across all firms in

the industry s, respectively, and subtracting each other, we obtain equation (14) .

7.3 Decomposition of Aggregate TFP

Under the central limit theorem, as M s →∞, equation (1) becomes

log TFPs =
σ

σ − 1
log

∫ (
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1
− αs log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

− (1− αs) log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

. (31)

Assuming that Asi, 1− τysi and 1 + τksi are joint log normal, we have

log

∫ (
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1
= (σ − 1)E [logA] +

(σ − 1)2

2
var [logA] + (σ − 1)E [log (1− τysi)] +

(σ − 1)2

2
var [log (1− τysi)]

− αs (σ − 1)E [log (1 + τksi)] +
(σ − 1)2 α2s

2
var [log (1 + τksi)]

+ (σ − 1)2 cov [logAsi, log (1− τysi)]

− αs (σ − 1)2 cov [logAsi, log (1 + τksi)]− αs (σ − 1)2 cov [log (1− τysi) , log (1 + τksi)] . (32)

log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

(33)

= (σ − 1)E [logA] +
(σ − 1)2

2
var [logA] + σE [log (1− τysi)] +

σ2

2
[var log (1− τysi)]

− [1 + αs (σ − 1)]E [log (1 + τksi)] +
[1 + αs (σ − 1)]2

2
var log (1 + τksi)

+ (σ − 1)σcov [logA, log (1− τysi)]

− (σ − 1) [1 + αs (σ − 1)] cov [logA, log (1 + τksi)]

− σ [1 + αs (σ − 1)] cov [log (1− τysi) , log (1 + τksi)] .
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log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

= (σ − 1)E [logA] +
(σ − 1)2

2
var logA+ σE [log (1− τysi)]

+
σ2

2
var [log (1− τysi)]− αs (σ − 1)E [log (1 + τksi)]

+
[αs (σ − 1)]2

2
var [log (1 + τksi)]

+ (σ − 1)σcov [logA, log (1− τysi)]

− (σ − 1)αs (σ − 1) cov [logA, log (1 + τksi)]

− σαs (σ − 1) cov [log (1− τysi) , log (1 + τksi)] . (34)

Plugging (32), (33) and (34) into (31) and rearranging, we have

log TFPs

= E logAsi +
σ − 1

2
var logAsi

− σ

2
var [log (1− τysi)]−

αs + α2s (σ − 1)

2
var [log (1 + τksi)]

+ αsσcov [log (1− τysi) , log (1 + τksi)] . (35)

To see the relationship between equations (3) and (35), note that in (3), the first two

arguments are
1

σ − 1
log
∑

Aσ−1i = E [logA] +
σ − 1

2
var [logA] . (36)

var (log TFPRsi)

= var

(
log

(1 + τksi)
αs

1− τysi

)
= α2svar [log (1 + τksi)] + var [log (1− τysi)] (37)

− 2αscov [log (1− τysi) , log (1 + τksi)]

Plugging equations (36) and (37) into (3), we have

log TFPs = E logA+
σ − 1

2
[var logA]

− σ

2
var [log (1− τysi)]−

αs + α2s (σ − 1)

2
var [log (1 + τksi)]

+ αsσcov [log (1− τysi) , log (1 + τksi)] ,

which is the same as (35).
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7.4 A Simple Model of Banking Reforms

In this section, we develop a simple model to formalize the idea that the preferential bank loan

access by group-affi liated firms creates idiosyncratic distortions that resemble output distortion.

The model abstracts from many ingredients such as the entrepreneurial saving decision and the

household’s problem to highlight the asymmetric access to bank loan by different types of firms

and the effects of banking reforms on such asymmetry.28 In particular, we want our model to

match the following facts:

1. Before the banking reform, firms having a higher implicit output subsidy, 1− τy were less
productive in terms of physical productivity and had a higher debt-to-asset ratio.

2. The banking reform, which had restricted the ratio of self-loans in the bank equity, has

led to a decline in 1 − τy for firms with low physical productivity (and initially higher

1− τy).

3. After the banking reform, the variance of output distortion and, thus, revenue produc-

tivity , declined steadily, while the covariance between physical and revenue productivity

declined.

Consider an economy with a continuum of entrepreneurs with unit mass. Entrepreneurs

have access to the technology of operating projects and are residual claimants on the profits.

Each entrepreneur can operate only one project.

