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ABSTRACT. We show that in a unit demand discrete choice framework with at least three goods,
demand cannot be additively separable in own price. This result sharpens the analogous result of
Jaffe and Weyl (2010), which ruled out linear demand. It has implications for testing of the discrete
choice assumption, out-of-sample prediction, and welfare analysis.

1. INTRODUCTION

Demand is frequently an aggregation of “discrete choices” in which each consumer chooses at
most one good from among a set of available options. Economists sometimes microfound ag-
gregate demand in individual choice models.1 However, because the distribution of individual
consumers’ preferences is typically unknown, the functional form of demand is often not based
upon an aggregation over individuals.

In this note, we show that abstracting away from the discrete choice basis of demand is not
justified, as a large class of functional forms cannot be generated by an aggregation of individuals’
discrete choices. Specifically, extending results of Jaffe and Weyl (2010) for the case of linear
demand, we show in Section 3 that if individual-level choice is discrete among more than two
options, then demand cannot be additively separable in own price. Thus in addition to linear
demand, we rule out demand forms of the type used by Bulow et al. (1985).

Our main theorem sharpens the Jaffe and Weyl (2010) answer to the Anderson et al. (1989)
question of whether discrete choice can generate linear demand: we show that discrete choice
demand must exhibit interaction between own price and other prices.2 Additionally, as we discuss
in Section 4, our results have implications for testing of the discrete choice assumption, out-of-
sample prediction, and welfare analysis.
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2. INTUITION

To see the intuition behind our result, consider Figure 1. In this figure, consumers with valua-
tions in the lower-right region (D1) demand good 1 and those in the upper-left region (D2) demand
good 2.
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FIGURE 1. The case of two goods.

When prices are (p1, p2) and firm 1 raises its price by ε, it loses the demand of consumers with
valuations in the regions B, X , and Y . Meanwhile, when prices are (p1, p2 + ε) and firm 1 raises
its price by ε, it loses the regions B, X , W , and Z. If demand is additively separable, the induced
changes in demand for good 1 following an increase in p1 of ε must be independent of p2. Thus,
denoting by R̃ the mass of consumers in region R, we have

0 = B̃ + X̃ + W̃ + Z̃ − (B̃ + X̃ + Ỹ ) = W̃ + Z̃ − Ỹ . (1)

Analogously, if firm 2 raises its price by ε when prices are (p1, p2) it loses regions A, W , and Z;
when prices are (p1 + ε, p2) it loses regions A, W , X , and Y . We therefore see that

0 = Ã+ W̃ + X̃ + Ỹ − (Ã+ W̃ + Z̃) = X̃ + Ỹ − Z̃. (2)

Adding equations (1) and (2) gives W̃ + X̃ = 0. As ε→ 0, this corresponds to the requirement
that f(p1, p2) = 0. Thus, demand for goods 1 and 2 cannot be additively separable at (p1, p2)
unless there is a “gap” in the distribution of valuations at those prices.

3. MAIN RESULT

We consider a market with N goods indexed i = 1, . . . , N and a unit mass of consumers. The
prices of these goods are p = (p1, . . . , pN) ∈ RN . Each consumer has valuations for the N
goods specified by the vector v = (v1, . . . , vN) ∈ RN ; valuations v are distributed according to a
continuously differentiable density function f . An outside option good, for which all consumers
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have value 0, is available; the price of the outside option is fixed at 0.3 Each consumer purchases
the good i which maximizes vi − pi, or chooses the outside option if vi − pi is negative for all
i = 1, . . . , N . Demand for good i is therefore given by

Di(p) =

∫ ∞
pi

∫
∏
j 6=i

Sj,i

f(v)dv−idvi,

where Sj,i = (−∞, pj + vi− pi] is the domain of valuations vj for which vi− pi > vj − pj , i.e. the
domain for which good i is superior to good j.

