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wtorous@mit.edu respectively. Contact author: Tobias Mühlhofer, McCombs School of Business, University of Texas
at Austin, Department of Finance, 1 University Station B6600, Austin, TX 78712. Telephone: 512-850-5710, E-mail:
tobias.muhlhofer@austin.utexas.edu. We wish to thank the National Council of Real Estate Investment Fiduciaries
and Bob White of Real Capital Analytics for the use of their data.

1



1 Introduction

This study focuses on the measurement of returns and risk in a market where assets frequently

suffer from thin trading. This issue is important since thin trading can distort return and risk

measurement leading to incorrect conclusions about the pricing and thus the performance of these

assets. We define a thin market as one in which a limited number of buyers and sellers exist. Since

there are fewer transactions, assets are less liquid and prices exhibit higher volatility, with larger

spreads typically occurring between bids and asks.

Even though a thin asset market exists, the underlying price discovery process is not necessarily

ad-hoc in nature if the asset in question generates regular cash flows. In this case, one can explicitly

model the price formation process using the asset’s fundamental valuation equation. Using this

logic, price volatility and, as a result, return volatility can be assessed vis-à-vis variations in the

observable cash flows. This result is based on the premise that cash flow fundamentals are the most

important source of pricing an asset and its risk.

We contribute to the literature by developing a technique to infer cash flow yields for assets

that are not continuously traded, but for which continuous cash flow data exists. This cash flow

yield can then be applied to cash flow levels for inferring prices directly. The empirical setting

in which we develop this technique is Commercial Real Estate, where thin trades are common,

but continuous cash flow data through rents exists. The starting point for the methodology we

develop is the Dynamic Gordon Growth Model, in the style of Shiller (1992) and Campbell and

Shiller (1988b). We apply a version of the Campbell-Shiller Vector Autoregression (VAR) to a

large panel dataset of commercial-property cash-flow data. We develop a rolling-window panel

VAR technique to estimate cash flow yields for untraded commercial properties, as out-of-sample

predictions from this VAR. We then use these predicted yields in the coefficient estimation for the

next iteration of the rolling VAR, joining them with new cash-flow data (and the small number of

transactions available) to generate the next set of estimated yields, which we then re-use in the

subsequent iteration. By this method, we estimate close to 200,000 property yields across a panel

dataset. Since each subsequent VAR iteration uses the predictions generated in the previous run,

we term this procedure a Self-Propagating Rolling-Window Panel VAR. We find that our predicted
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yields explain between 75% and 93% of variation in ex-post realized transaction yields. In contrast,

appraisal-based yields explain only half to two-thirds as high a fraction of this variation as our

predictions.

Prior finance studies have focused on adjusting systematic risk to account for thin trading. More

specifically, when shares are thinly traded, various authors have proposed downward corrections in

Beta estimates for this bias (see, for example, Cohen, Hawawini, Maier, Schwartz and Whitcomb

(1983), Dimson (1979), Scholes and Williams (1977)). In the current study we use a different

approach, focusing on cash flow dynamics to account for firm (property) risk. This is not a new

concept, although, as far as we are aware, so far this approach has not been used to explicitly

infer cash flow yields of untraded investment assets. In the literature so far, for example, Da

and Warachka (2009) show that changes in expected cash flows partially drive the cross-sectional

variation in stock returns using an analyst’s earnings beta which they show accounts in part for

the value premium, size premium, and long-term return reversals. More recently, Driessen, Lin and

Phalippou (2011) use cross-sectional cash flows to estimate abnormal performance and risk exposure

of non-traded assets. A related strand of literature concentrates on earning betas. Beaver, Kettler

and Scholes (1970), Beaver and Manegold (1975), Gonedes (1975), Ismail and Kim (1989) show

that accounting information including accounting earnings beta and cash flow beta are related to

a firm’s beta. Mandelker and Rhee (1984) further find that the degrees of operating and financial

leverage explain a large portion of the variation in beta. Thus firm risk (beta) varies the higher

the fixed operating costs and fixed financial costs in addition to the volatility in earnings and cash

flows.

The genesis for using the variation in cash flow fundamentals to assess pricing risk stems from

the log-linear dividend ratio model of Campbell and Shiller (1988b), Campbell (1991), and Shiller

(1992). The model characterizes the relation between asset prices in the next period and changes

in rational expectations of future dividend growth and future asset returns. The model thus allows

both expected future cash flows and expected returns (discount rates) to influence asset prices.

Kallberg, Liu and Srinivasan (2003) as well as Mühlhofer and Ukhov (2011) find that this model

is consistent with REIT pricing. If the cash flows for REITs are similar to those for underlying
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properties, there is a good chance that the model would also hold for direct real estate. Showing this

is one research objective of our study. Plazzi, Torous and Valkanov (2010) use a complementary

approach using the dynamics of commercial property cap rates rather than dividend growth to

study risk.

We apply our methodology to a large panel data set of commercial-property rental cash flows

and, where available, transaction prices.1 We proceed by first establishing the feasibility of our

technique in a single time-series rather than a panel, using index data for the Los Angeles Office

market as a test case, to establish that properties are, in fact, priced according to a Dynamic

Gordon Growth Model paradigm. We find that on a single time series, our rolling VAR generates

predicted yields that closely resemble ex-post realized yields. Having established this, we then

examine the feasibility of the procedure in a panel setting, using appraisal-based yields to provide

continuously-populated data and thus a more controlled environment. In this setting we closely

examine the VAR coefficients and find that they match what would be expected if the formation

of yields follows a Dynamic Gordon Growth Model. In this setting, too, we find that the predicted

yields from a rolling panel VAR resemble appraisals. Finally, having established the feasibility of

our approach in these two controlled settings, we proceed to developing and applying our Self-

Propagating Rolling-Window Panel VAR procedure and test its performance vis-a-vis appraisals

and realized transaction cap rates, finding, as stated above, that the predicted cap rates from

this model explain a substantial amount of the variation in transaction cap rates, and outperform

appraisals in this respect.

While we apply this methodology to Commercial Real Estate data, this procedure should be

applicable to any investment asset which is thinly traded, but which has consistent cash flow

information. Other examples of such asset classes might include natural-resource extraction sites

(such as mines or oil and gas wells), as well as thinly-traded fixed-income securities with variable

cash flows, such as municipal revenue-based bonds. The reason why we choose Commercial Real

Estate to develop and demonstrate this procedure is in large part an econometric one. In this

setting we have reliable cash flow data, as well as enough transactions to monitor the predictive

1This dataset comes from the National Council of Real Estate Investment Fiduciaries (NCREIF) and tracks a
property portfolio worth $344 billion and comprising over 7,000 properties, as of the end of 2013.
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ability of our technique. At the same time, transactions are still few enough that this can be

considered a very thinly traded market, of the type for which this procedure is designed. Within

this market, we also have some heterogeneity in the amount of cash flow volatility, due to different

lease lengths in different sectors (Apartments tend to be year to year, while especially Industrial

leases on purpose-built property can be as long as ten years or more). This heterogeneity allows

us to make a statement on the relative importance of informative cash flow variation as opposed

to cash flow stickiness for the success of this procedure.

The rest of this study proceeds as follows. Section 2 builds our methodology; Section 3 describes

our data in detail; Section 4 presents our results; Section 5 concludes.

2 Methodology

2.1 Underlying Theory

While commercial property is thinly traded and therefore pricing observations for this asset class are

difficult to find, the income cash flows generated by commercial real estate are readily observable.

The methodology we propose for this study is based upon the use of this cash flow data and

an analysis of a local sub-market’s particular price formation process, in order to infer prices for

properties in periods when they are not traded.

Specifically, like any investment asset, commercial property is priced by an investor as the

present discounted value of all future cash flows the asset entitles him to. Given the long life of

commercial property, basic finance theory tells us that such an investment can be priced as an

infinite series of cash flows, which leads to reduced form expressions such as the Gordon Growth

Model:

Pt =
CFt+1

r − g
(1)

Here, Pt is the price of the property at time t, CFt+1 is the income cash flow produced by the

property over the next period, r is the risk-adjusted discount rate, and g is the expected cash-flow
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growth rate. This well known expression shows the role that the real estate capital market plays

in the price formation process. In particular, the capital market performs a risk assessment and

growth projection for a given cash flow series in order to assign a price to a property. The observed

cap rate (the denominator of Equation 1) represents the ex-post result of this price formation

process. Consequently, if the price formation process is known ex-ante, or alternatively if one can

infer what cap rate is used for a particular submarket at a given point in time, then we can infer

property prices, even when a property is not traded.