Entrepreneurs are classified into two types, type-E and type-F, with share η and 1 − η,

respectively. A type-F (financially integrated) entrepreneur owns a bank, while a type-E (inde-

pendent) entrepreneur does not.

7.4.1 Technology

The revenue function of a type-j project is given by

yjt = Ajt

[(
kjt

)α (
ljt

)1−α]µ
, j = E or F.

where yjt , k
j
t , and l

j
t denote the output, capital stock, and labor of a type-j project, respectively.

For simplicity, we assume away the within-group heterogeneity and time variation in physical

productivity , i.e. AEt = χE , AFt = χF , where 0 < χF < χE reflecting that the technology of a

type-E project is more effi cient than that of a type-F project.29

28A fully fledged model is available upon request.
29 In an appendix, available upon request, we extend the model to allow for entrepreneurial effort choices and

the fixed banking intermediation costs, thus endogenizing a project’s mean TFPQ. The banking reform forces
the bank to exert more strict screening or monitoring on a self-loan. This would incur a fixed intermediation
cost to type-F entrepreneurs. With a negative wealth effect, type-F entrepreneurs would exert more effort, which
enhances their TFPQ.
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7.4.2 Working Capital Finance

Both types of projects need to advance working capital before production takes place. Entre-

preneurs finance working capital with their net worth or a bank loan. A type-E entrepreneur

has only limited access to bank lending due to limited enforcement of debt repayment. By con-

trast, a type-F entrepreneur can borrow freely from the bank, reflecting the preferential policy

of Chilean bank loans toward affi liated enterprises. Accordingly, credit is misallocated between

the two types of entrepreneurs.

7.4.3 The Type-j Entrepreneur’s Problem

At time t, a type-j entrepreneur with net worth sjt−1 solves

πjt

(
sjt−1

)
= max

ljt ,k
j
t ,b

j
t

Ajt

[(
kjt

)α (
ljt

)1−α]µ
− bjt (1 + it) (38)

subject to

(
Wtl

j
t +Rtk

j
t

)
(1 + it) ≤ bjt , (39)

bjt ≤ η
j
t s
E
t−1, η

j
t ≥ 1. (40)

(39) is the working capital constraint in that the size for working capital is constrained by the

value of bank loan. (40) is the borrowing constraint, stating that the bank loan is constrained

to be a fraction ηjt of entrepreneur’s net worth. η
j
t is a choice variable by the bank, as will be

specified below. ηjt = 1 implies that the project is self-financing. Implicitly, entrepreneurs have

incentive to default on the factor payment. Accordingly, the size of their working capital loans

is constrained to be proportional to the individual entrepreneur’s net worth, which serve as the

collateral for bank loan. It is easy to see that the working capital constraint (39) is binding.

Accordingly, the entrepreneur’s problem can be rewritten as

πjt

(
sjt−1

)
= max

ljt ,k
j
t

Ajt

[(
kjt

)α (
ljt

)1−α]µ
−
(
Wtl

j
t +Rtk

j
t

)
(1 + it)

subject to (
Wtl

j
t +Rtk

j
t

)
(1 + it) ≤ ηjt s

j
t−1, η

j
t ≥ 1. (41)

The first-order conditions for labor and capital are

MRPLjt ≡ (1− α)µAjt

(
kjt

)αµ (
ljt

)(1−α)µ−1
= (1 + it)

[
1 + λjt

]
Wt, (42)

MRPKj
t ≡ αµA

j
t

(
kjt

)αµ−1 (
ljt

)(1−α)µ
= (1 + it)

[
1 + λjt

]
Rt, (43)
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where λjt is the Lagrangian multiplier associated with (41) . Moreover, consistent with (11) , we

can define the output distortion as

1− τ jyt ≡
Wtl

j
t

(1− α)µyjt
=

1

(1 + it)
(

1 + λjt

) , j = E or F. (44)

Similarly, we define the capital wedge as 1 + τ jk,t ≡
αµ
1−α

Wtl
j
t

Rtk
j
t

, and revenue productivity as

TFPRjt ≡
yjt

(kjt)
α
(ljt)

1−α . Equations (42) and (43) implies that 1 + τ jk,t = 1, j = E or F. The

revenue productivity can be expressed as

TFPRjt =
1

µ
(

1− τ jyt
) (Rt

α

)α( Wt

1− α

)1−α
.