We say that demand for good i is additively separable in own price if there exist functions G
and H such that Di(p) takes the form Di(p) = G(pi) +H(p−i). Equivalently, demand for good i
is additively separable in own price if ∂2Di(p)

∂pi∂pk
= 0 everywhere, for all k 6= i. We say the demand

system is additively separable in own price if, for each i, demand for good i is additively separable
in own price.

Theorem. Suppose that N ≥ 2 and that f has full support. Then, the demand system cannot be
additively separable in own price.

As we show in Appendix A,

2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

≤ −
∑

i

∑
k 6=i

∫
∏

j 6=i,k

Sj,i

f(v−i,k, pi, pk)dv−i,k, (3)

which is strictly negative (implying non-separability) whenever the integral is non-zero for some i
and k. The assumption that f have full support is sufficient for this conclusion, but is clearly not
necessary.4

To outline our approach and expand on the intuition presented above, we now prove our theorem
in the the case N = 2.

Proof in the case N = 2. Demand for good 1 is D1(p) =
∫∞

p1

∫ p2+v1−p1

−∞ f(v1, v2)dv2dv1; its cross-

price derivative is ∂D1(p)
∂p2

=
∫∞

p1
f(v1, p2 + v1 − p1)dv1. Analogous expressions apply for D2(p).

This gives the following second derivatives:

∂2D1(p)

∂p1∂p2

= −f(p1, p2)−
∫ ∞

p1

f2(v1, p2 + v1 − p1)dv1 (4)

= −f(p1, p2)−
∫ ∞

p2

f2(p1 + v2 − p2, v2)dv2 (5)

∂2D2(p)

∂p2∂p1

= −f(p1, p2)−
∫ ∞

p2

f1(p1 + v2 − p2, v2)dv2 (6)

= −f(p1, p2)−
∫ ∞

p1

f1(v1, p2 + v1 − p1)dv1. (7)

3As we demonstrate in Appendix B, if consumers are required to buy exactly one good i ∈ {1, . . . , N}, an analog of
our main theorem holds when N > 2. Thus, our result does not rely on the existence of the outside option except in
the case N = 2. (As we discuss in Section 4, the well-known result of Hotelling (1929) relies on the fact that N = 2
and there is no outside option.)
4For example, if f has compact support, then the theorem applies to prices in the interior of supp(f).
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Summing expressions (4)–(7) and rearranging terms, we obtain

2

(
∂2D1(p)

∂p1∂p2

+
∂2D2(p)

∂p2∂p1

)
= −4f(p1, p2)−

∫ ∞
p1

(f1(v1, p2 + v1 − p1) + f2(v1, p2 + v1 − p1))dv1

−
∫ ∞

p2

(f1(p1 + v2 − p2, v2) + f2(p1 + v2 − p2, v2))dv2

= −4f(p1, p2)−
∫ ∞

p1

∂

∂v1

(f(v1, p2 + v1 − p1))dv1

−
∫ ∞

p2

∂

∂v2

(f(p1 + v2 − p2, v2))dv2

= −2f(p1, p2). (8)

As long as there is not a gap in the distribution of valuations at (p1, p2), −2f(p1, p2) is strictly
negative. In that case, then, ∂2D1(p)

∂p1∂p2
+ ∂2D2(p)

∂p2∂p1
cannot vanish, hence demand for goods 1 and 2

cannot be additively separable. �

The N > 2 case is more complicated than the proof above, because of an additional term that
vanishes when N = 2. However, that term is of the same sign as the term that is the direct analog
to equation (8), so the proof is similar.

When there is no outside option, demand takes the form

Di(p) =

∫ ∞
−∞

∫
∏
j 6=i

Sj,i

f(v)dv−idvi.

We cannot simply normalize the price and valuation of a given good and call it the outside option
because additive separability in the normalized prices would not imply additive separability in the
original prices.5 Nevertheless, with slight modifications shown in Appendix B, our proof extends
to the case without an outside option.