In order to infer cap rates, it is necessary to understand how both r and g are determined. The

finance literature (for example Shiller (1992), or Campbell and Shiller (1988a)) argues that, given

the persistence in the cash flows of many investment assets, cash flow growth expectations can be

modeled by analyzing the time series of past cash flow growth rates. The market’s inferred growth

expectations can then be written as a function of this time series. The discount factor, r is made

up of the risk-free rate plus a risk premium. The risk premium, in turn, is a function of expected

cash flow risk. Relying on the same arguments as above, this risk should be persistent, and so

the market’s expectations of cash flow risk (and therefore the risk premium) can be modeled as a

function of past cash flow volatility levels, i.e. simply the squares of past changes in cash flow. This

should especially be the case for property types with long -term contractual leases such as office

buildings.

Campbell and Shiller (1988a) and Shiller (1992) conduct a log-linearization of a dynamic version

of Equation 1, and show that this can be estimated through a Vector-Autoregression (VAR). Vector

autoregressions are a useful and flexible way of analyzing economic relations in time series data.

More specifically, a VAR allows for the mutual impact of the variables and is thus well suited for

inter-dependent economic time series. In other words, the technique is useful in examining complex

relationships among variables when the variables are serially correlated. Typically, VARs have

little serial correlation in the residuals. This is helpful for separating out the effects of economically

unrelated influences in the VAR. All variables in a VAR are treated equally by including for each

variable, an equation explaining its evolution based on its own lags and the lags of all other variables

in the model. Thus, the VAR recognizes that variables can have an impact on other variables. VAR
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generalizes easily to more variables and more lags of variables. In the current setting, we use the

VAR model to reveal the evolution of the yield, long term interest rates, net-operating-income

growth as well as the dynamic interactions between these variables. For the purposes of our study,

the parameter matrix of this VAR would show exactly how a particular submarket uses past cash

flow information in order to construct cap rates and therefore prices. In principle, we would use

properties for which we have both cash flows and realized prices to train these VARs for each

market. Having done this, we can infer cap rates and prices for properties that are not traded by

inserting their cash flows into the VAR and simply calculating fitted values.2

Given an observable series of underlying cash flows, the task that must be accomplished in order

to infer the price of an untraded asset is to model the cash-flow yield; in commercial property this is

the capitalization rate, while in equity securities this is the dividend yield. We therefore use as our

starting point the log-linearization of the Gordon Growth Model of Campbell and Shiller (1988a)

and Shiller (1992), who formulate an estimable dynamic version of the GGM as follows:

δt =

∞
∑

j=1

ρjEt [rt+j −∆dt+j ] + C (2)

In the above notation, δ is the log cash flow yield, ρ is the log of the time-varying risk premium,

r is the log of the risk-free interest rate, and ∆d is the growth rate of log cash flows. The above

equation can be estimated through a VAR system that contains the three state variables δ, r, and

∆d. The one-lag version of this VAR system can be written as follows:













δt

rt

∆dt












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


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

a11 a12 a13

a21 a22 a23

a31 a32 a33

























δt−1
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∆dt−1













+













u1,t

u2,t

u3,t













(3)

In this setup, the time-varying risk premium (which is difficult to observe directly), is omitted.

The matrix of coefficients shows the nature of the price-formation process at work in the market

being modeled. Economically, if a12 (the coefficient on the risk-free rate in the yield equation) has

2It should be clear that in this procedure, the properties used to train the VAR are the same properties on which
the predictions are made, as the training happens in the earlier time periods of the same sample.
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a positive sign, and a13 (the coefficient on cash flow growth in the same equation) has a negative

sign, this constitutes empirical evidence that prices are formed by investors through a Gordon-

Growth-Model process. Such an observation justifies the use of this methodology to model inferred

cash flow yields.

The system in Equation (3) can be written more compactly in matrix form as

zt = Azt−1 + vt (4)

where zτ is the observed vector of state variables at time τ , A is the matrix of coefficients, and vt

is the vector of error terms. The inferred k-period forward predicted cash-flow yields that we are

attempting to generate in this project can then be obtained by multiplying the time-t realization

of the state variables in the system, by the VAR-coefficient matrix A, k times, or

E[zt+k] = Akzt (5)

2.2 In-Sample and Basic Rolling Out-of-Sample Estimation

Initially, to establish the feasibility of our approach, we conduct this procedure in a single time

series at a market level. We choose the market for Los Angeles Office properties (see specifics on

data below). For δ we use a market-wide capitalization rate based on index data for prices and cash

flows. For cash flows, we use index-level Net Operating Incomes (NOIs). From this latter source,

we also construct ∆d, as a first difference of log NOI per square foot. The variable for r becomes

the log of the long-term interest rate. To account for possible seasonality effects in our quarterly

data, we estimate VARs with up to four lags. In this stage, we estimate the VAR over the entire

time series of data, and the inferred yields become simply the fitted values from this VAR.

Since the main focus of our study is to attempt to infer prices of untraded assets, the primary

portion of our empirical analysis focuses on a property-by-property level. This means we are dealing

with panel data consisting of a cross section of properties over time, and so we modify the VAR

approach for this setting3. In the panel setting, we stack time series observations for individual

3VARs are seldom used for panel data in the literature, perhaps because few settings warrant this from an economic
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properties and then we modify Equation (3) to look as follows:




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











(6)

The above representation shows that we model yield for property i at time t, through lagged values

of the yield for the same property, the common long-term interest rate (which is identical for all

properties at a certain time), and the lagged cash flow growth for that property. Economically, the

coefficient matrix estimated in this way characterizes the common price formation process applied

to all properties in the sample used, with the cross section giving additional statistical power to

the estimation of the coefficients.

Initially we estimate a single VAR system or a single set of rolling VAR systems4 across the

entire panel. We then run separate VAR estimations for separate market segments, by property

type, in order to allow the particulars of the price formation process to vary in the cross section.

All data is de-meaned.

It is well known that in panel data studies, unobserved systematic cross-sectional heterogeneity

can lead to biased OLS standard errors and thus to incorrect statistical inferences. For this reason,

such studies often use fixed effects and clustering of standard errors at various levels of panel

observation.5 We elect not to incorporate such techniques in the procedures we use. This is

because, while we do present VAR coefficients and hypothesis tests associated with them in our

study, these purely serve to convey to the reader the basic interrelationships between the state

variables involved in our study, and are not important for our primary result. Our primary interest

lies in the out-of-sample predictions from the panel VARs we estimate, which should not be biased

by this omission. On the contrary, it has been shown (for example, Wooldridge (2010)), that in

the presence of unobserved systematic cross-sectional heterogeneity in panel data, OLS coefficients

may become inefficient. If this is the case, this should negatively impact, rather than overstate, the

perspective. For one example of such a procedure in use, however, see Love and Zicchino (2006).
4See discussion of out-of-sample estimation below.
5Love and Zicchino (2006) also do this in their panel VAR study, although they have a different motivation for

doing so, as they have economic interest in these coefficients.
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predictive power of our panel VARs. While Petersen (2009) argues in this context that the use of

random-effects estimation would help this situation, we elect to omit this for two reasons. First, as

far as we know, the statistical properties of a GLS-based random-effects estimator in the context

of a panel VAR are not sufficiently well understood. Second, a meaningful run of such a procedure

would require a large amount of data, both in the cross section and the time series. Therefore, this

would preclude us from being as parsimonious in our approach as we currently are, which would

exclude a large part of the early portion of the data sample.

In keeping with the asset pricing literature, we begin by estimating a single VAR over all our

data and computing our inferred yields as fitted values from this VAR. We do this to assess the

quality of the inferred yields we produce, in a better-understood controlled setting. However,

since the focus of our study is to infer prices for untraded assets, we then expand this procedure

to generate out-of-sample estimates of yields. In particular, we run the panel VAR described in

Equation (6) above, over a 40-quarter (10-year) rolling window and then conduct out-of-sample

predictions. Specifically, in each iteration for a quarter t, we estimate our VAR using data from

time t− 39 to t. By using Equation (5)6, we then compute predicted yields for each property i for

quarter t+ 1 as our inferred yields; to assess the quality of the yields produced, we then compare

these inferred yields to the ex-post realized yields for each respective property i at time t + 1.

