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Abstract

We show how extreme value theory (EVT) can be a useful tool in basic price the-

ory. We derive a widely-applicable formula relating equilibrium prices to the level of

competition in a variety of models. When the number of firms is large, markups are

proportional to 1/
(
nF ′

[
F−1 (1− 1/n)

])
, where F is the random utility noise distribu-

tion, and n is the number of firms. This implies that the crucial element for predictions

about prices is the noise distribution, in a manner that is independent of the many other

details. The elasticity of the markup with respect to the number of firms is shown to

be the EVT tail exponent of the distribution for preference shocks and in many cases

is quite insensitive to the number of firms. For example, for the Gaussian case, asymp-

totic markups are proportional to 1/
√

lnn, implying a zero asymptotic elasticity of the

markup with respect to the number of firms. Thus competition only exerts weak pressure

on prices. Besides this basic price-theoretic issue, we consider applications to behavioral

economics (as competition does not correct the price effects of the noise perceived by

consumers, and increases the “noise” supplied by firms) and macroeconomics (where we

obtain endogenous markups).
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1 Introduction

It is natural to assume that economic agents make choices that reflect both deterministic

factors and noise (Luce 1959, McFadden 1981). The presence of noise is motivated by two

mutually compatible micro-foundations: Noise reflects true preference variation unobserved

by the econometrician and may reflect evaluation errors by the consumer. Noise is routinely

included in models of consumer choice. To what extent specific results depend on the choice of

the noise distribution remains an open question. Drawing from extreme value theory (EVT),

we develop tools to analyze the impact of the noise on equilibrium prices in three important

cases of random utility models: Hart (1985), Perloff and Salop (1985), and Sattinger (1984).

Expressions for equilibrium markups have previously been derived for these models. The ex-

isting markup formulae, however, include integrals that are generally analytically intractable.

Only for a few specific distributions are closed-form solutions available. Drawing from extreme

value theory, the current paper solves this tractability problem and provides a simple, useful

formula for markups. Our analysis also reveals important robust features about markups and

relates these markups to limit pricing, i.e. Bertrand competition with heterogeneous firms.

Previous analysis of random-utility models has focused on a small number of special cases

in which markups turn out to be either unresponsive to competition or highly responsive

to competition. For instance, consider the Perloff-Salop model and assume that noise has

an exponential density or a logit (i.e. Gumbel) density. In this case, markups converge

to a strictly positive value as n, the number of competing firms, goes to infinity. Hence,

asymptotic markups have zero elasticity with respect to n (Perloff and Salop 1985, Anderson

et al. 1992). By contrast, when noise is uniformly distributed, markups are proportional to

1/n, so markups have a unit elasticity and hence a strong negative relationship with n (Perloff

and Salop 1985).

All three of these illustrative distributions — exponential, logit, and uniform — are appeal-

ing for their analytic tractability rather than their realism. In comparison to the Gaussian

distribution, the exponential and logit cases have relatively fat tails while the uniform case

has no tails. We like to know how prices respond to competition when the noise follows more

general distributions, particularly distributions that are considered to be empirically realistic.

We use extreme value theory (abbreviated as EVT) to analyze general noise distributions.

In each of the random-utility models mentioned above we show that markups are asymptoti-

cally proportional to 1/ (nF ′ [F−1 (1− 1/n)]), where F is the distribution function for noise.
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Moreover, we show that this markup turns out to be almost equivalent to the markup ob-

tained under limit pricing. The markup is asymptotically proportional (and often equal) to

the expected gap between the highest draw and second highest draw in a sample of n draws.

These results hold for virtually all commonly-used noise distributions.

This “detail-independence” for the value of the markup is surprising. Each of the Hart,

Perloff and Salop, and Sattinger models differ in a host of specifications.1 Yet, the models

lead asymptotically to the same value of the markup (up to a scaling constant).

