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Abstract

We investigate the behavior of the equilibrium price-rent ratio for housing in a stan-

dard asset pricing model. We allow for time-varying risk aversion (via external habit

formation) and time-varying persistence and volatility in the stochastic process for rent

growth, consistent with U.S. data for the period 1960 to 2011. Under fully-rational ex-

pectations, the model significantly underpredicts the volatility of the U.S. price-rent ratio

for reasonable levels of risk aversion. We demonstrate that the model can approximately

match the volatility of the price-rent ratio in the data if near-rational agents continually

update their estimates for the mean, persistence and volatility of fundamental rent growth

using only recent data (i.e., the past 4 years), or if agents employ a simple moving-average

forecast rule for the price-rent ratio that places a large weight on the most recent obser-

vation. These two versions of the model can be distinguished by their predictions for the

correlation between expected future returns on housing and the price-rent ratio. Only

the moving-average model predicts a positive correlation such that agents tend to expect

higher future returns when house prices are high relative to fundamentals–a feature that

is consistent with survey evidence on the expectations of real-world housing investors.
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1 Introduction

House prices in the Unites States increased dramatically in the years prior to 2007. A common

feature of all bubbles which complicates the job of policymakers is the emergence of seemingly-

plausible fundamental arguments that seek to justify the dramatic rise in asset prices. The U.S.

housing boom was no different. During the boom years, many economists and policymakers

argued that a bubble did not exist and that numerous fundamental factors were driving the

run-up in prices.1 But in retrospect, many studies now attribute the run-up to a classic bubble

driven by over-optimistic projections about future house price growth which, in turn, led to a

collapse in lending standards.2 Reminiscent of the U.S. stock market mania of the late-1990s,

the mid-2000s housing market was characterized by an influx of unsophisticated buyers and

record transaction volume. When the optimistic house price projections eventually failed to

materialize, the bubble burst, setting off a chain of events that led to a financial and economic

crisis. The “Great Recession,” which started in December 2007 and ended in June 2009, was

the most severe economic contraction since 1947, as measured by the peak-to-trough decline

in real GDP (Lansing 2011).

This paper investigates the influence of agents’ expectations on the behavior of house prices

in a standard Lucas-type asset pricing model. We allow for time-varying risk aversion (via

external habit formation) and time-varying persistence and volatility in the stochastic process

for rent growth, consistent with U.S. data for the period 1960 to 2011. Under fully-rational

expectations, the model significantly underpredicts the volatility of the U.S. price-rent ratio for

reasonable levels of risk aversion. We demonstrate that the model can approximately match

the volatility of the price-rent ratio in the data if near-rational agents continually update their

estimates for the mean, persistence and volatility of fundamental rent growth using only recent

data (i.e., the past 4 years), or if agents employ a simple moving-average forecast rule for the

price-rent ratio that places a large weight on the most recent observation. These two versions

of the model can be distinguished by their predictions for the correlation between expected

future returns on housing and the price-rent ratio. Only the moving-average model predicts a

positive correlation such that agents tend to expect higher future returns when house prices

are high relative to fundamentals–a feature that is consistent with survey evidence on the

expectations of real-world housing investors.

As part of our quantitative analysis, we apply the Campbell and Shiller (1988) log-linear

1See, for example, McCarthy and Peach (2004) and Himmelberg, et al. (2005). In an October 2004 speech,

Fed Chairman Alan Greenspan (2004) argued that there were “significant impediments to speculative trading”

in the housing market that served as “an important restraint on the development of price bubbles.” In a July 1,

2005 media interview, Ben Bernanke, then Chairman of the President’s Council of Economic Advisers, asserted

that fundamental factors such as strong growth in jobs and incomes, low mortgage rates, demographics, and

restricted supply were supporting U.S. house prices. In the same interview, Bernanke stated his view that a

substantial nationwide decline in house prices was “a pretty unlikely possibility.” For additional details, see

Jurgilas and Lansing (2013).
2For a comprehensive review of events, see the report of the U.S. Financial Crisis Inquiry Commission (2011).

Recently, in a review of the Fed’s forecasting record leading up to the crisis, Potter (2011) acknowledges a

“misunderstanding of the housing boom. . . [which] downplayed the risk of a substantial fall in house prices.”
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approximation of the return identity to the housing market. The variance of the log price-

rent ratio must equal the sum of the ratio’s covariances with: (1) future rent growth rates,

and (2) future realized housing returns. The magnitude of each covariance term is a measure

of the predictability of future rent growth or future realized returns when the current price-

rent ratio is employed as the sole regressor in a forecasting equation. As in the U.S. data, the

moving-average model exhibits the property that a higher price-rent ratio in the current period

strongly predicts lower realized returns in the future, but the predictive power for future rent

growth is very weak. Interestingly, even though a higher price-rent ratio in the data predicts

lower realized returns, the survey evidence shows that real-world investors fail to take this

relationship into account; instead they continue to forecast high future returns following a

sustained run-up in the price-rent ratio. Such behavior is consistent with a moving-average

forecast rule but is inconsistent with the fully-rational and near-rational versions of our model.

We also show that the moving-average model can deliver either a positive or negative regression

coefficient on the price-rent ratio when the ratio is used to predict future rent growth. The

sign of the regression coefficient is influenced by the value of a utility curvature parameter.

Our simulation results can therefore help account for the empirical findings of Engsted and

Pedersen (2012), who document significant cross-country and sub-sample instability in the

sign of this regression coefficient using housing market data from 18 OECD countries over the

period 1970 to 2011.

An additional contribution of the paper is to derive an approximate analytical solution for

the fully-rational house price in the case when fundamental rent growth exibits time-varying

persistence and volatility. Our specification for rent growth employs the bilinear times series

model originally developed Granger and Andersen (1978) which allows for nonlinear behavior

within a continuous state space. Our solution procedure makes use of a change of variables to

preserve as much of the model’s nonlinear characteristics as possible.

Standard dynamic stochastic general-equilibrium (DSGE) models with fully-rational ex-

pectations have difficulty producing large swings in house prices that resemble the patterns

observed in the U.S. and other countries over the past decade. Indeed, it is common for such

models to postulate extremely large and persistent exogenous shocks to rational agents’ pref-

erences for housing in an effort to bridge the gap between the model and the data.3 Leaving

aside questions about where these preference shocks actually come from and how agents’ re-

sponses to them could become coordinated, we demonstrate numerically that an upward shift

in the representative agent’s preference for housing raises the mean price-rent ratio under all

three expectations regimes. At the same time, the preference shift lowers the average real-

ized return on housing. Under rational expectations, the agent will take this relationship into

account when forecasting such that the conditional expected return on housing will move in

the opposite direction as the price-rent ratio in response to a shift in housing preferences.

Hence, while a fully-rational model with housing preference shocks could potentially match

the volatility of the price-rent ratio in the data, such a model would still predict a negative

3See for example, Iacoviello and Neri (2010), among others.
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correlation between the expected return on housing and the price-rent ratio–directly at odds

with the survey evidence described below.

Kocherlakota (2009) remarks: “The sources of disturbances in macroeconomic models are

(to my taste) patently unrealistic... I believe that [macroeconomists] are handicapping them-

selves by only looking at shocks to fundamentals like preferences and technology. Phenomena

like credit market crunches or asset market bubbles rely on self-fulfilling beliefs about what

others will do.” These ideas motivate consideration of a model where investors’ subjective

forecasts serve as an endogenous source of volatility for house prices.

1.1 Survey Evidence on Investor Expectations

The fundamental value of an asset is typically measured by the present-value of expected

future cash or service flows that will accrue to the owner. Service flows from housing are

called “imputed rents.” The discount rate used in the present-value calculation is comprised of

a risk-free yield and a compensation for perceived risk, i.e., a risk premium. Their sum defines

the rate of return that an investor expects to receive to justify purchase of the asset. All else

equal, a lower risk premium implies a lower expected return and a lower discount rate in the

present-value calculation. Future service flows will be discounted less and the fundamental

value will rise.

Cochrane (2009) argues that one cannot easily tell the difference between a bubble and a

situation where rational investors have low risk premia, implying lower expected returns on the

risky asset. Specifically, he remarks “Crying bubble is empty unless you have an operational

procedure for distinguishing them from rationally low risk premiums.” Along similar lines,

Favilukis, et al. (2011) argue that the run-up in U.S. house prices relative to rents was largely

due to a financial market liberalization that reduced buyers’ perceptions of the riskiness of

housing assets. The authors develop a theoretical model where easier lending standards and

lower mortgage transaction costs contribute to a substantial rise in house prices relative to

rents, but this is not a bubble. Rather, the financial market liberalization allows fully-rational

households in the model to better smooth their consumption in the face of unexpected income

declines, thus reducing their perceptions of economic risk. Lower risk perceptions induce

households to accept a lower rate of return on the purchase of risky assets like houses. A lower

expected return leads to an increase in the model’s fundamental price-rent ratio, similar to

that observed in the data. In the words of the authors, “a financial market liberalization drives

price-rent ratios up because it drives risk premia down. . . Procyclical increases in [fundamental]

price-rent ratios reflect rational expectations of lower future returns.”