Given that we have an unbalanced panel, we choose to include in each VAR estimation properties

for which we have continuous data for at least 2L+1 quarters, ending at time t+1 (where L is the

lag order of the VAR). This avoids estimating low-power time-series coefficients by using a panel

that is too shallow to offer true time-series insights. On the other hand this is traded off against

the survivorship bias that would be induced if we were to require that a property exist for, say, the

entire 40 quarters that we use for each run. Given that we also have a cross section of properties

to give us statistical power, it is not necessary for each single property to exist that long. Once

again, we consider lags up to four quarters.7

6We adjust this analogously to Equation (6), such that zτ contains the entire cross-section at time τ .
7Economically, estimation windows between five and ten years which we use in this study, also seem warranted,

as they match with the majority of holding periods for commercial properties. Hochberg and Mühlhofer (2011), for
example, report that in the NCREIF data set the mean holding period is just below five years, with the third quartile
at approximately 6 and a quarter.
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To assess the quality of our predicted yields, we look at two measures. The first is a ratio of the

standard deviation of our series of predicted yields, divided by that of the actual realized yields.

This shows the fraction of total volatility that we capture; if our VAR system resembles the market’s

actual price formation process, this should be high (in theory close to 1, if we had actual prices in

our data). For the in-sample estimation, this suffices to assess the quality of the estimated yields.

For the out-of-sample procedure, there is one additional measure we must consider in addition to

this. Supposing that we produced VARs that were extremely noisy, but whose estimated yields in

no way resembled ex-post realized yields; in that case, the previously discussed measure would be

high (and could even be above one), but this would still not indicate a production of high-quality

yield forecasts. Therefore, in this case we examine the above measure jointly with the correlation

coefficient between the predicted and the ex-post realized yields.

At this stage, for δ (which we call yield in the tables) we use the natural log of the ratio of

property-level Net Operating Income divided by the appraised value of the property (or transaction

price in quarters in which the property trades). Since appraisals tend to be smoothed, our goal from

this line of research is to generate out-of-sample yields which are more volatile than the ex-post

realized yields (i.e. the ratio discussed above should be greater than one). We plan to accomplish

this by including additional measures of cash flow and modeling time-varying risk premia in future

versions of the paper. For r (which we call lt.rate in the tables) we use the long-term interest rate,

and for ∆d (which we call noi.growth in the tables) we use the difference in log of Net Operating

Income per square foot for the respective property.

2.3 Self-Propagating Rolling-Window VAR Procedure

Having established step by step the feasibility of our approach, we next make the final refinement

to our procedure, by implementing what we call a Self-Propagating Rolling-Window Panel VAR.

In a rolling VAR procedure, in each VAR estimation run, it is necessary to have a full set of

populated data fields, to train the VAR (i.e. to generate a coefficient matrix A). In the procedure

described above, we use appraisals to generate the yields (cap rates) that are input into each VAR

estimation, to generate the coefficients, and with which the coefficients matrix is multiplied to
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generate predictions.

We now move away from such a heavy reliance on appraisals, to a more transaction-based

approach. The commercial property market is too thinly traded to estimate a VAR such as Equation

6 purely using cap rates based on transaction prices. That is the primary motivation of this study.

Instead, we use our rolling-window VAR to populate the data with VAR-predicted cap rates where

a genuine cap rate does not exist. The primary difficulty in this context, of course, becomes

estimating the VAR system which is then used to predict cap rates, vis-a-vis this lack of data.

Specifically, we proceed as follows.

Consider an unbalanced panel dataset of all the state variables, for a set of properties, i ∈

1, 2, 3, . . . , I, over time, t ∈ 1, 2, 3, . . . , T . While transactions and therefore prices may be scarce in

this context, it should be noted that observations for all other state variables in the VAR system

are continuously populated. We generate a mixed cap rate for each property, i at time t, which

we initially populate with a local transaction cap rate. That means, for each property, i, in whose

market, m, one or more transactions occur at time t, we set mixed.cap.ratei,t equal to the average

of transaction cap rates in market m at that time. We define a property’s local market m, by

the interaction of its Core-Based Statistical Area (CBSA, a classification of urban areas, roughly

equivalent to the traditional MSA designations) and property type (i.e. Apartment, Industrial,

Office, Retail). Given that our data consists of exclusively institutional-grade real estate, we believe

that a local market cap rate defined in this way constitutes a reasonable proxy for a property’s

own cap rate. Applying this procedure fills in cap rates for some panel observations but still leaves

the vast majority of cap rate observations blank. In practice, out of 54, 120 quarter-CBSA-type

combinations, 5, 192, or 10.1% of markets have any transactions and are therefore populated this

way. This shows how thinly traded this market is, and the scope for improvement through our

procedure. It will be the task of our Self-Propagating Rolling VAR to fill in the rest.

We specify a time window, w, over which to run each iteration of the rolling-window VAR. For

the initial VAR run, which uses observations for all properties present in the dataset from t = 1 to

w, we have no choice but to fill in the missing cap rates using appraisals as property valuations, since

we need continuous data to estimate the VAR system. After estimating the coefficient matrix for

12



the initial VAR run, however, we then fill in all unpopulated cap rates (i.e. cap rates for properties

in whose markets no local cap rate was available) for time t = w + 1 as predictions from the panel

VAR we just estimated. We then move the estimation window up by one period and re-estimate

the VAR system from t = 2 to t = w + 1. It should be noted that the previously unpopulated cap

rate observations at w + 1 are now populated with predictions from the previous VAR, which are

then matched up with new data for the other state variables (cash flows and interest rates), all of

which is used in the estimation. The one-period forward predictions from this new VAR run are

then used to populate the previously-unpopulated cap rate observations for t = w + 2, which are

then combined with new data for the other state variables in that period to be used for the VAR

run from t = 3 to t = w + 2, to generate predicted cap rates for w + 3, and so forth. It is thus

apparent how this VAR generates the data necessary for its next run, and therefore why we refer

to it as self-propagating.

It should be apparent that, due to the structure of the panel VAR, through this procedure we

generate a specific new cap rate for each individual property simultaneously, rather than an overall

market cap rate. To see how this works, consider a panel of four properties (i = 1, . . . , 4), for

which we have estimated the coefficient matrix, as illustrated in Equation 6. The property-specific

predictions of the state variables are then calculated by multiplying the time-t matrix of property-

by-property values of state-variable realizations with the transcript of the coefficient matrix8, as

follows:
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δ1,t+1 rt+1 + ǫ1 ∆d1,t+1

δ2,t+1 rt+1 + ǫ2 ∆d2,t+1

δ3,t+1 rt+1 + ǫ3 ∆d3,t+1

δ4,t+1 rt+1 + ǫ4 ∆d4,t+1



















(7)

Of primary interest, in this case, are the predictions for δ in each property. As described above,

we then take these cap rate values and fill them in for properties at time t+ 1 where this field is

8In this coefficient matrix, the second subscript refers to the equation from which the coefficient came, so, for
example a2,δ refers to the second coefficient (i.e. the one on interest rate) from the δ equation.

13



unpopulated (i.e. no local cap rate exists). Before doing this, of course, they must be re-meaned

and exponentiated, as the VAR is run with de-meaned logs of variable realizations.

There may be a concern that using previously made predictions in a new estimation run may

cause the new predictions (which would cumulate errors on top of errors) to become extremely noisy.

Our results show, however, that this is not the case. There may be two reasons for this. First, in

the panel, some new cap rate data is used, since local transactions occur, which supplements the

information (or non-information) in the predictions. Second, all other state variables contain new

information which is processed in the new estimation run.

As previously stated, we are dealing with an unbalanced panel of properties in this study. As

before, we choose to include properties that, for a given number of lags L included in the VAR,

have at least 2L + 1 time-series observations, including their quarter of sale. Further, for the vast

majority of properties that first appear in the dataset at a time beyond the initial window from 1

to w (where we automatically filled unpopulated mixed.cap.rate observations with appraisal cap

rates), we populate any empty mixed.cap.rate observations in the property’s first 2L+1 quarters of

existence with appraisal-based cap rates. There are two points to be considered with regards to this

rule. First, if we did not do this, we could only use properties for our estimation, which in their first

2L+1 quarters had local transactions in their market. This would be a non-randomly drawn sample

and would therefore introduce selection bias. Second, the vast majority of NCREIF properties was

actually purchased within a year or less of its cash flows being reported in the dataset. Within that

time period, an appraisal would rely very heavily on the just-concluded transaction price, and thus

essentially this way we introduce near-transaction-based cap rates into the estimation. Overall, the

worry that we fill in much of our data this way, leaving no room for our self-propagating VAR would

be unfounded: in practice, our self-propagating VAR is left with the task of estimating 195, 734

cap rates.