We pay particular attention to the Gaussian case because it is a leading approximation of

natural phenomena. For the Gaussian case we show that asymptotic markups are proportional

to 1/
√

lnn, where n is the number of competing firms. This formula implies that mark-ups

fall slowly as n rises. Moreover, the elasticity of the markup with respect to n converges to

0. Hence, the Gaussian case behaves much more like the exponential and logit cases than like

the uniform case. Rising competition in an environment with a Gaussian noise distribution

only produces weak downward pressure on prices.

Another insight that arises from our analysis is that for “heavy-tailed” distributions (in-

cluding subexponential distributions like the log-normal and power-law distributions like the

Pareto distribution), mark-ups increase as the number of competing firms increase.

More generally, if n is large we find that the elasticity of the markup with respect to

the number of firms equals the EVT tail exponent of the distribution; a magnitude that is

easy to calculate. These results demonstrate an intimate relationship between the economic

logic of competition in large economies and the mathematics of EVT. We conclude that

markups are robust in large economies, since markups have a zero asymptotic elasticity for

many empirically realistic noise distributions. Only noise distributions with extremely thin

tails (like the uniform distribution) and very heavy tails (like the Pareto), have markups with

elasticities different from zero.

Moving away from the specifics of random demand models, the tools that we develop allow

us to calculate the asymptotic behavior of integrals for a general class of functions h (x), of

the form ∫
h (x) fk(x)F (x)ndxdx, (1)

where k ≥ 1, which appear in a very large class of economic situations, some of which we will

review later. For instance, these cover the expected value of a function of the maximum of

1For instance, in the Perloff-Salop model consumers need to buy one unit of the good. In the Sattinger
model, they allocate a fixed dollar amount to the good. The Hart model does not impose either constraint.
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n random variables, or the gap between the maximum and the second largest value of those

random variables. Using EVT we are able to derive robust approximations of this integral for

a large n.

Extremes and EVT-related techniques are important in many parts of economics. Most

well known is McFadden’s (1981) foundation of the logit specification for discrete choice with

random demand as set out in Luce (1959) by means of the Gumbel extreme value distribution.

This specification has been used widely in the analysis of product differentiation, regional

economics, geography and trade, see e.g. Anderson et al. (1992), Dagsvik (1994), Dagsvik

and Karlstrom (2005), Ibragimov and Walden (2010), and Armstrong (2012). In international

trade, Eaton and Kortum (2002) and Bernard et al. (2003), used the aggregation properties of

the Fréchet extreme value distribution to analyze international trade at the producer level (see

also Chaney 2008). Acemoglu, Chernozhukov and Yildiz (2006, 2009) show the importance of

the tail specification for learning. In macroeconomics, Gabaix (2011) shows the importance of

tails of the firm size distribution to understand macroeconomic fluctuations; these extremes

in the size distribution of firms can emerge from random growth (Gabaix 1999, Luttmer

2006) or the network structure of the buyer-supplier relations amongst firms (Acemoglu et al.

(2012)). Jones (2005) models the distribution of innovative ideas and analyzes the impact of

this distribution on the bias of technical change. In applied finance, much use has been made

of EVT in risk management and systemic risk analysis; see e.g. Jansen and De Vries (1991) for

an early contribution and Ibragimov, Jaffee and Walden (2009, 2011) for recent examples. In

an application to the economics of health care, Garber, Jones and Romer (2006) discuss how

the distribution of benefits generated by medical innovations relates to the optimal scheme

for incentivizing innovation. More recent are applications in the theory of auctions, see Hong

and Shum (2004). We suspect that the techniques we develop here could be useful in the

above setups. As an example, Gabaix and Landier (2008) use some of this paper’s results to

analyze the upper tail of the distribution of CEO talents.

In summary, our paper makes three contributions. The first is methodological: We draw

from extreme value theory to develop a core mathematical result and asymptotic approxima-

tion that is useful in a variety of economic contexts where extremes and tails matter (e.g.

price theory, auctions).

