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1 Introduction

How can we measure and improve the quality of teaching in primary schools? One prominent but

controversial method is to evaluate teachers based on their impacts on their students’test scores,

commonly termed the “value-added”(VA) approach.1 School districts from Washington D.C. to

Los Angeles have begun to calculate VA measures and use them to evaluate teachers. Advocates

argue that selecting teachers on the basis of their VA can generate substantial gains in achievement

(e.g., Gordon, Kane, and Staiger 2006, Hanushek 2009), while critics contend that VA measures

are poor proxies for teacher quality (e.g., Baker et al. 2010, Corcoran 2010). The debate about

teacher VA stems primarily from two questions. First, do the differences in test-score gains across

teachers measured by VA capture causal impacts of teachers or are they biased by student sorting?

Second, do teachers who raise test scores improve their students’outcomes in adulthood or are

they simply better at teaching to the test?

We addressed the first question in the previous paper in this volume (Chetty, Friedman, and

Rockoff 2013) and concluded that VA measures that control for lagged test scores exhibit little or

no bias. This paper addresses the second question. Recent work has shown that early childhood

education has significant long-term impacts (e.g. Heckman et al. 2010a, 2010b, 2010c, Chetty et al.

2011), but there is no evidence to date on the long-term impacts of teacher quality as measured by

value-added. Understanding this issue is important for policy because a policy maker’s ultimate

objective is presumably to identify teachers who help students succeed in the long run rather than

simply score higher on standardized tests.

We study the long-term impacts of teachers by linking information from an administrative

dataset on students and teachers in grades 3-8 from a large urban school district spanning 1989-

2009 with selected data from United States tax records spanning 1996-2011. We match approx-

imately 90% of the observations in the school district data to the tax data, allowing us to track

approximately one million individuals from elementary school to early adulthood, where we measure

outcomes such as earnings, college attendance, and teenage births.

We use two research designs to estimate the long-term impacts of being assigned to a high

VA teacher. The first design compares the outcomes of students who were assigned to teachers

with different VA, controlling for a rich set of student characteristics such as prior test scores and

1Value-added models of teacher quality were pioneered by Hanushek (1971) and Murnane (1975). More recent
examples include Rockoff (2004), Rivkin, Hanushek, and Kain (2005), Aaronson, Barrow, and Sander (2007), and
Kane and Staiger (2008).



demographics. We implement this approach by regressing long-term outcomes on the VA estimates

constructed in our companion paper. The identification assumption underlying this research design

is selection on observables: unobserved determinants of outcomes in adulthood such as student

ability must be balanced across teachers conditional on the observable characteristics.

We find that teacher VA has substantial impacts on a broad range of outcomes. A 1 SD

improvement in teacher VA in a single grade raises the probability of college attendance at age 20

by 0.82 percentage points, relative to a sample mean of 37%. Improvements in teacher quality

also raise the quality of the colleges that students attend, as measured by the average earnings of

previous graduates of that college. Students who are assigned higher VA teachers have steeper

earnings trajectories in their 20s. At age 28, the oldest age at which we currently have a suffi ciently

large sample size to estimate earnings impacts, a 1 SD increase in teacher quality in a single grade

raises annual earnings by 1.3%. If the impact on earnings remains constant at 1.3% over the

lifecycle, students would gain approximately $39,000 on average in cumulative lifetime income from

a 1 SD improvement in teacher VA in a single grade. Discounting at a 5% rate yields a present

value gain of $7,000 at age 12, the mean age at which the interventions we study occur. We also find

that improvements in teacher quality significantly reduce the probability of having a child while

being a teenager, increase the quality of the neighborhood in which the student lives (as measured

by the percentage of college graduates in that ZIP code) in adulthood, and raise participation rates

in 401(k) retirement savings plans.

Our second design relaxes the assumption of selection on observables using a quasi-experimental

approach based on teacher turnover. To understand this research design, suppose a high-VA 4th

grade teacher moves from school A to another school in 1995. Because of this staff change, students

entering grade 4 in school A in 1995 will have lower quality teachers on average than those in the

prior cohort. If high VA teachers improve long-term outcomes, we would expect college attendance

rates and earnings for the 1995 cohort to be lower on average than the previous cohort. Building

on this idea, we estimate teachers’impacts by regressing changes in mean adult outcomes across

consecutive cohorts of children within a school on changes in the mean VA of the teaching staff.

Using this design, we find that a 1 SD improvement in teacher VA raises the probability of

college attendance at age 20 by 0.86 percentage points, very similar to the estimate from the first

design. Improvements in average teacher VA also increase the quality of colleges that students

attend. The impacts on college outcomes are statistically significant with p < 0.01. Unfortunately,

we have insuffi cient precision to obtain informative estimates for later outcomes such as earnings —
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for which we have data for fewer cohorts —using the quasi-experimental design.

Our quasi-experimental results rest on the identification assumption that high-frequency teacher

turnover within school-grade cells is uncorrelated with student and school characteristics. Several

pieces of evidence support this identification assumption: (1) predetermined student and parent

characteristics are uncorrelated with changes in the quality of teaching staff; (2) changes in teacher

VA across cohorts have sharp effects on college attendance exactly in the year of the change but

not in prior years or subsequent years; (3) within-school variation in teacher quality across grades

yields similar results; and (4) students’prior test scores and contemporaneous scores in the other

subject are uncorrelated with changes in the quality of teaching staff in a given subject. Hence,

the results from the two research designs together strongly support the view that teacher quality

has long lasting impacts on students.

We analyze the heterogeneity of teachers’impacts along several dimensions. The impacts of

teacher VA are slightly larger for females than males. Improvements in English teacher quality have

larger long-term impacts than improvements in math teacher quality. The impacts of teacher VA

are roughly constant in percentage terms by parents’income. Hence, higher income households,

whose children have higher earnings on average, should be willing to pay larger amounts for higher

teacher VA. We also find teachers’impacts are significant and large throughout grades 4-8, showing

that improvements in the quality of education can have large returns well beyond early childhood.2

Our conclusion that teachers have long-lasting impacts may be surprising given evidence that

teachers’ impacts on test scores “fade out” very rapidly in subsequent grades (Rothstein 2010,

Carrell and West 2010, Jacob, Lefgren, and Sims 2010). We confirm this rapid fade-out in our

data, but find that teachers’impacts on earnings are similar to what one would predict based on the

cross-sectional correlation between earnings and contemporaneous test score gains. This pattern

of fade-out and re-emergence echoes the findings of recent studies of early childhood interventions

(Heckman et al. 2010c, Deming 2009, Chetty et al. 2011).

To illustrate the magnitude of teachers’ impacts, we evaluate Hanushek’s (2009) proposal to

replace teachers in the bottom 5% of the VA distribution with teachers of average quality. We esti-

mate that replacing a teacher whose current VA is in the bottom 5 percent with an average teacher

would increase the mean present value of students’lifetime income by $250,000 per classroom over

2Because we can only analyze the impacts of teacher quality from grades 4-8, we cannot quantify the returns to
education at earlier ages. The returns to better education in pre-school or earlier may be much larger than those
estimated here (Heckman 2002).
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a teacher’s career, accounting for drift in teacher quality over time.3 However, because VA is

estimated with noise, the gains from deselecting teachers based on data from a limited number of

classrooms are smaller. The present value gain from deselecting the bottom 5% of teachers using

three years of test score data is $185,000 per classroom on average. This gain is still about 10 times

larger than recent estimates of the additional salary one would have to pay teachers to compensate

them for the risk of evaluation based on VA measures (Rothstein 2013). This result suggests that

VA could potentially be a useful tool for evaluating teacher performance if the signal quality of VA

for long-term impacts does not fall substantially when it is used to evaluate teachers.

We also evaluate the expected gains from policies that pay bonuses to high-VA teachers to

increase retention rates. The gains from such policies are only slightly larger than their costs

because most bonus payments end up going to high-VA teachers who would have stayed even

without the additional payment. Replacing low VA teachers may therefore be a more cost effective

strategy to increase teacher quality in the short run than paying bonuses to retain high-VA teachers.

In the long run, higher salaries could attract more high VA teachers to the teaching profession, a

potentially important benefit that we do not measure here.

The paper is organized as follows. In Section 2, we present a stylized model to formalize the

questions we seek to answer and derive estimating equations for our empirical analysis. Section 3

describes the data sources and provides summary statistics as well as cross-sectional correlations

between test scores and adult outcomes. Sections 4 and 5 present results on teachers’long-term

impacts using the two research designs described above. We analyze the heterogeneity of teachers’

impacts in Section 6. Section 7 presents policy simulations and Section 8 concludes.

2 Conceptual Framework

We structure our analysis using a stylized dynamic model of the education production function

based on previous work (Todd and Wolpin 2003, Cunha and Heckman 2010, Cunha, Heckman,

and Schennach 2010). The purpose of the model is to formalize the identification assumptions

underlying our empirical analysis and clarify how the reduced-form parameters we estimate should

be interpreted. We therefore focus exclusively on the role of teachers, abstracting from other inputs

to the education production function, such as peers or parental investment.

3This calculation discounts the earnings gains at a rate of 5% to age 12. The estimated total undiscounted
earnings gains from this policy are approximately $50,000 per child and $1.4 million for the average classroom.
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2.1 Dynamic Model of Student Outcomes

Our model is characterized by a specification for scores, a specification for earnings (or other adult

outcomes), and a rule that governs student and teacher assignment to classrooms.

Classroom Assignment Rule. School principals assign student i in school year t to a classroom

c = c(i, t) based on observed and unobserved determinants of student achievement. Principals

then assign a teacher j to each classroom c based on classroom characteristics. For simplicity,

assume that each teacher teaches one class per year, as in elementary schools.

Test Scores. Let j = j(c(i, t)) denote student i’s teacher in school year t. Let µjt represent

teacher j’s “test-score value-added” in year t, i.e., the impact of teacher j on test scores.4 We

scale µjt in student test-score SDs so that the average teacher has µjt = 0 and the effect of a 1 unit

increase in teacher value-added on end-of-year test scores is 1. We allow teacher quality µjt to

vary with time t to account for the stochastic drift in teacher quality documented in our companion

paper (Chetty, Friedman, and Rockoff 2013).

Let ti(g) denote the calendar year in which student i reaches grade g; ti(0) denotes the year in

which the student starts school (Kindergarten). Student i’s test score in year t, A∗it, is given by

A∗it = βXit + νit(1)

where νit = µjt +

t−ti(0)∑
s=1

ξsµj,t−s + θc + ε̃′it

Here, Xit denotes observable determinants of student achievement, such as lagged test scores and

family characteristics. We decompose the error term νit into four components: current teacher

value-added µjt, the impacts of prior teachers’value-added
t−ti0∑
s=1

ξsµj,t−s, exogenous class shocks θc,

and idiosyncratic student-level variation ε̃′it. The parameters ξs capture the “fade-out”of test score

impacts: they measure the impact of teacher quality s years ago on current test scores. The model

in (1) coincides with the static model in equation (1) in our companion paper except that here, we

decompose the original error term ε̃it =
t−ti(0)∑
s=1

ξsµj,t−s + ε̃′it into the contribution of prior teachers

vs. other idiosyncratic fluctuations in scores in order to identify teachers’long-term impacts.

Earnings. Earnings are a function of teacher quality over all years in school, up to grade G = 12.

Let τ jt represent teacher j’s “earnings value-added,”i.e. the direct impact of teacher j on earnings

holding other factors fixed. We scale τ jt so that the average teacher has τ jt = 0 and the standard

4To simplify notation, we write µj(i,t),t as µjt and always denote by j the teacher who taught student i in the
relevant year t. For instance, µj,t−s denotes the value-added in year t − s of the teacher j who taught student i in
year t− s. We adopt the same convention with τ jt below as well.
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deviation of τ jt is 1. We assume that a teacher’s earnings value-added τ jt is linearly related to her

test-score value-added µjt:

τ jt = φµjt + τ⊥jt

where φ measures the relationship between earnings- and test-score VA and τ⊥jt represents the

portion of a teacher’s earnings impact that is orthogonal to her test-score impacts.

Earnings Y ∗i are given by

Y ∗i = βYXit + νYit(2)

where νYit =
G∑
g=0

γgτ j,ti(g) + εYit(3)

where γg measures the effect of teacher quality in grade g on earnings and ε
Y
it reflects individual

heterogeneity in earnings ability, which may be correlated with academic ability ε̃′it.
5 The error εYit

may also be correlated with µjt and τ jt because the principal may systematically sort certain types

of students to certain teachers. Accounting for such selection is the key challenge in obtaining

unbiased estimates of teachers’causal impacts.

Throughout our analysis, we focus on earnings residuals after removing the effect of observable

characteristics:

(4) Yit = Y ∗i − βYXit =
G∑
g=0

γgτ
Y
j,ti(g)

+ εYit

Note that earnings residuals Yit vary across school years because the control vector Xit varies across

school years. We estimate the coeffi cient vector βY using variation across students taught by the

same teacher using an OLS regression

(5) Y ∗i = αj + βYXit

where αj is a teacher fixed effect. We estimate βY using within-teacher variation to account for

the potential sorting of students to teachers based on VA. If teacher VA is correlated with Xit,

estimates of βY in a specification without teacher fixed effects overstate the impact of the X’s

because part of the teacher effect is attributed to the covariates. See Section 2.2 of our companion

paper for further discussion of this issue.

5We do not explicitly model class-level shocks to earnings in (2), but none of the results that follow are affected
by allowing εYi to be correlated across students assigned to the same class.

6



2.2 Reduced-Form Treatment Effects

In this section, we define two notions of a teacher’s treatment effect on earnings. To define these

treatment effects, suppose that the principal randomly assigns students to teachers in a given year

t instead of following his usual assignment rule.

Total Earnings Value-Added. One natural definition of a teacher’s impact on earnings is the

effect of changing the teacher of class c in grade g from j to j′ in year t on expected earnings:

µYjt − µYj′t = EYit(j(i, t))− EYit(j′(i, t))(6)

= γg
(
τYjt − τYj′t

)
+

G∑
s=g+1

γs

(
E
[
τYj,ti(s) | j (i, t)

]
− E

[
τYj,ti(s) | j

′ (i, t)
])
.(7)

Being assigned teacher j instead of j′ affects earnings through two channels. The first term in (7)

represents the direct impact of the change in teachers on earnings. The second term represents the

indirect impact via changes in the expected quality of subsequent teachers to which the student is

assigned. For example, a higher achieving student may be tracked into a more advanced sequence of

classes taught by higher quality teachers. In a more general model, other determinants of earnings

such as parental effort or peer quality might also respond endogenously to the change in teachers.

We refer to µYjt as a teacher’s “earnings VA”in what follows. The reduced-form parameter µYjt is

a function of several structural parameters, but is of direct relevance to certain questions, such as

the net impact of retaining teachers on the basis of their VA (Todd and Wolpin 2003).

In principle, one can estimate teachers’ earnings VA using an approach identical to the one

we used to estimate teachers’test-score VA in our first paper. In particular, we could predict a

teacher’s earnings VA µ̂Yjt in year t based on mean residual earnings for students in other years

with observational data. In observational data, such a prediction would yield unbiased forecasts

of teachers’impacts on earnings if

(8)
Cov

(
µYjt, µ̂

Y
jt

)
V ar

(
µ̂Yjt

) = 1⇒
Cov

(
εYit , µ̂

Y
jt

)
V ar

(
µ̂Yjt

) = 0.

This condition requires that unobserved determinants of students’earnings are orthogonal to earn-

ings VA estimates. Although conceptually analogous to the requirement for forecast unbiasedness

of test-score VA, (8) turns out not to hold in practice. Tests for sorting on pre-determined char-

acteristics analogous to those in Section 5 of our first paper reveal that (8) is violated for earnings

VA estimates based on the same control vector (prior test scores and student and classroom de-
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mographics) that we used to estimate test score VA. In particular, we find substantial “effects”

of earnings VA estimates on parent income and family characteristics, indicating that our baseline

control vector is unable to fully account for sorting when estimating earnings VA.

Why are we able to construct unbiased estimates of test score VA but not earnings VA? We

believe the central reason is that controlling for lagged test scores effectively absorbs most unob-

served determinants of student achievement on which students are sorted to classrooms, but does

not account for unobserved determinants of earnings. To see how this can occur, let ζi denote a

student’s academic ability, which affects both test scores and earnings, and ζYi denote determinants

of earnings that are orthogonal to academic achievement, such as family connections. Suppose

students are sorted to teachers on the basis of both of these characteristics. The key difference

between the two characteristics is that latent student ability ζi appears directly in Ai,t−1, whereas

latent student earnings ability ζYi does not directly appear in Ai,t−1. As a result, variation in

academic ability ζi can be largely purged from the error term ε̃′it in the specification for test scores

in (1) by controlling for Ai,t−1.6 In contrast, family connections are not reflected in Ai,t−1 and

therefore appear in the error term εYit in the specification for earnings in (2). Under such a data

generating process, we would be able to identify teachers’causal impacts on test scores by con-

trolling for Ai,t−1, but would not be able to identify teachers’causal impacts on earnings because

there is systematic variation across teachers in students’earnings purely due to variation in family

connections ζYi even conditional on Ai,t−1.

Consistent with this reasoning, we showed in our first paper that the key to obtaining forecast

unbiased estimates of test-score VA was to control for prior test scores, Ai,t−1. If we observed

an analog of lagged scores such as lagged expected earnings, we could effectively control for ζYi

and potentially satisfy (8). Lacking such a control in our data, we cannot identify teachers’total

earnings VA and defer this task to future work.

Impacts of Test-Score VA on Earnings. An alternative objective is to identify the impacts of

teachers’test-score based VA µjt on earnings. Let σµ denote the standard deviation of teachers’

test-score VA. The reduced-form earnings impact of having a 1 SD better teacher, as measured by

6 In general, controlling for lagged test scores need not completely account for the variation in ζi because lagged
test scores are noisy measures of latent ability. The fact that controlling for Ai,t−1 does eliminate bias in practice
(as shown in our first paper) suggests that students are allocated to classrooms based on factors highly correlated
with Ai,t−1 and other factors that directly affect earnings (ζYi ).
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test-score VA, in grade g is

κg = E[Yit | µj′t = µjt + σµ]− E[Yit | µjt](9)

= σµφγg

(
τYj′(i,g) − τ

Y
j(i,g)

)
+

G∑
s=g+1

γs

(
E
[
τYj,ti(s) | µj′t

]
− E

[
τYj,ti(s) | µjt

])
.(10)

As above, the reduced-form impact κg consists of two terms. The first is the direct effect of having

a better teacher in grade g in school year T , which is attenuated by φ =
Cov(τ jt,µjt)

V ar(µjt)
because we

only pick up the portion of earnings impacts that projects onto test-score VA. The second is the

impact of having different teachers in subsequent grades.

Let mjt = µjt/σµ denote teacher j’s “normalized value-added,” i.e. teacher quality scaled in

standard deviation units of the teacher VA distribution. Under the assumption that the conditional

expectation E[Yit | µjt] is a linear function of µjt, we can write

(11) Yit = a+ κgmjt + ηit

where ηit is orthogonal to mjt under the assumption of random assignment in period t. Intuitively,

if student unobservables are orthogonal to teachers’test-score VA, regressing Yit on mjt identifies

the impact of a 1 SD increase in teachers’test-score VA on earnings.

The parameter κg is of interest for two reasons. First, from a policy perspective, it is important

to determine the extent to which existing test-score based VA measures predict teachers’long-term

impacts. Second, κg is a lower bound for the teachers’total impacts on earnings (SD
(
µYjt

)
≥ κg) if

the effects of current teacher quality on future teacher quality are small, as is the case empirically.7

Intuitively, κ2g measures the portion of V ar
(
µYjt

)
due to variation in teachers’test-score VA.

We cannot directly estimate κg using (11) because true test-score VA mjt is unobserved. We

can substitute an estimate of teacher VA m̂jt = µ̂jt/σµ for true teacher VA in (11) under the

following assumption.

Assumption 1 [Forecast Unbiasedness of Test-Score VA] Test-score value-added estimates

are forecast unbiased predictors of test scores:

Cov
(
Ait, µ̂jt

)
V ar

(
µ̂jt
) = 1.