In order to be as parsimonious as possible, and to use as few appraisals as possible, we try to

use a short window length w. For estimations conducted on the entire dataset, we use a window

size of 20 quarters (5 years). With much shorter window sizes, estimates become exceedingly noisy.

Further, it may be economically justifiable to estimate the VAR over a sample that covers a large
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part of the previous property cycle.9 It should be noted here that our rolling-window procedure

allows the VAR coefficients to vary over time. Again this should be economically justified, as

investors may make different use of the underlying data in different economic times.

Besides estimation over the entire dataset, we also conduct this procedure on each property

sector alone. Economically, it is conceivable that the price formation process (and therefore the

VAR coefficients) for the different property-type submarkets might differ amongst each other. Due

to a smaller cross-section of properties in this setting, we use a window size w of 30 quarters. We

use four lags throughout this part.

We expand the set of state variables used in this procedure to include, in addition to the

variables described above, the log of the square of quarterly NOI growth. We do this in an attempt

to capture conditional cash flow volatility, and therefore get at a partial indicator of discount-factor

information. In contrast to the Campbell-Shiller setting where an attempt is made to distinguish

between cash-flow and discount-factor information, in this case this inclusion should be beneficial.

Since we are trying to predict as much as possible of cap rates through cash flow dynamics, it seems

warranted to try to capture at least some discount factor information. For illustrative purposes,

we also run the estimation described in the previous section, with this additional variable.

It should be noted that the algorithmic nature of this procedure is set up to easily allow

replicability. Therefore this estimation technique should be suitable for investors wishing to estimate

current cap rates for properties they are examining, without resorting to appraisals.

We construct the following statistics to examine the predictive power of our self-propagating

VAR. First, we compare our predictions to appraisals. For this, we use the ratio of standard

deviation of the mixed cap rates we predict over standard deviation of appraisal-based cap rates,

as well as their correlation. The same arguments as above apply for the interpretation of these

statistics.

Next, we compare our self-propagating VAR’s ability to predict eventual transaction cap rates

(when the property is sold) to that of appraisals. To do this, we first use appraisal cap rates as

the predicted series and report the ratio of standard deviations of predicted over transaction cap

9Further, as stated above, this fits well within the holding period range for the investors in this dataset.
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rates, as well as their correlation. Finally, we also report an out-of-sample R-squared (see Welch

and Goyal (2008)) defined as

R2
OOS = 1−

∑T
t=w(δ

′

t+1 − δt+1)
2

∑T
t=w(δt − δt+1)2

(8)

In this expression δt+1 is the ex-post realized transaction cap rate at time t+1, δ′t+1 is the predicted

cap rate and δt is the historical average cap rate over the rolling window ending at time t. This

figure compares the sum-squared prediction error to the prediction error that would be obtained

by using the historical mean as the best predicted cap rate. The more of an improvement the

prediction offers over the historical mean, the closer to 1 this statistic gets. If the prediction does

no better than the historical mean, the statistic is zero, and if it does worse, the statistic is negative.

Because a property is not appraised in a transaction quarter, we use the appraisal from the

previous quarter as a comparison. To make a valid comparison, we then do the same thing with the

predicted mixed.cap.rate from our self-propagating rolling VAR from the quarter before a transac-

tion. We compute the ratio of standard deviations, the correlation, and the out-of-sample R2, this

time using the predictions from our self-propagating VAR, compared to transaction cap rates. We

compare these statistics to those calculated for appraisals. The most important comparison to be

made here will be in the out-of-sample R-squareds, as the best indicator of predictive power.

3 Data

Our study depends crucially on reliable, high-quality time series data on property-level cash flows.

We therefore use the NCREIF property database for this information. In its property database, the

National Council of Real Estate Investment Fiduciaries (NCREIF) collects individual-property-level

data for institutional-grade commercial properties held by private entities (primarily pension funds).

This collection effort is undertaken with the primary objective of compiling the National Property

Index (or NPI) series, which constitute the de-facto industry standard commercial property indices

in the United States. As of 2012, the value of the property portfolio in NCREIF’s universe stood at
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$320 billion. While this is difficult to estimate, many institutional investors consider this portfolio

to be the vast majority of non-owner-occupied institutional-grade commercial real estate held by

private entities. Each landlord of a property in NCREIF’s universe reports a variety of information

to NCREIF on a quarterly basis, including essential property characteristics, and (very importantly)

operating cash flows, appraisals, and transaction values. While membership in NCREIF (and thus

reporting of data to NCREIF) is voluntary, inclusion in NCREIF’s database is considered desirable

and prestigious on the part of private managers. NCREIF’s stated policy is to only report data

on high-grade institutional-quality commercial real estate, as this is the type of real estate its NPI

tracks. As a result, inclusion of one’s property transactions in NCREIF’s database and indices is

viewed as confirming a level of quality on the included investor. Therefore, most eligible managers

choose to become members of NCREIF, and thus subject themselves to quarterly reporting of

transactions. NCREIF membership constitutes a long-term contract and commitment, and once

included, it is not possible for an investor to report performance only in certain quarters and not

in others; the investor is contractually obligated to report all cash flows and transactions going

forward. Data reported by NCREIF members to NCREIF is protected by a strict non-disclosure

agreement.10 Thus, manipulating performance numbers is viewed as ineffective, as it cannot help

the investor signal quality beyond membership itself. As a result, NCREIF members are both

willing and able to fully and confidentially report this data to NCREIF. This arrangement gives us

the opportunity to examine cash flows and valuations (including transactions where available) in

a very large set of commercial properties in some detail and with a high level of confidence in the

accuracy of the data. The NCREIF sample runs from Q1 1978 through Q2 2012.

For the single-market test run of our VAR on Los Angeles Office property, we use price index

data from RCA to construct cap rates.

Table 1 shows summary statistics for the NCREIF property database. We show time-series

distributional statistics for the number of properties in the dataset, as well as time-series distri-

butions partitioned into region or type. Lastly, we show statistics on cross-sectional distributions

of Net Operating Income (NOI) per square foot, subdivided by property type, at three points in

10As academic researchers, we are given access to NCREIF’s raw data under the same non-disclosure agreement.
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the dataset: first, the end of 2011 (the last full year of data we have), and then ten and twenty

years earlier. The number of properties in our sample changes over time with only 26 properties

remaining in our database over the entire 1991 to 2011 time period. In terms of the number of

properties by property type, industrial properties constitute 41 percent of our sample followed by

office properties (26%), apartments (16.5%) and retail properties (15%). Hotels represent only

1.5% of our sample. From a regional standpoint, 35% of properties are located in the West with an

additional 28%, 21%, and 16% located in the South, East and Midwest respectively. When property

size (square feet) is used in lieu of the total number of properties a slightly different perspective

emerges. All property types have similar aggregate square feet except for hotels. A similar situa-

tion arises when different regions are examined with respect to property size. All four regions have

similar square feet in aggregate. When NOI per square foot is examined over the 1991, 2001, and

2011 period, industrial properties tend to have the lowest mean return and standard deviation of

the five property types followed by apartments. All other property types have higher mean returns

and standard deviations.

4 Results

Figure 1 shows the actual log capitalization rate for Los Angeles office properties relative to the

fitted values for cap rates from our two lag VAR model. The predicted cap rate tends to co-move

with the actual cap rate albeit it appears to lag the actual cap rate by a quarter. This is especially

evident in the latter half of the sample. The fitted cap rate tends to be a little smoother than the

actual cap rate which is not surprising since this is an in-sample fitted value from a VAR. With

out-of-sample rolling predictions we could possibly get at something more volatile, if the VAR does

a better job than the appraiser.

Table 2 reports the Campbell-Shiller VAR coefficients for our full-sample panel. The state

variables used are yield, the log of the capitalization rate, lt.rate, the log of the long-term interest

rate, and noi.growth, the change in quarterly log NOI per square foot. The first panel shows the

coefficients for the VAR using one lag. The second panel reports the VAR using two lags. Although

we run these VARs for up to four lags, we omit tabulating the coefficients for our higher-lag VARs to
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save space. The VARs are estimated through equation-by-equation OLS. Table 2 shows that a two-

lag VAR model does not offer any additional information over a one lag VAR model as evidenced

by the incremental R2. Economically, this is an interesting finding, in that the commercial property

market is thought to be fairly informationally inefficient. However, we do find in this case that new

cash-flow and interest rate information is integrated by the market very quickly. It may thus be the

case, that the market’s apparent inefficiency is more a product of space markets (which determine

rental cash flows) than capital markets, which price existing cash flow information.