In our view, the relaxation of lending standards in the mid-2000s was an endogenous

consequence of the house price run-up, not an exogenous fundamental driver of the run-

up. Standards were relaxed because lenders (and willing borrowers) expected house price

appreciation to continue indefinitely. Empirical evidence supports this view. Within the

United States, past house price appreciation in a given area had a significant positive influence

on subsequent loan approval rates in the same area (Dell’Ariccia, et al. 2011, Goetzmann, et
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al. 2012).

Case and Shiller (2004) make the point that “the mere fact of rapid price increases is not

in itself conclusive evidence of a bubble. . . .The notion of a bubble is really defined in terms

of people’s thinking about future price increases.” Survey evidence on people’s expectations

about future house price appreciation can therefore be a useful tool for diagnosing a bubble.

Rational investors with low risk premiums would expect low future returns after a sustained

price run-up, whereas irrationally exuberant investors in the midst of a bubble would expect

high future returns because they simply extrapolate recent price action into the future. A

variety of evidence from both stock and real estate markets (discussed below) shows that

real-world investors typically expect high future returns near market peaks, not low future

returns.

Shiller (2000) developed a questionnaire to study investor expectations about future stock

market returns in Japan and the U.S. during the 1990s. From the data, he constructed an

index of “bubble expectations” which reflected the belief that stock prices would continue to

rise despite being high relative to fundamentals. He found that the index moved roughly in

line with movements in the stock market itself, suggesting that investors tend to extrapolate

recent market trends when making predictions about future returns.

Two additional studies by Fischer and Statman (2002) and Vissing-Jorgenson (2004) also

find evidence of extrapolative expectations among U.S. stock market investors during the late

1990s and early 2000s. Using survey data, they found that investors who experienced high

portfolio returns in the past tended to expect higher returns in the future. Moreover, expected

returns reached a maximum just when the stock market itself reached a peak in early 2000.

Recently, in a comprehensive study of the expectations of U.S. stock market investors using

survey data from a variety of sources, Greenwood and Shleifer (2013) find that measures of

investor expectations about future stock returns are: (1) positively correlated with (1) the

price-dividend ratio, (2) past stock returns, and (3) investor inflows into mutual funds. They

conclude (p. 30) that “[O]ur evidence rules out rational expectations models in which changes

in market valuations are driven by the required returns of a representative investor...Future

models of stock market fluctuations should embrace the large fraction of investors whose

expectations are extrapolative.” We apply this advice in the present paper to a model of

housing market fluctuations.

Using survey data on homebuyers in four metropolitan areas in 2002 and 2003, Case and

Shiller (2004) found that about 90 percent of respondents expected house prices to increase

over the next several years. More strikingly, when asked about the next ten years, respondents

expected future annual price appreciation in the range of 12 to 16 percent per year–implying

a tripling or quadrupling of home values over the next decade. Needless to say, these forecasts

proved wildly optimistic. In a study of data from the Michigan Survey of Consumers, Pi-

azzesi and Schneider (2009) report that “starting in 2004, more and more households became

optimistic after having watched house prices increase for several years.”

Anecdotal evidence further supports the view that U.S. housing investors had high expected
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Figure 1: Futures market forecasts for house prices tend to overpredict subsequent actual

house prices when prices are falling–a pattern consistent with a moving-average forecast rule.

returns near the market peak. The June 6, 2005 cover of Fortune magazine was titled “Real

Estate Gold Rush–Inside the hot-money world of housing speculators, condo-flippers and

get-rich-quick schemers.” One week later, the June 13, 2005 cover of Time magazine was titled

“Home $weet Home–Why we’re going gaga over real estate.” Both covers depicted happy and

celebrating housing investors–all suggesting a rosy outlook for U.S. real estate.

In surveys during 2006 and 2007, Shiller (2007) found that places with high recent house

price growth exhibited high expectations of future price appreciation and that places with

slowing house price growth exhibited downward shifts in expected appreciation. Indeed by

2008, in the midst of the housing market bust, Case, Shiller, and Thompson (2012) show that

survey respondents in prior boom areas now mostly expected a decline in house prices over

the next year. In a review of the time series evidence on housing investor expectations, the

authors conclude (p. 17) that “12-month expectations [of future house prices changes] are

fairly well described as attenuated versions of lagged actual 12-month price changes.” Overall,

the evidence appears to directly contradict the view that declining risk premiums (resulting

in low expected returns) were the explanation for the run-up in U.S. house prices relative to

rents.

The survey evidence described above shows that there is strong empirical support for con-

sidering extrapolative or moving-average type forecast rules, particularly in the housing mar-

ket. As shown originally by Muth (1960), a moving-average forecast rule with exponentially-

declining weights on past data will coincide with rational expectations when the forecast

variable evolves as a random walk with permanent and temporary shocks. But even if this is

not the case, a moving-average forecast rule can be viewed as boundedly-rational because it
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Figure 2: One-year ahead U.S. inflation expectations derived from the Survey of Professional

Forecasters (SPF) versus subsequent realized 4-quarter GDP price inflation. The realized

inflation series is shifted back so that the vertical distance between the two series represents

the forecast error. The professional forecasters tend to systematically underpredict subsequent

realized inflation in the sample period prior to 1979 when inflation was rising and systematically

overpredict it thereafter when inflation was falling. The survey pattern is well-captured by a

moving-average of past observed inflation rates.

economizes on the costs of collecting and processing information. As noted by Nerlove (1983,

p. 1255): “Purposeful economic agents have incentives to eliminate errors up to a point justi-

fied by the costs of obtaining the information necessary to do so...The most readily available

and least costly information about the future value of a variable is its past value.”

Figure 1 shows that futures market forecasts for the Case-Shiller house price index (which

are only available from 2006 onwards) often exhibit a series of one-sided forecast errors. The

futures market tends to overpredict future house prices when prices are falling–a pattern

that is consistent with a moving-average forecast rule. Similarly, the top panel of Figure 2

shows that U.S. inflation expectations derived from the Survey of Professional Forecasters

tend to systematically underpredict subsequent realized inflation in the sample period prior to

1979 when inflation was rising and systematically overpredict it thereafter when inflation was

falling. Rational expectations would not give rise to such a sustained sequence of one-sided
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Figure 3: Periods of stagnant real house prices are interspersed with booms and busts. Norway

experienced a major housing price boom in the late 1980s followed by a crash in the early 1990s.

The earlier boom-bust pattern in Norway is similar in magnitude to the recent boom-bust

pattern in U.S. house prices. Real house prices are indexed to 100 in 1890.

forecast errors.4 The bottom panel of Figure 2 shows that the survey pattern is well-captured

by an exponentially-weighted moving-average of past inflation rates, where the weight  on

the most recent inflation observation is 0.35. Interestingly, a weight of 0.35 on the most recent

inflation observation is consistent with a Kalman filter forecast in which agents’ perceived law

of motion for inflation is a random walk plus noise (Lansing 2009).

1.2 Related Literature

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have

shown that stock prices appear to exhibit excess volatility when compared to the discounted

stream of ex post realized dividends.5 Similarly, Campbell, et al. (2009) find that movements

in U.S. house price-rent ratios cannot be fully explained by movements in future rent growth.

A large body of research seeks to explain asset price behavior using some type of distorted

belief mechanism or misspecified forecast rule in a representative agent framework. Examples

4Numerous studies document evidence of bias and inefficiency in survey forecasts of U.S. inflation. See, for

example, Roberts (1997), Mehra (2002), Carroll (2003), and Mankiw, Reis, and Wolfers (2004). More recently,

Coibion and Gorodnichencko (2012) find robust evidence against full-information rational expectations in survey

forecasts for U.S. inflation and unemployment.
5Lansing and LeRoy (2012) provide a recent update on this literature.
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Figure 4: The U.S. price-rent ratio peaked in early 2006 and has since fallen to its pre-boom

level. The price-rent ratio for Norway has continued to trend upwards and currently stands

about 50 percent above the last major peak achieved two decades ago. Price-rent ratios are

indexed to 100 in 1960.

along these lines include Barsky and Delong (1993), Timmerman (1996), Barberis, Shleifer,

and Vishney (1998), Lansing (2006, 2010), Adam, Marcet, and Nicolini (2008), Branch and

Evans (2010), Fuster, et al. (2012), and Hommes and Zhu (2013), among others.