4. DISCUSSION

Our results do not rely on global properties of the distribution of valuations or on boundary con-
ditions – demand cannot be even locally additively separable unless there is a gap in the distribution
of valuations. Previous theoretical work that has generated linear demand from aggregation of dis-
crete choices has either had fewer than three options (as in Hotelling, 1929) or a highly restricted
space of possible valuations (as in Salop, 1979).

Equation (3) implies that (on average) the cross-partial derivatives ∂2Di(p)
∂pk∂pi

are negative. Thus,
ignoring interactions between prices by assuming additively separable demand will lead to system-
atic underestimation of the change in demand that occurs when prices move in the same direction.
This bias shows the importance of microfounding demand systems in individual choice models.
Below, we discuss a few specific implications.

4.1. Testing of Discrete Choice. Our results present a simple test of whether a market is well-
modeled as a discrete choice setting with unit demand. Specifically, if

∑
i

∑
k 6=i

∂2Di(p)
∂pk∂pi

≥ 0 for all
i and k, then demand does not arise from an aggregation of individual discrete choices.

5If good 1, say, is selected as the outside option, then normalized prices take the form p̃i ≡ pi − p1; additive sepa-
rability of demand with respect to the vector of normalized prices, p̃ ≡ (0, p̃2, . . . , p̃N ), is not equivalent to additive
separability with respect to true prices p = (p1, . . . , pN ).
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4.2. Out-of-Sample Prediction. In a discrete choice market, if a firm experiments with variation
in its own price pi when other prices are stable at p0

−i, then its estimates of the price-sensitivity of
demand are only valid for p−i = p0

−i. If, for example, a cost shock causes other firms to raise their
prices to p1

−i > p0
−i, then demand would be more price-sensitive than estimates conducted with

p−i = p0
−i would imply: ∣∣∣∣∂Di(pi, p

1
−i)

∂pi

∣∣∣∣ > ∣∣∣∣∂Di(pi, p
0
−i)

∂pi

∣∣∣∣ .
The same logic applies to economists’ estimates of demand with only limited variation: estimates
based on data in which only one price varies at a time are systematically biased.

4.3. Welfare Analysis. The bias we have observed is relevant not just for predicting a price
change’s effect on demand, but also for predicting its effect on welfare. The decrease in welfare
from a given change in pi is greater when p−i is higher.

This leads us to observe that there may be some situations in which assuming aditively separable
demand is (approximately) appropriate. For example, consider the case of two single-product
firms merging. Assuming additively separable demand will over-estimate the extent to which
prices increase post-merger (since raising one price increases the demand elasticity for the other
product, decreasing the incentive to raise its price), but for a given price change assuming additive
separability will lead to under-estimation of the welfare effect. These two biases work in opposite
directions and could, in theory, cancel out.6 Unfortunately, however, such cancelation – and hence
the appropriateness of the additive separability assumption – would be difficult to verify without a
clear understanding of the microfoundations of the demand system.
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APPENDIX A. PROOF OF THE MAIN THEOREM

If each Di(p) is additively separable in own price, then

∂2Di(p)

∂pk∂pi

= 0

for all i, k. Thus, in particular, additive separability in own price implies that

−2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

= 0. (9)

To prove the theorem, it suffices to bound the left side of (9) strictly above 0, as such a bound
guarantees that (9) cannot hold. We now derive such a bound.

Claim. The left side of (9) is bounded below by∑
i

∑
k 6=i

∫
∏

j 6=i,k

Sj,i

f(v−i,k, pi, pk)dv−i,k > 0. (10)

Proof. As N ≥ 2 and f is nonnegative with full support, it is clear that the inequality in (10)
holds.7 Thus, we need only prove the validity of the claimed bound.