Observe that a large portion of the variation in the yield (30.8 percent) is accounted for by the

combination of a one period lag in the yield, long term interest rate, and NOI growth. All three lag

variables are statistically significant at the 1 percent level with the coefficient corresponding to the

interest rate being positive while the coefficient associated with NOI growth is negative. Since the

interest rate and NOI growth represent the denominator (r− g) in the Gordon growth model, this

suggests that our VAR does a good job in simulating this growth model. Recall that both r and g

are linear since we are using logs, which is the idea underlying the Campbell-Shiller method. If the

signs were not consistent with the growth model, then something in addition to the Gordon growth

model would also be useful in determining prices. It appears that prior information embedded in

each of our variables is useful for prediction purposes. While we previously noted that using a

two lag VAR model provides little, if any, additional explanatory power, we should note that the

Gordon growth model continues to hold when a two lag VAR model is used. Table 2 also reveals

that the combination of a one period lag in the yield, long term interest rate, and NOI growth

also accounts for a sizeable portion of the variation in the long term interest rate (83 percent) and

also the growth rate in NOI (18.5 percent). Evidence of persistence in the yield which represents

the ratio of cash flow to the price of commercial real estate and the persistence of NOI growth are

necessary conditions in our attempt to show that an investor can focus on cash flow dynamics to

account for firm (property) risk.

Figure 2 shows impulse response functions from the full-panel VAR with four lags. The first

panel shows the response on all state variables obtained by shocking yield, the second the response

obtained by shocking lt.rate, and the third the response obtained by shocking noi.growth. The
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figure is consistent with Table 2. By shocking yield (refer to the first graph on the left), we see

that yield itself (i.e. cap rate) is positively persistent, with a slow decay pattern. Past yields

contain information on the future direction of the yield. In contrast, the future interest rate is

not responsive to yield shocks while NOI growth responds negatively to a yield shock. In other

words, an increase in the yield (cap rate) forecasts a decline in the growth rate of net operating

income. The middle graph shows that the expected yield should increase given an increase in the

long term interest rate. The increase in yield given either a decline in NOI growth or an increase in

the long term interest rate is consistent with the Gordon growth model relationship. In contrast,

the expected growth in net operating income is invariant to an increase in the long term interest

rate. The graph on the extreme right shows that the yield on commercial real estate should decline

if NOI growth is expected to increase. Overall, seasonality might partly account for the reverting

patterns exhibited in NOI growth. It should also be noted that the long-term interest rate is only

affected by changes in itself, and not by changes in the other two state variables. This is in line

with the relative coefficient sizes in the lt.rate equation of Table 2, and is consistent with economic

intuition. The risk-free interest rate should be fairly exogenous to commercial property yields and

cash flow growth. The important relationships are again the response of yield to the long term

interest rate and NOI growth.

Table 3 presents statistics comparing the predicted yields (log cap rates) from our VARs, with

actual ex-post realized yields. Specifically, the table presents, for each VAR specification, the ratio

of the standard deviations between the predicted and the realized series of yields. The first section

presents this for the predictions (i.e. fitted values) from a set of full-sample panel VARs. The second

section presents out-of-sample predictions for a set of rolling-window panel VARs. The predicted

yields are for quarter t+1 and are generated by a VAR using 40 quarters’ worth of data, ending at

t. The variable pred.yieldi,t, in the first section is the fitted value from the VAR for this variable.

The realized yield at quarter t, for the same property i is yieldi,t. In the second section, for the

rolling VAR pred.yieldi,t,t+1 is the prediction constructed in quarter t, for the yield for property i

in quarter t + 1, while yieldi,t+1 is the ex-post realized yield for the same property at that time.

For the out-of-sample predictions we present both the ratio of standard deviations of the two series,
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as well as their correlation coefficient. In parentheses there is the value of a t-statistic testing the

hypothesis that the actual correlation between the two series is 0. The set of state variables for

the VAR consists of yieldi,t, lt.ratet, the log of the long-term interest rate, and noi.growthi,t, the

quarterly difference of log NOIs. All variables are de-meaned. The ratio of the standard deviations

between the predicted and the realized series of yields is similar for both the full-sample panel VAR

system and the rolling panel VAR system with the latter, only slightly lower since this represents

out-of-sample forecasts (as opposed to an in-sample forecast in the former case). The 53 percent

ratio of standard deviations in addition to the 61 percent correlation between the predicted yield

versus the actual yield indicates that our VAR model which represents a dynamic linearized Gordon

Growth Model does a good job in predicting the yield and in turn the volatility in the yield. As a

benchmark with which to compare our results to, Campbell and Shiller report values around 15%

(ratio of standard deviations) and 25% (correlation) respectively. Besides this, the results appear

to be invariant to the number of lags used in the VAR system which suggests that a one lag VAR

model suffices. Using additional lags does not provide any new information.

Overall, we have now established in a more controlled environment that this type of model-

ing of cash flow dynamics should constitute a good methodology to infer cash flow yields (i.e.

capitalization rates) when these are not observable.

We now turn to the results illustrating the performance of our full new technique, the Self-

Propagating Rolling-Window Panel VAR estimation of yields for untraded properties. Figure 3

shows a time series of cross-sectional averages of realized transaction-based cap rates (the black solid

line) and our predicted mixed cap rates (the red dashed line). Notice how closely the predictions

in cap rate track the actual realized values, especially after about 1995. This should show how well

our estimation procedure infers yields of untraded properties, as, when these properties do trade,

the realized yields closely resemble our estimates. This is especially remarkable, given that our

VAR runs more or less in the blind for much of the time over the majority of properties, as far as

yield data is concerned, using its own estimates in each subsequent run, with only cash flow data

being updated.

The early 1990s show a large amount of volatility, both in realized, as well as in predicted cap
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rates. This is likely for two reasons. First, in this time period, there truly was a large amount of

cap rate volatility, as the market was recovering from the Savings-and-Loan crisis. Second, during

this time the coverage of NCREIF’s data was still much smaller than in the late 1990s and beyond,

so that individual outliers in terms of cap rate would have made more of a difference on overall

averages shown. At the same time, our VAR procedure has less data to work with during that time,

leading to less power and therefore more noisy estimates. In the run-up of yields around the 2007-

2008 financial crisis, a small lag of our predicted cap rates is apparent. It should be remembered

that the predicted cap rate shown is that from the previous quarter as our headline results make

a comparison with appraisals (see Section 2). In the quickly-increasing cap rates of that time, this

lag likely would have made the most difference.

Table 4 presents our main results illustrating the performance of the Self-Propagating Rolling

VAR. Panel A shows the results for the full time series. This means that, given that our data starts

in 1980 (accounting for the lags needed in the VAR), and the first prediction for All Types (i.e. all

property types combined) is made for the first quarter of 1985 (since we use a 20-quarter window

size. For the individual property types, with a 30-quarter window size, the first prediction is made

for the third quarter of 1987. The predictions analyzed are then quarterly, for each property that

exists in the sample at a given time, until 2012.

The first column (“Predicted vs. Appraisal”) compares our predicted mixed cap rates to ap-

praisals at the same time. We report the ratio of the standard deviation of our predicted series

over that of the appraisal series, to show what fraction of the variation we capture. Since we are

making out-of-sample predictions, in order to distinguish between a set of noisy predictions and

one that actually captures the variation in appraisals, we also report the correlation between the

two series and a t-test, testing the null hypothesis of zero correlation. For All Types, in Panel

A, we find that the standard deviation of our predicted cap rates is .823 times that of appraisals,

which means we capture a large amount of the variation in this series, and the statistically highly

significant positive correlation of .3514 indicates that these predictions do resemble appraisal-based

cap rates. It should be remembered that appraisals themselves have well-known problems, such as

smoothing and temporal-lag bias. Therefore, matching appraisals as closely as possible should not
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be a primary goal for our predicted cap rates. The main point to be taken from these statistics is

that our estimates remain well-controlled, in terms of their statistical properties. A fear that re-

using previously generated predictions in subsequent iterations of the VAR would lead to extreme

noise in our predictions (or perhaps a gradual dying off in their variance, as in an impulse-response

function) is therefore unfounded, and we can be confident of the reasonable performance of our

procedure. Performing this comparison with appraisals for this purpose has the added advantage

that we have observations for nearly the entire panel, while, as stated before, transactions tend to

be scarce.