An empirical study by Chow (1989) finds that an asset pricing model with moving-average

expectations outperforms one with rational expectations in accounting for observed move-

ments in U.S. stock prices and interest rates. Huh and Lansing (2000) show that a model

with backward-looking expectations is better able to capture the temporary rise in long-term

nominal interest rates observed in U.S. data at the start of the Volcker disinflation in the

early-1980s. Some recent research that incorporates moving-average forecast rules or adap-

tive expectations into otherwise standard models include Sargent (1999, Chapter 6), Evans

and Ramey (2006), Lansing (2009), and Huang, et. al (2009), among others. Huang, et al.

(2009) state that “adaptive expectations can be an important source of frictions that amplify

and propagate technology shocks and seem promising for generating plausible labor market

dynamics.”

Using an estimated New Keynesian DSGE model that allows for both rational and moving-

average expectations, Levine, et al. (2012) find that the estimated fraction of agents who

employ a moving-average forecast rule lies in the range of 0.65 to 0.83. Gelain, et al. (2013)
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Figure 5: The percentage of Norwegian households who believe that property prices will keep

rising has gone up from a low of 10 percent in 2008 to nearly 70 percent in 2012. Norwegians

appear to expect high future returns on real estate even after a sustained run-up in the price-

rent ratio. Data source: Financial Supervisory Authority of Norway.

show that the introduction of simple moving-average forecast rules for a subset of agents can

significantly magnify the volatility and persistence of house prices and household debt in a

standard DSGE model with housing. Granziera and Kozicki (2012) show that a simple Lucas-

type asset pricing model with backward-looking, extrapolative-type expectations can roughly

match the run-up in U.S. house prices from 2000 to 2006 as well as the subsequent sharp

downturn.

Constant-gain learning algorithms of the type described by Evans and Honkapoja (2001)

are similar in many respects to moving-average expectations; both formulations assume that

agents apply exponentially-declining weights to past data when constructing forecasts of future

variables. Adam, et al. (2012) show that the introduction of constant-gain learning can help

account for recent cross-country patterns in house prices and current account dynamics. In

contrast to our setup, however, their model assumes the presence of volatile and persistent

exogenous shocks to the representative agent’s preference for housing services, a feature that

helps their model to fit the data.

2 Housing Market Data

Figure 3 plots real house price indices in the U.S. and Norway from 1890 to 2011. The U.S.

data are updated from Shiller (2005) while data for Norway are updated from Eitrheim and
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Figure 6: The balance of Norwegian households expecting a house price increase over the

next 12 months is strongly correlated with nominal house price growth over the preceeding 12

months, suggestive of a moving-average type forecast rule. Data source: Financial Supervisory

Authority of Norway and Norges Bank.

Erlandsen (2004, 2005). Both series show that real house prices were relatively stagnant for

most of the 20th century. Norway and other Nordic countries experienced a major housing

price boom in the late 1980s followed by a crash in the early 1990s . The earlier boom-bust

pattern in Norway is similar in magnitude to the recent boom-bust pattern in U.S. house prices

(Knutsen 2012). After peaking in 2006, U.S. real house prices have since dropped by nearly 40

percent. Starting in the late 1990s, Norwegian house prices experienced another major boom

but so far no bust. On the contrary, real house prices in Norway have continued to rise by

nearly 30 percent since 2006.

Figure 4 plots price-rent ratios in the U.S. and Norway from 1960 onwards. The U.S. ratio

peaked in early 2006 and has since returned to its pre-boom level. The price-rent ratio for

Norway has continued to trend upwards and currently stands about 50 percent above the last

major peak achieved two decades ago. Price-income ratios for the two countries display a

similar pattern.6

Figure 5 plots the results of a survey of Norwegian households about expected house price

changes over the next 12 months. The percentage of households who believe that property

prices will keep rising has gone up from a low of 10 percent in 2008 to nearly 70 percent

in 2012. Comparing Figure 5 to the price-rent ratio for Norway in Figure 4 suggests that

Norwegians appear to expect high future returns on housing even after a sustained run-up

in the price-rent ratio. This pattern is directly at odds with the idea of rationally low risk

6See Jurgilas and Lansing (2013).
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Figure 7: Quarterly housing returns and log price changes were consistently positive and rising

during the U.S. housing boom of the mid-2000s.

premiums. Figure 6 shows that the balance of Norwegian households expecting a house price

increase over the subsequent 12 months is strongly correlated with nominal house price growth

over the preceding 12 months, suggestive of a moving-average type forecast rule.

Figure 7 provides a detailed look at U.S. house prices and rents using quarterly data

from 1960.Q1 to 2011.Q4.7 The bottom two panels plot the quarterly real return on housing

together with the quarterly real price change (in percent).8 Returns and log price changes

were consistently positive and rising during the U.S. housing boom of the mid-2000s. After

observing such a long string of favorable housing returns, it seems quite natural that lenders

and homebuyers would have expected the favorable returns to continue, as confirmed by the

survey evidence.

Figure 8 plots quarterly rent growth in the data together with rolling summary statistics

for window lengths of 4-years and 10-years. All of the summary statistics exhibit considerable

variation. For example, the rolling 10-year autocorrelation coefficient (lower left panel) ranges

7Quarterly data for U.S. nominal house prices and nominal rents are from www.lincolninst.edu, using the

Case-Shiller-Weiss price data from the year 2000 onwards, as documented in Davis, Lehnert, and Martin (2008).

Nominal values are converted to real values using the Consumer Price Index (all items) from the Federal Reserve

Bank of St Louis.
8Consistent with our model, the quarterly net housing return in period  is defined as  (−1 − −1)− 1

where  is the real house price and  is the quarterly real rent payment.
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Figure 8: U.S. real rent growth exhibits time-varying mean, persistence and volatility.

from a low of −017 to a high of 0.75. Variation of this magnitude can have significant

implications for the quantitative predictions of rational asset pricing models, particularly in the

presence of habit formation (Otrok, et al. 2002). We therefore allow fundamental rent growth

to exhibit time varying persistence and volatility in the theoretical model to be described next.

3 Model

Housing services are priced using a version of the frictionless pure exchange model of Lucas

(1978). The representative agent’s problem is to choose sequences of  and  to maximize
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subject to the budget constraint

 +  =  + −1   ≥ 0 (2)

where  is the agent’s consumption in period   is the housing service flow,  is income,

 is the subjective time discount factor, and  is a curvature parameter that influences the

coefficient of relative risk aversion. To allow for time-varying risk aversion, we assume that

an individual agent’s felicity is measured relative to the lagged per capita consumption basket
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−1  which the agent views as outside of his control.

9 The parameter  ≥ 0 governs
the importance of the external habit stock.10 The symbol b represents the agent’s subjective

expectation, conditional on information available at time  as explained more fully below.

Under rational expectations, b corresponds to the mathematical expectation operator 

evaluated using the objective distribution of shocks, which are assumed known by the rational

household. The symbol  is the price of housing services in consumption units.

The first-order condition that governs the agent’s purchase of housing services is given by
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µ
1− 



¶
| {z }

≡

+ +1 +1 (3)

where  ≡  (1− )  is the imputed rent (or utility dividend) from housing and+1 is the

stochastic discount factor. Equation (3) reflects the assumption that housing exists in unit

net supply such that  = 1 for all  Substituting this equilibrium condition into the budget

constraint (2) yields,  =  for all 
11

In equilibrium, the exponential growth rates of rent, consumption, and income are iden-

tical. In the data, imputed rent reflects not only the utility dividend, but also the marginal

collateral value of the house in the case when the agent’s borrowing constraint is binding. We

illustrate this point analytically in Appendix A. Although we abstract from directly modeling

a borrowing constraint, we can implicitly take the effect on house prices into account by cal-

ibrating the effective cash flows in the model to match the stochastic properties of U.S. rent

growth.12 Rent growth in the model is governed by the following law of motion

+1 ≡ log

µ
+1
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= + (+ ) ( − ) + +1  ∼ 

¡
0 2

¢
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where  is the steady state growth rate which differs from the ergodic mean  () =  +

2 (1− ) when  6= 0 Equation (4) is a simple version of the bilinear time series model

originally developed by Granger and Andersen (1978) and explored further by Sesay and Subba

Rao (1988). By appropriate choice of the parameters    and  the above specification

can match the unconditional moments of U.S. rent growth and deliver time-varying persistence

and volatility, consistent with the data.