The second contribution is to basic price theory: We show which features are important

for prices, and which are not, in markets with many suppliers. Specifically, the tail of the noise

distribution (as captured by the tail exponent) is the crucial determinant of prices, whereas
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the details of the demand-side modelling (e.g. Perloff-Salop versus Sattinger) do not matter

much asymptotically, or not at all. We analyze to what extent competition puts pressure

on prices as in the analysis of limit pricing, i.e. Bertrand competition with heterogeneous

firms and auctions. As many common noise distributions have a tail index of zero, our results

suggest that in many real-world contexts, competition has have little effect on prices, once we

go beyond a very small number of firms

The third contribution is to understanding of endogenous markups in behavioral economics

and macroeconomics. In a behavioral economics context, if we interpret the magnitude of

the noise as “confusion” supplied by firms, we find that competition, for a given amount

of noise, does little to dampen markups; and when confusion is endogenous, competition

increases the amount of noise supplied by firms, in a way we make quantitatively precise. In a

macroeconomic equilibrium context we study how the endogenous preference shocks provide

an interesting contrast to the usual exogenously postulated markup shocks, with different

predictions relating the type of shocks and the number of differentiated goods.

The paper proceeds as follows. Section 2 provides a summary of the economic models we

analyze. Section 3 presents our core mathematical result. Section 4 develops the implications

for the three models we consider. Section 5 presents extensions and applications of our core

models, and demonstrates that our mathematical techniques and economic insights are robust

to such extensions. Section 6 concludes. The proofs are relegated to the Appendices.

2 Economic Models

In the following three subsections we introduce three models of monopolistic competition under

oligopoly. The three models differ in the specification of the consumer’s utility function, but

all share the feature that the representative consumer’s preference for a given firm’s good is

represented by a random taste shock.

Each model features a representative consumer, and an exogenously specified number n of

firms. The timing of each model is as follows:

1. Firms simultaneously set prices;

2. Random taste shocks are realized;

3. Consumers make purchase decisions;
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4. Profits are realized.

The key economic object of interest is the price markup in a symmetric equilibrium, which

we derive by solving the first-order condition for each firm’s profit maximization problem.

The firm i’s profit function is given by

πi = (pi − c)D (p1, ..., pn; i)

where D (p1, ..., pn; i) is the demand function for firm i given the price vector (p1, ..., pn) of the

n goods, and where c is the marginal cost of production. The first order condition for profit

maximization implies the following equilibrium markup in a symmetric equilibrium

p− c = − D (p, p;n)

D1 (p, p;n)
. (2)

Here p is the symmetric equilibrium price, D (p, p′;n) denotes the demand function for a firm

that sets price p when there are n goods and all other firms set price p′, and D1 (p, p′;n) ≡
∂D (p, p′;n) /∂p. Denote the markup p− c in a symmetric equilibrium with n firms as µn.

The evaluation of this markup expression for the three models of monopolistic competition

gives rise to different integral problems, which we address in Section 4 (using tools developed

in Section 3.) We briefly discuss the features of each model, and list the resulting expressions

for price markups in terms of integrals. The derivation of these expressions from the first-order

conditions is relegated to Appendix B, and we verify the second-order conditions in Appendix

D.

2.1 Perloff-Salop (1985): Linear Random Utility

In the Perloff-Salop model, a particular consumer can purchase exactly one unit of the dif-

ferentiated good. The consumer receives net utility Xi − pi by purchasing the good of firm

i, where Xi is a random taste shock, i.i.d. across firms and consumers, and pi is the price

charged by firm i. Thus the consumer chooses to purchase the good that maximizes Xi − pi.
In a symmetric-price equilibrium, the demand function of firm i is the probability that the

consumer’s surplus at firm i, Xi − pi, exceeds the consumer’s surplus at all other firms,

D (p1, ..., pn; i) = P(Xi − pi ≥ max
j 6=i
{Xj − pj}) = P(Xi ≥ max

j 6=i
{Xj}). (3)
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Let Mn denote the max {X1, ..., Xn}. Evaluation of (2) gives the following markup expres-

sion for the symmetric equilibrium of the Perloff-Salop model:

µPSn =
1− F (Mn−1)

−f(Mn−1)
=

1

n (n− 1)
∫
f 2(x)F n−2(x) dx

. (4)

Here F is the distribution function and f is the corresponding density of Xi.