The second and third column (“Appraisal vs. Transaction”) and (“Predicted vs. Transac-

tion”) considered jointly, on the other hand, show directly how well our procedure predicts actual

market-transaction cap rates, and, by implication, how accurate its inferred cap rates for untraded

properties would be. The “Appraisal vs. Transaction” column shows a benchmark of what is

possible through appraisals, to which we can then compare our procedure in the third column. It

should be noted that Column 2 purely reports pre-existing data from the NCREIF dataset. None

of our estimation technique enters in a any way into any of the statistics reported there. In these

comparisons, too, we report the ratios of standard deviations, correlation coefficients, and t-tests of

these to assess the overall statistical properties of our predictions in this comparison. The salient

result, however, is the Out-of-Sample R2 which, it is generally argued (see for example Welch and

Goyal (2008)), is one of the best ways to assess the predictive ability of an out-of-sample estimation,

as it distinguishes noisy predictions, from predictions that genuinely capture the variation in the

true underlying series.

Comparing the values of the ratios of σ, as well as the correlations between columns two and

three, we find that our estimated cap rates once again have good statistical properties in their

relation with transaction cap rates, when compared with appraisals. Most importantly, however, we

find that the R2
OOS values show that appraisals capture .438 of the total variation in transaction cap

rates, while our predictions capture .7511 of total variation in transaction cap rates, for all properties

combined and over the entire time series. This means, our technique not only captures a very large

portion of the variation of cap rates in itself, but it also substantially outperforms appraisals in
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this respect. This is in spite the fact that appraisers have substantial property-specific information

available to them (which a quarter before the transaction should really not change substantially

until the transaction is complete) while we limit our estimation to only the time series of cash flow

information. Economically, besides showing the attractiveness of our procedure, this also shows

how strongly yields (and therefore prices) in this thinly traded market are shaped by the time-series

dynamics of cash flow information.

There may seem to be a discrepancy throughout Table 4 in that the correlations between

appraisals and transaction cap rates are generally higher than those between our predicted cap

rates and transactions, while the opposite is the case for the Out-of-Sample R2 (R2
OOS). The

difference is that the correlation coefficient shows the degree of covariation between two series up

to an arbitrary linear transformation on each. In contrast, the Out-of-Sample R2 makes a direct

comparison between the unadjusted raw series. Given that the arbitrary linear transformation in the

correlation coefficient is difficult to get at in practice, it is generally argued that the R2
OOS offers a

cleaner comparison and therefore shows the more relevant result in this setting. We report the ratio

of standard deviations and the correlations primarily because this is how the statistical properties

of VAR predictions are customarily compared to the realized series in this line of literature.

The lower sections of each panel of Table 4 show our technique applied to each subsample of

the data by property type.11 As stated before, this is an important potential distinction to make,

as the price formation process (and therefore our VAR coefficients) might differ among property

sectors. Overall, we see that the predictive ability of our procedure does better in Apartments,

than in Industrial and Office. In Apartments, we find an R2
OOS of .844 (about nine percentage

points above the statistic for the combined data) , while for Industrial this is .6857 (or about seven

percentage points lower than for all properties), and for Office this is .7361, very close to the level

for all properties. This is consistent with economic intuition, in that apartment leases are generally

very short, while industrial and office leases are much longer. This means that economically there

is much less stickiness in Net Operating Incomes (NOIs) for Apartments than for the other two

property types, and that therefore these cash flows are more informative of current market lease

11While NCREIF does track a few hotel properties, the number of properties is too small for our procedure to work
in this sector.
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levels, which may be used by investors in their forward projections used in Gordon-Growth-Model

valuations. This may also be part of the reason why appraisals better predict Apartment cap

rates than Industrial or Office. Statistically, it also means that Apartment cash flow data is more

variable, and therefore gives the VAR more information to work with in predicting cap rates. Very

importantly, though, we note that our primary result holds for all property-type submarkets, in that

our predicted yields always capture a substantially higher part of variation in realized yields than

appraisals do, with differences in R2
OOS between 20 percentage points (Office) and 37 percentage

points (Industrial).

For Retail, we also find a large outperformance in predictive ability by our estimates over

appraisals. Our estimates here show an Out-of-Sample R2 of .8495, the highest among all property

types, lying at least by a very small margin over Apartments, while appraisals show the second

lowest (.4832), only above Industrial. Economically, while retail leases are fairly long, a substantial

portion of cash flows in Retail properties is paid through percentage rents, in which the landlord

participates in tenants’ revenues. This makes the cash flows from this property also highly variable,

and less sticky, leading to better estimates of cash flows going forward. It seems to be the case

that appraisers are less able to account for this in their cap rate formation. Overall, we find

that, both in the entire sample, as well as in all property-type subsectors, our predicted cap rates

capture a substantial portion of the variation of actual transaction cap rates, and substantially

outperform appraisals in this respect. This lends strong support to the contribution made by the

Self-Propagating VAR technique we develop in this study.

The subsequent panels of Table 4 show time-period subsamples of our results. It should be

noted that the results shown in these panels come from the application of the VAR procedure to

the full sample, and only report those estimates made for the date range specified. This makes

intuitive sense, as the estimation procedure consists of a rolling-window VAR. Therefore, letting

the estimation only start in time to produce the desired estimates would actually be detrimental,

since, as explained in Section 2, we have to fill the first estimation window with appraisal-based

cap rates. Letting the estimation start at the beginning, on the other hand, gives us estimates that

are purely based on cap rates filled with the VAR’s own estimates, as specified there. Thus, these
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are actually more pure estimates from the Self-Propagating VAR.

In Panel B, we show results from 1995 going forward. This cuts out the early part of the sample,

where, as shown in Figure 3, the data quality improves to generate less noise in cap rates. Overall,

this panel shows almost identical patterns to Panel A. We capture between approximately 67% and

85% percent of variation of transaction cap rates, with ratios of σ and correlations in reasonable

ranges, as above. Similarly to the previous panel, we capture a substantially higher amount of

variation in transaction cap rates than appraisals do (between about 24 and 32 percentage points

more). Here, Apartment and Retail estimations still do the best, with Industrial faring the worst

and Office being close to the estimate for All Types. Qualitatively, this situation is maintained

in Panel C, which shows statistics on estimates from 2005 forward. This panel does show a slight

decrease in the overall fraction of variation predicted both by our estimation and by appraisals. The

good predictive ability of our model with respect to Apartments is also reduced in this panel; this

may be due to Apartments’ being the most closely affected by the run-up and collapse of the housing

market of this time period. However, we still capture a substantial fraction of variation in these

cap rates (R2
OOS = .6749) and still outperform the predictive ability of appraisals by 21 percentage

points. In this time period, Retail shows the best predictive ability (R2
OOS = .8997), which is

consistent with the previous intuition about percentage rents and cash-flow informativeness.

Panel D reports results from the beginning of the financial crisis (2007Q3) going forward.

Together with Panel C (which already largely contains this period), these results show that our

technique works remarkably well, even in times of economic turmoil. Even during this time period,

we still capture a substantial fraction of variability of transaction cap rates (.7314 for all types and

for individual types between .6263 for Industrial and as high as .929 for Retail). In fact, we do

slightly better in this time period than in the previous panel. For Apartments, the Out-of-Sample

R2 is higher again, at .7361, which puts it close to the predictive ability for All Types. Since

apartments were the most affected by the fluctuations in single-family housing, it is consistent with

economic intuition that these cap rates might be more difficult to model in this time period. In

that sense, the ability of our technique to capture this large a fraction of cap rate variation for

individual properties is remarkably good.
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The Office submarket also shows an interesting development between Panels C and D. In Panel

C, there seems to be a large amount of volatility in the market, with appraisals so noisy that the

ratio of σs is actually at about 1.02. In Panel D, this goes back below one, and the Out-of-Sample

R2s rise substantially. This may have to do with the privatization of Equity Office Properties

(EOP) by Blackstone, with the subsequent selling of EOP’s portfolio. This caused a large shock

to the office market. By the middle of 2007, however, most of this was complete and so cap rate

volatility would have declined again. However, despite this, our model still captures just under

70% of variation including this shock, and over 80% thereafter, even in a market with such long

leases, in a time of general financial turmoil. This panel shows overall, that even in an economic

crisis, in which market liquidity almost completely dried up, our estimation technique captures a

substantial amount of the variation in actual transaction cap rates. Further, in a time of such low

transaction volume, a technique such as this one is especially valuable, as it is otherwise especially

difficult to accurately infer cash flow yields and therefore prices.