9Maurer and Meier (2008) find strong empirical evidence for “peer-group effects” on individual consumption

decisions using panel data on U.S. household expenditures.
10Otrok, et al. (2002) show that a one-lag habit specification similar to (1) can match the historical mean

U.S. equity premium.
11Following Otrok, et al. (2002) we impose an upper bound on the ratio −1 to ensure that the utility

function (1) is always well defined. The upper bound is never reached in the model simulations.
12Piazzesi, et al. (2007) similarly abstract from modeling a borrowing constraint in their analysis of the links

between stock returns and housing returns.
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The equilibrium stochastic discount factor is

+1 = 

µ
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1−  exp (−)

¸−
 (5)

where we have imposed  = 1 and made use of the fact that model consumption growth and

model rent growth are identical.13

Dividing both sides of the first-order condition (3) by the current period rent  and

substituting in the expression for +1 yields




= 1 +  b exp {[ (1− )]+1}

∙
1−  exp (−+1)
1−  exp (−)

¸−
+1

+1
 (6)

which shows that the price-rent ratio in period  depends on the agent’s subjective joint forecast

of next period’s rent growth +1 and next period’s price-rent ratio +1+1. It is convenient

to transform equation (6) using a nonlinear change of variables to obtain

 =  () +  exp {[ (1− )]} b+1 (7)

where  ≡  ()




 () ≡ exp {[ (1− )]}
[1−  exp (−)]

Under this formulation,  represents a composite variable that the agent must forecast. The

transformed first-order condition (7) shows that the value of the composite variable  in period

 depends in part on the agent’s subjective forecast of that same variable.

By making use of the definition of  equation (6) can be written as




= 1 +  [1−  exp (−)] b+1 (8)

which shows that the agent’s subject forecast b+1 has a direct influence on the dynamics

of the equilibrium price-rent ratio .

Equation (3) can be rearranged to obtain the standard relationship

1 = b [+1+1]  (9)

where +1 ≡ +1 ( − ) defines the gross return on housing from period  to + 1

13Over the period 1960 to 2011, the correlation coefficient between quarterly U.S. rent growth and quarterly

U.S. per capita consumption growth (nondurables and services) is 0.47.
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3.1 Rational Expectations

Proposition 1. An approximate analytical solution for the value of the composite variable

 ≡  ()  under rational expectations is given by

 = 0 exp
©
1 [ − ()] + 2

¡
 − 2

¢ª


where  ≡  ( − ) such that  () = 2 The constants 0 ≡ exp { [log ()]}  1 and
2 are Taylor series coefficients that depend on the preference parameters     and the

rent growth parameters    and 

Proof : See Appendix B.

The approximate solution in Proposition 1 preserves the nonlinear features of the model

in several ways. First, rent growth  is a state variable that follows a nonlinear law of

motion, as given by equation (4). Second, the solution for  depends on the state variable

 ≡  ( − ) which also follows a nonlinear law of motion, as derived in Appendix B. Third,

given the solution for , the price-rent ratio is determined as a nonlinear function of the state

variable  such that  =  (). In the model simulations, we use the approximate

solution in Proposition 1 to construct the conditional forecast +1 each period using the

expression derived in Appendix A. We then substitute the resulting value for +1 into the

nonlinear first-order (7) to obtained the realized value of the composite variable  each period.

To compute the rational expected return on housing, we rewrite the gross return as

+1 =

∙
+1+1

 − 1
¸
exp (+1) 

=

∙
[1−  exp (−+1)] exp {[− (1− )]+1} +1

 [1−  exp (−)] +1

¸
exp (+1) 

=

∙
1−  exp (−+1)
1−  exp (−)

¸
exp {[1−  (1− )]+1} +1

+1
 (10)

where we have eliminated +1+1 using the definitional relationships for +1 and  (+1) 

and we have eliminated  using the transformed first-order condition (8).
14

From equation (10), the conditional expectation of the log return is given by

 log (+1) = − log ()−  log [1−  exp (−)] +  log (+1) − log (+1)

+  log [1−  exp (−+1)] + [1−  (1− )] +1 (11)

where the conditional forecasts for terms involving +1 are computed using the true law

of motion for rent growth (4) and the conditional forecasts +1 and  log +1 are com-

puted using the approximate rational solution from Proposition 1, as detailed in the appen-

dix. To derive an analytical expression for  log (+1)  we approximate the nonlinear term

14Our procedure for expressing the rational return on the risky asset in terms of the composite variable 
follows Lansing and LeRoy (2012).

15



log [1−  exp (−+1)] in (11) using the expression 0 + 1 [+1 − ()]  where 0 and 1

are Taylor series coefficients.

The conditional expectation of the 4-quarter compound return is formulated as

 [+1→ +4]| {z }
4−quarter return

= 

4P
=1

log (+)  (12)

where the terms  log (+) for  = 2 3 4 are computed by iterating equation (10) forward,

taking logs, linearizing where necessary, and then applying the law of iterated expectations.

3.2 Near-Rational Expectations

The rational expectations solution in Proposition 1 is based on strong assumptions about

the representative agent’s information set. Specifically, the fully-rational solution assumes

that agents know the true stochastic process for rent growth (4) which exhibits stochastic

persistence and volatility. An agent with less information may be inclined to view rent growth

as being governed by an AR(1) process with shifting parameters–a specification that could

also account for the appearance of stochastic persistence and volatility in the observed rent

growth data. Along these lines, we consider a near-rational agent who has the following

perceived law of motion (PLM) for rent growth.

+1 =  +  ( − ) + +1  ∼ 
¡
0 2

¢
 (13)

where ,  and   are time-varying AR(1) parameters.

Following the learning literature, we assume that agents estimate the parameters of the

PLM (13) using recent data. In this way, they seek to account for the perceived shifts in the

parameters governing rent growth. Specifically, we assume that the near-rational agent infers

the parameters of (13) by computing moments over a rolling sample window of length :

 =  ()  where  ∈ [ − + 1 ]  (14)

 =  (  −1)  (15)

  =

q
  ()

¡
1− 2

¢
 (16)

The learning mechanism summarized by equations (14) through (16) is a version of the sample

autocorrelation learning (SAC) algorithm described by Hommes and Sogner (1998). The

advantage of this algorithm is that it endogenously enforces the restriction  ∈ (−1 1) 
which ensures that perceived rent growth is always stationary.15

15For other applications of the SAC learning algorithm, see Lansing (2009, 2010) and Hommes and Zhu

(2013).
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If the true law of motion for rent growth was governed by an AR(1) process with constant

parameters, then the rational expectations solution would take the form shown in Proposition

1, but with 2 = 0 Under “near-rational” expectations, we assume that the representative

agent employs the correct perceived form of the rational expectations solution, but the agent

continually updates the parameters of the perceived rent growth process (13), which in turn

delivers shifting coefficients in the perceived optimal forecast rule.

As shown in Appendix C, the near-rational agent’s conjectured solution for the composite

variable  takes the form

 ' 0 exp [1 ( − )]  (PLM) (17)

b +1 = 0 exp
h
1  ( − ) +

1
2
(1)

2 2 

i
 (18)

where 0 and 1 depend on the most recent estimates of the AR(1) parameters  

and   We follow the common practice in the learning literature by assuming that the

representative agent views the most recent parameter estimates as permanent when computing

the subjective forecast b +1
16

Substituting the subjective forecast (18) into the nonlinear first-order condition (7), yields

the following actual law of motion (ALM) for the composite variable :

 =  () + 0 exp
n
[ (1− )]  + 1  ( − ) +

1
2
(1)

2 2 

o
 (19)

Following the methodology under rational expectations, the near-rational conditional ex-

pectation of the log return is given byb log (+1) = − log ()−  log [1−  exp (−)] + b log (+1) − log
³ b+1

´
+  b log [1−  exp (−+1)] + [1−  (1− )] b +1 (20)

where the subjective forecasts involving +1 are computed using the agent’s perceived law of

motion (13).and the subjective forecasts b+1 and b log +1 are computed using the agent’s

conjectured solution (17), as shown in the appendix. To derive an analytical expression forb log (+1)  we approximate the nonlinear term log [1−  exp (−+1)] in (20) using the
expression 0+ 1 (+1 − )  where 0 and 1 are time-varying Taylor series coefficients

that shift over time due to the agent’s perception that the approximation point  is shifting.

The near-rational agent’s forecast for the 4-quarter compound return is formulated along

the lines of equation (12), but now the subjective expectation operator b is used in place of

the mathematical expectation operator  and the agent’s perceived laws of motion are used

in place of the actual laws of motion when computing the subjective forecasts.