7When current teacher assignments have no impact on future teacher assignments, earnings Yit = γgτ jt + εYit . In

this case, κg ≡ Cov(Yit,mjt)

V ar(mjt)
=

Cov(γgτjt,µjt)

V ar(µjt)
σµ and hence earnings VA µYjt = γgτ jt = κgmjt + γgτ

⊥
jt. It follows that

V ar(µYjt) ≥ V ar(κgmjt) = κ2g. With tracking, this identity need not hold because the tracking process for test-score
VA and total earnings VA could differ. Empirically, we find that tracking based on past teacher quality is small,
suggesting that our estimates do give a lower bound on teachers’total earnings VA.
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In our companion paper, we demonstrate that Assumption 1 holds for the VA estimates that we

use in this paper. Under Assumption 1,
Cov(Ajt,µ̂jt)
V ar(µ̂jt)

=
Cov(µjt,µ̂jt)
V ar(µ̂jt)

=
Cov(mjt,m̂jt)
V ar(m̂jt)

= 1. Since

Cov (m̂jt, ηit) = 0 under random assignment in year t, it follows from (11) that Cov (Yit, m̂jt) =

κgCov (mjt, m̂jt) and hence

κg =
Cov (Yit, m̂jt)

Cov (mjt, m̂jt)
=
Cov (Yit, m̂jt)

V ar (m̂jt)
.

That is, we can identify κg by regressing earnings residuals Yit on the teacher VA estimates µ̂jt

constructed using observational data as in our first paper by estimating the following OLS regression

specification:

(12) Yit = α+ κgm̂jt + η′it

Intuitively, we can identify κg using 2SLS by instrumenting for mjt with our teacher VA estimates

under random assignment in year t. Forecast unbiasedness of test-score VA implies that the first

stage of this 2SLS regression has a coeffi cient of 1. Thus, the reduced form coeffi cient obtained

from an OLS regression of earnings on the VA estimate coincides with κg, provided that the error

term η′it is orthogonal to the variation in m̂jt.8 We develop research designs that isolate such

variation in m̂jt using observational data below.

Impacts of Multiple Teachers. The treatment effects defined above measure the total impact of

having a better teacher in a single grade g, including both direct effects and the impacts of being

tracked to better teachers in future grades. One may also wish to identify the direct impacts of

teachers in each grade. Let κ̃g denote the impact of teacher VA in grade g on earnings holding

fixed teacher VA in other grades. An intuitive specification to identify κ̃g is to regress earnings on

teacher VA in all grades simultaneously:

(13) Y ∗i =

G∑
g=0

[
κ̃gm̂j,ti(g) + β̃gXi,ti(g)

]
+ εmi .

Identifying {κ̃g} in (13) requires the orthogonality condition Cov
(
m̂j,ti(g), ε

m
i

)
= 0. This orthogo-

nality condition is violated if we do not include grade g − 1 test scores Ai,g−1 in the control vector

X because teacher assignment is correlated with lagged test scores and other factors that directly

affect earnings, as shown in Table 7 of our companion paper. But Ai,g−1 is endogenous to grade

8Another way to identify κg is using a correlated random effects or factor model, in which a teacher’s random
effect on test scores (µjt) is correlated with her random effect on earnings (µYjt). One can then directly estimate the
covariance of µYjt and µjt. Chamberlain (2013) develops such an approach and obtains estimates similar to those
reported here.
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g−1 teacher VA m̂j,ti(g−1), implying that we cannot estimate (13) to identify κ̃g. Conceptually, es-

timating the effects of multiple teachers requires simultaneous quasi-random assignment of teachers

in multiple grades. Our primary research design, which requires conditioning on lagged test scores,

only yields quasi-random variation in teacher assignment one grade at a time. As a result, we can-

not directly estimate (13) and we also cannot identify the substitutability or complementarity of

teachers’impacts across grades.

Given this problem, we develop an iterative method of recovering the net impacts κ̃g from our

reduced form estimates κg and estimates of the degree of teacher tracking in Section 6.3. The

degree of tracking turns out to be small in our data, and thus the reduced-form impacts reported

below are very similar to the direct impacts of each teacher.

3 Data

We draw information from two administrative databases: school district records and federal income

tax returns. We obtain information on students — including math and English test scores and

teacher assignments —from the records of a large urban school district. These data span the school

years 1988-1989 through 2008-2009 and cover roughly 2.5 million children in grades 3-8. We obtain

information on student outcomes in adulthood and their parents’characteristics from U.S. federal

income tax returns spanning 1996-2011.

The structure of both datasets, how they are linked, and the sample restrictions we impose to

arrive at our core sample are described in Section 3 of our companion paper (Chetty, Friedman, and

Rockoff 2013). Because the adult outcomes we analyze are measured at age 20 or afterward, in this

paper we restrict the core sample of 10.7 million observations to students who would have graduated

high school by the 2008-09 school year (and thus turned 20 by 2011) if they progressed through

school at a normal pace.9 This leaves a sample of 6.8 million student-subject-year observations

(covering 1.1 million students) that we use to study teachers’ long-term impacts.10 We refer to

this sample as the “linked analysis sample.” Within the linked analysis sample, we match 87.4% of

students and 89.2% of student-subject-year observations in the school district data to the tax data.

We find little or no correlation between match rates and teacher VA in the various subsamples we use
9A few classrooms contain students at different grade levels because of retentions or split-level classroom structures.

To avoid dropping a subset of students within a classroom, we include every classroom that has at least one student
who would graduate school during or before 2008-09 if she progressed at the normal pace. That is, we include all
classrooms in which mini(12+ school year − gradei) ≤ 2009.
10For much of the analysis in our first paper, we restricted attention to the subset of observations in the core sample

that have lagged scores and other controls needed to estimate the baseline VA model. Because we do not control for
individual-level variables in most of the specifications in this paper, we do not impose that restriction here.
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in our analysis and obtain very similar estimates of teachers’impacts on long-term outcomes when

restricting the sample to school-grade-subject cells with above-median match rates (see Appendix

Table 7).

The linked analysis sample has one row per student per subject (math or English) per school

year, as illustrated in Appendix Table 1. Each observation in the analysis dataset contains the

student’s test score in the relevant subject test, demographic information, and class and teacher

assignment if available. Each row also lists all the students’available adult outcomes (e.g. college

attendance and earnings at each age). We organize the data in this format so that each row con-

tains information on a treatment by a single teacher conditional on pre-determined characteristics,

facilitating the estimation of (12). We account for the fact that each student appears multiple

times in the dataset by clustering standard errors as described in Section 4.1.

3.1 Definitions of Outcomes in Adulthood

In this subsection, we describe the outcomes in adulthood for children that we measure using

information from tax returns. All variables from the school district data and parent characteristics

from the tax data are defined in Section 3 of our companion paper.

Earnings. Individual wage earnings data come from W-2 forms, which are available from 1999-

2011.11 Importantly, W-2 data are available for both tax filers and non-filers, eliminating concerns

about missing data on formal sector earnings. We cap earnings in each year at $100,000 to reduce

the influence of outliers; 1.3% of individuals in the sample report earnings above $100,000 at age

28. We measure income in 2010 dollars, adjusting for inflation using the Consumer Price Index.

Individuals with no W-2 are coded as having 0 earnings. 33.1% of individuals have 0 wage earnings

at age 28 in our sample.

Total Income. To obtain a more comprehensive definition of income, we define “total income”

as the sum of W-2 wage earnings and household self-employment earnings (as reported on the

1040). For non-filers we define total income as just W-2 wage earnings; those with no W-2 income

are coded as having zero total income. 29.6% of individuals have 0 total income in our sample.12

We show that similar results are obtained using this alternative definition of income, but use W-2

11Here and in what follows, the year refers to the tax year, i.e. the calendar year in which income is earned. In
most cases, tax returns for tax year t are filed during the calendar year t+ 1.
12According to the Current Population Survey, 27.2% of the non-institutionalized population between the ages of

25 and 29 was not employed in 2011. The non-employment rate in our sample may differ from this figure for several
reasons, including the following: (1) it is based on annual rather than weekly data, (2) it includes the institutionalized
population in the denominator, and (3) it applies to a relatively low-income public school district in an urban city.
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wage earnings as our baseline measure because it (1) is unaffected by the endogeneity of tax filing

and (2) provides a consistent definition of individual (rather than household) income for both filers

and non-filers.

College Attendance. We define college attendance as an indicator for having one or more 1098-T

forms filed on one’s behalf. Title IV institutions —all colleges and universities as well as vocational

schools and other postsecondary institutions eligible for federal student aid —are required to file

1098-T forms that report tuition payments or scholarships received for every student. Because

the 1098-T forms are filed directly by colleges independent of whether an individual files a tax

return, we have complete records on college attendance for all indivduals. However, we have no

information about college completion or degree attainment because the data are based on tuition

payments. The 1098-T data are available from 1999-2011.

Comparisons to other data sources indicate that 1098-T forms capture college enrollment quite

accurately.13 The correlation between enrollment counts for students age 18-21 based on 1098-T’s

and enrollment counts for colleges listed in the IPEDS dataset from the Department of Education

exceeds 0.95. The aggregate counts are also aligned as one would expect.14 Finally, two indepen-

dent evaluations of the Project STAR class size experiment using data from 1098-T’s (Chetty et

al. 2011) and the National Student Clearinghouse (Dynarski et al. 2011) obtained nearly identical

point estimates of the impacts of class size on college attendance.

College Quality. We construct an earnings-based index of college quality by building upon

the work of Chetty et al. (2011). Using the population of all current U.S. citizens born in 1979

or 1980, we group individuals by the higher education institution they attended at age 20. We

pool individuals who were not enrolled in any college at age 20 together in a separate “no college”

category. For each college or university (including the “no college”group), we then compute the

mean W-2 earnings of the students when they are age 31 (in 2010 and 2011). Among colleges

attended by students in the school district studied in this paper, the average value of our earnings

index is $44,048 for four-year colleges and $30,946 for two-year colleges. For students who did not

attend college, the mean earnings level is $17,920.15

13Legally, colleges are not required to file 1098-T forms for students whose qualified tuition and related expenses
are waived or paid entirely with scholarships or grants. However, the forms appear to be available even for such
cases, perhaps because of automated reporting to the IRS by universities.
14 In 2009, 27.4 million 1098-T forms were issued (Internal Revenue Service, 2010). According to the Current

Population Survey (US Census Bureau, 2010, Tables V and VI), in October 2008, there were 22.6 million students in
the U.S. (13.2 million full time, 5.4 million part-time, and 4 million vocational). As an individual can be a student
at some point during the year but not in October and can receive a 1098-T form from more than one institution, the
number of 1098-T forms for the calendar year should indeed be higher than the number of students as of October.
15 If students attended two or more colleges in a given year, we assign them the maximum college quality across
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In Appendix A, we analyze the robustness of the college quality index to alternative specifica-

tions, such as measuring earnings and college attendance at different ages and defining the index

based on total income instead of W-2 earnings. We find that rankings of college quality are

very stable across cohorts and are robust to alternative specifications provided that earnings are

measured after age 28 (Appendix Figure 1, Appendix Table 2).

Neighborhood Quality. We use data from 1040 forms to identify each household’s ZIP code of

residence in each year. For non-filers, we use the ZIP code of the address to which the W-2 form

was mailed. If an individual did not file and has no W-2 in a given year, we impute current ZIP

code as the last observed ZIP code. We construct a measure of a neighborhood’s SES using data

on the percentage of college graduates in the individual’s ZIP code from the 2000 Census.

Retirement Savings. We measure retirement savings using contributions to 401(k) accounts

reported on W-2 forms from 1999-2011. We define saving for retirement as an indicator for

contributing to a 401(k) at age 28.

Teenage Birth. We first identify all women who claim a dependent when filing their taxes at

any point before the end of the sample in tax year 2011. We observe dates of birth and death for all

dependents and tax filers until the end of 2011 as recorded by the Social Security Administration.

We use this information to identify women who ever claim a dependent who was born while the

mother was a teenager (between the ages of 13 and 19 as of 12/31 the year the child was born). We

refer to this outcome as having a “teenage birth,”but note that this outcome differs from a direct

measure of teenage birth in three ways. First, it does not capture teenage births to individuals who

never file a tax return before 2011. Second, the mother must herself claim the child as a dependent

at some point during the sample years. If a child is claimed as a dependent by another individual

(e.g., a grandmother) for all years of our sample, we would never identify the child. In addition to

these two forms of under-counting, we also over-count the number of children because our definition

could miscategorize other dependents who are not biological children, but were born between 13 and

19 years after the female who claims them as a dependent. Because most dependents who are not

biological children tend to be elderly parents, the fraction of cases that are incorrectly categorized

as teenage births is likely to be small. Even though this variable does not directly measure teenage

births, we believe that it is a useful measure of outcomes in adulthood because it correlates with

observables as expected (see Appendix Figure 2d and Appendix Table 3). For instance, women

all colleges attended. We code college quality as missing for all institutions with fewer than 100 students and for
institutions founded in or after 2001. As a result, 0.21% of students who attend college at age 20 are missing
information on college quality.
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who score higher on tests, attend college, or have higher income parents are significantly less likely

to have teenage births according to our measure.

3.2 Summary Statistics

Our core analysis sample for long-term outcomes contains 6.8 million student-year-subject obser-

vations. Table 1 reports summary statistics for this dataset. Note that the summary statistics

are student-school year-subject means and thus weight students who are in the district for a longer

period of time more heavily, as does our empirical analysis. There are 1.1 million students in our

analysis dataset; on average, each student has 6.25 subject-school year observations.

The mean test score in the analysis sample is positive and has a standard deviation below

1 because we normalize the test scores in the full population that includes students in special

education classrooms and schools (who typically have lower test scores). The mean age at which

students are observed is 11.7 years. 77.1% of students are eligible for free or reduced price lunches.

The availability of data on adult outcomes naturally varies across cohorts. There are more than

5.9 million observations for which we observe college attendance at age 20. We observe earnings

at age 25 for 2.3 million observations and at age 28 for 1.3 million observations. Because many of

these observations at later ages are from older cohorts of students who were in middle school in the

early 1990s, we were not able to obtain information on teachers. As a result, there are only 1.6

million student-subject-school year observations for which we see both teacher VA and earnings at

age 25, 750,000 at age 28, and only 220,000 at age 30. The oldest age at which the sample is large

enough to obtain reasonably precise estimates of teachers’impacts on earnings turns out to be age

28. Mean individual earnings at age 28 is $20,885 (in 2010 dollars), while mean total income is

$21,272.

For students whom we are able to link to parents, the mean parent household income is $40,808,

while the median is $31,834. Though our sample includes more low income households than would a

nationally representative sample, it still includes a substantial number of higher income households,

allowing us to analyze the impacts of teachers across a broad range of the income distribution. The

standard deviation of parent income is $34,515, with 10% of parents earning more than $100,000.

3.3 Cross-Sectional Correlations

As a benchmark for evaluating the magnitude of the causal effects estimated below, Appendix

Tables 3-6 report coeffi cients from OLS regressions of various adult outcomes on test scores. Both
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math and English test scores are highly positively correlated with earnings, college attendance,

and neighborhood quality and are negatively correlated with teenage births. In the cross-section,

a 1 SD increase in test score is associated with a $7,700 (36%) increase in earnings at age 28.

Conditional on the student- and class-level controls Xit that we define in Section 4.1 below, a 1 SD

increase in the current test score is associated with $2,600 (12%) increase in earnings on average.

Appendix Figure 2 presents binned scatter plots of selected outcomes vs. test scores both with

and without controls. The unconditional relationship between scores and outcomes is S-shaped,

while the relationship conditional on prior scores and other covariates is almost perfectly linear.

We return to these results below and show that the causal impacts of teacher VA on earnings and

other outcomes are commensurate to what one would predict based on these correlations.

4 Research Design 1: Cross-Class Comparisons

Our first method of estimating teachers’long-term impacts builds on our finding that conditioning

on prior test scores and other observables is adequate to obtain unbiased estimates of teachers’

causal impacts on test scores (Chetty, Friedman, and Rockoff 2013). Given this result, one may

expect that comparing the long-term outcomes of students assigned to different teachers conditional

on the same control vector will yield unbiased estimates of teachers’ long-term impacts. The

next subsection formalizes the identification assumptions and estimating equations underlying this

approach. We then present results for three sets of impacts: college attendance, earnings, and

other outcomes such as teenage birth. We report mean teacher impacts across all grades and

subjects in this section and analyze heterogeneity in impacts across these groups in Section 6.

4.1 Methodology

As in Section 2.1, let Xit denote a vector of observable characteristics on which students are sorted

to teachers. Let Yit = Y ∗i −βYXit denote earnings (or other long-term outcome) residuals adjusted

for Xit, where βY is estimated using within-teacher variation as in (5). Following (12), we regress

students’earnings residuals on their teachers’normalized VA m̂jt, pooling all grades and subjects:

(14) Yit = α+ κm̂jt + η′it

Recall that each student appears in our dataset once for every subject-year with the same level

of Yit but different values of m̂jt. Hence, κ represents the mean reduced-form impact of having

a higher VA teacher for a single grade between grades 4-8. Estimating (14) using OLS yields an

16



unbiased estimate of κ under the following assumption.

Assumption 2 [Selection on Observables] Test-score value-added estimates are orthogonal to

unobserved determinants of earnings conditional on Xit:

(15) Cov
(
m̂jt, η

′
it

)
= 0.

Assumption 1 is weaker than the assumption needed to identify total earnings VA in (8) because

it only requires that there be no correlation between teachers’ test-score VA and unobservables.

In our example in Section 2.2, Assumption 2 allows students with better family connections ζYi to

be systematically tracked to certain teachers as long as those teachers do not systematically have

higher levels of test-score VA (conditional on Xit).

Four methodological issues arise in estimating (14): (1) estimating test-score VA m̂jt, (2) spec-

ifying a control vector Xit, (3) calculating the standard error on κ, and (4) accounting for outliers

in m̂jt. The remainder of this subsection addresses these four issues.

Estimating Test-Score VA. We define normalized VA m̂jt = µ̂jt/σµ, where µ̂jt is the baseline

estimate of test-score VA for teacher j in year t constructed in our companion paper.16 We define

σµ as the standard deviation of teacher effects for the corresponding subject and school-level using

the estimates in Table 2 of our companion paper: in elementary school, 0.163 for math and 0.124

for English and in middle school, 0.134 for math and 0.098 for English. With this scaling, a 1

unit increase in m̂jt corresponds to a teacher who is rated 1 SD higher in the distribution of true

teacher quality for her subject and school-level. Note that because µ̂jt is shrunk toward the sample

mean to account for noise in VA estimates, SD(µ̂jt) < σµ and hence the standard deviation of the

normalized VA measure m̂jt is less than 1. We demean m̂jt within each of the four subject (math

vs. English) by school level (elementary vs. middle) cells in the estimation sample in (14) so that

κ is identified purely from variation within the subject-by-school-level cells.17

Importantly, the VA estimates m̂jt are predictions of teacher quality in year t based on test

score data from all years excluding year t. For example, when predicting teachers’effects on the

outcomes of students they taught in 1995, we estimate m̂j,1995 based on residual test scores from

students in all years of the sample except 1995. To maximize precision, the VA estimates are
16Unless otherwise specified, the independent variable in all the regressions and figures in this paper is normalized

test-score VA m̂jt. For simplicity, we refer to this measure as “value-added”or VA below.
17By construction, the normalized VA estimates have mean 0 within each subject by school level cell in the full

sample. However, there are slight deviations in some of the estimation samples due to missing data. In practice,
demeaning mjt has little or no impact on our estimates. Note that the estimates we report equal what one would
obtain by running separate regressions within the four subject-by-school-level cells and taking weighted means of the
coeffi cients.
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based on data from all years for which school district data with teacher assignments are available

(1991-2009), not just the subset of older cohorts for which we observe long-term outcomes.