Overall, these results thus show the accuracy with which our Self-Propagating Rolling-Window

Panel VAR predicts actual realized transaction yields. We consistently capture a large fraction

of the variation in these yields and consistently substantially outperform the predictive ability of

appraisals in this respect. It should be remembered that the yields we predict pertain to individual

properties and therefore allow investors to accurately assess the specific value of their untraded

investment assets.

5 Conclusion

We address the measurement of return and risk in a market where assets trade infrequently by

focusing on observable cash flow dynamics in modeling the market’s price formation process. The

underlying premise is that cash flow fundamentals are the most important driver for pricing an

asset and its risk. To evaluate the extent to which we can use observable cash flows to infer

property price, we construct a Self-Propagating Rolling-Window Panel VAR technique, based on a

Dynamic Gordon Growth Model. Through this, we infer cash flow yields (cap rates) for untraded

commercial properties as out-of-sample predictions from our empirical procedure. Our results show
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that our predicted yields explain between 75% and 93% of variation in ex-post realized transaction

yields, while appraisal-based yields, by contrast, explain only half to two thirds of this variation.

These findings are consistent with the underlying premise that cash flow fundamentals are the most

important driver for pricing an asset and its risk. The algorithmic nature of our technique makes

our procedure readily applicable to investors wishing to infer cash-flow yields and thereby asset

values for investment assets that are thinly traded.
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Table 1: Summary Statistics, NCREIF

This table shows summary statistics for the NCREIF property database. We show time-series distributional statistics

of the number of properties in the dataset, as well as time-series distributions subdivided by region or type. Lastly,

we show statistics on cross-sectional distributions of Net Operating Income (NOI) per square foot, subdivided by

property type, at three points in the dataset: first, the end of 2011 (the last full year of data we have), and then ten

and twenty years earlier.

Mean StDev 1st Quart. Median 3rd Quart.

Number of Properties

Total 3, 426 2, 797 1, 274 2, 244 5, 607

Apartment 566.9 575.5 44.25 355 919.2

Hotel 52.2 60.66 13 29.5 91.75

Industrial 1, 405 1, 260 625.8 811.5 1, 918

Office 889.9 692.9 380.5 531 1, 711

Retail 512.2 348.9 211.8 484 684

East 709.2 618.8 211.2 461.5 1, 192

Midwest 539.6 351.8 281.8 419 822.8

South 962.3 864 340 544 1, 440

West 1, 215 972.4 439.8 800 2, 168

Property Sizes (Sqf)

Total 234, 903 356, 281 75, 000 149, 330 287, 049

Apartment 225, 457 240, 027 85, 932 214, 994 316, 385

Hotel 116, 040 212, 879 0 79, 428 125, 860

Industrial 234, 485 411, 583 70, 788 134, 791 272, 548

Office 241, 949 309, 172 86, 158 155, 058 287, 023

Retail 249, 489 364, 252 73, 600 129, 605 264, 973

East 245, 534 325, 372 81, 027 160, 611 299, 180

Midwest 261, 667 469, 610 80, 158 157, 852 306, 931

South 230, 254 334, 977 76, 732 151, 200 288, 544

West 220, 133 331, 144 66, 817 135, 065 267, 967

2011 NOI per Square Foot

Apartment 2.759 9.266 1.421 2.008 2.9

Hotel 3.467 2.934 1.748 2.907 4.654

Industrial 0.9854 0.9986 0.5401 0.9283 1.306

Office 3.265 3.21 1.549 2.883 4.46

Retail 3.736 4.315 1.918 2.957 4.282

2001 NOI per Square Foot

Apartment 1.69 0.9911 1.196 1.493 1.879

Hotel 5.497 6.233 0.9893 2.533 10.27

Industrial 1.518 1.936 0.796 1.114 1.627

Office 3.807 2.699 2.398 3.432 4.829

Retail 3.026 4.922 1.624 2.592 3.524

1991 NOI per Square Foot

Apartment 1.151 0.4893 0.8427 1.09 1.429

Hotel 1.583 1.128 0.898 1.201 1.86

Industrial 0.8656 0.7627 0.4726 0.7434 1.083

Office 1.847 1.924 0.789 1.542 2.522

Retail 2.627 3.45 1.035 1.722 2.668
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Figure 1: This figure shows, in the black solid line, the actual log capitalization rate for Los Angeles
office properties, and in the red dashed line, fitted values for cap rates from our VAR for the same
value, containing log of lagged cap rate, log of lagged long-term interest rate, and log of quarterly
NOI growth. In this VAR, we employ two lags.



Table 2: Full-Sample Panel VAR Coefficients

This table shows VAR coefficients for our full-sample panel VAR. The state variables used are yield, the log of the

capitalization rate, lt.rate, the log of the long-term interest rate, and noi.growth, the change in quarterly log NOI

per square foot. The first panel shows the coefficients for the VAR using one lag and the second for the VAR using

two lags. While we run these VARs for up to four lags, we omit tabulating the coefficients for our higher-lag VARs,

to save space. The VARs are estimated through equation-by-equation OLS.

Dependent yieldt−1 lt.ratet−1 noi.growtht−1 yieldt−2 lt.ratet−2 noi.growtht−2 R2 F

One Lag

yieldt 0.593725 0.097079 −0.230434 0.3083 53069

(383.23)∗∗∗ (44.06)∗∗∗ (−138.05)∗∗∗

lt.ratet 0.013188 0.908111 −0.007392 0.8306 583848

(26.87)∗∗∗ (1300.89)∗∗∗ (−13.98)∗∗∗

noi.growtht −0.271511 0.059176 −0.215326 0.1846 26960

(−175.9)∗∗∗ (26.96)∗∗∗ (−129.48)∗∗∗

Two Lags

yieldt 0.507721 0.063548 −0.17697 0.131734 0.020304 −0.113281 0.3145 25747

(193.5)∗∗∗ (11.89)∗∗∗ (−67.16)∗∗∗ (49.3)∗∗∗ (3.8)∗∗∗ (−64.39)∗∗∗

lt.ratet 0.009432 0.776312 −0.005663 0.00334 0.144518 −0.004593 0.8337 281377

(11.26)∗∗∗ (455.17)∗∗∗ (−6.73)∗∗∗ (3.92)∗∗∗ (84.75)∗∗∗ (−8.18)∗∗∗

noi.growtht −0.313955 0.029017 −0.198268 0.076831 0.017996 −0.093577 0.1929 13418

(−119.75)∗∗∗ (5.44)∗∗∗ (−75.31)∗∗∗ (28.78)∗∗∗ (3.37)∗∗∗ (−53.24)∗∗∗

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level < 0.1%.
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Figure 2: This figure shows impulse response functions from the full-panel VAR with four lags. The first panel shows the response
on all state variables obtained by shocking yield, the second the response obtained by shocking lt.rate, and the third the response
obtained by shocking noi.growth.



Table 3: Predictive Power of Panel Vector Autoregressions.
This table presents statistics comparing the predicted yields (log cap rates) from our VARs, with actual ex-post realized yields.

Specifically, the table presents, for each VAR specification, the ratio of the standard deviations between the predicted and the

realized series of yields. The first section presents this for the predictions (i.e. fitted values) from a set of full-sample panel

VARs. The second section presents out-of-sample predictions for a set of rolling-window panel VARs. The predicted yields are

for quarter t+1 and are generated by a VAR using 40 quarters’ worth of data, ending at t. The variable pred.yieldi,t, in the first

section is the fitted value from the VAR for this variable. The realized yield at quarter, for the same property t is yieldi,t. In

the second section, for the rolling VAR pred.yieldi,t,t+1 is the prediction constructed in quarter t, for the yield for property i in

quarter t+1, while yieldi,t+1 is the ex-post realized yield for the same property at that time. For the out-of-sample predictions

we present both the ratio of standard deviations of the two series, as well as their correlation coefficient. In parentheses there is

the value of a t-statistic testing the hypothesis that the actual correlation between the two series is 0. The set of state variables

for the VAR consists of yieldi,t, lt.ratet, the log of the long-term interest rate, and noi.growthi,t, the quarterly difference of

log NOIs. All variables are de-meaned.