2.2 Sattinger (1984): Multiplicative Random Utility

Sattinger (1984) analyzes the case of multiplicative random demand. There are two types of

goods. One is a composite good purchased from an industry with homogenous output, and

the other is obtained from a monopolistically competitive (MC) market with n differentiated

producers. The consumer has utility function

U = Z1−θ[
n∑
i=1

AiQi]
θ, (5)

where Z is the quantity of the composite good, Ai = exp(Xi) is the random taste shock, and

Qi is the quantity consumed of good i. The Xi are i.i.d. across consumers and firms and have

distribution function F . The consumer faces the budget constraint y = qZ+
∑

i piQi where y

is the consumer’s endowment, q is the price of the composite good and pi is the price of good

i.

One shows that the demand function of firm i is

D (p1, ..., pn; i) =
θy

pi
P
(
eXi

pi
≥ max

j 6=i

eXj

pj

)
. (6)

Evaluation of (2), see Appendix B, gives the following markup expression for the symmetric

equilibrium of the Sattinger model:

µSattn =
c

n (n− 1)
∫
f 2(x)F n−2(x) dx

. (7)

Note that the markup expressions for the Perloff-Salop and Sattinger models are almost

identical, except for the marginal costs factor c from (2). Thus

µSattn = c · µPSn . (8)
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2.3 Hart (1985): Power Utility

Hart (1985) analyzes a model of monopolistic competition where both the quantity and the

dollar amount spent depend on the prospective utility of the good purchased. In comparison, in

the Perloff-Salop model from section 2.1, the quantity demanded is fixed; while in the Sattinger

model (section 2.2), dollar expenditure is also fixed. The Hart model thus allows us to study

the impact of competition in a slightly richer economic context than the previous models of

monopolistic competition. Interestingly, with a particular choice of noise distribution, the Hart

(1985) model generates the same demand function, see our Proposition 5, as the traditional

Dixit-Stiglitz (1979) model, but within a random utility framework.

In Hart’s model, the consumer’s payoff function is:

U =
n∑
i=1

[
ψ + 1

ψ
(AiQi)

ψ/(ψ+1) − piQi

]
. (9)

where i is the index of the consumed good, Ai = eXi is the associated random taste shock, Qi

is the consumed quantity and pi is the unit price of good i. The Xi are i.i.d. across consumers

and firms and have distribution function F ; note that this specification allows for negative

realizations of Xi. Hart shows that the demand function for firm i is

D (p1, ..., pn; i) = E

[
eψXi

p1+ψ
i

1{eXi/pi≥maxj 6=i e
Xj /pj}

]
. (10)

Evaluation of (2), see Appendix B, gives the following markup expression for the symmetric

equilibrium of the Hart model:

µHartn = c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x) dx∫
eψxf (x)F n−1 (x) dx

)−1

. (11)

Note that, by comparing (6) with (10) and (7) with (11):

DHart (p1, ..., pn; i)
∣∣
ψ=0

= DSatt (p1, ..., pn; i) / (θy) ,

µHartn

∣∣
ψ=0

= µSattn ,

where DHart is the demand function in the Hart model and DSatt is the demand function in

the Sattinger model. In the special case ψ = 0, the Hart model generates the same demand
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functions and markups as the Sattinger model.