Using a leave-year-out estimate of VA is necessary to obtain unbiased estimates of teachers’long-

term impacts because of correlated errors in students’test scores and later outcomes. Intuitively,

if a teacher is randomly assigned unobservably high ability students, her estimated VA will be

higher. The same unobservably high ability students are likely to have high levels of earnings η
′
it,

generating a mechanical correlation between VA and earnings even if teachers have no causal effect

(κ = 0). The leave-year-out approach eliminates this correlated estimation error bias because m̂jt

is estimated using a sample that excludes the observations on the left hand side of (14).18

Control Vectors. We construct residuals Yit using separate models for each of the four subject-

by-school-level cells. Within each of these groups, we regress raw outcomes Y ∗i on a vector of

covariates Xit with teacher fixed effects, as in (5), and compute residuals Yit. We partition the

control vector Xit that we used to construct our baseline VA estimates into two components:

student-level controls XI
it that vary across students within a class and classroom-level controls

Xct that vary only at the classroom level. The student-level control vector XI
it includes cubic

polynomials in prior-year math and English scores. We interact these cubics with the student’s

grade level to permit flexibility in the persistence of test scores as students age. We also control for

the following student level characteristics: ethnicity, gender, age, lagged suspensions and absences,

and indicators for grade repetition, free or reduced-price lunch, special education, and limited

English. The class-level controls Xct consist of the following elements: (1) class size and class-type

indicators (honors, remedial), (2) cubics in class and school-grade means of prior-year test scores in

math and English each interacted with grade, (3) class and school-year means of all the individual

covariates XI
it, and (4) grade and year dummies.

19

In our baseline analysis, we control only for the class-level controls Xct when estimating the

residuals Yit. Omitting individual-level controls allow us to estimate Yit and (14) using a dataset

collapsed to classroom means, which greatly reduces computational costs given the size of the

18This problem does not arise when estimating the impacts of treatments such as class size because the treatment
is observed; here, the size of the treatment (teacher VA) must itself be estimated, leading to correlated estimation
errors.
19The control vectorXit that we use here exactly matches the control vector used to construct the VA estimates m̂jt.

There is no reason that the two control vectors must match exactly; we adopted this approach to avoid specification
searching. However, unconditional regressions of Y ∗it on m̂jt (with no controls) yield substantially upward-biased
estimates of κ relative to the quasi-experimental estimates in the next section. This is not surprising because teacher
VA is correlated with characteristics such as prior scores and parent income unconditionally, as shown in Table 7 of
our first paper.
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student-level dataset.20 In particular, let Yct = Y ∗c −βCXct denote the residual of mean outcomes

Y ∗c in class c in year t, where βC is estimated at the class level using within-teacher variation across

classrooms as in (5), weighting by class size. We estimate the impact of teacher VA on mean

outcomes using a class-level OLS regression analogous to (14), again weighting by class size:

(16) Yct = α+ κCm̂jt + η′ct

We show in Appendix A that the point estimate κ̂C in (16) coincides exactly with κ̂ in (14).

Intuitively, because teacher VA varies only at the classroom level, deviations of individual-level

controls (XI
it−Xct) and outcomes (Y ∗i − Y ∗ct) from class means are uncorrelated with m̂jt and thus

have no impact on the estimate of κ.

In practice, the identity κ̂ = κ̂C does not hold exactly because the class means Xct are defined

using all observations with non-missing data for the relevant variable. Some students are not

matched to the tax data and hence are missing Y ∗i , while other students are missing some of the

individual-level covariates XI
it (e.g., prior-year test scores). As a result, Xct does not exactly

equal the mean of XI
it within classrooms in the final estimation sample. To verify that the small

discrepancies between Xct and XI
it do not affect our estimates of κ, we show in Appendix Table

7 that the inclusion of individual controls XI
it has little impact on the point estimates of κ by

estimating (14) for a selected set of specifications on the individual data.

Standard Errors. The dependent variable in (14) has a correlated error structure because stu-

dents within a classroom face common class-level shocks and because our analysis dataset contains

repeat observations on students in different grades. One natural way to account for these two

sources of correlated errors would be to cluster standard errors by both student and classroom

(Cameron, Gelbach, and Miller 2011). Unfortunately, two-way clustering of this form requires

running regressions on student-level data and thus was computationally infeasible at the Internal

Revenue Service. We instead cluster standard errors at the school by cohort level when estimating

(16) at the class level, which adjusts for correlated errors across classrooms and repeat student

observations within a school. The more conservative approach of clustering by school does not af-

fect our hypothesis tests at conventional levels of statistical significance but yields slightly wider

confidence intervals as expected (Appendix Table 7).21

20We estimated test-score VA m̂jt using individual-level controls in Chetty, Friedman, and Rockoff (2013) because
that estimation did not use any information from the tax data and could be done entirely outside the Internal Revenue
Service (IRS). Outcomes in adulthood can only be analyzed internally at the IRS, where computational capacity is
restricted.
21 In Appendix Table 7 of our working paper (Chetty, Friedman, and Rockoff 2011b), we evaluated the robustness of
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Outliers. In our baseline specifications, we exclude classrooms taught by teachers whose esti-

mated VA m̂jt falls in the top one percent for their subject and school level (above 2.03 in math

and 1.94 in English in elementary school and 1.93 in math and 1.19 in English in middle school).

We do so because these teachers’impacts on test scores appear suspiciously consistent with testing

irregularities indicative of test manipulation. Jacob and Levitt (2003) develop a proxy for cheating

that measures the extent to which a teacher generates very large test score gains that are followed

by very large test score losses for the same students in the subsequent grade. Jacob and Levitt

show that this proxy for cheating is highly correlated with unusual answer sequences that directly

reveal test manipulation. Teachers in the top 1% of our estimated VA distribution are significantly

more likely to show suspicious patterns of test score gains followed by steep losses, as defined by

Jacob and Levitt’s proxy (see Appendix Figure 3).22 We therefore trim the top 1% of outliers

in all the specifications reported in the main text. We investigate how trimming at other cutoffs

affects our results in Appendix Table 8. The qualitative conclusion that teacher VA has long-term

impacts is not sensitive to trimming, but including teachers in the top 1% reduces our estimates of

teachers’impacts on long-term outcomes by 10-30%. In contrast, excluding the bottom 1% of the

VA distribution has little impact on our estimates, consistent with the view that test manipulation

to obtain high test score gains is responsible for the results in the upper tail. Directly excluding

teachers who have suspect classrooms based on Jacob and Levitt’s proxy for cheating yields sim-

ilar results to trimming on VA itself. Because we trim outliers, our baseline estimates should be

interpreted as characterizing the relationship between VA and outcomes below the 99th percentile

of VA.

4.2 College Attendance

We begin by analyzing the impact of teachers’test-score VA on college attendance at age 20, the

age at which college attendance rates are maximized in our sample. Figure 1a plots residual college

attendance rates for students in school year t vs. m̂jt, the leave-year-out estimate of their teacher’s

VA in year t. To construct this binned scatter plot, we first residualize college attendance rates

our results to additional forms of clustering for selected specifications. We found that school-cohort clustering yields
more conservative confidence intervals than more computationally intensive techniques such as two-way clustering by
student and classroom.
22Appendix Figure 3 plots the fraction of classrooms that are in the top 5 percent according to Jacob and Levitt’s

proxy, defined in the notes to the figure, vs. our leave-out-year measure of teacher value-added. On average,
classrooms in the top 5 percent according to the Jacob and Levitt measure have test score gains of 0.47 SD in year t
followed by mean test score losses of 0.42 SD in the subsequent year. Stated differently, teachers’impacts on future
test scores fade out much more rapidly in the very upper tail of the VA distribution. Consistent with this pattern,
these exceptionally high VA teachers also have very little impact on their students’long-term outcomes.
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with respect to the class-level control vector Xct separately within each subject by school-level cell,

using within-teacher variation to estimate the coeffi cients on the controls as described above. We

then divide the VA estimates m̂jt into twenty equal-sized groups (vingtiles) and plot the mean

of the college attendance residuals in each bin against the mean of m̂jt in each bin. Finally, we

add back the mean college attendance rate in the estimation sample to facilitate interpretation of

the scale.23 Note that this binned scatter plot provides a non-parametric representation of the

conditional expectation function but does not show the underlying variance in the individual-level

data. The regression coeffi cient and standard error reported in this and all subsequent figures are

estimated on the class-level data using (16), with standard errors clustered by school-cohort.

Figure 1a shows that being assigned to a higher VA teacher in a single grade raises a student’s

probability of attending college significantly. The null hypothesis that teacher VA has no effect on

college attendance is rejected with a t-statistic above 11 (p < 0.001). On average across subjects

and grades, a 1 SD increase in a teacher’s test score VA in a single grade increases the probability

of college attendance by κ = 0.82 percentage points at age 20, relative to a mean of 37.22%. This

impact of a 2.2% increase in college attendance rates for a 1 SD improvement in teacher VA is

roughly similar to the impacts on other outcomes we document below.

The relationship in Figure 1a can be interpreted as a causal effect of teacher quality only if

the selection on observables assumption in (15) holds. One way to evaluate the validity of this

assumption is to assess the degree of selection bias due to observable characteristics that were

excluded from our baseline control vector. As in our companion paper, we use two sets of variables

for this purpose: parent characteristics and lagged test score gains.

The parent characteristics P ∗it consist of the following variables: mother’s age at child’s birth,

indicators for parent’s 401(k) contributions and home ownership, and an indicator for the par-

ent’s marital status interacted with a quartic in parent’s household income.24 Let Pct denote the

classroom means of these parent characteristics residualized on Xct using within-teacher variation.

These parent characteristics are ideal variables to test for selection because they are strong pre-

dictors of college attendance even conditional on the baseline controls Xct. The F-statistic on the

parent characteristics in the regression of the baseline college residuals Yct on Pct exceeds 300.

23 In this and all subsequent scatter plots, we also demean m̂jt within subject-by-school-level groups to isolate
variation within these cells as in the regressions, and then add back the unconditional mean of m̂jt in the estimation
sample.
24We code the parent characteristics as 0 for the 5.2% of students whom we matched to the tax data but were

unable to link to a parent, and include an indicator for having no parent matched to the student. We also code
mother’s age at child’s birth as 0 for the small number of observations where we match parents but do not have data
on parents’ages, and include an indicator for such cases.
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Column 1 of Table 2 replicates the specification in Figure 1a with the baseline control vector Xct

as a reference. Column 2 replicates Column 1, adding P ∗ct to the control vector used to residualize

college attendance. The estimate in Columns 2 is quite similar to that in Column 1, indicating that

selection on parent characteristics has a modest impact on the estimated effect of teacher quality

on college attendance rates.

Next, we assess selection on lagged test score gains. Let A∗i,t−2 denote twice-lagged test scores,

and let Ac,t−2 denote the classroom means of this variable residualized on Xct. Twice-lagged test

scores have considerable predictive power for college attendance even conditional on Xct because

test scores are a noisy measure of latent ability. The F-statistic on Ac,t−2 in a regression of

the baseline college residuals Yct on Ac,t−2 exceeds 400. Column 3 of Table 2 replicates Column

1, adding class means of twice-lagged test scores A∗c,t−2 to the control vector instead of parent

characteristics. Again, the coeffi cient does not change appreciably, indicating that our estimate

of κ is not significantly biased by selection on unobserved determinants of prior achievement.25

Although these tests for selection on excluded observables are not conclusive, they support the

identification assumption in (15).

College Quality. We use the same set of specifications to analyze whether high-VA teachers

also improve the quality of colleges that their students attend, as measured by the earnings of

students who previously attended the same college (see Section 3.2). Students who do not attend

college are assigned the mean earnings of individuals who do not attend college. Figure 1b plots

the earnings-based index of quality for college attended at age 20 vs. teacher VA, using the same

baseline controls Xct and technique as in Figure 1a. Again, there is a highly significant relationship

between the quality of colleges students attend and the quality of the teachers they had in grades

4-8 (t = 14.4, p < 0.001). A 1 SD improvement in teacher VA raises college quality by $299 (or

1.11%) on average, as shown in Column 4 of Table 2. Columns 5 and 6 replicate Column 4 adding

parent characteristics and lagged test score gains to the baseline control vector. As with college

attendance, the inclusion of these controls has only a modest effect on the point estimates.

The $299 estimate in Column 4 combines intensive and extensive margin responses because it

includes the effect of increased college attendance rates on projected earnings. Isolating intensive

margin responses is more complicated because students who are induced to go to college by a high-

VA teacher will tend to attend lower-quality colleges, pulling down mean earnings conditional on

25The sample in Column 3 has fewer observations than in Column 1 because twice lagged test scores are not
observed in 4th grade. Replicating the specification in Column 1 on exactly the estimation sample used in Column
3 yields an estimate of 0.81% (0.09).
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attendance. We take two approaches to overcome this selection problem and identify intensive-

margin effects. First, we define colleges with earnings-based quality above the student-weighted

median in our sample ($43,914) as “high quality.” We regress this high quality college indicator

on teacher VA in the full sample, including students who do not attend college, and find that a

1 SD increase in teacher VA raises the probability of attending a high quality college by 0.72%,

relative to a mean of 13.41% (Column 7 of Table 2). This increase is most consistent with an

intensive margin effect, as students would be unlikely to jump from not going to college at all to

attending a high quality college. Second, we derive a lower bound on the intensive margin effect

by assuming that those who are induced to attend college attend a college of average quality. The

mean college quality conditional on attending college is $41,756, while the quality for all those who

do not attend college is $17,920. This suggests that at most (41, 756 − 17, 920) × 0.82% = $195

of the $299 impact is due to the extensive margin response, confirming that teachers improve the

quality of colleges that students attend.

Finally, we analyze the impact of teacher quality on the number of years in college. Column 8

replicates the baseline specification in Column 1, replacing the dependent variable with an indicator

variable for attending college in at least 4 years between 18 and 22. A 1 SD increase in teacher

quality increases the fraction of students who spend 4 or more years in college by 0.79 percentage

points (3.2% of the mean).26 While we cannot directly measure college completion in our data,

this finding suggests that higher quality teachers increase not just attendance but also college

completion rates.

Figure 1c plots the impact of a 1 SD improvement in teacher quality on college attendance rates

at all ages from 18-28. We run separate regressions of college attendance at each age on teacher

VA, using the same specification as in Column 1 of Table 2. As one would expect, teacher VA

has the largest impacts on college attendance rates before age 22. However, the impacts remain

significant even in the mid 20’s, perhaps because of increased attendance of graduate or professional

schools. These continued impacts on higher education affect our analysis of earnings impacts, to

which we now turn.
26The magnitude of the four-year attendance impact (0.79 pp) is very similar to the magnitude of the single-year

attendance impact (0.82 pp). Since the students who are on the margin of attending for one year presumably do
not all attend for four years, this suggests that better teachers increase the number of years that students spend in
college on the intensive margin.
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4.3 Earnings

The correlation between annual earnings and lifetime income rises rapidly as individuals enter the

labor market and begins to stabilize only in the late twenties. We therefore begin by analyzing the

impacts of teacher VA on earnings at age 28, the oldest age at which we have a suffi ciently large

sample of students to obtain precise estimates. Although individuals’earnings trajectories remain

quite steep at age 28, earnings levels at age 28 are highly correlated with earnings at later ages

(Haider and Solon 2006), a finding we confirm within the tax data in Appendix Figure 4.27

Figure 2a plots individual (W-2) wage earnings at age 28 against VA m̂jt, conditioning on the

same set of classroom-level controls as above. Being assigned to a higher value-added teacher has

a significant impact on earnings, with the null hypothesis of κ = 0 rejected with p < 0.01. A 1

SD increase in teacher VA in a single grade increases earnings at age 28 by $350, 1.65% of mean

earnings in the regression sample.

Columns 1-3 of Table 3 evaluate the robustness of this estimate to the inclusion of parent

characteristics and lagged test score gains. These specifications mirror Columns 1-3 of Table 2,

but use earnings at age 28 as the dependent variable. As with college attendance, controlling

for these additional observable characteristics has relatively small effects on the point estimates,

supporting the identification assumption in (15). The smallest of the three estimates implies that

a 1 SD increase in teacher VA raises earnings by 1.34%.

To interpret the magnitude of this 1.34% impact, consider the lifetime earnings gain from having

a 1 SD higher VA teacher in a single grade. Assume that the percentage gain in earnings remains

constant at 1.34% over the life-cycle and that earnings are discounted at a 3% real rate (i.e., a

5% discount rate with 2% wage growth) back to age 12, the mean age in our sample. Under

these assumptions, the mean present value of lifetime earnings at age 12 in the U.S. population is

approximately $522,000.28 Hence, the financial value of having a 1 SD higher VA teacher (i.e.,

a teacher at the 84th percentile instead of the median) is 1.34% × $522, 000 ' $7, 000 per grade.

The undiscounted lifetime earnings gain (assuming a 2% growth rate but 0% discount rate) is

approximately $39,000 per student.29

27Appendix Figure 4 correlates earnings at age t with earnings at age t+ 12 for the all individuals in the tax data.
The correlation of wage earnings at age 28 with wage earnings at age 40 is fairly close to the maximum 12-year-ahead
correlation over the lifecycle, suggesting that our earnings measures provide reasonably reliable proxies for lifetime
income.
28We calculate this number using the mean wage earnings of a random sample of the U.S. population in 2007 to

obtain an earnings profile over the lifecycle, and then inflate these values to 2010 dollars. See Chetty et al. (2011)
for details.
29These gains reflect the value of a 1 SD improvement in actual teacher VA mjt. Being assigned to a teacher
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A second benchmark is the increase in earnings from an additional year of schooling, which is

around 9% (Gunderson and Oreopoulos 2010, Oreopoulos and Petronijevic 2013). Having a teacher

in the first percentile of the value-added distribution (2.33 SD below the mean) is equivalent to

missing 2.33×1.34%
9% = 1/3 of the school year when taught by a teacher of average quality.

A third benchmark is the cross-sectional relationship between test scores and earnings. A 1 SD

increase in teacher quality raises end-of-year scores by 0.13 SD of the student test score distribution

on average across grades and subjects. A 1 SD increase in student test scores, controlling for the

student- and class-level characteristics Xit, is associated with a 12% increase in earnings at age 28

(Appendix Table 3, Column 3, Row 2). The predicted impact of a 1 SD increase in teacher VA on

earnings is therefore 0.13× 12% = 1.55%, similar to the observed impact of 1.34%.

Extensive Margin Responses and Earnings Trajectories. The increase in wage earnings comes

from a combination of extensive and intensive margin responses. In Column 4 of Table 3, we regress

an indicator for having positive W-2 wage earnings on teacher VA using the same specification as

in Column 1. A 1 SD increase in teacher VA raises the probability of working by 0.38%. If the

marginal entrant into the labor market were to take a job that paid the mean earnings level in

the sample ($21,256), this extensive margin response would raise mean earnings by $81. Since

the marginal entrant most likely has lower earnings than the mean, this implies that the extensive

margin accounts for at most 81/350 = 23% of the total earnings increase due to better teachers.

As noted above, W-2 wage earnings do not include self-employment and other potential sources

of income and therefore may provide an incomplete picture of teachers’impacts. To evaluate this

concern, Column 5 replicates the baseline specification in Column 1 using total earnings (as defined

in Section 3) instead of wage earnings. Reassuringly, the point estimate of teachers’ impacts

changes relatively little with this broader income definition. We therefore use wage earnings —

which provides an individual rather than household measure of earnings and is unaffected by the

endogeneity of filing —for the remainder of our analysis.

Next, we analyze how teacher VA affects the trajectory of earnings by examining wage earnings

impacts at each age from 20 to 28. We run separate regressions of wage earnings at each age

on teacher VA using the same specification as in Column 1 of Table 3. Figure 2b plots the

coeffi cients from these regressions (which are reported in Appendix Table 9), divided by average

earnings at each age to obtain percentage impacts. The impact of teacher quality on earnings

with higher estimated VA yields smaller gains because of noise in m̂jt and drift in teacher quality, which we revisit
in Section 7.
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rises almost monotonically with age. At early ages, the impact of higher VA is negative and

statistically significant, consistent with our finding that higher VA teachers induce their students

to go to college. As these students enter the labor force, they have steeper earnings trajectories

than students who had lower VA teachers in grades 4-8. Earnings impacts become positive at age

23, become statistically significant at age 24, and grow through age 28, where the earnings impact

reaches 1.65%, as in Figure 2a.

An alternative way to state the result in Figure 2b is that better teachers increase the growth

rate of students’earnings in their 20s. In Column 6 of Table 3, we verify this result directly by

regressing the change in earnings from age 22 to age 28 on teacher VA. As expected, a 1 SD increase

in teacher VA increases earnings growth by $286 (2.5%) over this period. This finding suggests

that teachers’impacts on lifetime earnings could be larger than the 1.34% impact observed at age

28.