Lags: 1 2 3 4

Full-Sample Panel VAR System: [yieldi,t, lt.ratet, noi.growthi,t]
′

σ(pred.yieldi,t)/σ(yieldi,t) 0.5552 0.5608 0.5673 0.5654

Rolling Panel VAR System: [yieldi,t, lt.ratei,t, noi.growthi,t]
′

σ(pred.yieldi,t,t+1)/σ(yieldi,t+1) 0.5299 0.5353 0.5397 0.5261

cor(pred.yieldi,t,t+1, yieldi,t+1) 0.6177 0.6155 0.6175 0.6102

(428.17)∗∗∗ (398.13)∗∗∗ (375.84)∗∗∗ (345.71)∗∗∗

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level
< 0.1%.
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Figure 3: This figure shows, in the black solid line, the actual time series of cross-sectional average
realized capitalization rates for all transactions in our data, and in the red dashed line, the time
series of cross-sectional average predicted cap rates from our Self-Propagating Rolling Panel VAR.



Table 4: Predictive Power of Self-Propagating Transaction-Based Panel Vector Autoregressions.
This table presents statistics comparing the predicted yields (cap rates) from our Self-Propagating Transaction-Based Rolling

Panel VARs, with actual ex-post realized yields. The table first presents statistics that compare our predicted cap rates with

appraisal-based cap rates. Then, the table shows how our predicted cap rates compare with ex-post realized transaction-based

cap rates and for comparison also shows how appraisal-based cap rates compare with transaction-based cap rates. The statistics

we present are ratios of standard deviations (predicted/appraisal, appraisal/transaction, and predicted/transaction, respec-

tively), correlation coefficients between each pair of series, with t-statistics for the null hypothesis that the actual correlation

between the two series is 0 in parentheses, and lastly, for comparison with actual transaction-based cap rates, an out-of-sample

R2 (R2
OOS

). The set of state variables for the VAR consists of mixed.cap.ratei,t, lt.ratet, the log of the long-term interest

rate, noi.growthi,t, the difference in log of NOI, and noi.growth2
i,t, the log of the squared difference of NOI. Mixed cap rate

consists of local average cap rate, where transaction occur in the local market, and predicted cap rate from the rolling VAR

system where they do not. The window size for the rolling VAR is 20 quarters for the combined dataset (All Types) and 30

quarters for individual property types. Panel A presents results from the entire available time period (1985-2012) for All Types

and (1988-2012) for individual property types, while the subsequent panels show later subsets, as labeled. The frequency is

quarterly.

Panel A: Full Sample

Measure Predicted vs. Appraisal Appraisal vs. Transaction Predicted vs. Transaction

All Types

Ratio of σ 0.823 0.9324 0.7

Correlation 0.3514 0.6756 0.3944

t-statistic (117.67)∗∗∗ (45.49)∗∗∗ (21.35)∗∗∗

R2
OOS 0.438 0.7511

Apartments

Ratio of σ 0.9217 0.9823 0.8922

Correlation 0.6239 0.7785 0.5699

t-statistic (116.73)∗∗∗ (33.58)∗∗∗ (18.79)∗∗∗

R2
OOS 0.5713 0.844

Industrial

Ratio of σ 0.8496 0.8995 0.6452

Correlation 0.2831 0.5887 0.271

t-statistic (65.7)∗∗∗ (23.71)∗∗∗ (9.18)∗∗∗

R2
OOS 0.3168 0.6857

Office

Ratio of σ 0.7504 1.0061 0.6834

Correlation 0.2444 0.7481 0.234

t-statistic (35.67)∗∗∗ (27.22)∗∗∗ (5.84)∗∗∗

R2
OOS 0.5371 0.7361

Retail

Ratio of σ 0.8166 0.9492 0.6764

Correlation 0.3549 0.7116 0.3288

t-statistic (39.68)∗∗∗ (17.25)∗∗∗ (5.96)∗∗∗

R2
OOS 0.4832 0.8495

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level
< 0.1%.



Panel B: 1995 and After

Measure Predicted vs. Appraisal Appraisal vs. Transaction Predicted vs. Transaction

All Types

Ratio of σ 0.8171 0.9604 0.7246

Correlation 0.3586 0.7162 0.4033

t-statistic (113.58)∗∗∗ (48.71)∗∗∗ (20.96)∗∗∗

R2
OOS 0.4932 0.7423

Apartments

Ratio of σ 0.9006 1.0054 0.9008

Correlation 0.6168 0.7847 0.5609

t-statistic (113.09)∗∗∗ (33.92)∗∗∗ (18.17)∗∗∗

R2
OOS 0.571 0.834

Industrial

Ratio of σ 0.8345 0.9337 0.6611

Correlation 0.2911 0.626 0.2826

t-statistic (63.67)∗∗∗ (24.41)∗∗∗ (8.97)∗∗∗

R2
OOS 0.3585 0.6712

Office

Ratio of σ 0.7763 0.9936 0.7042

Correlation 0.2539 0.7682 0.2496

t-statistic (35.21)∗∗∗ (27.86)∗∗∗ (6.01)∗∗∗

R2
OOS 0.581 0.7253

Retail

Ratio of σ 0.8227 0.9185 0.6656

Correlation 0.3425 0.7426 0.338

t-statistic (33.91)∗∗∗ (17.81)∗∗∗ (5.8)∗∗∗

R2
OOS 0.5505 0.8485

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level
< 0.1%.



Panel C: 2005 and After

Measure Predicted vs. Appraisal Appraisal vs. Transaction Predicted vs. Transaction

All Types

Ratio of σ 0.8056 0.9511 0.7232

Correlation 0.2568 0.7119 0.294

t-statistic (65.37)∗∗∗ (35.44)∗∗∗ (10.77)∗∗∗

R2
OOS 0.492 0.6944

Apartments

Ratio of σ 0.9323 0.923 0.8699

Correlation 0.3206 0.6919 0.3345

t-statistic (39.2)∗∗∗ (19.33)∗∗∗ (7.17)∗∗∗

R2
OOS 0.4652 0.6749

Industrial

Ratio of σ 0.8167 0.9109 0.6586

Correlation 0.2024 0.6346 0.1219

t-statistic (36.98)∗∗∗ (18.25)∗∗∗ (2.74)∗∗

R2
OOS 0.3708 0.6471

Office

Ratio of σ 0.7352 1.0193 0.7315

Correlation 0.1333 0.7947 0.2322

t-statistic (14.7)∗∗∗ (22.6)∗∗∗ (4.13)∗∗∗

R2
OOS 0.6133 0.691

Retail

Ratio of σ 0.8979 0.8497 0.6379

Correlation 0.0675 0.6954 0.1814

t-statistic (4.68)∗∗∗ (8.65)∗∗∗ (1.66)

R2
OOS 0.5694 0.8997

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level
< 0.1%.



Panel D: 2007Q3 and After

Measure Predicted vs. Appraisal Appraisal vs. Transaction Predicted vs. Transaction

All Types

Ratio of σ 0.7934 0.9302 0.7027

Correlation 0.2559 0.7045 0.2994

t-statistic (56.16)∗∗∗ (24.87)∗∗∗ (7.88)∗∗∗

R2
OOS 0.5032 0.7314

Apartments

Ratio of σ 0.9215 0.9504 0.8643

Correlation 0.3248 0.7336 0.3143

t-statistic (33.8)∗∗∗ (15.97)∗∗∗ (4.9)∗∗∗

R2
OOS 0.5719 0.7361

Industrial

Ratio of σ 0.7987 0.8918 0.6184

Correlation 0.1918 0.5713 0.1038

t-statistic (30.56)∗∗∗ (11.44)∗∗∗ (1.72)◦

R2
OOS 0.2726 0.6263

Office

Ratio of σ 0.7257 0.9784 0.7743

Correlation 0.1303 0.8565 0.1856

t-statistic (11.96)∗∗∗ (17.56)∗∗∗ (2)∗

R2
OOS 0.7577 0.803

Retail

Ratio of σ 0.9533 1.0115 0.629

Correlation 0.0695 0.7958 0.2424

t-statistic (4.14)∗∗∗ (8.52)∗∗∗ (1.64)

R2
OOS 0.6339 0.929

◦ : significance level < 10%. ∗: significance level < 5%. ∗∗: significance level < 1%. ∗∗∗ : significance level
< 0.1%.