The dispersion of TFPR can be proxied by the ratio of TFPR between the two groups of

entrepreneurs
TFPREt
TFPRFt

=
1− τFyt
1− τEyt

=
1 + λEt
1 + λFt

,

which implies var
[
log TFPRjt

]
= var

[
log
(

1− τ jyt
)]

= var
[
log
(

1 + λjt

)]
. Finally, the covari-

ance between physical and revenue productivity is

cov (log TFPQ, log TFPR) = η (1− η)
(
χE − χF

)
log

1 + λEt
1 + λFt

.

Note that the fact that more productive projects (type-E projects) are more likely to be finan-

cially constrained implies a positive covariance between physical and revenue productivity.

7.4.4 The Bank’s Problem

Each period, the bank draws deposits dt, which is the sum of deposits from type-E entrepreneur,

sEt and from the foreign lender, sIt . The bank promises to pay a deposit rate 1 + it+1 at period

t + 1. The bank’s assets, which are the sum of the bank’s deposit and its net worth (sFt ), are

then lent to each type of entrepreneur at an lending rate 1 + ilt+1. For expositional simplicity,

the lending rate for both types of firms is the same. Moreover, we assume that banks commit to

repay all the deposit. The bank solves a two-stage problem: in the first, it chooses the amount

of deposit.

πBt+1 ≡ max
dt

(
1 + ilt+1

) (
dt + sFt

)
− (1 + it+1) dt

where dt is bank demand for deposits. It is easy to see that the first-order condition implies

that the equilibrium deposit rate equals the lending rate, that is 1 + ilt+1 = 1 + it+1. As a result,

the bank profit is πBt+1 = (1 + it+1) s
F
t .
30

30Note that in equilibrium ilt+1 is such that the bank loan market clears

sEt + sFt + sIt = bEt+1 + bFt+1.
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Given the bank’s demand for deposit, dt, the bank sets a financial contract with each type

of projects. For a type-F project, since the bank and the project are owned by the same

entrepreneur, there is no conflict of interest. This implies that the bank would like to set ηFt

suffi ciently large to maximize the type-F project’s profit. Without tight banking regulation,

as was the case in Chile before the banking reform, the bank simply sets ηFt such that the

borrowing constraint (40) is essentially not binding. By contrast, a type-E entrepreneur, since

it does not own the bank, has incentive to default on the bank loan. As a consequence, the bank

would advance the loan based on the collateral of the type-E entrepreneurs, that is, their bank

deposit. The optimal contract per Hart and Moore (1994), determines ηEt , which implicitly is

positively related to the recovery rate of the collateral value. Assuming that the constraint (41)

is binding ONLY for a type-E project, we have λEt > λFt = 0, which implies that τEyt > τFyt.

A banking reform sets the self-loan to be a fraction of the bank’s (the type-F entrepreneur’s)

net worth. In other words, the banking reform places an upper bound on the bank’s leverage

ratio, ηFt ≤ ηF . This is captured in our model by a decrease in ηFt , such that the type-F projects
are subject to a binding borrowing constraint. Accordingly, the Lagrangian multiplier associated

with working capital constraint becomes positive, λFt > 0. This implies that 1− τFt = 1−it
1+λFt

will

fall. Since the working capital constraint for a type-E project is unaffected by the banking law’s

restriction on self-loans, the leverage ratio for the type-E entrepreneur, ηEt will not change. This

implies that the overall leverage ratio of the economy will decline as a result of banking reform.

Accordingly, the dispersion of output distortion and TFPR, as measured by 1+λEt
1+λFt

will decline.

Correspondingly, the covariance between physical and revenue productivity also declines.
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Table 1: Number of Plants and Employees by Subgroups (1983)

All plants (shares) Unbalanced panel (shares)
Number of
Employees

#plants
Share of
Total (%)

Labor (%) #plants
Share of
Total (%)

Labor (%)

10—19 1720 41.7 10.7 768 44.3 14.0
20—49 1447 35.1 19.5 629 36.3 24.0
50—99 491 11.9 15.6 179 10.3 16.9
100—249 314 7.6 22.7 119 6.9 25.1
250—499 96 2.3 14.7 30 1.7 13.4
500—999 36 0.9 11.2 8 0.5 6.5
>=1000 24 0.6 5.7 0 0 0

Table 2: Summary Statistics for the Distribution of Wedges and Productivity

log TFPQsi log TFPRsi log (1− τysi) log (1 + τksi)