4.4 Other Outcomes

In this subsection, we analyze the impacts of teacher VA on other outcomes, starting with our

“teenage birth”measure, which is an indicator for filing a tax return and claiming a dependent who

was born while the mother was a teenager (see Section 3.1). We first evaluate the cross-sectional

correlations between this proxy for teenage birth and test scores as a benchmark. Students with

a 1 SD higher test score are 6.6 percentage points less likely to have a teenage birth relative to

a mean of 13.4% (Appendix Table 3). The correlation is significantly larger for populations that

have a higher risk of teenage birth, such as minorities and low-income students (Appendix Table 5).

These cross-sectional patterns support the use of this measure as a qualitative proxy for teenage

births even though we can only identify children who are claimed as dependents in the tax data.

However, one must be cautious in interpreting the quantitative magnitudes of results using this

measure, as our proxy might understate the total number of children born to teenagers.

Column 1 of Table 4 analyzes the impact of teacher VA on the fraction of female students who

have a teenage birth. Having a 1 SD higher VA teacher in a single year from grades 4 to 8 reduces

the probability of a teen birth by 0.61 percentage points, a reduction of roughly 4.6%, as shown in

Figure 3a. This impact is similar to the raw cross-sectional correlation between scores and teenage

births, echoing our results on earnings and college attendance.

Column 2 of Table 4 analyzes the impact of teacher VA on the socio-economic status of the

neighborhood in which students live at age 28, measured by the percent of college graduates living

26



in that neighborhood. A 1 SD increase in teacher VA raises neighborhood SES by 0.25 percentage

points (1.8% of the mean) by this metric, as shown in Figure 3b.

Column 3 of Table 4 studies the effect of teacher quality on the probability of having a 401(k)

at age 28. Increasing teacher VA by 1 SD increases the likelihood of saving by 0.55 percentage

points (or 2.8% of the mean), as shown in Figure 3c.30

Fade-Out of Test Score Impacts. The final set of outcomes we consider are teachers’impacts

on test scores in subsequent grades. Figure 4 plots the impacts of teacher VA on test scores

in subsequent years; see Appendix Table 10 for the underlying coeffi cients. To construct this

figure, we residualize raw test scores A∗i,t+s with respect to the class-level controls Xct using within-

teacher variation and then regress the residuals Ai,t+s on µ̂jt using all observations in the core

sample. We scale teacher VA in units of student test-score SDs in these regressions —by using µ̂jt

as the independent variable instead of m̂jt = µ̂jt/σ0 —to facilitate interpretation of the regression

coeffi cients, which are plotted in Figure 4. The coeffi cient at s = 0 is not statistically distinguishable

from 1, as shown in our companion paper. Teachers’ impacts on test scores fade out rapidly in

subsequent years and appear to stabilize at approximately 25% of the initial impact after 3-4 years.31

This result aligns with existing evidence that improvements in education raise contemporaneous

scores, then fade out in later scores, only to reemerge in adulthood (Deming 2009, Heckman et al.

2010c, Chetty et al. 2011).

5 Research Design 2: Teacher Switching Quasi-Experiments

Our preceding estimates rely on the strong assumption that the unobserved determinants of stu-

dents’ long-term outcomes are uncorrelated with teacher quality. In this section, we estimate

teachers’ long-term impacts using a quasi-experimental design that relaxes this identification as-

sumption. This research design parallels the quasi-experimental approach used to estimate the

degree of bias in VA estimates in our companion paper (Chetty, Friedman, and Rockoff 2013), and

the methodology described in the next subsection draws heavily from that paper.

30We also investigated the impacts of teacher quality on marital status, homeownership, and the probability of
living out of state at age 25. Because all of these are infrequent outcomes in the sample and age group we study, we
find no significant impacts of teacher quality on these measures (not reported).
31Prior studies (e.g., Kane and Staiger 2008, Jacob, Lefgren, and Sims 2010, Rothstein 2010, Cascio and Staiger

2012) document similar fade-out after one or two years but have not determined whether test score impacts continue
to deteriorate after that point. The broader span of our dataset allows us to estimate test score persistence more
precisely. For instance, Jacob, Lefgren, and Sims estimate one-year persistence using 32,422 students and two-year
persistence using 17,320 students. We estimate one-year persistence using more than 5.6 million student-year-subject
observations and four-year persistence using more than 1.3 million student-year-subject observations.
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5.1 Methodology

Adjacent cohorts of students within a school are frequently exposed to different teachers. We exploit

this teacher turnover to obtain a quasi-experimental estimate of teachers’long-term impacts. To

understand our research design, consider a school with three 4th grade classrooms. Suppose one

of the teachers leaves the school in 1995 and is replaced by a teacher whose VA estimate is 0.3

higher, so that the mean test-score VA of the teaching staff rises by 0.3/3 = 0.1. If the distribution

of unobserved determinants of students’ long-term outcomes does not change between 1994 and

1995, the change in mean college attendance rates between the 1994 and 1995 cohorts of students

will reveal the impact of a 0.1 improvement in 4th grade teachers’test-score VA. More generally,

we can estimate teachers’long-term impacts by comparing the change in mean student outcomes

across cohorts to the change in mean VA driven by teacher turnover provided that student quality

is stable over time.32

To formalize this approach, let m̂−{t,t−1}jt denote the test-score VA estimate for teacher j in

school year t constructed as in our companion paper using data from all years except t − 1 and

t. Similarly, let m̂−{t,t−1}j,t−1 denote the VA estimate for teacher j in school year t − 1 based on

data from all years except t − 1 and t. Let Qsgt denote the student-weighted mean of m̂
−{t,t−1}
jt

across teachers in school s in grade g, which is the average estimated quality of teachers in a given

school-grade-year cell; define Qsg,t−1 analogously.33 Let ∆Qsgt = Qsgt−Qsg,t−1 denote the change

in mean teacher value-added from year t− 1 to year t in grade g in school s. Define mean changes

in student outcome residuals ∆Ysgt analogously. Note that because we exclude both years t and

t− 1 when estimating VA, the variation in ∆Qsgt is driven purely by changes in the teaching staff

and not by changes in teachers’VA estimates. As above, this leave-out technique ensures that

changes in ∆Ysgt are not spuriously correlated with ∆Qsgt due to estimation error in VA.34

We estimate teachers’long-term impacts by regressing changes in mean outcomes across cohorts

32By analyzing student outcomes at the school-grade-subject level, we do not exploit information on classroom
assignment, thus overcoming the non-random assignment of students across classrooms.
33 In our baseline specifications, we impute teacher VA as the sample mean (0) for students for whom we have no

leave-out-year VA estimate m̂−{t,t−1}jt , either because we have no teacher information or because the teacher did not
teach in the district outside of years {t− 1, t}. We show below that we obtain similar results when restricting to the
subset of school-grade-subject-year cells with no missing data on teacher VA. See Section 6 of our companion paper
for additional discussion on the effects of this imputation.
34Formally, not using a two-year leave out would immediately violate Assumption 3 below, because unobserved

determinants of scores εsgt or εsg,t−1 would appear in ∆Qsgt and εsgt is correlated with unobserved determinants of
earnings εYsgt.
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on changes in mean test-score VA:

(17) ∆Ysgt = α+ κ∆Qsgt + ∆η′sgt

The coeffi cient in (17) identifies the effect of a 1 SD improvement in teacher quality as defined in

(14) under the following assumption.

Assumption 3 [Teacher Switching as a Quasi-Experiment] Changes in teacher quality across

cohorts within a school-grade are orthogonal to changes in other determinants of student outcomes

∆η′sgt across cohorts:

(18) Cov
(
∆Qsgt,∆η

′
sgt

)
= 0.

This assumption could potentially be violated by endogenous student or teacher sorting. In

practice, student sorting at an annual frequency is minimal because of the costs of changing schools.

During the period we study, most students would have to move to a different neighborhood to switch

schools, which families would be unlikely to do simply because a single teacher leaves or enters a

given grade. While endogenous teacher sorting is plausible over long horizons, the sharp changes

we analyze are likely driven by idiosyncratic shocks such as changes in staffi ng needs, maternity

leaves, or the relocation of spouses. Moreover, in our first paper, we present direct evidence

supporting (18) by showing that both prior scores and contemporaneous scores in the other subject

(e.g., English) are uncorrelated with changes in mean teacher quality in a given subject (e.g., math).

We present additional evidence supporting (18) below.

Note that if observable characteristics Xit are also orthogonal to changes in teacher quality

across cohorts (i.e., satisfy Assumption 3), we can implement (17) simply by regressing the change

in raw outcomes ∆Y ∗sgt on ∆Qsgt. If the quasi-experiment is a good approximation to a true

experiment, one would expect the controls to be balanced across cohorts as well. We therefore

begin with regressions of ∆Y ∗sgt on ∆Qsgt and then confirm that changes in control variables across

cohorts are uncorrelated with ∆Qsgt.

5.2 Results

Figure 5a presents a binned scatter plot of changes in mean college attendance rates ∆Y ∗sgt against

changes in mean teacher value-added ∆Qsgt across cohorts. We include year fixed effects (de-

meaning both the x and y variables by school year), so that the estimate is identified purely from

differential changes in teacher value-added across school-grade-subject cells over time. The cor-
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responding regression coeffi cient, which is based on estimating (17) with year fixed effects but no

other controls, is reported in Column 1 of Table 5a.

Changes in the quality of the teaching staff have significant impacts on changes in college

attendance rates across consecutive cohorts of students in a school-grade-subject cell. The null hy-

pothesis that κ = 0 is rejected with p < 0.01. The point estimate implies that a 1 SD improvement

in teacher quality raises college attendance rates by 0.86 percentage points, with a standard error

of 0.23. This estimate is not statistically distinguishable from the estimate of 0.82% obtained in

Column 1 of Table 2 using the first research design. However, as expected, the quasi-experimental

estimate is much less precise because it exploits much less variation.

This analysis identifies teachers’causal impacts provided that (18) holds. One natural concern

is that improvements in teacher quality may be correlated with other improvements in a school —

such as better resources in other dimensions —that also contribute to students’long-term success

and thus lead us to overstate teachers’true impacts. To address this concern, Column 2 of Table

5a replicates the baseline specification in Column 1 including school by year fixed effects instead

of just year effects. In this specification, the only source of identifying variation comes from

differential changes in teacher quality across subjects and grades within a school in a given year.

The coeffi cient on ∆Qsgt changes very little relative to the baseline estimate that pools all sources

of variation. Column 3 further accounts for secular trends in subject- or grade-specific quality by

controlling for the change in mean teacher VA in the prior and subsequent year as well as cubics

in the change in prior-year mean own-subject and other-subject scores across cohorts. Controlling

for these variables has little impact on the estimate. This result shows that fluctuations in teacher

quality relative to trend in specific grades generate significant changes in the affected students’

college attendance rates.

In the preceding specifications, we imputed the sample mean of VA (0) for classrooms for which

we could not calculate actual VA. This generates downward bias in our estimates because we

mismeasure the change in teacher quality ∆Qsgt across cohorts. Column 4 of Table 5a replicates

Column 2, limiting the sample to school-grade-subject-year cells in which we can calculate the

leave-two-year-out mean for all teachers in the current and preceding year. As expected, the point

estimate of a one SD increase in teacher quality increases, but the confidence interval is significantly

wider because the sample size is considerably smaller.

Finally, we further evaluate (18) using a series of placebo tests. In Column 5 on Table 5a, we

replicate Column 2, replacing the change in actual college attendance with the change in predicted
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college attendance based on parent characteristics. We predict college attendance using an OLS

regression of Y ∗it on the same five parent characteristics P
∗
it used in Section 4.2, with no other

control variables. Changes in mean teacher VA have no effect on predicted college attendance

rates, supporting the assumption that changes in the quality of the teaching staff are unrelated to

changes in student quality at an annual level.

In Figure 6a, we present an alternative set of placebo tests based on the sharp timing of the

change in teacher quality. To construct this figure, we replicate the specification in Column 1

but include changes in mean teacher VA for the four preceding and subsequent cohorts as placebo

effects (as well as year fixed effects):

(19) ∆Y ∗sgt = αt +

4∑
n=−4

κn∆Qsg,t+n + ϕt

Figure 6a plots the vector of coeffi cients −→κ = (κ−4, ..., κ0, ..., κ4), which represent the impacts of

changes in the quality of teaching staff at different horizons on changes in college attendance rates

at time 0. As one would expect, κ0 is positive and highly significant while all the other coeffi cients

are near 0 and statistically insignificant. That is, contemporaneous changes in teacher quality have

significant effects on college attendance rates, but past or future changes have no impact, as they

do not directly affect the current cohort of students. This figure —which is analogous to an event

study based on teacher entry and exit — strongly supports the view that the changes in college

attendance rates documented above reflect teachers’casual effects.35

Figures 5b and 6b and Table 5b replicate the preceding analysis using the earnings-based index

of college quality as the outcome. Consistent with the preceding results, we find that improvements

in teachers’test score VA across cohorts lead to sharp changes in the quality of colleges that students

attend. This result is robust across the specifications in Columns 1-4 of Table 5 described above.

We find no evidence that predicted college quality based on parent characteristics is correlated

with changes in teacher quality. In addition, changes in teacher VA again affect college quality in

the year of the change rather than in preceding or subsequent years, as shown in Figure 6b. We

conclude based on this evidence that students who happen to be in a cohort in their school that is

35 In Figure 3 of our companion paper, we directly use event studies around the entry and exit of teachers in the
top and bottom 5% to demonstrate the impacts of VA on test scores. We do not have adequate power to identify the
impacts of these exeptional teachers on college attendance using such event studies. In the cross-cohort regression
that pools all teaching staff changes, the t-statistic for college attendance is 3.78 (Column 1 of Table 5a in this paper).
The corresponding t-statistic for test scores is 34.0 (Column 2 of Table 5 of the first paper). We have much less
power here both because the college attendance is only observed for the older half of our sample and because college
is a much noisier outcome than end-of-grade test scores.

31



taught by higher VA teachers are significantly more likely to go to college and attend higher ranked

colleges.

We used specifications analogous to those in Table 5 to investigate the impacts of teaching

quality on other outcomes, including earnings at age 28. Unfortunately, our sample size for

earnings at age 28 is roughly 1/7th the size of the sample available to study college attendance at

age 20. This is both because we have fewer cohorts of students who are currently old enough to be

observed at age 28 in the tax data and because we have data on teacher assignments for much fewer

schools in the very early years of our school district data. Because of the considerably smaller

sample, we obtain very imprecise and fragile estimates of the impacts of teacher quality on earnings

using the quasi-experimental design.36 While we cannot obtain quasi-experimental estimates of the

impacts of teacher quality on earnings, the close alignment between the quasi-experimental and

cross-class OLS regression estimates for college outcomes validates the selection on observables

assumption underlying our first research design. Given that cross-class comparisons conditional

on observables provide accurate forecasts of teachers’ impacts on test scores, college attendance,

and college quality, we would expect the same to be true of earnings impacts as well.

6 Heterogeneity of Teachers’Impacts

In this section, we analyze whether teachers’ impacts vary across demographic groups, subjects,

and grades. Because analyzing subgroup heterogeneity requires considerable statistical precision,

we use the first research design —comparisons across classrooms conditional on observables. We

analyze teachers’impacts on college quality at age 20 (rather than earnings at age 28) to maximize

precision and obtain a quantitative metric based on projected earnings gains.

6.1 Demographic Groups

In Panel A of Table 6, we study the heterogeneity of teachers’ impacts across demographic sub-

groups. Each value reported in the first row of the table is a coeffi cient estimate from a separate

regression of college quality on teacher VA conditional on controls. To be conservative, we include

both student characteristics Xct and parent characteristics P ∗ct in the control vector throughout

this section and estimate specifications analogous to Column 5 of Table 2 on various subsamples.

Columns 1 and 2 consider heterogeneity by gender. Columns 3 and 4 consider heterogeneity by

36For instance, estimating the specification in Column 1 of Table 5 with earnings at age 28 as the dependent
variable yields a confidence interval of (-$581,$665), which contains both 0 and values nearly twice as large as the
estimated earnings impacts based on our first research design.
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parental income, dividing students into groups above and below the median level of parent income

in the sample. Columns 5 and 6 split the sample into minority and non-minority students.

Two lessons emerge from Table 6a. First, the point estimates of the impacts of teacher VA

are larger for females than males, although we cannot reject equality of the impacts (p = 0.102).

Second, the impacts are larger for higher-income and non-minority households in absolute terms.

For instance, a 1 SD increase in VA raises college quality by $190 for children whose parents have

below-median income, compared with $380 for those whose parents have above-median income.

However, the impacts are more similar as a percentage of mean college quality: 0.80% for low-

income students vs. 1.25% for high-income students.

The larger absolute impact for high socioeconomic students could be driven by two channels: a

given increase in teacher VA could have larger impacts on the test scores of high SES students or a

given increase in scores could have larger long-term impacts. The second row of coeffi cient estimates

of Table 6a shows that a 1 SD increase in teacher VA raises test scores by approximately 0.13 SD on

average in all the subgroups, consistent with the findings of Lockwood and McCaffrey (2009). In

contrast, the cross-sectional correlation between scores and college quality is significantly larger for

higher SES students (Appendix Table 5). Although not conclusive, these findings suggest that the

heterogeneity in teachers’long term impacts is driven by the second mechanism, namely that high

SES students benefit more from test score gains.37 Overall, the heterogeneity in treatment effects

on college quality indicates that teacher quality is complementary to family inputs and resources,

i.e. the marginal effect of better teaching is larger for students from high SES families. This result

implies that higher income families should be willing to pay more for teacher quality.

6.2 Subjects: Math vs. English

Panel B of Table 6 analyzes differences in teachers’impacts across subjects. For these regressions,

we split the sample into elementary (Columns 1-3) and middle (Columns 4-5) schools. This

distinction is important because students have the same teacher for both subjects in elementary

school but not middle school.

In Column 1, we replicate the baseline specification in Column 5 of Table 2, restricting the

sample to math classrooms in elementary school. Column 2 repeats this specification for English.

In Column 3, we include each teacher’s math and English VA together in the same specification,
37 Importantly, the relationship between college quality and test scores conditional on prior characteristics Xit is

linear throughout the test score distribution (Appendix Figure 2b). Hence, the heterogeneity is not due to non-
linearities in the relationship between scores and college outcomes but rather the fact that the same increase in scores
translates to a bigger change in college outcomes for high SES families.
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reshaping the dataset to have one row for each student-year (rather than one row per student-

subject-year, as in previous regressions). Because a given teacher’s math and English VA are

highly correlated (r = 0.6), the magnitude of the two subject-specific coeffi cients drops by an

average of 40% when included together in a single regression for elementary school. Intuitively,

when math VA is included by itself in elementary school, it partly picks up the effect of having

better teaching in English as well.

We find that a 1 SD increase in teacher VA in English has larger impacts on college quality than

a 1 SD improvement in teacher VA in math. This is despite the fact that the variance of teacher

effects in terms of test scores is larger in math than English. In Table 2 of our companion paper,

we estimated that the standard deviation of teacher effects on student test scores in elementary

school is 0.124 in English and 0.163 in math. Using the estimates from Column 3 of Table 6b, this

implies that an English teacher who raises her students’test scores by 1 SD raises college quality

by 189/0.124
106/0.163 = 2.3 times as much as a math teacher who generates a commensurate test score gain.

Hence, the returns to better performance in English are especially large, although it is much harder

for teachers to improve students’achievement in English (e.g., Hanushek and Rivkin 2010, Kane

et al. 2013).

We find a similar pattern in middle school. In Column 4 of Table 6b, we replicate the baseline

specification for the subset of observations in math in middle school. We control for teacher VA

in English when estimating this specification by residualizing college quality Y ∗it with respect to

the student and parent class-level control vectors Xct and P ∗it as well as m̂jt in English using a

regression with math teacher fixed effects as in (5). Column 5 of Table 6b replicates the same

regression for observations in English in middle school, controlling for math teacher VA. A 1 SD

improvement in English teacher quality raises college quality by roughly twice as much as a 1 SD

improvement in math teacher quality. We conclude that even though teachers have much smaller

impacts on English test scores than math test scores, the small improvements that good teachers

generate in English are associated with substantial long-term impacts.