3 Extreme Value Theory and Related Results

Solving for the symmetric equilibrium outcome in the models discussed above, for distribution

function F , requires the evaluation of integrals of the form∫
xjeψxfk(x)F (x)n−ldx (12)

where k, l ≥ 1 and j, ψ ≥ 0. For large n, such integrals mainly depend on the tail of the

distribution F , which suggests that techniques from Extreme Value Theory (EVT) may be

applied. (See de Haan (1970), Resnick (1987), and Embrechts et al. (1997) for an introduction

to EVT.)

This section develops the mathematical tools that we will use to asymptotically evaluate

(12). Section 3.1 states a number of technical assumptions and introduces notation. Section

3.2 presents the main mathematical results. Proofs are relegated to Appendix A.

3.1 Preliminaries

First, we introduce a few useful objects. Define

Mn ≡ max
i=1,...,n

Xi,

to be the maximum of n independent random variables Xi with distribution F . Also, define

the counter-cumulative distribution function F (x) ≡ 1 − F (x).2 We are particularly inter-

ested in the connection between Mn and F
−1

(1/n); informally in analogy with the empirical

distribution function, one may think of F
−1

(1/n) as the “typical” value of Mn. In fact, the

key to our analysis is to formalize this relationship between F
−1

(1/n) and Mn for large n.

Our analysis is restricted to what we call well-behaved distributions:

Definition 1 Let F be a distribution function with support on (wl, wu). Let f = F ′ be

the corresponding density function. We say F is well-behaved iff f is differentiable in a

2Strictly speaking, we abuse notation in cases where F is not strictly increasing by using F
−1

(t) to denote
F
←

(t) = F← (1− t), where F← (t) = inf {x ∈ (wl, wu) : F (x) ≥ t} is the generalized inverse of F (Embrechts
et al. 1997, p.130). This is for expositional convenience; our results hold with the generalized inverse as well.
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neighborhood of wu, limx→wu F/f = a exists with a ∈ [0,∞], and

γ = lim
x→wu

d

(
F (x)

f (x)

)
/dx (13)

exists and is finite. The γ is called the tail index of F .

Being well-behaved imposes a restriction on the right tail of F . The case γ < 0 consists

of thin-tailed distributions with right-bounded support such as the uniform distribution. The

case γ = 0 consists of distributions with tails of intermediate thickness. A wide range of

economically interesting distributions fall within this domain, ranging from the relatively

thin-tailed Gaussian distribution to the relatively thick-tailed lognormal distribution, as well

as other distributions in between, such as the exponential distribution. The case γ > 0 consists

of fat-tailed distributions such as Pareto’s power-law and the Fréchet distributions.

Being well-behaved in the sense of Definition 1 is not a particularly strong restriction. It is

satisfied by most distributions of interest, and is easy to verify. Condition (13) is well-known

in the EVT literature as a second-order von Mises condition; for example, (13) is a slightly

stronger version of the assumption found in Pickands (1986). Table 1 lists several well-behaved

densities f , the tail index γ of the associated distribution F , and corresponding values for

F
−1

(1/n) and nf
(
F
−1

(1/n)
)

(which will be useful for our analysis). Note that tail fatness

is increasing in γ.

Definition 1 ensures that the right tail of F behaves appropriately. To ensure that the

integral (12) does not diverge, we also impose some restriction on the rest of F . The following

notation will simplify the exposition of our results.

Definition 2 Let j : R→ R have support on (wl, wu). The function j(x) is [wl, wu)-integrable

iff ∫ w

wl

|j (x)| dx <∞

for all w ∈ (wl, wu).

For example, in Theorem 2 we require that f 2 be [wl, wu)-integrable. Verification of this

condition is typically straightforward; it is useful to note, for example, that f 2 (x) is [wl, wu)-

integrable if f = F ′ is uniformly bounded.

Finally, the following definition of regular variation will be useful.