1983
SD 1.454 0.720 0.743 1.306
90—10 3.805 1.791 1.874 3.166
75—25 2.135 0.880 0.987 1.685
Correlation with Asi 1 0.694 -0.755 -0.169

1996
SD 1.332 0.577 0.575 1.345
90—10 3.553 1.437 1.368 3.442
75—25 1.912 0.769 0.745 1.744
Correlation with Asi 1 0.445 -0.703 -0.285

Notes: For each plant i, TFPQsi ≡ Ysi
Kαs
si L

1−αs
si

, TFPRsi ≡ PsiYsi
Kαs
si L

1−αs
si

. S.D. = standard deviation,

75—25 is the difference between the 75th and 25th percentiles, and 90—10 the 90th and 10th percentiles.
Industries are weighted by their value-added shares. The first column is based on HK (2009)’s table I
and II.
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Table 3: Percent of Plants: Actual Size vs. Effi cient Size

1983 0—50 50—100 100—200 200+
Top size quartile 9.7 7.0 5.1 3.2
2nd quartile 17.1 4.4 2.4 1.1
3rd quartile 22.1 2.0 0.5 0.4
Bottom quartile 24.5 0.4 0.1 0.1
1996 0—50 50—100 100—200 200+
Top size quartile 8.4 7.4 6.6 2.6
2nd quartile 13.0 6.0 3.5 2.6
3rd quartile 15.1 4.3 3.4 2.1
Bottom quartile 19.3 3.0 1.3 1.4

Notes: In each year, plants are put into quantiles based on their actual value added, with an equal number
of plants in each quartile. The hypothetically effi cient level of each plant’s output is then calculated,
assuming that idiosyncratic distortions are removed. The entries above show the percent of plants with
effi cient/actual output levels in the four bins: 0%—50% (effi cient output less than half of actual output),
50%—100%, 100%—200%, and 200%+ (effi cient output more than double actual output). The rows add
up to 25%, and the rows and columns together to 100%. This table is based on HK (2009)’s table V.

Table 4: TFP Gains from Removing Idiosyncratic Distortions within Industries

Year 1983 1984 1985 1986 1987 1988 1989
TFP gains 60.2 47.4 51.1 41.0 33.6 39.9 32.7

Year 1990 1991 1992 1993 1994 1995 1996
TFP gains 28.5 34.3 33.3 37.2 35.0 34.5 35.2

Notes: Entries are (Y e/Y − 1) × 100, where Y/Y e = ΠS
s=1

(
ΣMs
i=1

{
Asi
As

TFPRs
TFPRsi

}σ−1) θs
σ−1

.

TFPRsi = PsiYsi
Kαs
si L

1−αs
si

. This table is based on HK (2009)’s table IV.
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Table 5: Sensitivity Analysis: TFP Gains from Removing Idiosyncratic Distortions within
Industries

TFP Gain
σ = 3, Unbalanced Panel σ = 5, Unbalanced Panel σ = 3, Balanced Panel

1983 60.2 66.0 44.4
1984 47.4 66.8 34.5
1985 51.1 76.0 36.1
1986 41.0 51.1 25.9
1987 33.6 55.2 23.8
1988 39.9 53.9 33.3
1989 32.7 54.4 23.1
1990 28.5 43.9 22.8
1991 34.3 45.0 25.3
1992 33.3 52.3 28.2
1993 37.2 51.6 28.4
1994 35.0 44.8 27.6
1995 34.5 49.1 27.3
1996 35.2 46.9 27.5

Notes: See notes in Table 4.
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Table 6: Average Growth Rate of TFPQ by Quantitles of TFPQ in 1983

Quintile of TFPQ
(in 1983)

gTFP q
mean of y-by-y
growth 83-96

1 0.179
2 0.086
3 0.080
4 0.045
5 −0.004

Table 7: TFP Gain by Removing Idiosyncratic Distortions (L= Wage Bill)

Year 1983 1984 1985 1986 1987 1988 1989
TFP gains 70.2 58.0 55.6 50.9 44.7 50.4 45.4

Year 1990 1991 1992 1993 1994 1995 1996
TFP gains 34.3 40.0 37.2 39.3 38.2 38.5 40.3

Notes: See notes in Table 4.