6.3 Impacts of Teachers by Grade

We estimate the impact of a 1 SD improvement in teacher quality in each grade g ∈ [4, 8] on college

quality (κg) by estimating the specification in Column 5 of Table 2 but interacting m̂jt with grade

dummies. Because the school district data system did not cover many middle schools in the early

and mid 1990s, we cannot analyze the impacts of teachers in grades 6-8 for more than half the
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students who are in 4th grade before 1994. To obtain a more balanced sample for comparisons

across grades, we restrict attention to cohorts who would have been in 4th grade during or after

1994 in this subsection.38

The series in circles in Figure 7 plots the estimates of κg, which are also reported in Appendix

Table 11. We find that teachers’long-term impacts are large and significant in all grades. Although

the estimates in each grade have relatively wide confidence intervals, there is no systematic trend

in the impacts. This pattern is consistent with the cross-sectional correlations between test scores

and adult outcomes, which are also relatively stable across grades (Appendix Table 6). One issue

that complicates cross-grade comparisons is that teachers spend almost the entire school day with

their students in elementary school (grades 4-5 as well as 6 in some schools), but only their subject

period (Math or English) in middle school (grades 7-8). If teachers’skills are correlated across

subjects —as is the case with math and English value-added, which have a correlation of 0.6 for

elementary school teachers —then a high-VA teacher should have a greater impact on earnings in

elementary school than middle school because they spend more time with the student. Hence, the

fact that high-VA math and English teachers continue to have substantial impacts even in middle

school strongly suggests that higher quality education has substantial returns well beyond early

childhood.

Tracking and Net Impacts. The reduced-form estimates of κg reported above include the impacts

of being tracked to a better teacher in subsequent grades, as shown in (10). While a parent may be

interested in the reduced-form impact of teacher VA in grade g, a policy reform that raises teacher

quality in grade g will not allow every child to get a better teacher in grade g + 1. We now turn

to identifying teachers’net impacts κ̃g in each grade, holding fixed future teachers’test-score VA.

Because we have no data after grade 8, we can only estimate teachers’net effects holding fixed

teacher quality up to grade 8.39 We therefore set κ̃8 = κ8. We recover κ̃g from estimates of κg

by subtracting out the impacts of future teachers on earnings iteratively. The net impact of a 7th

grade teacher is her reduced-form impact κ7 minus her indirect impact via tracking to a better 8th

grade teacher:

(20) κ̃7 = κ7 − ρ78κ̃8,
38Restricting the sample in the same way does not affect the conclusions above about heterogeneity across subjects

or demographic groups, because these groups are balanced across cohorts.
39 If tracking to high school teachers is constant across all grades in elementary and middle school, our approach

accurately recovers the relative impacts of teachers in grades 4-8.
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where ρ78 is the extent to which teacher VA in grade 7 increases teacher VA in grade 8 conditional

on controls. We can identify ρ78 using an OLS regression that parallels (16) with future teacher

VA as the dependent variable:

(21) m̂j,ti(8) = α+ ρ78m̂j,ti(7) + γ1Xct + γ2P
∗
ct + ηµct78.

As above, we estimate ρ78 in two steps. First, we residualize m̂j,ti(8) with respect to the controls

by regressing m̂j,ti(8) on Xct and P ∗ct with grade 7 teacher fixed effects, as in (5). We then run a

univariate OLS regression of the residuals on m̂j,ti(7) to estimate ρ̂78. We apply (20) to identify

κ̃7 from the reduced-form estimates of κg in Figure 7. Iterating backwards, we can calculate κ6

by estimating ρ̂68 and ρ̂67 and so on until we obtain the full set of net impacts. We show formally

that this procedure recovers net impacts κ̃g in Appendix C.

The series in triangles in Figure 7 plots the estimates of the net impacts κ̃g. The net impacts

are very similar to the reduced-form impacts because the tracking coeffi cients ρg,g′ are generally

quite small, as shown in Appendix Table 12. Tracking is larger in middle school, as one would

expect, but still has a relatively modest impact on κ̃g.

These results suggest that the reduced-form estimates reported above largely reflect a teacher’s

own direct impact rather than the impacts of being tracked to better teachers in later grades.

However, we caution that this approach to calculating teachers’net impacts has three important

limitations. First, it assumes that all tracking to future teachers occurs exclusively via teachers’

test-score VA. We allow students who have high-VA teachers in grade g to be tracked to higher

test-score VA (mjt) teachers in grade g + 1, but not to teachers with higher total earnings VA

µYjt. We are forced to make this strong assumption because we have no way to estimate teacher

impacts on earnings that are orthogonal to VA, as discussed in Section 2. Second, κ̃g does not

net out potential changes in other factors besides teachers, such as peer quality or parental inputs.

Hence, κ̃g cannot be interpreted as the “structural” impact of teacher quality holding fixed all

other inputs in a general model of the education production function (e.g., Todd and Wolpin 2003).

Finally, our approach assumes that teacher effects are additive across grades. We cannot identify

complementarities in teacher VA across grades because our identification strategy forces us to

condition on lagged test scores, which are endogenous to the prior teacher’s quality. It would be

valuable to relax these assumptions in future work to obtain a better understanding of how the

sequence of teachers a child has affects her outcomes in adulthood.
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7 Policy Analysis

In this section, we use our estimates to predict the potential earnings gains from selecting and

retaining teachers on the basis of their VA. We focus on earnings gains because they are easily

quantifiable; however, improvements in teacher quality may have non-monetary returns as well

(Oreopoulos and Salvanes 2010), as suggested by our findings on teenage birth rates and neighbor-

hood quality.

We make four assumptions in our calculations. First, we assume that the percentage impact

of a 1 SD improvement in teacher VA on earnings observed at age 28 is constant at b = 1.34%

(Table 3, Column 2) over the lifecycle.40 Second, we ignore general equilibrium effects that may

reduce wage rates if all children are better educated. Third, we follow Krueger (1999) and discount

earnings gains at a 3% real annual rate (consistent with a 5% discount rate and 2% wage growth)

back to age 12, the average age in our sample. Under this assumption, the present value of earnings

at age 12 for the average individual in the U.S. population is $522, 000 in 2010 dollars, as noted

above. Finally, we assume that teacher VA mjt is normally distributed.

To quantify the value of improving teacher quality, we evaluate Hanushek’s (2009, 2011) proposal

to replace teachers whose VA ratings are in the bottom 5 percent of the distribution with teachers of

average quality. To simplify exposition, we calculate these impacts for elementary school teachers,

who teach one class per day. We first calculate the earnings gains from selecting teachers based

on their true (unobserved) test-score VA mjt and then calculate the feasible gains from selecting

teachers based on VA estimates m̂jt.

Selection on True VA. Elementary school teachers teach both math and English and therefore

have two separate VA measures on which they could be evaluated. First consider the simple case

in which teachers are evaluated based purely on their VA in one subject (say math) and VA in the

other subject is discarded. Consider a student whose teacher’s true math VA is ∆mσ standard

deviations below the mean. Replacing this teacher with a teacher of mean quality (for a single

school year) would raise the student’s expected earnings by

(22) G = ∆mσ × $522, 000× b.

Under the assumption that mjt is normally distributed, a teacher in the bottom 5% of the true VA

40We have inadequate precision to estimate wage earnings impacts separately by subject and grade level. To
obtain a rough estimate, we therefore assume that a 1 SD improvement in teacher VA raises earnings by 1.34% in all
subjects and grade levels in the calculations that follow.
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distribution is on average 2.063 standard deviations below the mean teacher quality. Therefore,

replacing a teacher in the bottom 5% of math (or English) VA with an average teacher generates

a present value lifetime earnings gain per student of

G = $522, 000× 2.063× 1.34% = $14, 500.

For a class of average size (28.2), the total NPV earnings impact from this replacement is GC =

$407, 000. The undiscounted cumulative lifetime earnings gains from deselection are 5.5 times

larger than these present value gains ($80,000 per student and $2.25 million per classroom), as

shown in Appendix Table 13.41 These simple calculations show that the potential gains from

improving the quality of teaching —whether using selection based on VA, teacher training, or other

policy tools —are quite large.

The preceding approach discards information because it rates teachers only on the basis of one

subject, whereas we typically have two VA ratings per teacher. School districts that use VA for

evaluation purposes typically average math and English VA ratings to calculate a single measure

of teacher performance in elementary schools (e.g., District of Columbia Public Schools 2012). To

simulate such a policy, suppose we deselect the 5% of elementary school teachers with the lowest

mean standardized VA across subjects. Simulating a bivariate normal distribution with a within-

year correlation between m̂jt across math and English of r = 0.6, we calculate that teachers whose

mean VA across subjects is in the bottom 5% have a standardized VA that is ∆mσ = 1.84 SD

below the mean in both math and English.

To calculate the long-term earnings impact of replacing such teachers, we must identify the

impacts of changes in VA in one subject holding fixed VA in the other subject. Given the between-

subject VA correlation of r = 0.6, our earnings impact estimate of b = 1.34% reflects the effect

of a 1 SD improvement in a given subject (e.g. math) combined with a 0.6 SD improvement in

the other subject (English). Under the simplifying assumption that earnings impacts do not vary

across subjects, the impact of a 1 SD improvement in VA in a given subject is bs = b
1+0.6 = 0.84%.

Therefore, replacing a teacher with mean VA in the bottom 5% with an average teacher for one

41These calculations do not account for the fact that deselected teachers may be replaced by rookie teachers, who
have lower VA. Mean test score residuals for students taught by first-year teachers are on average 0.05 lower (in
units of standardized student test scores) than those taught by more experienced teachers. Given that the median
teacher remains in the district for approximately 10 years, accounting for the effect of inexperience in the first year
would reduce the expected benefits of deselection over a typical horizon by 0.05/10

2.063×σ(mjt)
= 2%, where σ(mjt) = 0.14

is the mean SD of teacher effects across elementary school subjects in our data (see Table 2 of the first paper).
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school year in elementary school increases the present value of a student’s earnings by

G′ = $522, 000× 2× 1.84× 0.84% = $16, 100

and yields total gains of $454, 000 for an average-sized classroom. The gains from evaluating

teachers based on mean math and English VA are only 12% larger than the gains from using

information based on only one subject because math and English VA estimates are quite highly

correlated. Therefore, we focus on the case in which the teacher is rated based on VA in only one

subject in what follows.

Selection on Estimated VA. In practice, we cannot observe actual VA mjt and therefore can

only select teachers on the basis of estimated VA m̂jt. This reduces the gains from selection for

two reasons: (1) estimation error in VA and (2) drift in teacher quality over time. To quantify the

impact of these realities, suppose we use test score data from years t = 1, ..., n to estimate teacher

VA in school year n+ 1. The gain in year n+ 1 from replacing the bottom 5% of teachers based

on VA estimated using the preceding n years of data is

(23) G(n) = −E
[
mj,n+1 | m̂j,n+1 < F−1m̂j,n+1(0.05)

]
× $522, 000× b,

where E
[
mj,n+1 | m̂j,n+1 < F−1m̂j,n+1(0.05)

]
denotes the expected value of mj,n+1 conditional on the

teacher’s estimated VA falling below the 5th percentile. We calculate this expected value separately

for math and English using Monte Carlo simulations of a Multivariate Normal distribution as

follows.42 First, we construct ΣA, the VCV matrix of
−→
A −t

j , the vector of past class average scores,

using the parameters of the autocovariance vector of test scores reported in Columns 1 and 2 of

Table 2 of our companion paper.43 We then simulate draws of average class scores from a N (0,ΣA)

distribution for one million teachers and calculate m̂j,n+1 based on scores from the first n periods

using the same method used to construct the VA estimates in our companion paper. Finally, we

calculate the conditional expectation in (23) as the mean test score in year n+ 1 for teachers with

m̂j,n+1 in the bottom 5% of the distribution.

Figure 8a plots the mean gain per classroom GC(n) = 28.2 × G(n), averaging over math and

42Without drift, the formula in (23) reduces to r(n)1/2× 2.063× $522, 000× b, where r(n) denotes the reliability of
the VA estimate using n years of data, which is straightforward to calculate analytically. The working paper version
of our study (Chetty, Friedman, and Rockoff 2011b) used this version of the formula and an estimate of b based on
a model that did not account for drift.
43We define the off-diagonal elements of ΣA directly based on the autocovariances σAs reported in Table 2 of our

first paper, setting the autocovariance σAs = σA7 for s > 7. We define the diagonal elements of ΣA as the variance
of mean class test scores, which we compute based on the estimates in Table 2 as (Class+Teacher Level SD)2 +
(Individual-Level SD)2/28.2, where 28.2 is the average number of students per class.
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English, for n = 1, ..., 10. The values underlying this figure are reported in Appendix Table 13.

The gain from deselecting teachers based on true VA, GC = $407, 000, is shown by the horizontal

line in the figure. The gains from deselecting teachers based on estimated VA are significantly

smaller because of noise in VA estimates and drift in teacher quality.44 With one year of data, the

expected gain per class is $226,000, 56% of the gain from selecting on true VA. The gains grow

fairly rapidly with more data in the first 3 years, but the marginal value of additional information

is small. With three years of test score data, the gain is $266,000, but the gain increases to only

$279,000 after 10 years. After three years, waiting for one more year would increase the gain by

$4,000 but has an expected cost of $266,000. The marginal gains from obtaining one more year of

data are outweighed by the expected cost of having a low VA teacher on the staff even after the first

year (Staiger and Rockoff 2010). Adding data from prior classes yields relatively little information

about current teacher quality both because of decreasing returns to additional observations and

drift.

The calculations above assume that VA estimates have zero forecast bias. While the estimates

in our first paper do not reject this hypothesis, the upper bound on the 95% confidence interval

for our quasi-experimental estimate of forecast bias is 9%, which would imply E [mj,n+1 | m̂j,n+1] =

0.91m̂j,n+1. This degree of forecast bias has modest impacts on the gains from deselection: for

instance, the earnings gains per class in year 4 based on 3 years of test score data are GC(3) =

$242, 000.45

Drift in Quality over Subsequent School Years. The values in Figure 8a reflect the gains in the

first year after the deselection of teachers, based on m̂j,n+1 in school year n+ 1. Now consider the

impacts of such a policy on the earnings of students in a subsequent school year n+m:

G(m,n) = −E
[
mj,n+m | m̂j,n+1 < F−1m̂j,n+1(0.05)

]
× $522, 000× b,

where E
[
mj,n+m | m̂j,n+1 < F−1m̂j,n+1(0.05)

]
denotes the mean VA of teachers in year n+m condi-

tional on having estimated VA in year n+ 1 below the 5th percentile. We calculate this expected

value using the same Monte Carlo simulation as above.
44 In Panel B of Appendix Table 13, we distinguish these two factors by eliminating estimation error and predicting

current VA based on past VA instead of past scores. Without estimation error, GC(1) = $340, 000. Hence, drift and
estimation error each account for roughly half of the difference between GC(1) and GC .
45We also replicated the simulations using VA estimates that do not account for drift. When the estimation window

n is short, drift has little impact on the weights placed on test scores across years. As a result, drift-unadjusted
measures yield rankings of teacher quality that are very highly correlated with our measures and thus produce similar
gains. For instance, selection based on 3 years of data using VA estimates that do not adjust for drift yields gains that
are 98% as large as those reported above. Hence, while accounting for drift is important for evaluating out-of-sample
forecasts accurately, it may not be critical for practical policy applications for VA.
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The lower series in Figure 8b plots GC(m, 3) = 28.2×G(m, 3), the per-class gains in school year

m from deselecting teachers based on their estimated VA for year 4 (m̂j,4), constructed using the

first 3 years of data. The first point in this series coincides with the value of $266,000 in Figure

8a reported for n = 3. Because teacher quality drifts over time, the gains fall in subsequent school

years, as some of the teachers who were deselected based on their predicted VA in school year n

would have reverted toward the mean in subsequent years. Deselection based on VA estimates at

the end of year 3 generates an average gain of $184,000 per classroom per year over the subsequent

10 years, the median survival time in the district for teachers who have taught for 3 years.46

The upper series in Figure 8b plots the analogous gains when teachers are deselected based

on their true VA mj,4 in year 4 instead of their estimated VA m̂j,4.47 The first point in this

series coincides with the maximum attainable gain of $407,000 shown in Figure 8a. The gains

again diminish over time because of drift in teacher quality. The average present value gain

from deselection based on true VA over the subsequent ten years is approximately $250,000 per

classroom. This corresponds to an undiscounted lifetime earnings gain per classroom of students

of approximately $1.4 million.

We conclude that the potential gains from selecting teachers based on VA remain substantial

even when estimation error and drift are taken into account. However, because VA estimates are

imperfect predictors of mjt, there is substantial room to use other measures of quality —such as

principal evaluations or student surveys —to complement VA estimates.48 What is clear from these

calculations is that improving teacher quality is likely to yield substantial returns for students; the

best way to accomplish that goal is less clear.

Costs of Teacher Selection. The calculations above do not account for the costs associated

with a policy that deselects teachers with the lowest estimated performance ratings. First, they

ignore downstream costs that may be required to generate earnings gains, most notably the cost

46 If one’s goal is to maximize expected gains over a teacher’s tenure, one should ideally deselect teachers after n
years based on mean predicted VA over all future years, discounted by the survival probabilities. We find that this
more complex policy increases gains by less than 1% over 10 years. Intuitively, because the VA drift process is close
to an AR(1) process, the relative weights on average scores from a teacher’s first three years do not change much
when projecting beyond year 4.
47We calculate these gains using a Monte Carlo simulation analogous to that above, except that we draw scores

from the VCV matrix of true VA Σµ instead of test scores ΣA. The off-diagonal elements of the two matrices are
identical, but the diagonal elements of Σµ reflect only the variance of teacher quality σ2µ. We use the quadratic
estimates of σµ reported in the last row of Table 2 in our companion paper for this simulation.
48These other measures will also be affected by drift and estimation error. For instance, classroom observations

have significant noise and may capture transitory fluctuations in teacher quality (Kane et al. 2013). More generally,
issues of drift and estimation error are not unique to the teaching profession. Applying the techniques here to
quantify the impacts of estimation error and drift on personnel evaluation in various professions would be a useful
direction for future research.
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associated with higher college attendance rates. Second, and more importantly, they ignore the

fact that teachers need to be compensated for the added employment risk they face from such an

evaluation system. Rothstein (2013) estimates the latter cost using a structural model of the labor

market for teachers. Rothstein estimates that a policy that fires teachers if their estimated VA after

3 years falls below the 5th percentile would require a mean salary increase of 1.4% to equilibrate

the teacher labor market.49 In our sample, mean teacher salaries were approximately $50,000,

implying that annual salaries would have to be raised by approximately $700 for all teachers to

compensate them for the additional risk. Based on our calculations above, the deselection policy

would generate NPV gains of $184,000 per teacher deselected, or $9,250 for all teachers on average

(because only one out of twenty teachers would actually be deselected). Hence, the estimated gains

from this policy are more than 10 times larger than the costs.

Together with the results in this paper, Rothstein’s (2013) findings imply that deselecting low

VA teachers could be a very cost effective policy. However, as Rothstein emphasizes, this conclusion

assumes that the signal quality of VA measures for long-term impacts remains unchanged when it

is used to evaluate teachers. If erosion in the signal quality of VA measures is substantial, the

gains from selection could be eliminated and one would need to turn to other measures to identify

high quality teachers.50

Retention of High VA Teachers. An alternative approach to improving teacher quality that

may impose lower costs on teachers is to increase the retention of high-VA teachers by paying them

bonuses. Using Monte Carlo simulations analogous to those above, we estimate that retaining a

teacher at the 95th percentile of the estimated VA distribution (using 3 years of data) for an extra

year would yield present value earnings gains in the subsequent school year of $522, 000 × 28.2 ×

1.34% × E
[
mj,n+1|m̂j,n+1 = F−1m̂j,n+1(0.95)

]
= $212, 000. In our data, roughly 9% of teachers in

their third year do not return to the school district for a fourth year.51 Clotfelter et al. (2008)

estimate that a $1,800 bonus payment in North Carolina reduces attrition rates by 17%. Based on

this estimate, a one time bonus payment of $1,800 to high-VA teachers who return for a fourth year

would increase retention rates in the next year by 1.5 percentage points and generate an average

49 In the working paper version of his study, Rothstein calculates the wage gains needed to compensate teachers
for a policy that deselects teachers below the 20th percentile after 2 years. Jesse Rothstein kindly provided the
corresponding estimates for the policy analyzed here in personal correspondence.
50 In practice, one need not switch to evaluation based purely on VA measures. School districts typically use VA

metrics in conjunction with other measures of performance. If the signal quality of VA is a continuous function of its
weight in evaluation decisions, one would optimally place some non-zero weight on VA, because the net gains would
fall from the initial level of $184,000 in proportion to the weight on VA.
51The rate of attrition bears little or no relation to VA, consistent with the findings of Boyd et al. (2008).
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benefit of $3,180. The expected benefit of offering a bonus to even an excellent (95th percentile)

teacher is only modestly larger than the cost because one must pay bonuses to (100− 9)/1.5 ≈ 60

additional teachers for every extra teacher retained.