16Otrok, et al. (2002) employ a similar procedure which they describe (p. 1275) as “a kind of myopic

learning.” For an earlier example of this type of learning applied to the U.S. stock market, see Barsky and

Delong (1993). More recently, Collin-Dufresne, et al. (2012) examine the asset pricing implications of fully-

rational learning about the parameters of dividend growth. In their model, agents’ rational forecasts take into

account the expected future shifts in the estimated parameters via Bayes law.
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3.3 Moving-Average Expectations

Motivated by the survey evidence on the expectations of real-world investors, we consider a

forecast rule that is based on a simple moving-average of past observed values of the forecast

variable. Such a forecast requires only a minimal amount of computational and informational

resources. Specifically, the agent does not need to know or estimate the underlying stochastic

process for rent growth. The agent’s subjective forecast rule is given by:

b +1 =   + (1− ) b−1   ∈ [0 1] 

= 
h
 + (1− ) −1 + (1− )2 −2 + 

i
 (21)

where we formulate the moving average in terms of the composite variable  that appears

in the transformed first-order condition (7). In simulations of the moving average model, the

composite variable  exhibits a correlation coefficient of 0.97 with the price-rent ratio 

Hence, we can roughly think of the agent as applying a moving average forecast rule to the

price-rent ratio itself.

Substituting b +1 from equation (21) into the transformed first-order condition (7),

yields the following actual law of motion for the composite variable :

 =
 ()

1−  exp {[ (1− )]} +
 (1− ) exp {[ (1− )]}
1−  exp {[ (1− )]}

b−1

(22)

where the previous subjective forecast b−1 acts like an endogenous state variable that
evolves according to the following law of motion:

b +1 =
  ()

1−  exp {[ (1− )]} +

∙
1− 

1−  exp {[ (1− )]}
¸ b−1 (23)

We postulate that the agent’s subjective forecast for the 4-quarter compound return is

constructed in the same way as the forecast for +1 Specifically, the subjective return forecast

is constructed as a moving-average of past observed 4-quarter returns, where the same weight

 is applied to the most recent return observation.

b [+1→ +4]| {z }
4−quarter return

=  [−4→ ] + (1− ) b−1 [−4→ ] (24)

4 Calibration

Table 1 shows the baseline parameter values used in the model simulations. We also examine

the sensitivity of the results to a range of values for some key parameters, namely   

and 
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Table 1. Baseline Parameter Values

Parameter Value Description/Target

 2 Utility curvature parameter.

 08 Utility habit parameter.

 099 Match mean of U.S. price/quarterly rent ratio = 823

 087 Match mean of U.S. price/quarterly income ratio = 12

 00083% Match mean U.S. rent growth.

 038 Match autocorrelation of U.S. rent growth.

 0457% Match Std. Dev. of U.S. rent growth.

 674 Match Skewness of U.S. rent growth.

 16 quarters Match Std. Dev. of U.S. price/quarterly rent = 1395

 093 Match Std. Dev. of U.S. price/quarterly rent = 1395

The utility function (1) implies the following expression for the coefficient of relative risk

aversion (CRRA):

CRRA = − 


=



1−  exp (− ) + 1−  (25)

which yields CRRA = 8.8 for the baseline calibration when  =  ()  During the simula-

tions, the risk aversion coefficient ranges from a low of 7.7 to a high of 9.4. Hence, our baseline

calibration keeps the risk aversion coefficient below the maximum level of 10 considered plau-

sible by Mehra and Prescott (1985).17

The parameters  and  are chosen simultaneously so that the rational expectations model

exhibits a mean price-rent ratio and a mean price-income ratio which are close to the sample

means in U.S. data.18 Data on U.S. price-rent ratios from 1960 to 2011 are from the Lincoln

Land Institute (see footnote 6). Data on U.S. price-income ratios for the period 1985 to 2012

are from Gudell (2012). The same values of  and  are used for the near-rational model and

the moving-average model.

We choose the rent growth parameters    and  to match the mean, first-order

autocorrelation, standard deviation, and skewness of U.S. rent growth over the period 1960.Q2

to 2011.Q4. The analytical moment formulas for model rent growth are contained in Appendix

D. The calibrated value of  is considerably smaller than the mean growth rate in the data

since the analytical moments imply  () = +2 (1− )  Table 2 compares the properties

of U.S. rent growth to those produced by a long simulation of the model. In addition to hitting

the four targeted statistics, the model does a reasonably good job of replicating the second-

order autocorrelation and the kurtosis of U.S. rent growth.

17 In the habit formation model of Campbell and Cochrane (1999), the calibration implies an extremely high

coefficient of relative risk aversion–around 80 in the model steady state.
18Since  = (1− )  and  = 1 we have  = (1 − 1) , which is used to pin down the

value of  The value of  is pinned down using the analytical expression for the Taylor series coefficient 0 in

Proposition 1.
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Figure 9: Model rent growth exhibits time-varying mean, persistence and volatility. The near-

rational agent’s perception that the AR(1) parameters for rent growth are shifting appears to

be justified.

Table 2. Properties of Rent Growth: Data versus Model

Statistic

U.S. Data

1960.Q2 to 2011.Q4 Model

 () 0236% 0228%

  () 0583% 0584%

 ( −1) 048 048

 ( −2) 026 019

 () 064 064

 () 51 45

Note: Model statistics are computed from a 15,000 period simulation.

5 Quantitative Results

Figure 9 plots simulated rent growth from the model together with 4-year and 10-year rolling

summary statistics. The model statistics exhibit considerable variation over time, similar to

the U.S. data statistics plotted earlier in Figure 8. An agent observing such variation would

be inclined to believe that the parameters governing the stochastic process for rent growth are

indeed changing over time, consistent with the PLM (13).
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Figure 10: The standard deviation of the model price-rent ratio under rational expectations is

2.95 versus 13.95 in the data. Under the other two expectation regimes, the standard deviation

of the model price-rent ratio is very close to that in the data.

Figure 10 plots simulated price-rent ratios for the three different expectation regimes. The

standard deviation of the model price-rent ratio under rational expectations is 2.95 versus

13.95 in the data. For the other two expectation regimes, the standard deviation of the

simulated price-rent ratio is very close to that in the data. This is a direct consequence of

our calibration of the forecast rule parameters  and  Due to the self-referential nature of

the transformed first-order condition (7), the form of the agent’s subjective forecast b+1

influences the dynamics of the object that is being forecasted. Interestingly, the near-rational

and the moving-average forecast regimes produce similar patterns for the simulated price-rent

ratio. The contemporaneous correlation between the simulated price-rent ratios in the two

regimes is 0.84. As we shall see, however, these two models have very different implications for

the correlation between the agent’s expected future return on housing and the price-rent ratio.

Only the moving-average model predicts a positive correlation between these two variables,

consistent with the survey evidence discussed in the introduction.
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Figure 11: The figure shows how different parameter values affect the volatility of the model

price-rent ratio under each of the three expectation regimes. The rational expectations model

can match the observed volatility in the data (dashed horizontal line) when  ' 0945 which
implies a mean coefficient of relative risk aversion ' 30.

Table 3. Comparison of Percentage Forecast Errors

Model Simulations

Statistic RE Near-RE MAE

 (+1) 0.00 0.00 0.00q


¡
2+1

¢
0.009 0.047 0.067

 (+1 ) 0.00 0.39 0.37

 (+1 −1) 0.00 0.11 0.04

Note: Model statistics are computed from a 15,000 period simulation. RE = rational

expectations, Near-RE = near-rational expectations, MAE = moving-average expectations.

Table 3 summarizes the quantitative properties of the representative agent’s forecast errors

under each of the three expectations regimes. The percentage forecast error for the composite

variable +1 is given by

+1 = log

Ã
+1b+1

!
 (26)

All three expectation regimes deliver unbiased forecasts such that  (+1) = 0 The

accuracy of each forecast rule can be measured by the root mean squared percentage error
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Figure 12: Under rational expectations, the correlation coefficient between the price-rent ratio

and the coefficient of relative risk aversion is close to−1, implying that risk aversion is low when
the price-rent ratio is high, and vice versa. The bottom panels show that under rational and

near-rational expectations, the rolling correlation coefficient between the expected 4-quarter

compound return and the price-rent ratio is strongly negative. However, the rolling correlation

coefficient is typically positive under moving-average expectations, implying that agents tend

to expect higher future returns when the price-rent ratio is high, consistent with the survey

evidence.

(RMSPE), defined as
q


¡
2+1

¢
. The rational expectations model exhibits the lowest

RMSPE whereas the moving-average model exhibits the highest RMSPE. It is important to

recognize, however, that an individual atomistic agent could not do better in the moving-

average model by switching to the fundamentals-based forecast rule derived in the rational

expectations model. When the actual law of motion for the composite variable  is given

by (22), the fundamentals-based forecast rule is no longer the most accurate forecast. In

particular, using the fundamentals-based forecast rule from the rational expectations model

to predict +1 in the moving-average model delivers a RMSPE of 0.182–considerably higher

than the value of 0.067 delivered by the moving-average forecast rule (23). Hence an individual

atomistic agent can become “locked-in” to the use of a moving-average forecast rule so long

as other agents in the economy are using the same forecasting approach.19

19Lansing (2006) investigates the concept of forecast lock-in using a standard Lucas-type asset pricing model.
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Table 3 also shows that the autocorrelation of the forecast errors in both the near-rational

model and moving-average model are reasonably low–less than 0.4. Hence, a large amount of

data would be required for the representative agent in either model to reject the null hypothesis

of uncorrelated forecast errors, making it difficult for the agent to detect a misspecification of

the subjective forecast rule.