10



Table 1: Properties of Common Densities
The noise has density f , and tail index γ given by (13); F

−1
(1/n) is the approximate location of the

maximum of n samples of the noise. Distributions are listed in order of increasing tail fatness whenever

possible.

f γ nf
(
F
−1

(1/n)
)

F
−1

(1/n)

Uniform 1, x ∈ [−1, 0] −1 n − 1
n

Bounded Power Law α (−x)
α−1

, α ≥ 1, x ∈ [−1, 0] −1/α αn1/α −n−1/α

Weibull α(−x)α−1e−(−x)
α

, α ≥ 1, x < 0 −1/α αn1/α ∼ −n−1/α

Gaussian (2π)−1/2e−x
2/2 0 ∼

√
2 lnn ∼

√
2 lnn

Rootzen Class κλφxa+φ−1e−x
φ

, x > 0, φ > 1 0 ∼ φλ1/φ (lnn)
1−1/φ ∼ (lnn)

1/φ

Gumbel exp(−e−x − x) 0 ∼ 1 ∼ lnn

Exponential e−x, x > 0 0 1 lnn

Log-normal (2π)−1/2x−1e−(log2 x)/2, x > 0 0 ∼
√
2 lnn

F
−1

(1/n)
∼ e
√
2 lnn

Power law αx−α−1, α > 0, x ≥ 1 1/α αn−1/α n1/α

Fréchet αx−α−1e−x
−α
, α > 0, x ≥ 0 1/α αn−1/α ∼ n1/α

Definition 3 A function h : R+ → R is regularly varying at ∞ with index ρ if h is strictly

positive in a neighborhood of ∞, and

∀λ > 0, lim
x→∞

h (λx)

h (x)
= λρ. (14)

We indicate this by writing h ∈ RV ∞ρ .

Analogously, we say that h : R+ → R is regularly varying at zero with index ρ if,

∀λ > 0, limx→0 h (λx) /h (x) = λρ, and denote this by h ∈ RV 0
ρ . Intuitively, a regularly

varying function h (x) with index ρ behaves like xρ as x goes to the appropriate limit. For

instance, xρ and xρ |lnx| are regularly varying (with index ρ) at both 0 and ∞. Much of our

analysis will require the concept of regular variation; specifically, we will require that certain

transformations of the noise distribution F be regularly varying. In the case ρ = 0, we say

that h is slowly varying (for example lnx varies slowly at infinity and zero).

Finally, following the notation of Definition 1, define

wl = inf{x : F (x) > 0} and wu = sup{x : F (x) < 1} (15)
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to be the lower and upper bounds of the support of F , respectively.

3.2 Core Mathematical Result

Our core mathematical result documents an asymptotic relationship betweenMn and F
−1

(1/n).

Theorem 1 Let F be a differentiable CDF with support on (wl, wu) and f = F ′, and assume

that F is strictly increasing in a left neighborhood of wu. Let G : (wl, wu) → R be a strictly

positive function in a left neighborhood of wu. Suppose that Ĝ (t) ≡ G
(
F
−1

(t)
)
∈ RV 0

ρ with

ρ > −1, and that
∣∣∣Ĝ (t)

∣∣∣ is integrable on t ∈
(
t, 1
)

for all t ∈ (0, 1) (or, equivalently, G (x) f(x)

is [wl, wu)-integrable in the sense of definition 2). Then, for n→∞

E [G (Mn)] =

∫ wu

wl

nG (x) f(x)F (x)n−1dx ∼ G
(
F
−1

(1/n)
)

Γ (ρ+ 1) (16)

where Mn is the largest realization of n i.i.d. random variables with CDF F .

The intuition for equation (16) is as follows. By definition of Mn, if X is distributed as

F and if Mn and X are independent, then P [X > Mn] = 1/ (n+ 1); that is, E
[
F (Mn)

]
=

1/ (n+ 1) ≈ 1/n. Consequently, we might conjecture (via heroic commutation of the expec-

tations operator) that

E [Mn] ≈ F
−1
(

1

n

)
(17)

and that E [G (Mn)] ≈ G (E [Mn]) ≈ G
(
F
−1

(1/n)
)

.