Now, recall that for k 6= i, we have

∂Di(p)

∂pk

=

∫ ∞
pi

∫ ∏
j 6=i,k

Sj,i

f(v−k, pk + vi − pi)dv−i,k

 dvi. (11)

Summing (11) across k 6= i and then differentiating with respect to pi, we compute that

∂

∂pi

(∑
k 6=i

∂Di(p)

∂pk

)
= −

∑
k 6=i

∫
∏

j 6=i,k

Sj,i

f(v−i,k, pi, pk)dv−i,k

−
∫ ∞

pi

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

fk(v−k, pk + vi − pi)dv−i,k

 dvi

−
∫ ∞

pi

∑
k 6=i

∑
6̀=i,k

∫
∏

j 6=i,k,`

Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

 dvi. (12)

Following a change of variables taking v` 7→ p` + vi − pi, we see that∫ ∞
p`

∫
∏

j 6=`,i

Sj,`

fi(v−i,`, pi + v` − p`, v`)dv−i,`dv` =

∫ ∞
pi

∫
∏

j 6=i,`

Sj,i

fi(v−i,`, vi, p` + vi − pi)dv−i,`dvi.

7Note that in the case N = 2 (where there are no j 6= i, k), we use the convention that the integral in (10) is “empty”:∫
∏

j 6=i,k

Sj,i

f(v−i,k, pi, pk)dv−i,k = f(pi, pk) > 0.
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It then follows that

∑
`

∑
i 6=`

∫ ∞
p`

∫
∏

j 6=`,i
Sj,`

fi(v−i,`, pi + v` − p`, v`)dv−i,`dv`

=
∑

`

∑
i 6=`

∫ ∞
pi

∫
∏

j 6=i,`
Sj,i

fi(v−i,`, vi, p` + vi − pi)dv−i,`dvi

=
∑

i

∑
`6=i

∫ ∞
pi

∫
∏

j 6=i,`
Sj,i

fi(v−i,`, vi, p` + vi − pi)dv−i,`dvi. (13)

Summing (12) across i and applying the identity (13) shows that8

− 2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

= 2
∑

i

∑
k 6=i

∫
∏

j 6=i,k

Sj,i

f(v−i,k, pi, pk)dv−i,k

+
∑

i

∫ ∞
pi

∑
k 6=i

[∫
∏

j 6=i,k
Sj,i

(fk(v−k, pk + vi − pi) + fi(v−k, pk + vi − pi)) dv−i,k

+ 2
∑
` 6=i,k

∫
∏

j 6=i,k,`

Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

]
dvi. (14)

Finally, we observe that for any i, we have

∂

∂vi

∑
k 6=i

∫
∏

j 6=i,k

Sj,i

f(v−i,k, vi, pk + vi − pi)dv−i,k

=
∑
k 6=i

[∫
∏

j 6=i,k
Sj,i

(fk(v−i,k, vi, pk + vi − pi) + fi(v−i,k, vi, pk + vi − pi)) dv−i,k

+
∑
` 6=i,k

∫
∏

j 6=i,k,`

Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

]
. (15)

8Before obtaining (14) from (13), we must observe that, by relabeling,

2
∑

i

∑
k 6=i

∫ ∞
pi

∫
∏

j 6=i,k

Sj,i

fk(v−k, pk + vi − pi)dv−i,kdvi

is equal to∑
i

∑
k 6=i

∫ ∞
pi

∫
∏

j 6=i,k

Sj,i

fk(v−k, pk + vi − pi)dv−i,kdvi +
∑

`

∑
i 6=`

∫ ∞
p`

∫
∏

j 6=`,i

Sj,`

fi(v−i,`, pi + v` − p`, v`)dv−i,`dv`.
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Upon discarding one copy of the summation over ` 6= i, k in (14),9 and collecting terms, we may
use observation (15) to show that

− 2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

≥ 2
∑

i

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

f(v−i,k, pi, pk)dv−i,k

+
∑

i

∫ ∞
pi

∂

∂vi

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

f(v−i,k, vi, pk + vi − pi)dv−i,k

 dvi

= 2
∑

i

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

f(v−i,k, pi, pk)dv−i,k −

∑
i

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

f(v−i,k, pi, pk)dv−i,k

 . (16)

As the right side of (16) simplifies to (10), we have proven the claimed bound. �

APPENDIX B. DISCRETE CHOICE WITHOUT AN OUTSIDE OPTION

In this appendix, we consider a model of discrete choice without an outside option. We show
that an analog of our main theorem holds whenever at least three goods are available in the market.