Figure 11 shows how some key parameter values affect the volatility of the model price-

rent ratio under each expectation regime. The dashed horizontal line in each panel marks

the observed standard deviation of 13.95 in U.S. data. The top right panel shows that the

rational expectations model can match the observed volatility in the data when  ' 0945

which together with the other baseline parameters implies a mean coefficient of relative risk

aversion ' 30. The bottom two panels show that lower values of  (near-rational model) or

higher values of  (moving-average model) both serve to magnify the volatility of the simulated

price-rent ratio. By construction, the baseline values of  = 16 quarters and  = 093 deliver

price-rent ratio volatilities that are close to those in the data.

Table 4 compares unconditional moments from the model to the corresponding moments

in U.S. data. The near-rational model and the moving-average model are both successful

in matching the volatility and persistence of the U.S. price-rent ratio. However, only the

moving-average model comes close to matching the strong persistence of U.S. housing returns,

delivering an autocorrelation coefficient for returns of 0.61 versus 0.87 in the data. Unfortu-

nately, none of the three expectation regimes can reproduce the strong negative skewness and

the large excess kurtosis in U.S. housing returns.

Table 4. Unconditional Moments: Data versus Model

U.S. Data Model Simulations

Statistic 1960.Q2-2011.Q4 RE Near-RE MAE

 82.3 82.3 85.0 85.8

  13.95 2.95 13.79 13.36
Price

Rent
  1 0.99 0.45 0.96 0.96

 2.01 0.40 0.32 000

 6.94 4.56 3.17 3.04

 1.56% 1.55% 1.55% 1.54%

  1.60% 4.22% 4.33% 4.32%

Housing

Return
  1 0.87 −024 0.26 0.61

 −176 0.30 0.28 −016
 7.27 4.34 3.44 3.37

Note: Model statistics are computed from a 15,000 period simulation. RE = rational expectations,

Near-RE = near-rational expectations, MAE = moving-average expectations.

The top panels of Figure 12 show the correlations between the model price-rent ratios and

the coefficient of relative risk aversion computed from equation (25). Under rational expec-

tations, the correlation coefficient is close to −1, implying that risk aversion is low when the
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Figure 13: The moving-average model delivers periods of relatively stagnant real house prices

interspersed with booms and busts, reminiscent of the long-run house price data plotted in

Figure 3.

price-rent ratio is high, and vice versa. Under near-rational expectations, the correlation coef-

ficient is close to zero at 0.09. Under moving-average expectations, the correlation coefficient

is positive at 0.38.

The bottom panels of Figure 12 illustrate a key distinguishing feature of the three expec-

tation regimes, namely, the correlation between the agent’s subjective conditional forecast of

the 4-quarter compound return b [+1→ +4] and the current price-rent ratio  We plot

rolling correlation coefficients over a 10—year sample window to roughly capture the time du-

ration of the recent boom-bust cycle in the U.S. housing market. Under rational expectations

(bottom left panel), the rolling 10-year correlation remains close to −1, implying that expected
returns are low when the price-rent ratio is high–a feature that is directly at odds with the

survey evidence on the expectations of real-world housing investors. The near-rational model

(bottom center panel) suffers from a similar problem–exhibiting a rolling 10-year correlation

that is always in negative territory, averaging around −07 over the full simulation. How-
ever, the moving-average model (bottom right panel) delivers a rolling 10-year correlation

that is typically positive, averaging around 06 over the full simulation. In this case, agents

tend to expect higher future returns when the price-rent ratio is high, consistent with the

survey evidence. Although not shown, the rolling 10-year correlation coefficient between the
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Figure 14: The rolling 10-year correlations between the price-rent ratio, rent growth, and

housing returns in U.S. data can be either positive or negative, depending on the sample

window. The rational expectations model predicts a consistently strong positive correlation

of 0.99 between the price-rent ratio and rent growth.

expected 8-quarter compound return and the price-rent ratio in the moving-average model

is even higher, averaging close to 07 over the full simulation. The corresponding correlation

coefficients in the rational and near-rational models remain strongly negative.

Figure 13 plots simulated house prices (in logarithms) under rational expectations and

moving-average expectations, together with the common simulated rent series. The moving-

average model delivers periods of relatively stagnant real house prices interspersed with booms

and busts, reminiscent of the long-run house price data plotted earlier in Figure 3.

Table 5 compares selected correlation coefficients from the model to the corresponding

coefficients in U.S. data for two different sample periods, i.e., the full sample from 1960.Q2 to

2011.Q4 and a shorter sample from 2000.Q1 to 2011.Q4 which covers the recent boom-bust

cycle in U.S. house prices. Figure 14 plots rolling 10-year correlations between the price-rent

ratio , rent growth , and the housing return . The rolling correlation coefficients

in the U.S. data (top left panel) can be either positive or negative, depending on the sample

window. For the model, Table 5 shows the results for two different values of the utility

curvature parameter  namely, the baseline value of  = 2 and an alternative calibration

with  = 05 which implies CRRA = 2.3 when  =  (). Figure 14 plots the same set of
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model correlation coefficients for the baseline value of  = 2 using a rolling 10-year sample

window.

For both values of  the rational expectations model delivers a strong positive correlation

of 0.99 between the price-rent ratio  and rent growth , in contrast to the negative

(−027) or near-zero (−004) correlation in the data, depending on the sample period. When
 = 2 the moving-average model comes close to matching two out of the three U.S. data

correlations shown in Table 5, namely  ( ) and  ( )  However, the

moving-average model misses badly with respect to the correlation between realized housing

returns  and rent growth  The moving-average model with  = 2 predicts  ( ) =

−067 whereas the correlation coefficient in the data, is typically positive or close to zero (top
left panel of Figure 14). The sign of  ( ) in both the near-rational model and

the moving-average model is strongly affected by the magnitude of the parameter  which

influences how prices change in response to a shock to rent growth. Table 5 shows that a

positive value of  ( ) can be obtained in both models when   1 A calibration

with   1 would still allow either model to match the volatility of the price-rent ratio, as

shown by the sensitivity results plotted in the top left panel of Figure 11.

Table 5. Correlation Coefficients: Data versus Model

Model Simulations

U.S. Data RE Near-RE MAE

Statistic

1960.Q2-

2011.Q4

2000.Q1-

2011.Q4
 = 2  = 05  = 2  = 05  = 2  = 05


³


 

´
−027 −004 0.99 0.99 −009 0.41 −037 0.61

 ( ) 0.31 0.10 0.62 0.73 −010 0.82 −067 0.90


³





´
−016 0.08 0.61 0.75 0.08 0.18 0.05 0.23

Note: Model statistics are computed from a 15,000 period simulation. RE = rational expectations, Near-RE =

near-rational expectations, MAE = moving-average expectations.

As mentioned in the introduction, standard DSGE models with housing typically postulate

large and persistent exogenous shocks to rational agents’ preferences for housing services in

an effort to magnify the volatility of house prices generated by the model. Table 6 shows the

effects of a permanent upward shift in the agent’s preference for housing services  relative

to consumption  The preference shift is accomplished by reducing the parameter  in the

utility function (1) from the baseline value of 0.87 to a new value of 0.75, holding other

parameters constant at the baseline values shown in Table 1. After the preference shift, the

relative weight on housing services 1−  is roughly doubled from the baseline value of 0.13 to

a new value of 0.25. Table 6 shows that an upward shift in the agent’s preference for housing

raises the mean price-rent ratio under all three expectations regimes. At the same time, the

preference shift lowers the mean realized return on housing and lowers the mean value of
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CRRA. Under rational expectations, the agent will take this relationship into account when

forecasting such that the conditional expected return on housing,  [+1→ +4] will tend to

move in the opposite direction as the price-rent ratio  in response to a persistent shift

in housing preferences. Hence, while a fully-rational model with housing preference shocks

could potentially match the volatility of the price-rent ratio in the data, such a model would

still predict a negative correlation between the expected return on housing and the price-rent

ratio, which is contrary to the survey evidence described in the introduction.