Table 8: Regression of Exit on TFPR and TFPQ

w/o. Time Dummy w. Time Dummy

exit on TFPR 0.229
(0.037)

*** 0.227
(0.042)

***

exit on TFPQ −0.292
(0.017)

*** −0.329
(0.023)

***

Notes: The dependent variables are dummies for exiting plants. The independent variables are the
deviation of log(TFPR) and log(TFPQ) from their industry means. Entries above are the estimated
coeffi cients on log(TFPR) and log(TFPQ), with standard errors in parentheses. Regressions also include
sector dummies and, for the right column, time dummies. Results are pooled for all years between 1983
and 1995. This table is based on HK(2009)’s table VIII.
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Table 9: Regression of TFPQ and TFPR with Liability-Asset Ratio (OLS)

logTFPR
TFPR

log (1− τY ) log (1 + τK) log (Asi)

β1 β1 β1 β1

1980 −0.601
(0.106)

*** 0.383
(0.103)

** −0.613
(0.165)

*** −0.225
(0.191)

1981 −0.550
(0.117)

*** 0.555
(0.111)

*** −0.040
(0.105)

−0.512
(0.255)

**

Notes: Robust Standard error in brackets. *** if significant at 1%; ** if significant at 5%; * if significant
at 10%. The 3-digit sectoral fixed effects are included in each regression.

Table 10: Cross-Industry Correlation of Liability-Asset Ratio with Measures of Distortions

1980 1981

log
(
TFP es
TFPs

)
0.152 0.580

vars (log TFPR) 0.254 0.590
vars (log (1− τY )) 0.410 0.496
vars (log TFPQ) 0.154 0.341

Note: Entries are cross-industry weighted correlations between industry median liability-asset ratios and
different measures of resource misallocation.

Table 11: Cross-Industry Correlation of Liability-Asset Ratio (1980—1982) with Changes in
Allocative Effi ciency

Correlation

∆ log
(
TFP es
TFPs

)
0.529

∆vars (log TFPR) 0.473
∆vars (log (1− τY )) 0.212
∆vars (log TFPQ) 0.424

Note: Entries are weighted correlations between the industry’s median liability-asset ratio in 1980—1982
and changes in various moments during 1983—1996. For each industry, the liability-asset ratio is computed
as the simple average of the median liability-asset ratios across 1980-1982. ∆ for each moment in the
left column denotes its 1983 value minus its 1996 value. The weighted correlation is computed using
industry value-added shares as weights.
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Figure 1: Chilean Manufacturing Value-Added and TFP
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Note: Panel (a) shows Chilean GDP and value-added (referred to as “VA”) for the manufacturing

sector, while panel (b) shows value added and TFP for the manufacturing sector. Measured TFP is

V A
KαL1−α with α = 0.3. Both GDP and the value-added for manufacturing sector are detrended by 2

percent per year and normalized such that their 1980 values equal to 100. The manufacturing TFP is

detrended by 1.4 percent per year and normalized in a similar way.

Source: authors’calculations.
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Figure 2: Distribution of Productivity and Plant Size
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)
, while panel (b) plots the

distribution of TFPR, log
(
TFPRsi/TFPRs

)
, both for 1983 and 1996. Panel (c) plots the time-series

of correlation between logTFPQ and logTFPR. Value added share is used as the weight for computing

the industry mean. Panel (d) plots the effi cient and actual plant size distribution, log
(
PsiYsi/PsYs

)
,

where PsYs refers to the mean value-added of industry s.

Source: authors’calculations.
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Figure 3: Decomposition of Resource Misallocation
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Note: Panel (a) plots total misallocation and its two components, variance of TFPR, measured as
σ
2 var (log TFPRi), and the dispersion on plant-specific distortion to capital-labor ratio, as captured

by α(1−α)
2 var [log (1 + τki)] . Panel (b) plots variance of TFPR and its various components between

1980 and 1996. Variances and components plot in the graphs are the weighted mean across sectors.

Value-added share, θs, is used as the weight for computing the mean, and α =
∑S

s=1 θsαs.

Source: authors’calculations.
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Figure 4: Quantile Analysis of Dispersion in TFPR and Output Distortion
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Source: authors’calculations.
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Figure 5: Capital and Labor Allocation over Time
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. Ks denotes the mean of capital for s

industry. Ks |1 denotes the mean of capital for the bottom quintile of s industry. Similar definition

applies to labor.
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Figure 6: Distribution of TFPQ in the Balanced Panel
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Figure 7: Self-Loan as a Fraction of Banks’Equity and Total Loans
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