Replacing ineffective teachers is more cost-effective than attempting to retain high VA teach-

ers because most teachers stay for the following school year and are relatively inelastic to salary

increases. Of course, increasing the salaries of high VA teachers could attract more talented in-

dividuals into teaching to begin with. The preceding calculations, which focus on the stock of

current teachers, do not account for this potentially important benefit.52

8 Conclusion

Our first paper (Chetty, Friedman, and Rockoff 2013) showed that existing test-score value-added

measures are a good proxy for a teacher’s ability to raise students’test scores. This paper has

shown that the same VA measures are also an informative proxy for teachers’long-term impacts.

Although these findings are encouraging for the use of value-added metrics, two important issues

must be resolved before one can determine how VA should be used for policy.

First, using VA measures to evaluate teachers could induce responses such as teaching to the

test or cheating, eroding the signal in VA measures (e.g., Jacob 2005, Neal and Schanzenbach

2010).53 One can estimate the magnitude of such effects by replicating the analysis in this paper

in a district that evaluates teachers based on their VA. If behavioral responses substantially reduce

the signal quality of VA, policy makers may need to develop metrics that are more robust to such

responses, as in Barlevy and Neal (2012). For instance, districts may also be able to use data on

the persistence of test score gains to identify test manipulation and develop a more robust estimate

of teacher quality, as in Jacob and Levitt (2003).

Second, one should compare the long-term impacts of evaluating teachers on the basis of VA to

other metrics, such as principal evaluations or classroom observation. One can adapt the methods

developed in this paper to evaluate these other measures of teacher quality. When a teacher who

is rated highly by principals enters a school, do subsequent cohorts of students have higher college

attendance rates and earnings? What fraction of a teacher’s long-term impact is captured by

test-score VA vs. other measures of teacher quality? By answering these questions, one could

52 Increasing salaries or paying bonuses based on VA could also increase teacher effort. The evidence on the
importance of this margin is mixed (Springer et al. 2010, Imberman and Lovenheim 2012).
53As we noted above, even in the low-stakes regime we study, some unusually high VA teachers have test score

impacts consistent with test manipulation. If such behavior becomes more prevalent when VA is used to evaluate
teachers, the predictive content of VA as a measure of true teacher quality could be compromised.
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ultimately estimate the optimal weighting of available metrics to identify teachers who are most

successful in improving students’long-term outcomes.

More generally, there are many aspects of teachers’long-term impacts that remain to be explored

and would be helpful in designing education policy. For example, in this paper we only identified

the impact of a single teacher on long-term outcomes. Are teachers’impacts additive over time?

Do good teachers complement or substitute for each other across years? Similarly, it would be useful

to go beyond the mean treatment effects that we have estimated here and determine whether some

teachers are especially effective in improving lower-tail outcomes or producing stars.

Whether or not VA is ultimately used as a policy tool, our results show that parents should

place great value on having their child in the classroom of a high value-added teacher. Consider a

teacher whose true VA is 1 SD above the mean who is contemplating leaving a school. Each child

would gain approximately $39,000 in total (undiscounted) lifetime earnings from having this teacher

instead of the median teacher. With an annual discount rate of 5%, the parents of a classroom

of average size should be willing to pool resources and pay this teacher approximately $200,000

($7,000 per parent) to stay and teach their children during the next school year. Our analysis of

teacher entry and exit demonstrates that retaining such a high-VA teacher would improve students’

outcomes. Hence, the most important lesson of this study is that improving the quality of teaching

—whether via the use of value-added metrics or other policy levers —is likely to have substantial

economic and social benefits.
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Online Appendix A: Earnings-Based College Quality Index

Our index of college quality is based on the average earnings of the individuals who attend
each college. The construction of such an index requires several choices, including (1) the age at
which college attendance is measured, (2) the age at which earnings are measured, (3) the cohort
of students used, and (4) the definition of earnings. In this appendix, we assess the stability of
rankings of colleges with respect to these four choices.

We begin by constructing measures of college quality that vary the four parameters above. In
each case, we first identify all individuals who are U.S. citizens as of February 19, 2013 to remove
those who were temporarily in the United States for college and for whom we do not have post-
college earnings data.54 We group individuals by the higher education institution they attended
and by age of attendance, as measured on December 31 of each year.55 We group individuals not
enrolled at a higher education institution at a given age (i.e., those who have no 1098-T form filed
on their behalf during the tax year) in a separate “no college”category. For each college (including
the “no college” group), we then compute earnings of the students at various ages (in real 2010
dollars). We begin by defining earnings based on individual W-2 wage earnings and then consider
broader income measures. We top code individual earnings at $10 million to reduce the influence
of outliers and we include only those who are alive at the age at which we measure earnings.

We first evaluate the stability of rankings of college quality with respect to the age at which we
measure earnings. Appendix Figure 1a plots the percentile ranking of colleges based on earnings
measured at age 23 (one-year after most students graduate from 4 year colleges) and age 27 (five-
years post-college) vs. the oldest age at which we can measure earnings of college graduates in our
sample, which is 32 (ten-years post-college). We hold the age of college attendance constant at 20
and focus on the cohort of students born in 1979. To construct this figure, we bin colleges into
100 percentiles based on their ranking using age 32 earnings (without any weighting) and compute
the mean percentile ranking based on earnings at age 23 and 27 within each bin. Rankings at age
27 are very well aligned with rankings at age 32, but rankings at age 23 are very poorly aligned
with measures based on older data. Colleges that have the highest-earning graduates at age 32
are commonly ranked average or even below-average based on data at age 23.

In Appendix Figure 1b, we extend this analysis to cover all ages from 23-32. This figure plots
the rank correlation between college quality measured at age 32 with college quality measured using
earnings at earlier ages. Each point shows the correlation of an earnings-based percentile ranking
at a given age with the ranking based on earnings at age 32. The correlation is very low at age
23 and rises steeply at first before asymptoting to 1. At age 28 and after, the correlations are all
above 0.95, implying that we obtain similar rankings irrespective of what age one uses to measure
earnings of college graduates beyond this point. The stability of the index starting in the late
20’s is consistent with evidence from other studies that annual earnings starting in the late 20’s are
quite highly correlated with lifetime earnings (Haider and Solon 2006).

Panel A of Appendix Table 2 presents the rank correlations to corresponding to Appendix
Figure 1b. The rest of Appendix Table 2 studies the rank correlations between college quality
measures as we vary the other parameters. In Panel B, we vary the age at which we measure
college attendance from 18 to 25, holding fixed the age of earnings measurement at 30 for the
cohort born in 1981 (which is the oldest cohort for which we can measure college attendance at age
18). When we measure attendance between 18 and 22, college quality rankings are very highly

54Only current citizenship status is recorded in the database. As a result, the date at which we determine
citizenship is simply the date we accessed the data.
55We include the small fraction of students who attend more than one college in a single year in the determination

of college quality for each unique institution to which they are matched.
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correlated with each other. The correlations begin to fall when we measure attendance at later
ages. This is intuitive, as ages 18-22 correspond to those at which most students would attend a
4-year college if they proceed through school at a normal pace.

Panel C of Appendix Table 2 varies the cohort of students included in the measure, including
students born between 1979 and 1981. We hold fixed the ages of college attendance and earnings
measurement at 20 and 30, respectively. The measures are very highly correlated across cohorts,
showing that the reliability of our index of college quality is quite high.

Finally, Panel D of Appendix Table 2 shows the relationship between college quality measures
based on alternative definitions of earnings. In addition to our baseline measure of mean W-2 earn-
ings, we consider median W-2 earnings and mean total income (W-2 wages plus self-employment
income from Form 1040). In each case we hold fixed age in college at 20, age of earnings mea-
surement at 30, and focus on the 1979 cohort. The correlation between these measures exceeds
0.94, showing that the rankings are not sensitive to the concept of income used to measure earn-
ings. We view W-2 earnings as the preferred measure because it is unaffected by marriage and the
endogeneity of filing.

Based on these results, we construct our preferred measure of college quality measuring college
attendance at age 20 and mean W-2 earnings at age 31. These choices allow us to combine data
from two cohorts – students born in 1979 and 1980 – for whom we measure earnings in 2010 and
2011, respectively. We code college quality as missing for a small number of institutions with fewer
than 100 students across the two cohorts. College quality is also coded as missing for institutions
founded in 2001 or later. If students attended two or more colleges in a given year, we assign them
the maximum college quality across all colleges attended.

Online Appendix B: Equivalence of Individual and Class-Level Regressions

This appendix shows that the inclusion of individual controls does not affect our point estimate
of κ in the absence of missing data. To simplify notation, assume that XI

it is a scalar and that
each class has the same number of students. Let Y ∗c denote the mean of Y

∗
i in classroom c. For

simplicity, we use notation that corresponds to the asymptotic values of various moments of the
data, but the result holds in finite samples as well.

Recall that to estimate κ in individual-level data, we first residualize Y ∗i with respect to the
control vector using within-teacher variation by estimating the following regression:

(24) Y ∗i = aj + βCXct + βI(X
I
it −Xct) + εYit

We then estimate the univariate regression in (14) using OLS, which yields a coeffi cient

κ̂ =
Cov

(
Y ∗i − βCXct + βI(X

I
it −Xct), m̂jt

)
V ar(m̂jt)

Observe that Cov
(
XI
it −Xct, m̂jt

)
= 0 and Cov (Y ∗i − Y ∗c , m̂jt) = 0, as the individual deviations

have mean 0 in all classrooms and m̂jt does not vary within classrooms. It follows that the
coeffi cient on the class mean in (24) is

βC =
Cov(Y ∗i − βI(XI

it −Xct), Xct)

V ar(Xct)
=
Cov(Y ∗i , Xct)

V ar(Xct)
=
Cov(Y ∗c , Xct)

V ar(Xct)
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Similarly, the coeffi cient on m̂jt can be written in terms of class means as

κ̂ =
Cov (Y ∗i − βCXct, m̂jt)

V ar (m̂jt)
=
Cov (Y ∗c − βCXct, m̂jt)

V ar (m̂jt)
= κ̂C ,

where κ̂C is the coeffi cient obtained from regressing the residuals of the class means on m̂jt.
It follows that βC can be estimated from a regression of mean outcomes on mean covariates:

Y ∗c = a+ βCXct + εYc

and κ̂ can be estimated by regressing the resulting residuals Yct = Y ∗c − βCXct on m̂jt:

(25) Yct = α+ κm̂jt + η′ct.

Online Appendix C: Identifying Teachers’Net Impacts

This appendix shows that the iterative method described in Section 6.3 recovers the net impacts
of teacher VA, κ̃g, defined as the impact of raising teacher VA in grade g on earnings, holding fixed
VA in subsequent grades. To simplify notation, we omit controls in this derivation; in practice,
we residualize all the dependent variables in the regressions below with respect to the standard
control vector. Furthermore, we simplify the notation by replacing the year subscript t with a
grade subscript g, so that m̂jg = m̂j,ti(g).

We begin by estimating the following equations using OLS for g ∈ [4, 8]:

Yig = κgm̂jg + εmig(26)

m̂jg′ = ρgg′m̂jg + ηρigg′ ∀g
′ > g(27)

The first set of equations identifies the reduced-form impact of teacher VA in grade g on earnings.
The second set of equations identifies the impact of teacher VA in grade g on teacher VA in future
grade g′. Note that identification of the tracking coeffi cients ρgg′ using (21) requires the following
variant of Assumption 2:

Assumption 2A Teacher value-added in grade g is orthogonal to unobserved determinants of
future teacher value-added conditional on controls:

Cov
(
m̂jg, η

ρ
igg′

)
= 0.

After estimating {κg} and
{
ρgg′

}
, we recover the net impacts κ̃g as follows. Under our definition

of κ̃g, earnings Yig can be written as
∑8

g′=4 κ̃g′m̂jg′ + εmig . Substituting this definition of Yig into
(26) and noting that ρgg′ = Cov

(
m̂jg′ , m̂jg

)
/V ar (m̂jg) yields

κg =
Cov

(∑8
g′=4 κ̃g′m̂jg′ + εmig′ , m̂jg

)
V ar (m̂jg)

=

8∑
g′=4

ρgg′ κ̃g′ .

One implication of Assumption 2, the orthogonality condition needed to identify earnings impacts,
is that

Cov
(
m̂jg′ , m̂jg

)
= 0 for g′ < g
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since past teacher quality µ̂j(i,g′) is one component of the error term εµigt in (26). Combined with
the fact that ρgg = 1 by definition, these equations imply that

κg = κ̃g +
8∑

g′=g+1

ρgg′ κ̃g′ ∀g < 8

κ8 = κ̃8.

Rearranging this triangular set of equations yields the following system of equations, which can be
solved by iterating backwards as in Section 6.3:

κ̃8 = κ8(28)

κ̃g = κg −
8∑

g′=g+1

ρgg′ κ̃g′ ∀g < 8.
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Variable Mean Std. Dev. Observations
(1) (2) (3)

Student Data:
   Class size (not student-weighted) 28.2 5.8 240,459

   Number of subject-school years per student 6.25 3.18 1,083,556

   Test score (SD) 0.12 0.91 6,035,726

   Female 50.4% 6,762,896

   Age (years) 11.7 1.6 6,762,679

   Free lunch eligible (1999-2009) 77.1% 3,309,198

   Minority (Black or Hispanic) 72.1% 6,756,138

   English language learner 4.9% 6,734,837

   Special education 3.1% 6,586,925

   Repeating grade 2.7% 6,432,281

   Matched to tax data 89.2% 6,770,045

   Matched to parents (cond. on match to tax data) 94.8% 6,036,422

Adult Outcomes:
   Annual wage earnings at age 20 5,670 7,733 5,939,022

   Annual wage earnings at age 25 17,194 19,889 2,321,337

   Annual wage earnings at age 28 20,885 24,297 1,312,800

   Total income at age 28 21,780 24,281 1,312,800

   In college at age 20 35.6% 5,939,022

   In college at age 25 16.5% 2,321,337

   More than 4 years of college, ages 18-22 22.7% 4,514,758

   College quality at age 20 26,408 13,461 5,934,570

   Contributed to a 401(k) at age 28 19.1% 1,312,800

   Pct. college graduates in ZIP at age 28 13.7% 929,079

   Had a child while a teenager (for women) 14.3% 3,032,170

   Owned a house at age 25 4.3% 2,321,337

   Married at age 25 11.3% 2,321,337

Parent Characteristics:
   Annual Household income 40,808 34,515 5,720,657

   Owned a house 34.8% 5,720,657

   Contributed to a 401k 31.3% 5,720,657

   Married 42.2% 5,720,657

   Age at child birth 28.3 7.8 5,615,400

TABLE 1
Summary Statistics for Linked Analysis Dataset

Notes: All statistics reported are for the linked analysis dataset described in Section 3, which includes students
from classrooms in which at least one student would graduate high school in or before 2009 if progressing at a
normal pace. The sample has one observation per student-subject-school year. Student data are from the
administrative records of a large urban school district in the U.S. Adult outcomes and parent characteristics are
from 1996-2011 federal income tax data. All monetary values are expressed in real 2010 dollars. All ages refer to
the age of an individual as of December 31 within a given year. Test score refers to standardized scale score in
math or English. Free lunch is an indicator for receiving free or reduced-price lunches. We link students to their
parents by finding the earliest 1040 form from 1996-2011 on which the student is claimed as a dependent. We are
unable to link 10.8% of observations to the tax data; the summary statistics for adult outcomes and parent
characteristics exclude these observations. Wage earnings are measured from W-2 forms; we assign 0's to
students with no W-2's. Total income includes both W-2 wage earnings and self-employment income reported on
the 1040. College attendance is measured from 1098-T forms. College quality is the average W-2 earnings at
age 31 for students who attended a given college at age 20 (see Section 3.1 for more details). 401(k) contributions
are reported on W-2 forms. ZIP code of residence is determined from the address on a 1040 (or W-2 for non-
filers); percent college graduates in ZIP is based on the 2000 Census. We measure teen births for female
students as an indicator for claiming a dependent who was born fewer than 20 years after the student herself was
born. We measure home ownership from the payment of mortgage interest, reported on either the 1040 or a 1099
form. We measure marriage by the filing of a joint return. Conditional on linking to the tax data, we are unable to
link 5.2% of observations to a parent; the summary statistics for parents exclude these observations. Parent
income is average adjusted gross income during the three tax-years between 2005-2007. For parents who do not
file, household income is defined as zero. Parent age at child birth is the difference between the age of the mother
(or father if single father) and the student. All parent indicator variables are defined in the same way as the
equivalent for the students and are equal to 1 if the event occurs in any year between 2005-2007.



Dep. Var.:
College at 

Age 20
College at 

Age 20
College at 

Age 20

College 
Quality at 
Age 20

College 
Quality at 
Age 20

College 
Quality at 
Age 20

High 
Quality 
College

4 or More 
Years of 
College, 

Ages 18-22

(%) (%) (%) ($) ($) ($) (%) (%)
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher VA 0.82 0.71 0.74 298.63 265.82 266.17 0.72 0.79
(0.07) (0.06) (0.09) (20.74) (18.31) (26.03) (0.05) (0.08)

Mean of Dep. Var. 37.22 37.22 37.09 26,837 26,837 26,798 13.41 24.59

Baseline Controls X X X X X X X X

Parent Chars. Controls X X

Lagged Score Controls X X

Observations 4,170,905 4,170,905 3,130,855 4,167,571 4,167,571 3,128,478 4,167,571 3,030,878

Impacts of Teacher Value-Added on College Attendance
TABLE 2

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in parentheses.
The regressions are estimated on the linked analysis sample (as described in the notes to Table 1). Teacher value-added is
estimated using data from classes taught by a teacher in other years, following the procedure described in Section 4.1. The
dependent variable in Columns 1-3 is an indicator for college attendance at age 20. The dependent variable in Columns 4-6 is the
earnings-based index of college quality. See notes to Table 1 and Section 3 for more details on the construction of these
variables. The dependent variable in Column 7 is an indicator for attending a high-quality college, defined as quality greater than
the median college quality among those attending college, which is $43,914. The dependent variable in Column 8 is an indicator for
attending four or more years of college between the ages of 18 and 22. All columns control for the baseline class-level control
vector, which includes: class size and class-type indicators; cubics in class and school-grade means of lagged own- and cross-
subject scores, interacted with grade level; class and school-year means of student-level characteristics including ethnicity, gender,
age, lagged suspensions and absences, and indicators for grade repetition, special education, free or reduced-price lunch, and
limited English; and grade and year dummies. Columns 2 and 5 additionally control for class means of parent characteristics,
including mother's age at child's birth, indicators for parent's 401(k) contributions and home ownership, and an indicator for the
parent's marital status interacted with a quartic in parent's household income. Columns 3 and 6 include the baseline controls and
class means of twice-lagged test scores. We use within-teacher variation to identify the coefficients on all controls as described in
Section 2.1; the estimates reported are from regressions of outcome residuals on teacher VA with school by subject level fixed
effects.