Table 6. Effect of a Permanent Increase in Housing Preference

Model Simulations

Housing

Preference

1−   RE Near-RE MAE

0.13


+1→ +4

CRRA

82.3

5.81%

8.8

85.0

5.79%

8.8

85.8

5.73%

8.8

0.25


+1→ +4

CRRA

84.2

5.69%

7.7

86.4

5.68%

7.7

87.0

5.64%

7.7

Note: Model statistics are computed from a 15,000 period simulation. RE = rational

expectations, Near-RE = near-rational expectations, MAE = moving-average expectations.

5.1 Predictability Regressions

Campbell and Shiller (1988) show that a log-linear approximation of the stock market return

identity implies that the variance of the log price-dividend ratio must equal the sum of the

ratio’s covariances with: (1) future dividend growth rates, and (2) future realized stock market

returns. Applying the Campbell-Shiller methodology to the housing market return identity

+1 ≡ +1 ( − ) = (+1+1) exp (+1)  ( − 1) yields

log (+1) = log (+1+1)− log ( − 1) + +1

' 0 + log (+1+1)− 1 log () + +1 (27)

where 0 and 1 are Taylor series coefficients. Solving for log () yields

log () ' (01) + (11) log (+1+1) + (11) +1 − (11) log (+1)  (28)

where 1 = exp [ log ()]  {exp [ log ()]− 1}  1 such that 11  1 The next step
is to iterate equation (28) forward and successively eliminate log (++) for  = 1 2 3 

Applying a transversality condition such that lim→∞ (11)  log (++) = 0 yields

log () ' 0

1 − 1 +
∞P
=1

(11)
 [+ − log (+)]  (29)
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which shows that movements in the log price-rent ratio must be accounted for by movements

in either future rent growth rates or future log housing returns.

The variables in the approximate return identity (29) can be expressed as deviations from

their unconditional means, while the means are consolidated into the constant term. Multi-

plying both sides of the resulting expression by log ()− log () and then taking the

unconditional expectation of both sides yields

  () = 

"
log () 

∞P
=1

(11)
 +

#

− 

"
log () 

∞P
=1

(11)
 log(+)

#
 (30)

Equation (30) states that the variance of the log price-rent ratio must be accounted for

by the covariance of the log price-rent ratio with either: (1) future rent growth rates, or (2)

future realized housing returns. The magnitude of each covariance term is a measure of the

predictability of future rent growth or future realized returns when the current price-rent ratio

is employed as the sole regressor in a forecasting equation.

To investigate the predictability implications of our model versus those in the data, we

estimate the following regression equations:

+1→ +4 ≡
4P

=1

log (+) = constant + b log () + +1 (31)

+1→ +4 ≡
4P

=1

+ = constant + b log () + +1 (32)

where +1 and +1 are statistical error terms.

Table 7 reports the results of predictability regressions in the form of equations (31) or (32).

In the case of the U.S. stock market, it is well documented that the log price-dividend ratio

exhibits strong predictive power for future realized stock returns but weak predictive power

for future dividend growth rates (Cochrane 2008, Engsted, et al. 2012). Table 7 shows that

analogous results are obtained for the U.S. housing market, particularly in the more recent

sample period starting in the year 2000. The 2 statistic is much larger in the regression that

seeks to predict future returns versus the regression that seeks to predict future rent growth.

The estimated coefficient b is consistently large and negative in the return regression, implying
that a higher price-rent ratio predicts lower realized returns in the future. In the rent growth

regression, however, b is negative and significant over the full sample starting in 1960, but
positive and insignificant in the more recent sample starting in the year 2000.

All of the models produce a negative and significant value of b in the first regression that
seeks to predict future returns. The magnitude of the b coefficients produced by the near-
rational model (−0278 or −0252) and the moving-average model (−0397 or −0384) are
reasonably close to those in the data (−0182 or −0286). In contrast, the magnitude of the b

29



coefficients produced by the rational expectations model (−0863 or −0553) are much higher
than those in the data. With a few exceptions, the 2 statistics in the model regressions are

reasonably close to those in the data. The model calibration with  = 05 delivers somewhat

lower 2 statistics in the return regression since this value implies a less volatile stochastic

discount factor and hence less movement in the dependent variable, +1→ +4

The intuition for the predictability of realized returns in both the data and the model is

straightforward. A high price-rent ratio implies that the ratio is more likely to be above its

long-run mean. If the price-rent ratio is stationary, then the ratio will eventually revert to

its long-run mean. The inevitable drop in the price-rent ratio over a long horizon produces a

lower realized return. Interestingly, even though a higher price-rent ratio in the data predicts

lower realized returns, the survey evidence shows that real-world investors fail to take this

relationship into account; instead they continue to forecast high future returns following a

sustained run-up in the price-rent ratio, consistent with a moving-average forecast rule.

In sharp contrast to the U.S. data, the rational expectations model produces a large positive

and significant value of b in the regression that seeks to predict future rent growth. This is
to be expected since time-varying rent growth (together with time-varying risk aversion) is an

important fundamental driver of house prices under rational expectations. Similar to the U.S.

data, both the near-rational model and the moving-average model produce small estimated

coefficients in the rent growth regression. Moreover, the sign of b in both models can be either
positive or negative, depending on the calibrated value of  Lower values of  (implying lower

risk aversion on average) produce positive values of b.
In a recent study using price and rent data from the housing markets of 18 OECD countries

over the period 1970 to 2011, Engsted and Pedersen (2012) find evidence of cross-country and

sub-sample instability in the estimated coefficients for predictive regressions that take the

form of equations (31) or (32). Using data either before or after 1995, they find that the

estimated regression coefficients for a given country can be either positive or negative when

predicting future rent growth along the lines of equation (32). Table 6 confirms a similar

sort of instability in the sign of b when attempting to predict future U.S. rent growth using
either the full sample of data from 1960 to 2011 or the more recent sample from 2000 to

2011. Engsted and Pedersen (2012) also find that the relative magnitude of the 2 statistics

for the two types of predictive regressions can differ across countries and across time periods

for a given country. In line with their overall empirical findings, our simulation results show

that, depending on model assumptions, the signs and magnitudes of the estimated regression

coefficients and the resulting 2 statistics can vary substantially, particularly with respect to

rent growth predictability.
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Table 7. Predictability Regressions: Data versus Model

Model Simulations

U.S. Data RE Near-RE MAEb b b b
Predictive

Regression

1960.Q2-

2011.Q4

2000.Q1-

2011.Q4
 = 2  = 05  = 2  = 05  = 2  = 05

+1→ +4
−0182
(0024)

−0286
(0094)

−0863
(0011)

−0553
(0017)

−0278
(0005)

−0252
(0006)

−0397
(0005)

−0384
(0008)

2 (%) 21.7 18.4 30.2 6.6 19.4 9.3 27.8 14.3

+1→ +4
−0039
(0007)

0002

(0017)

0118

(0004)

0428

(0011)

−0001
(0000)

0020

(0002)

−0009
(0001)

0029

(0001)

2 (%) 12.0 0.0 6.7 9.6 0.0 1.1 0.8 2.7

Notes: Standard errors in parenthesis. Model regressions use data from a 15,000 period simulation. RE =

rational expectations, Near-RE =near-rational expectations, MAE = moving-average expectations.

6 Conclusion

Stories involving speculative bubbles can be found throughout history in various countries and

asset markets.20 These episodes can have important consequences for the economy as firms

and investors respond to the price signals, potentially resulting in capital misallocation.21

The typical transitory nature of these run-ups should perhaps be viewed as a long-run victory

for fundamental asset pricing theory. Still, it remains a challenge for fundamental theory to

explain the ever-present volatility of asset prices within a framework of efficient markets and

fully-rational agents.

Like stock prices, real-world house prices exhibit periods of stagnation interspersed with

boom-bust cycles. A reasonably-parameterized rational expectations model significantly un-

derpredicts the volatility of the U.S. price-rent ratio, even when allowing for time-varying risk

aversion and time-varying stochastic properties of rent growth. We showed that a simple asset

pricing model can match the volatility and persistence of the U.S. price-rent ratio, as well as

other quantitative and qualitative features of the data if agents in the model employ simple

moving-average forecast rules. With such a forecast rule, agents tend to expect higher fu-

ture returns when house prices are high relative to fundamentals–a feature that is consistent

with survey evidence on the expectations of real-world housing investors. The moving average

model is also successful in generating data that is broadly consistent with the predictability

properties of future realized housing returns and future rent growth in U.S. housing market

data.