Goods i = 1, . . . , N , prices p = (p1, . . . , pN) ∈ RN , and valuations v = (v1, . . . , vN) ∈ RN are
as specified in Section 3. Again, there is a unit mass of consumers and valuations v are assumed to
be distributed according to a continuously differentiable density function f .

No outside option is available – each consumer must purchase exactly one good i ∈ {1, . . . , N}.
Thus, each consumer purchases the good i which maximizes vi − pi, and so demand for good i is
given by

Di(p) =

∫ ∞
−∞

∫
∏
j 6=i

Sj,i

f(v)dv−idvi.

Theorem. Suppose that N > 2 and that f has full support. Then, the demand system cannot be
additively separable in own price.

Proof. As we observed in Appendix A, own-price additive separability of demand for good i im-
plies that

−2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

= 0. (17)

Now, for k 6= i, we have

∂Di(p)

∂pk

=

∫ ∞
−∞

∫ ∏
j 6=i,k

Sj,i

f(v−k, pk + vi − pi)dv−i,k

 dvi. (18)

9We may do this (at the cost of introducing the inequality in (16)) because f is nonnegative.
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Summing (18) across k 6= i and then differentiating with respect to pi, we compute that

∂

∂pi

(∑
k 6=i

∂Di(p)

∂pk

)
= −

∫ ∞
−∞

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

fk(v−k, pk + vi − pi)dv−i,k

 dvi

−
∫ ∞
−∞

∑
k 6=i

∑
6̀=i,k

∫
∏

j 6=i,k,`
Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

 dvi. (19)

The change of variables taking v` 7→ p` + vi − pi shows that∫ ∞
−∞

∫
∏

j 6=`,i
Sj,`

fi(v−i,`, pi + v` − p`, v`)dv−i,`dv` =

∫ ∞
−∞

∫
∏

j 6=i,`
Sj,i

fi(v−i,`, vi, p` + vi − pi)dv−i,`dvi.

This observation allows us to make a transformation analogous to (13), from which we obtain

− 2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

=
∑

i

∫ ∞
−∞

∑
k 6=i

∑
6̀=i,k

∫
∏

j 6=i,k,`

Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

 dvi

+
∑

i

∫ ∞
−∞

∑
k 6=i

[∫
∏

j 6=i,k

Sj,i

(fk(v−k, pk + vi − pi) + fi(v−k, pk + vi − pi)) dv−i,k

+
∑
6̀=i,k

∫
∏

j 6=i,k,`
Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

]
dvi.

(20)

Observation (15) shows that the second term of (20) is equal to∑
i

∫ ∞
−∞

∂

∂vi

∑
k 6=i

∫
∏

j 6=i,k
Sj,i

f(v−i,k, vi, pk + vi − pi)dv−i,k

 dvi,

which vanishes because f is a density function. Thus, we see that

− 2
∑

i

∑
k 6=i

∂2Di(p)

∂pk∂pi

=
∑

i

∫ ∞
−∞

∑
k 6=i

∑
6̀=i,k

∫
∏

j 6=i,k,`
Sj,i

f(v−k,`, pk + vi − pi, p` + vi − pi)dv−i,k,`

 dvi. (21)

When N > 2, the right side of (21) is bounded strictly above 0,10 hence (17) cannot hold; this
proves the theorem. �

10As expected, the right side of (21) vanishes in the case N = 2, for which the Hotelling (1929) model shows that
discrete choice without an outside option can generate linear demand.