Dep. Var.:
Earnings at 

Age 28
Earnings at 

Age 28
Earnings at 

Age 28
Working at 

Age 28
Total Income 

at Age 28
Wage Growth 
Ages 22-28

($) ($) ($) (%) ($) ($)

(1) (2) (3) (4) (5) (6)

Teacher VA 349.84 285.55 308.98 0.38 353.83 286.20
(91.92) (87.64) (110.17) (0.16) (88.62) (81.86)

Mean of Dep. Var. 21,256 21,256 21,468 68.09 22,108 11,454

Baseline Controls X X X X X X

Parent Chars. Controls X

Lagged Score Controls X

Observations 650,965 650,965 510,309 650,965 650,965 650,943

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in
parentheses. The regressions are estimated on the linked analysis sample (as described in the notes to Table 1). There is
one observation for each student-subject-school year. Teacher value-added is estimated using data from classes taught by a
teacher in other years, following the procedure described in Section 4.1. The dependent variable in Columns 1-3 is the
individual's wage earnings reported on W-2 forms at age 28. The dependent variable in Column 4 is an indicator for having
positive wage earnings at age 28. The dependent variable in Column 5 is total income (wage earnings plus self-employment
income). The dependent variable in Column 6 is wage growth between ages 22 and 28. All columns control for the baseline
class-level control vector; Column 2 additionally controls for parent characteristics, while Column 3 additionally controls for
twice-lagged test scores (see notes to Table 2 for details). We use within-teacher variation to identify the coefficients on all
controls as described in Section 2.1; the estimates reported are from regressions of outcome residuals on teacher VA with
school by subject level fixed effects.

Impacts of Teacher Value-Added on Earnings
TABLE 3



Dep. Var.: Teenage Birth
Percent College 
Grad in ZIP at 

Age 28

Have 401(k) at 
Age 28

(%) (%) (%)
(1) (2) (3)

Teacher VA -0.61 0.25 0.55
(0.06) (0.04) (0.16)

Mean of Dep. Var. 13.24 13.81 19.81

Baseline Controls X X X

Observations 2,110,402 468,021 650,965

TABLE 4
Impacts of Teacher Value-Added on Other Outcomes

Notes: Each column reports coefficients from an OLS regression, with standard
errors clustered by school-cohort in parentheses. The regressions are estimated on
the linked analysis sample (as described in the notes to Table 1). There is one
observation for each student-subject-school year. Teacher value-added is estimated
using data from classes taught by a teacher in other years, following the procedure
described in Section 4.1. The dependent variables in Column 1-3 are an indicator for
having a teenage birth, the fraction of residents in an individual’s zip code of
residence at age 28 with a college degree or higher, and an indicator for whether an
individual made a contribution to a 401(k) plan at age 28 (see notes to Table 1 and
Section 3 for more details). Column 1 includes only female students. All regressions
include the baseline class-level control vector (see notes to Table 2 for details). We
use within-teacher variation to identify the coefficients on all controls as described in
Section 2.1; the estimates reported are from regressions of outcome residuals on
teacher VA with school by subject level fixed effects.



Dep. Var.:
Pred. Coll. 
Attendance 

(%)

(1) (2) (3) (4) (5)

Teacher VA 0.86 0.73 0.67 1.20 0.02
(0.23) (0.25) (0.26) (0.58) (0.06)

Year FE X
School x Year FE X X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X

Number of School x Grade x Subject x Year Cells 33,167 33,167 26,857 8,711 33,167

Sample: Full Sample Full Sample Full Sample
No Imputed 

Scores
Full Sample

Dep. Var.:
Pred. Coll.
Quality ($)

(1) (2) (3) (4) (5)

Teacher VA 197.64 156.64 176.51 334.52 2.53
(60.27) (63.93) (64.94) (166.85) (18.30)

Year FE X
School x Year FE X X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X

Number of School x Grade x Subject x Year Cells 33,167 33,167 26,857 8,711 33,167

Sample: Full Sample Full Sample Full Sample
No Imputed 

Scores
Full Sample

Panel A: College Attendance at Age 20

TABLE 5

Panel B: College Quality at Age 20

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in parentheses.
The regressions are estimated on the linked analysis sample (as described in the notes to Table 1), collapsed to school-grade-
year-subject means. The independent variable for each regression is the difference in mean teacher value-added between
adjacent school-grade-year-subject cells, where we estimate teacher value-added using data that omits both years (see Section
5.1 for more details). Similarly, dependent variables are defined as changes in means across consecutive cohorts at the school-
grade-year-subject level. In Panel A, the dependent variable is college attendance at age 20; in Panel B, the dependent variable
is the earnings-based index of college quality (see Table 1 for details). In Column 1 we regress the mean change in the
dependent variable on the mean change in teacher value-added, controlling only for year fixed-effects. Column 2 replicates
Column 1 including school-year fixed effects. In Column 3, we add a cubic in the change in mean lagged scores to the
specification in Column 2, as well as controls for the lead and lag change in mean teacher value-added. In Column 4, we restrict
the sample to cells with no imputed VA; other columns impute the sample mean of 0 for classes with missing VA. Column 5
replicates Column 2, except that the dependent variable is the predicted value from an individual-level regression of the original
dependent variable on the vector of parent characteristics defined in the notes to Table 2.

Impacts of Teacher Value-Added on College Outcomes: Quasi-Experimental Estimates

College Attendance (%)

College Quality ($)



Female Male Low Income High Income Minority Non-Minority
(1) (2) (3) (4) (5) (6)

Dep. Var.:

Teacher VA 290.65 237.93 190.24 379.89 215.51 441.08
(23.61) (21.94) (19.63) (27.03) (17.09) (42.26)

Mean of Dep. Var. 27,584 26,073 23,790 30,330 23,831 33,968
Impact as % of Mean 1.05% 0.91% 0.80% 1.25% 0.90% 1.30%

Dep. Var.:

Teacher VA 0.135 0.136 0.128 0.129 0.136 0.138
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Mean of Dep. Var. 0.196 0.158 -0.003 0.331 -0.039 0.651

(1) (2) (3) (4) (5)

Dep. Var.:

Math Teacher VA 207.81 106.34 265.59
(21.77) (28.50) (43.03)

English Teacher VA 258.16 189.24 521.61
(25.42) (33.07) (63.67)

Control for Average VA 
in Other Subject

X X

Notes: In the first row of estimates in Panel A, we replicate the specification in Column 5 of Table 2 within various
population subgroups. In Columns 1 and 2, we split the sample between males and females; in Columns 3 and 4,
we split the sample based on the median parent household income (which is $31,905); in Columns 5 and 6, we split
the sample based on whether a student belongs to an ethnic minority (black or hispanic). In the second row of
estimates in Panel A, we replicate all of the regressions from the first row replacing college quality with score as the
dependent variable. In Panel B, we split the sample into elementary schools (where the student is taught by the
same teacher for both math and English) and middle schools (which have different teachers for each subject).
Columns 1 and 2 replicate the specification in Column 5 of Table 2, splitting the sample by subject. In Column 3,
we regress college quality on measures of math teacher value-added and English teacher value-added together in
a dataset reshaped to have one row per student by school year. We restrict the sample so that the number of
teacher-year observations is identical in Columns 1-3. Columns 4 and 5 replicate Column 5 of Table 2 for middle
schools with an additional control for the average teacher value-added in the other subject for students in a given
class.

College Quality at Age 20 ($)

Middle School

TABLE 6
Heterogeneity in Impacts of Teacher Value-Added

Panel A: Impacts by Demographic Group

Panel B: Impacts by Subject
Elementary School

College Quality at Age 20 ($)

Test Score (SD)



Student Subject Year Grade Class Teacher Test Score

Matched
to Tax
Data?

Earnings 
at Age 28

Bob Math 1992 4 1 Jones 0.5 1 $35K
Bob English 1992 4 1 Jones -0.3 1 $35K
Bob Math 1993 5 2 Smith 0.9 1 $35K
Bob English 1993 5 2 Smith 0.1 1 $35K
Bob Math 1994 6 3 Harris 1.5 1 $35K
Bob English 1994 6 4 Adams 0.5 1 $35K
Nancy Math 2002 3 5 Daniels 0.4 0 .
Nancy English 2002 3 5 Daniels 0.2 0 .
Nancy Math 2003 4 6 Jones -0.1 0 .
Nancy English 2003 4 6 Jones 0.1 0 .

APPENDIX TABLE 1
Structure of Linked Analysis Dataset

Notes: This table illustrates the structure of the linked analysis sample which combines information from the
school district database and the tax data. There is one row for each student-subject-school year. Individuals who
were not linked to the tax data have missing data on adult outcomes and parent characteristics. The values in
this table are not real data and are for illustrative purposes only.  



Age 23 Age 24 Age 25 Age 26 Age 27 Age 28 Age 29 Age 30 Age 31 Age 32
Age 23 1.000
Age 24 0.858 1.000
Age 25 0.747 0.949 1.000
Age 26 0.676 0.901 0.967 1.000
Age 27 0.614 0.852 0.928 0.972 1.000
Age 28 0.577 0.822 0.900 0.950 0.979 1.000
Age 29 0.553 0.802 0.882 0.934 0.962 0.983 1.000
Age 30 0.519 0.774 0.860 0.916 0.948 0.968 0.980 1.000
Age 31 0.505 0.761 0.848 0.905 0.937 0.958 0.971 0.986 1.000
Age 32 0.495 0.750 0.838 0.897 0.930 0.952 0.964 0.977 0.987 1.000

Age 18 Age 19 Age 20 Age 21 Age 22 Age 23 Age 24 Age 25
Age 18 1.000
Age 19 0.948 1.000
Age 20 0.930 0.975 1.000
Age 21 0.909 0.947 0.972 1.000
Age 22 0.880 0.914 0.940 0.968 1.000
Age 23 0.850 0.886 0.909 0.933 0.960 1.000
Age 24 0.803 0.830 0.851 0.873 0.893 0.932 1.000
Age 25 0.766 0.790 0.806 0.830 0.851 0.883 0.935 1.000

Mean W-2 + Self-Employment Income
Median W-2 Earnings

Notes: This table displays Spearman rank correlations between alternative earnings-based indices of college quality,
each of which is defined by four characteristics: age of earnings measurement, age of college attendance, cohort of
students, and definition of earnings. Throughout this table, we construct college quality measures from only a single
birth cohort of students; however, the preferred measure used in the text combines two cohorts. Panel A varies the
age of earnings measurement from 23 to 32, holding fixed the age of college attendance at 20, using only the 1979
cohort of students, and using mean W-2 wage earnings. Panel B varies the age of college attendance from 18 to 25,
holding fixed the age of earnings measurement at 30, using only the 1981 cohort, and using mean W-2 wage
earnings. Panel C varies the birth cohort of students, holding fixed the age of college attendance at 20, the age of
earnings measurement at 30, and using mean W-2 wage earnings. Panel D varies the measure of earnings between
the baseline (mean W-2 wage earnings by college) and two alternatives (median W-2 wage earnings by college and
mean total income by college), holding fixed the age of college attendance at 20, the age of earnings measurement at
30, and using only the 1979 cohort of students.

1.000

Mean W-2 + S-E

0.989

Median W-2

1.000
0.943

Mean W-2

0.960
Mean W-2 Earnings 1.000

APPENDIX TABLE 2

Panel B: Correlation of College Rankings Across Ages at Which College Attendance is Measured

Correlation of College Rankings Based on Alternative Measures

Panel C: Correlation of College Rankings Across Birth Cohorts

Panel A: Correlation of College Rankings Across Ages at Which Earnings are Measured

0.942

Cohort 1981

1.000

Cohort 1979

Panel D: Correlation of College Rankings Across Earnings Definitions

Cohort 1980

1.000

Cohort 1979
1.000
0.931
0.933

Cohort 1980
Cohort 1981



Dep. Var.:
College at Age 

20
College Quality 

at Age 20
Earnings at 

Age 28
Teenage 

Birth
Percent College Grads 

in ZIP at Age 28

(%) ($) ($) (%) (%)
(1) (2) (3) (4) (5)

No Controls 18.37 6,366 7,709 -6.57 1.87
(0.02) (6) (23) (0.02) (0.01)

With Controls 5.54 2,114 2,585 -1.58 0.34
(0.04) (11) (59) (0.05) (0.01)

Math 6.04 2,295 2,998 -1.21 0.31
Full Controls (0.06) (16) (83) (0.07) (0.02)

English 5.01 1,907 2,192 -2.01 0.37
Full Controls (0.06) (16) (88) (0.06) (0.02)

Mean of Dep. Var. 37.71 26,963 21,622 13.25 13.43

APPENDIX TABLE 3
Cross-Sectional Correlations Between Outcomes in Adulthood and Test Scores

Notes: Each cell reports coefficients from a separate OLS regression of an outcome in adulthood on test scores
measured in standard deviation units, with standard errors reported in parentheses. The regressions are
estimated on observations from the linked analysis sample (as described in the notes to Table 1). There is one
observation for each student-subject-school year, and we pool all subjects and grades in estimating these
regressions. The dependent variable is an indicator for attending college at age 20 in column 1, our earnings-based
index of college quality in column 2, wage earnings at age 28 in column 3, an indicator for having a teenage birth
(defined for females only) in column 4, and the fraction of residents in an individual’s zip code of residence with a
college degree or higher at age 28 in column 5. See notes to Table 1 for definitions of these variables. The
regressions in the first row include no controls. The regressions in the second row include the full vector of student-
and class-level controls used to estimate the baseline value-added model described in Section 4.1, as well as
teacher fixed effects. The regressions in the third and fourth row both include the full vector of controls and split the
sample into math and English test score observations. The final row displays of the mean of the dependent
variable in the sample for which we have the full control vector (i.e., the sample used in the 2nd row).



Age: 20 21 22 23 24 25 26 27 28
(1) (2) (3) (4) (5) (6) (7) (8) (9)

No Controls 889 1,098 1,864 3,592 4,705 5,624 6,522 7,162 7,768
(20) (25) (28) (34) (39) (44) (48) (51) (54)

With Controls 392 503 726 1,372 1,759 1,971 2,183 2,497 2,784
(64) (79) (91) (110) (125) (139) (152) (161) (171)

Mean Earnings 6,484 8,046 9,559 11,777 14,004 16,141 18,229 19,834 21,320

Pct. Effect 6.1% 6.2% 7.6% 11.6% 12.6% 12.2% 12.0% 12.6% 13.1%
(with controls)

APPENDIX TABLE 4
Cross-Sectional Correlations Between Test Scores and Earnings by Age

Dependent Variable: Earnings ($)

Notes: Each cell in the first two rows reports coefficients from a separate OLS regression of earnings at a
given age on test scores measured in standard deviation units, with standard errors in parentheses. See
notes to Table 1 for our definition of earnings. We restrict this table to students born in cohorts 1979 and
1980, so that regressions are estimated on a constant subsample of the linked analysis sample. There is
one observation for each student-subject-school year, and we pool all subjects and grades in estimating
these regressions. The first row includes no controls; the second includes the full vector of student- and
class-level controls used to estimate the baseline value-added model described in Section 4.1 as well as
teacher fixed effects. Means of earnings for the estimation sample with controls are shown in the third row.
The last row divides the coefficient estimates from the specification with controls by the mean earnings to
obtain a percentage impact by age.



Earnings at College at College Quality Teenage
Dependent Variable: Age 28 at Age 20 Age 20 Birth

($) (%) ($) (%)
(1) (2) (3) (4)

Male 2,408 5.36 1,976 n/a
(88) (0.06) (16)

[22,179] [34.24] [26,205]

Female 2,735 5.74 2,262 -1.58
(80) (0.06) (17) (0.05)

[21,078] [41.07] [27,695] [13.25]

Non-minority 2,492 5.11 2,929 -0.72
(139) (0.08) (27) (0.04)

[31,587] [59.67] [34,615] [2.82]

Minority 2,622 5.65 1,734 -1.96
(62) (0.05) (12) (0.06)

[17,644] [28.98] [23,917] [17.20]

Low Parent Inc. 2,674 5.14 1,653 -1.72
(85) (0.06) (15) (0.07)

[18,521] [26.91] [23,824] [16.67]

High Parent Inc. 2,573 5.73 2,539 -1.29
(92) (0.06) (18) (0.06)

[26,402] [49.92] [30,420] [9.21]

APPENDIX TABLE 5
Heterogeneity in Cross-Sectional Correlations Across Demographic Groups

Notes: Each column reports coefficients from an OLS regression, with standard errors in
parentheses and the mean of the dependent variable in the estimation sample in brackets.
These regressions replicate the second row (full sample, with controls and teacher fixed
effects) of estimates in Columns 1-4 of Appendix Table 3, splitting the sample based on
student demographic characteristics. The demographic groups are defined in exactly the
same way as in Panel A of Table 6. We split rows 1 and 2 by the student's gender. We split
the sample in rows 3 and 4 based on whether a student belongs to an ethnic minority (black
or hispanic). We split the sample in rows 5 and 6 based on whether a student’s parental
income is higher or lower than median in the sample, which is $31,905. 



Earnings at College at College Quality Earnings at College at College Quality 
Dep. Variable: Age 28 Age 20 at Age 20 Age 28 Age 20 at Age 20

($) (%) ($) ($) (%) ($)
(1) (2) (3) (4) (5) (6)

Grade 4 7,561 18.29 6,378 2,970 6.78 2,542
(57) (0.05) (13) (122) (0.09) (23)

Grade 5 7,747 18.27 6,408 2,711 5.28 2,049
(50) (0.05) (13) (108) (0.08) (23)

Grade 6 7,524 17.95 6,225 2,395 4.92 1,899
(51) (0.05) (14) (140) (0.10) (27)

Grade 7 7,891 18.23 6,197 2,429 4.48 1,689
(54) (0.05) (14) (198) (0.11) (29)

Grade 8 7,795 19.10 6,596 2,113 5.43 2,106
(48) (0.05) (13) (141) (0.11) (28)

 APPENDIX TABLE 6
Cross-Sectional Correlations between Test Scores and Outcomes in Adulthood by Grade

No Controls With Controls

Notes: Each column reports coefficients from an OLS regression, with standard errors in parentheses. The
regressions in the first three columns replicate the first row (full sample, no controls) of estimates in Columns 1-3
of Appendix Table 3, splitting the sample by grade. The regressions in the second set of three columns replicate
the second row (full sample, with controls and teacher fixed effects) of estimates in Columns 1-3 of Appendix
Table 3, again splitting the sample by grade.



Dep. Var.:
College at 

Age 20
College Quality 

at Age 20
Earnings at 

Age 28

(%) ($) ($)
(1) (2) (3)

Teacher VA, with baseline controls 0.825 299 350
(0.072) (21) (92)

Observations  4,170,905 4,167,571 650,965

Teacher VA, with additional individual controls 0.873 312 357
(0.072) (21) (90)

Observations  4,170,905 4,167,571 650,965

Teacher VA, school clustered 0.825 299 350
(0.115) (36) (118)

Observations  4,170,905 4,167,571 650,965

Teacher VA, cells > 95% VA coverage 0.819 277 455
(0.090) (26) (202)

Observations  2,238,143 2,236,354 363,392

Teacher VA, cells > median match rate 0.912 345 563
(0.094) (28) (203)

Observations  2,764,738 2,762,388 278,119

APPENDIX TABLE 7
Robustness of Baseline Results to Student-Level Controls, Clustering, and Missing Data

Notes : The table presents robustness checks of the main results in Tables 2 and 3. In Panel A, the first
row replicates Columns 1 and 4 of Table 2 and Column 1 of Table 3 as a reference. The second row adds
individual controls, so that the control vector exactly matches that used to estimate the value-added model
(see Section 4.1 for details). Panel B clusters standard errors by school. In Panel C, the first row limits the
sample to those school-grade-year-subject cells in which we are able to calculate teacher value-added for
at least 95% of students. The second row limits the sample to those school-grade-year-subject cells in
which the rate at which we are able to match observations to the tax data is more than the school-level-
subject-specific median across cells.

Panel A: Individual Controls

Panel B: Clustering

Panel C: Missing Data



5% 4% 3% 2% 1% 0%
(1) (2) (3) (4) (5) (6) (7) (8)

Test Score 0.972 0.975 0.981 0.987 0.993 1.005 0.996 0.918
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 0.006 (0.006)

College at Age 20 0.93 0.90 0.88 0.86 0.82 0.72 0.79 1.10
(0.08) (0.08) (0.08) (0.07) (0.07) (0.07) (0.07) (0.09)

College Quality 329 320 315 307 299 276 292 371
at Age 20 (23) (22) (22) (21) (21) (21) (21) (25)

Earnings at Age 28 404 405 390 356 350 248 337 391
(102) (100) (99) (96) (92) (91) (94) (118)

Notes: This table presents results that use alternative approaches to trimming the tails of the distribution of
teacher VA. Each coefficient reports the coefficient on teacher VA from a separate OLS regression, with
standard errors clustered by school-cohort in parentheses. The regressions in the first row replicate the
baseline specification used in Column 1 of Table 3 in our companion paper (using VA scaled in units of
student test-score SDs), except that we include only the class-level controls that correspond to the baseline
set of controls in this paper (as in Section 4.1). The regressions in rows 2-4 replicate the baseline
specification used in Columns 1 and 4 of Table 2 and Column 1 of Table 3. Columns 1-6 report results for
trimming the upper tail at various cutoffs. Column 7 shows estimates when both the bottom and top 1% of VA
outliers are excluded. Finally, Column 8 excludes teachers who have more than one classroom that is an
outlier according to Jacob and Levitt's (2003) proxy for cheating. Jacob and Levitt define an outlier classroom
as one that ranks in the top 5% of a test-score change metric defined in the notes to Appendix Figure 3. The
results in Column 5 (1% trimming) correspond to those reported in the main text.