20See, for example, the collection of papers in Hunter, Kaufman, and Pomerleano (2003).
21Lansing (2012) examines the welfare consequences of speculative bubbles in a model where excessive asset

price movements can affect the economy’s trend growth rate.
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A Appendix: Effect of a Borrowing Constraint

Here we show analytically how imputed rent can reflect not only a utility dividend, but also the

marginal collateral value of the house in the case when the representative agent’s borrowing

constraint is binding. Following Campbell and Hercowitz (2009), the representative agent’s

problem in the presence of a borrowing constraint can be formulated as

max
  +1

b0 ∞X
=0

£ (A.1)

where the current-period Lagrangian £ is given by

£ =

³


1−
 − 

−1
1−
−1
´1−

− 1
1− 

+  [ + +1 +  (−1 − )−  −]

+  Γ [  − +1]  (A.2)

In the above expression,  is the stock of mortgage debt at the end of period − 1 and  is

the gross real interest rate on the debt. The last term of the Lagrangian reflects the borrowing

constraint which says that the agent may only borrow up to a fraction  ≥ 0 of the current
housing value . When the Γ  0 the borrowing constraint is binding.

From (A.2), the first-order conditions with respect to  and +1 are given by

 =

µ
1− 



¶
 + Γ  | {z }
≡ 

+ 
+1

| {z }
≡ +1

+1 (A.3)

Γ = 1 − +1 (A.4)

where we have imposed the equilibrium condition  = 1 and divided both sides by  Com-

paring equation (A.3) to the original first-order condition (3) shows that the imputed rent 

now consists of two terms: the standard utility dividend plus the marginal collateral value

of the house in the case when the borrowing constraint is binding, i.e., when Γ  0 Hence,

by calibrating the effective cash flows in the model to mimic the stochastic properties of rent

growth in the data, we implicitly (but imperfectly) take into account the effect of a binding

borrowing constraint on the equilibrium house price.

B Appendix: Approximate Rational Solution

The methodology for computing the rational expectations solution in Proposition 1 follows

the procedure in Lansing (2009). First we rewrite the law of motion for rent growth (4) as
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follows

+1 − () =  [ − ()] + (1− ) [− ()]| {z }
=
−2
1−

++1 +   ( − )| {z }
≡ 



=  [ − ()] + +1 + 
¡
 − 2

¢
 (B.1)

where  is the deterministic steady state growth rate,  () is the ergodic mean growth rate,

and we have made use of  [ ( − )] =  () = 2

The law of motion for +1 − 2 follows directly from the law of motion for rent growth

(4) and the rewritten version (B.1):

+1 − 2 = +1 (+1 − )− 2

= +1 [+1 − ()] + +1 [ ()− ]| {z }
=
2
1−

−2

= +1

½
 [ − ()] + 

¡
 − 2

¢
+

2
1− 

¾
+
¡
2+1 − 2

¢
 (B.2)

Iterating ahead the conjectured law of motion for  yields

+1 = 0 exp
©
1 [+1 − ()] + 2

¡
+1 − 2

¢ª
 (B.3)

Substituting equations (B.1) and (B.2) into equation (B.3) and then taking the conditional

expectation yields

 +1 = 0 exp
n
1 [ − ()] + 1

¡
 − 2

¢
+ (2)

2 4 +
1
2
2 

2


o
 (B.4)

where  ≡ 1 + 2 [ − ()] + 2
¡
 − 2

¢
+ 2

2
1− 



In deriving (B.4), we have used the properties of the conditional lognormal distribution which

imply

 exp
¡
2

2
+1

¢
= exp

©


¡
2 

2
+1

¢
+ 1
2
 

¡
2 

2
+1

¢ª


= exp
n


¡
2 

2
+1

¢
+ 1
2


h¡
2 

2
+1

¢2i− 1
2

£


¡
2 

2
+1

¢¤2o


= exp
n
2 

2
 +

1
2
(2)

2 34 − 1
2
(2)

2 4

o


= exp
h
2 

2
 + (2)

2 4

i
 (B.5)
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Next we substitute the conditional expectation (B.4) into the transformed first-order con-

dition (7) and then take logarithms to obtain

log () =  ( ) = log { () +

0 exp
h
( (1− )) + 1 ( − ()) + 1

¡
 − 2

¢
+ (2)

2 4 +
1
2
2 

2


io


' log (0) + 1 [ − ()] + 2
¡
 − 2

¢
 (B.6)

The expressions for the Taylor-series coefficients 0 = exp [ log ()]  1 and 2 are derived

as follows

log (0) =  [ ()   ()]  (B.7)

1 =




¯̄̄̄
() ()

 (B.8)

2 =




¯̄̄̄
() ()

 (B.9)

where  () = +2 (1− ) and  () = 2 Solving the above three equations yields the

values for the three undetermined coefficients.

Taking logs of equation (B.3) and then forming the conditional expectation yields

 log (+1) = log (0) + 1 [+1 − ()] + 2

¡
+1 − 2

¢


= log (0) + 1 [ − ()] + 1
¡
 − 2

¢
 (B.10)

where 

¡
+1 − 2

¢
= 0 from equation (B.2). The above expression and equation (B.4) are

used to compute the expected log return in equation (11).

C Appendix: Approximate Near-Rational Solution

First we solve for the perceived rational solution in the case when the perceived AR(1) pa-

rameters for rent growth are constant such that  =   =  and  =  for all  The

near-rational agent’s conjectured law of motion in this case is given by

 '  0 exp [ 1 ( − )]  (C.1)

Iterating ahead the conjectured law of motion for  and taking the subjective conditional

expectation yields b+1 = 0 exp
h
1 ( − ) + 1

2
(1)

2 2


i
 (C.2)
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Substituting the conditional forecast (C.2) into the transformed first-order condition (7) and

then taking logarithms yields

log () =  () = log
n
 () + 0 exp

h
( (1− )) + 1 ( − ) + 1

2
(1)

2 2

io
' log (0) + 1 ( − )  (C.3)

where 0 ≡ exp [ log ()] and 1 are Taylor-series coefficients. The expressions for the Taylor

series coefficients are are derived as follows

log (0) =  () = log
n
 () + 0 exp

h
( (1− ))+ 1

2
(1)

2 2

io
 (C.4)

1 =  0 () =
1

0

n
 0 () + 0 [ (1− ) + 1] exp

h
( (1− ))+ 1

2
(1)

2 2

io


(C.5)

which yield a set of two equations that can be solved for the two undetermined coefficients 0

and 1

For the case when the perceived AR(1) parameters are shifting as in the PLM (13), equa-

tions (C.4) and (C.5) can be rewritten as

0 =
 ()

1−  exp
h
( (1− )) +

1
2
(1)

2 2

i  (C.6)

1 =
 0 ()
0

+  [ (1− ) + 1 ] exp
h
( (1− )) +

1
2
(1)

2 2

i
 (C.7)

where we have substituted in the most recent estimates for the perceived AR(1) parameters, as

given by   and We follow the common practice in the learning literature by assuming

that the agent views the most recent parameter estimates as permanent when computing

the subjective forecast b +1 Given the most recent estimates for the AR(1) parameters,

equations (C.6) and (C.7) are solved simultaneously each period to obtain values for 0 and

1 for use in the subjective forecast (18). The subjective forecast is substituted into the

transformed first-order condition (7) to obtain the actual law of motion (19).

Iterating ahead the perceived law of motion (17) and then taking logs and forming the

subjective conditional expectation yieldsb log (+1) = b [log (0+1) + 1+1 (+1 − +1)] 

= log (0) + 1 ( − )  (C.8)

where once again we assume that the agent views the most recent parameter estimates  and

 as permanent such that the most recent values for 0 and 1 are also viewed as permanent.

The above expression and b +1 from equation (18) are used to compute the expected log

return in equation (20).
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D Appendix: Moments of Rent Growth

This section summarizes the formulas for the unconditional moments of rent growth which are

used to calibrate the true law of motion (4). From Granger and Andersen (1978) and Sesay

and Subba Rao (1988), we have

 ( − ) ≡1 =
2
1− 

(D.1)


h
( − )2

i
≡2 =

2
£
1 + 222 + 41

¤
1− 2 − 22

(D.2)

 [( − ) (−1 − )] ≡11 = 2 + 2
4
1 (D.3)


h
( − )3

i
≡3 =

2
£
634 + 3

¡
1 + 622

¢
1 + 9

¡
2 + 22

¢
2

¤
1− 3 − 322

(D.4)


h
( − )4

i
≡4 =

2{32(844−1)+96341+6[1+1222(2+22)]2+16(2+322)3}
1−4−6222−344

(D.5)

Given the above expressions, the moments of  can be computed as follows

 () = +1 (D.6)

  () = 2 − (1)
2  (D.7)

 ( −1) =
11 − (1)

2

  ()
 (D.8)

 () =
3 − (1)

3 − 31  ()

  ()
15

 (D.9)

 () =
4 + (1)

4 − 41

h
3 + (1)

3
i
+ 62 (1)

2

  ()
2

 (D.10)
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