APPENDIX TABLE 8
Impacts of Teacher Value-Added: Sensitivity to Trimming

Percent Trimmed in Upper Tail Bottom and
Top 1%

Jacob and
Levitt Proxy



Dependent Variable:

Age: 18 19 20 21 22 23 24 25 26 27 28

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Teacher Value-Added 0.61 0.81 0.82 0.98 0.71 0.44 0.58 0.46 0.50 0.46 -0.01
(0.06) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.07) (0.09) (0.11)

Mean Attendance Rate 29.4 36.8 37.2 35.7 32.2 24.4 20.31 17.3 15.7 13.9 12.3

Dependent Variable:

Age: 20 21 22 23 24 25 26 27 28

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Teacher Value-Added -32 -35 -18 44 74 141 230 254 350
(11) (14) (18) (25) (32) (44) (47) (63) (92)

Mean Earnings 5,696 7,293 9,473 12,582 15,080 17,547 18,833 20,229 21,256

Panel B: Wage Earnings

Notes: These results present the regression estimates underlying the results in Panel C of Figure 1 (in Panel A) and Panel
B of Figure 2 (in Panel B). The regressions in Panel A match the specification from Column 1 of Table 2, with college
attendance measured at different ages; those in Panel B match the specification from Column 1 of Table 3.

Impacts of Teacher Value-Added on Outcomes by Age
APPENDIX TABLE 9

College Attendance (%)

Panel A: College Attendance

Earnings ($)



Dep. Var.:

t t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5)

Teacher VA 0.993 0.533 0.362 0.255 0.221
(0.006) (0.007) (0.007) (0.008) (0.012)

Observations 7,401,362 5,603,761 4,097,344 2,753,449 1,341,266

APPENDIX TABLE 10
Impacts of Teacher Value-Added on Current and Future Test Scores

Test Score (SD)

Notes: This table presents the regression estimates plotted in Figure 4; see notes to that figure
for details.



Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Teacher Value-Added 226 289 292 482 198
(31) (33) (48) (61) (48)

Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Teacher Value-Added 204 275 216 433 198

Notes: This table presents the regression estimates plotted in Figure 7; see
notes to that figure for details.

APPENDIX TABLE 11
Impacts of Value-Added on College Quality by Grade

College Quality at Age 20

Panel A: Reduced-Form Coefficients

Panel B: Coefficients Net of Teacher Tracking



Grade 5 Grade 6 Grade 7 Grade 8

Grade 4 Teacher VA 0.017 0.035 0.015 0.017
(0.004) (0.003) (0.003) (0.003)

Grade 5 Teacher VA 0.036 0.009 0.012
(0.004) (0.003) (0.008)

Grade 6 Teacher VA 0.121 0.120
(0.007) (0.009)

Grade 7 Teacher VA 0.248
(0.010)

APPENDIX TABLE 12
Tracking: Impact of Current Teacher VA on Future Teachers' VA

Future Teacher Value-Added

Notes: Each cell reports the coefficient from a separate regression of teacher value-
added in a subsequent grade on teacher value-added in the current grade, with standard
errors at the school-cohort level. As in Figure 7, we first residualize each dependent
variable (i.e. lead VA, two-year lead VA, etc.) with respect to the classroom-level
baseline control vector (see notes to Table 2 for more details). We then regress
residualized future VA on current VA interacted with grade. All regressions are
estimated using observations in the linked analysis sample for which the student is
progressing through grades at normal pace (e.g., the student is in sixth grade two years
after fourth grade).



Years Used to 
Estimate VA

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

1 $225,843 $1,249,636 $406,988 $2,251,954
2 $256,651 $1,420,105
3 $265,514 $1,469,147
4 $269,297 $1,490,081
5 $272,567 $1,508,174
6 $274,143 $1,516,891
7 $275,232 $1,522,918
8 $276,665 $1,530,845
9 $278,112 $1,538,851

10 $279,406 $1,546,013

School Years 
Since Teacher 

was Hired

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

4 $265,514 $1,469,147 $406,988 $2,251,954
5 $229,923 $1,272,213 $339,870 $1,880,574
6 $202,631 $1,121,202 $297,569 $1,646,511
7 $183,538 $1,015,557 $252,422 $1,396,703
8 $172,867 $956,509 $222,339 $1,230,251
9 $161,575 $894,032 $212,185 $1,174,067

10 $157,812 $873,209 $193,255 $1,069,324
11 $155,349 $859,581 $180,876 $1,000,824
12 $156,582 $866,400 $180,909 $1,001,007
13 $156,547 $866,206 $181,027 $1,001,662

Avg. Gain $184,234 $1,019,405 $246,744 $1,365,288

Notes: In Panel A, we present the earnings impacts per classroom of a policy that deselects the bottom 5%
of teachers after N years and replaces them with a teacher of median quality, where we vary N from 1 to
10. We calculate these values using the methods described in Section 7. The first column presents
estimates of the NPV earnings gains of deselection based on teacher value-added that is estimated from N 
years of observing a single average-sized (28.2 students) classroom per year of student scores. The third
column shows the theoretical gain from deselecting teachers based on current true value-added; this value
does not vary across years. Panel B presents the per class impacts of deselecting teachers (after 3 years
of observation) in subsequent school years. Column 1 reports the present value of earnings gains in the
ten years (i.e., years 4-13) after deselecting teachers based on their VA estimate in year 4, constructed
using the past three years of data. The first number in Column 1 of Panel B matches the 3rd number in
Column 1 of Panel A. Column 3 presents analogous values, instead deselecting teachers based on true
value-added in year 4, so that the gains in the year 4 match the gains reported in Column 3 of Panel A.
Columns 2 and 4 in each panel replicate Columns 1 and 3, presenting the undiscounted sum of future
earnings impacts instead of present values. The bottom row in the table reports the unweighted means of
the estimates from years 4-13 in Panel B for each column; these are the values reported in the introduction
of the paper.

Earnings Impacts of Replacing Teachers Below 5th Percentile with Average Teachers
APPENDIX TABLE 13

Panel B: Impacts in Subsequent School Years

Selection on Estimated VA Selection on True VA
Panel A: Impacts in First Year After Deselection

Selection on Estimated VA in Yr. 4 Selection on True VA in Yr. 4



FIGURE 1
Effects of Teacher Value-Added on College Outcomes

a) College Attendance at Age 20
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b) College Quality at Age 20
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c) Impact of Teacher Value-Added on College Attendance by Age
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Notes: These figures are drawn using the linked analysis sample, pooling all grades and subjects, with one observation per
student-subject-school year. Panels A and B are binned scatter plots of college attendance rates and college quality vs.
normalized teacher VA m̂jt. These plots correspond to the regressions in Columns 1 and 4 of Table 2 and use the same sample
restrictions and variable definitions. To construct these binned scatter plots, we first residualize the y-axis variable with
respect to the baseline class-level control vector (defined in the notes to Table 2) separately within each subject by school-level
cell, using within-teacher variation to estimate the coefficients on the controls as described in Section 2.1. We then divide the
VA estimates m̂jt into twenty equal-sized groups (vingtiles) and plot the means of the y-variable residuals within each bin
against the mean value of m̂jt within each bin. Finally, we add back the unconditional mean of the y variable in the estimation
sample to facilitate interpretation of the scale. The solid line shows the best linear fit estimated on the underlying micro data
using OLS. The coefficients show the estimated slope of the best-fit line, with standard errors clustered at the school-cohort
level reported in parentheses. In Panel C, we replicate the regression in Column 1 of Table 2 (depicted in Panel A), varying
the age of college attendance from 18 to 28, and plot the resulting coefficients. The dashed lines show the boundaries of the
95% confidence intervals for the effect of value-added on college attendance at each age, with standard errors clustered by
school-cohort. The coefficients and standard errors from the regressions underlying Panel C are reported in Appendix Table
9.



FIGURE 2
Effect of Teacher Value-Added on Earnings

a) Earnings at Age 28
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b) Impact of Teacher Value-Added on Earnings by Age
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Notes: Panel A is a binned scatter plot of earnings at age 28 vs. normalized teacher VA m̂jt. This plot corresponds to the
regression in Column 1 of Table 3 and uses the same sample restrictions and variable definitions. See notes to Figure 1 for
details on the construction of binned scatter plots. In Panel B, we replicate the regression in Column 1 of Table 3 (depicted
in Panel A), varying the age at which earnings are measured from 20 to 28. We then plot the resulting coefficients expressed
as a percentage of mean wage earnings in the regression sample at each age. The dashed lines show the boundaries of the 95%
confidence intervals for the effect of value-added on earnings at each age, with standard errors clustered by school-cohort. The
coefficients and standard errors from the regressions underlying Panel B are reported in Appendix Table 9.



FIGURE 3
Effects of Teacher Value-Added on Other Outcomes in Adulthood

a) Women with Teenage Births
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b) Neighborhood Quality at Age 28
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c) Retirement Savings at Age 28

19
19

.5
20

20
.5

P
er

ce
nt

 S
av

in
g

fo
r 

R
et

ire
m

en
ta

t A
ge

 2
8

Normalized Teacher Value Added ( ��)

Coef. = 0.55%

(0.16)

-1.5 -1 -0.5 0 0.5 1 1.5

Notes: These three figures are binned scatter plots corresponding to Columns 1-3 of Table 4 and use the same sample
restrictions and variable definitions. See notes to Figure 1 for details on the construction of these binned scatter plots.



FIGURE 4
Effects of Teacher Value-Added on Future Test Scores
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Notes: This figure shows the effect of current teacher VA on test scores at the end of the current and subsequent school years.
To construct this figure, we regress end-of-grade test scores in year t+ s on teacher VA µ̂jt in year t, varying s from 0 to 4. As
in our companion paper, we scale teacher VA in units of student test-score SD’s and include all students in the school district
data in these regressions, without restricting to the older cohorts that we use to study outcomes in adulthood. We control for
the baseline class-level control vector (defined in the notes to Table 2), using within-teacher variation to identify the coefficients
on controls as described in Section 2.1. The dashed lines depict 95% confidence intervals on each regression coefficient, with
standard errors clustered by school-cohort. The coefficients and standard errors from the underlying regressions are reported
in Appendix Table 10.



FIGURE 5
Effects of Changes in Teaching Staff Across Cohorts on College Outcomes

a) Change in College Attendance Across Cohorts vs. Change in Mean Teacher VA
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b) Change in College Quality Across Cohorts vs. Change in Mean Teacher VA
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Notes: These two figures plot changes in mean college attendance rates (measured in percentage points) and college quality
across adjacent cohorts within a school-grade-subject cell against changes in mean teacher VA across those cohorts. These
plots correspond to the regressions in Column 1 of Tables 5A and Table 5B and use the same sample restrictions and variable
definitions. To construct these binned scatter plots, we first demean both the x- and y-axis variables by school year to eliminate
any secular time trends. We then divide the observations into twenty equal-size groups (vingtiles) based on their change in
mean VA and plot the means of the y variable within each bin against the mean change in VA within each bin, weighting by
the number of students in each school-grade-subject-year cell. Finally, we add back the unconditional (weighted) mean of the
x and y variables in the estimation sample.



FIGURE 6
Timing of Changes in Teacher Quality and College Outcomes

a) Effects of Changes in Mean Teacher VA on College Attendance
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b) Effects of Changes in Mean Teacher VA on College Quality
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Notes: These figures evaluate whether the timing of changes in teacher quality across cohorts aligns with the timing of
changes in college outcomes. The point at 0 represents the “treatment effect” of changes in teacher quality on changes in
college outcomes for a given group of students; the other points are “placebo tests” that show the impacts of changes in teacher
quality for previous and subsequent cohorts on the same set of students. To construct Panel A, we regress the change in mean
college attendance between adjacent cohorts within a school-grade-subject cell on the change in mean teacher quality across
those cohorts as well as four lags and four leads of the change in mean teacher quality within the same school-grade-subject.
The regression also includes year fixed effects. Panel A plots the coefficients from this regression. We report the point estimate
and standard error on the own-year change in mean teacher quality (corresponding to the value at 0). We also report p-values
from hypothesis tests for the equality of the own-year coefficient and the one-year lead or one-year lag coefficients. These
standard errors and p-values account for clustering at the school-cohort level. Panel B replicates Panel A, replacing the
dependent variable with changes in mean college quality across adjacent cohorts.



FIGURE 7
Impacts of Teacher Value-Added on College Quality by Grade
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Notes: This figure plots the impact of a 1 SD increase in teacher VA in each grade from 4-8 on our earnings-based index of
college quality (defined in the notes to Table 1). The upper (circle) series shows the reduced-form effect of improved teacher
quality in each grade, including both the direct impact of the teacher on earnings and the indirect effect through improved
teacher quality in future years. To generate this series, we replicate Column 5 of Table 2, interacting VA with grade dummies.
We restrict the sample to cohorts who would have been in 4th grade during or after 1994 to obtain a balanced sample across
grades. The dots in the series plot the coefficients on each grade interaction. The dashed lines show the boundaries of the 95%
confidence intervals for the reduced-form effects, clustering the standard errors by school-cohort. The lower (triangle) series
plots the impact of teachers in each grade on college quality netting out the impacts of increased future teacher quality. We
net out the effects of future teachers using the tracking coefficients reported in Appendix Table 12 and solving the system of
equations in Section 6.3. Appendix Table 11 reports the reduced-form effects and net-of-future-teachers effects plotted in this
figure.



FIGURE 8
Earnings Impacts of Deselecting Low Value-Added Teachers

a) Earnings Impacts in First Year After Deselection
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b) Earnings Impact Over Time
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Notes: This figure analyzes the impacts of replacing teachers with VA in the bottom 5% with teachers of average quality on
the present value of lifetime earnings for a single classroom of average size (28.2 students). In Panel A, the horizontal line
shows the hypothetical gain from deselecting the bottom 5% of teachers based on their true VA in the current school year.
The series in circles plots the gains from deselecting teachers on estimated VA vs. the number of years of prior test score
data used to estimate VA. Panel A shows gains for the school year immediately after deselection; Panel B shows the gains in
subsequent school years, which decay over time due to drift in teacher quality. The lower series in Panel B (in circles) plots
the earnings gains in subsequent school years from deselecting teachers based on their VA estimate at t = 4, constructed using
the past three years of data. The first point in this series (at t = 4) corresponds to the third point in Panel A by construction.
The upper series (in triangles) shows the hypothetical gains obtained from deselecting the bottom 5% of teachers based on
their true VA at t = 4; the first dot in this series matches the value in the horizontal line in Panel A. For both series in Panel
B, we also report the unweighted mean gain over the first ten years after deselection. All values in these figures are based on
our estimate that a 1 SD increase in true teacher VA increases earnings by 1.34% (Column 2 of Table 3). All calculations
assume that teachers teach one class per year and report mean values for math and English teachers, which are calculated
separately. We calculate earnings gains using Monte Carlo simulations based on our estimates of the teacher VA process as
described in Section 7. All values in these figures and their undiscounted equivalents are reported in Appendix Table 13.



APPENDIX FIGURE 1
Stability of College Rankings by Age of Earnings Measurement

a) Rankings of Colleges Based on Earnings at Ages 23 and 27 vs. Age 32
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b) Correlation of College Rankings Based on Earnings at Age 32
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Notes: In Panel A, we take all college attendees in 1999 at age 20, as recorded by 1098-T forms, and construct three separate
college quality indices by averaging W-2 earnings by college at ages 23, 27, and 32. We convert each college quality measure into
a percentile rank based on the within-age distribution of college quality. We then bin colleges into 100 equal-sized (percentile)
bins using the college quality measure based on age 32 earnings and plot the mean percentile rank of colleges in each bin using
the age 23 (in circles) and age 27 (in triangles) measures. The best-fit lines are estimated from an unweighted OLS regression
of percentile ranks run at the college level. In Panel B, we take the same college attendees and calculate ten separate college
quality measures by averaging W-2 earnings by college at each age from 23-32. We then plot the Spearman rank correlation
between each college quality measure based on earnings at ages 23-31 and the college quality measure based on earnings at
age 32.



APPENDIX FIGURE 2
Correlations Between Outcomes in Adulthood and Test Scores

a) College Attendance
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Notes: These figures present binned scatter plots corresponding to the cross-sectional regressions of outcomes in adulthood on
test scores presented in Columns 1-4 of Appendix Table 3. See notes to Table 1 and Appendix Table 3 for further information
on the variable definitions and sample specification. In each panel, the series in circles corresponds to the first row of estimates,
without controls. The series in triangles corresponds to the second row of estimates, which includes the full control vector used
to estimate the value-added model. To construct the series in circles, we bin raw test scores into twenty equal-sized groups
(vingtiles) and plot the means of the outcome within each bin against the mean test score within each bin. To construct the
series in triangles, we first regress both the test scores and adult outcomes on the individual and class controls and teacher
fixed effects and compute residuals of both variables. We then divide the test score residuals into twenty equal-sized groups
and plot the means of the outcome residuals within each bin against the mean test score residuals within each bin. Finally, we
add back the unconditional mean of both test scores and the adult outcome in the estimation sample to facilitate interpretation
of the scale. We connect the dots in the non-linear series without controls and show a best-fit line for the series with controls,
estimated using an OLS regression on the microdata.



APPENDIX FIGURE 3
Jacob and Levitt (2003) Proxy for Test Manipulation vs. Value-Added Estimates
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Notes: This figure plots the relationship between our leave-out-year measure of teacher value added and Jacob and Levitt’s
proxy for cheating. The regressions are estimated on the linked analysis sample (as described in the notes to Table 1). Teacher
value-added is estimated using data from classes taught by a teacher in other years, following the procedure described in
Section 4.1. The y-axis variable is constructed as follows: Let ∆Āc,t = Āc,t − Āc,t−1 denote the change in mean test scores
from year t− 1 and t for students in classroom c. Let Rc,t denote the ordinal rank of classroom c in ∆Āc,t among classrooms
in its grade, subject, and school year and rc,t the ordinal rank as a fraction of the total number of classrooms in that grade,
subject, and school year. Jacob and Levitt’s (2003) measure for cheating in each classroom is JLc = (rc,t)2 + (1 − rc,t+1)2.

Higher values of this proxy indicate very large test score gains followed by very large test score losses, which Jacob and
Levitt show to be correlated with a higher chance of having suspicious patterns of answers indicative of cheating. Following
Jacob and Levitt, we define a classroom as an outlier if its value of JLc falls within the top 5% of classrooms in the data.
To construct the binned scatter plot, we group classrooms into percentiles based on their teacher’s estimated value-added,
ranking classrooms separately by school-level and subject. We then compute the percentage of Jacob-Levitt outliers within
each percentile bin and scatter these fractions vs. the percentiles of teacher VA. Each point thus represents the fraction of
Jacob-Levitt outliers at each percentile of teacher VA. The dashed vertical line depicts the 99th percentile of the value-added
distribution. We exclude classrooms with estimated VA above this threshold in our baseline specifications because they have
much higher frequencies of Jacob-Levitt outliers. See Appendix Table 8 for results with trimming at other cutoffs.



APPENDIX FIGURE 4
Correlation of Earnings Over the Lifecyle
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Notes: This figure plots the correlation of wage earnings at each age x with wage earnings at age x+ 12. We calculate wage
earnings as the sum of earnings reported on all W-2 forms for an individual in a given year. Individuals with no W-2 are
assigned 0 wage earnings. Earnings at age x are calculated in 1999, the first year in which we have W-2 data, and earnings at
age x+12 are calculated in 2011, the last year of our data. We calculate these correlations using the population of current U.S.
citizens. The dashed vertical line denotes age 28, the age at which we measure earnings in our analysis of teachers’ impacts.
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