It turns out that this heuristic argument gives us the correct approximation, up to a

correction factor Γ (ρ+ 1). 3

We next present an intermediate result that is technically undemanding but will allow us

to apply Theorem 1 to expressions of the form (12).

3To understand the correction factor, start with the linear case G (x) = x, in which case the theorem gives

E [Mn] ∼ F
−1

(1/n) Γ (−γ + 1). Then the correction factor arises because the distribution of the maximum
is Fn(x), not F (x). For distributions with an exponential type tail, γ = 0 and no correction is required. For
distributions with a power type tail and finite mean, γ ∈ (0, 1), an upward correction is needed. To provide
some intuition for this, consider the log (− logP {Mn ≤ t}), and where the distribution F is either Gumbel or
Fréchet, see Table 1. In case of the Gumbel one finds log n − t, while the Fréchet gives log n − α log t. Take
n and t large. In the Gumbel case n plays a minor role, while in the case of the distribution n and t are of
similar order of magnitude, so that n affects the distribution and its moments. More generally, if G (x) is not
linear, the tail behavior of G (x) interacts with the tail behavior of F (x). Both functions then determine ρ in
the correction factor as indicated in the theorem. For example, take G(x) = xm and F (x) = 1− x−α, m < α,
then E [(Mn)

m
] ' nm/αΓ (1−m/α).
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Lemma 1 Let F be well-behaved with tail index γ. Then

1. f
(
F
−1

(t)
)
∈ RV 0

γ+1.

2. If wu =∞, then F
−1

(t) ∈ RV 0
−γ. If wu <∞, then wu − F

−1
(t) ∈ RV 0

−γ.

3. If a is finite, then eF
−1

(t) ∈ RV 0
−a.

Lemma 1 ensures that when F is well-behaved, (12) satisfies the conditions imposed in

Theorem 1 for a wide range of parameter values. The following proposition is then an imme-

diate implication of Theorem 1 and Lemma 1.

Proposition 1 Let F be well behaved with tail index γ. Let j, ψ ≥ 0, k ≥ 1 and let xjeψxfk(x)

be [wl, wu)-integrable. If j > 0, assume that wu > 0. If ψ = 0, we can treat ψa = 0 in the

following expressions. If (k − j − 1) γ − ψa+ k > 0, then as n→∞,∫ wu

wl

xjeψxfk(x)F (x)n−ldx

∼

 n−1
(
F
−1

(1/n)
)j
eψF

−1
(1/n)fk−1

(
F
−1

(1/n)
)

Γ ((k − j − 1) γ − ψa+ k) : wu =∞

n−1wjue
ψwufk−1

(
F
−1

(1/n)
)

Γ ((k − 1) γ + k) : wu <∞
.

Proposition 1 allows us to approximate (12) for well-behaved distributions4. The parameter

restriction (k − j − 1) γ − ψa + k > 0 is necessary to ensure that (12) does not diverge. For

our purposes, this restriction is rather mild, as we will see when we apply Proposition 1

in the subsequent sections. One notable exception is that when ψ > 0, we cannot analyze

heavy-tailed distributions (which have fatter-than-exponential tails) such as the lognormal

distribution; for these distributions, a =∞.

Here we define a distribution to be heavy-tailed if eλxF (x)→∞ as x→∞ for all λ > 0.

To see why a = ∞ in this case, note that limx→∞ F (x) /f (x) = ∞ implies − d
dx

logF (x) =

o (1) as x→∞, so − logF (x) = o (x) and e−λx = o
(
F (x)

)
for all λ.

4 Asymptotic Markups

This section applies our newly-developed mathematical tools to the integral problems raised in

Section 2. Section 4.1 derives asymptotic expressions for the PS, Sattinger, and Hart markups

4For antecedents to this result, see Resnick (1971) or Maller and Resnick (1984).
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and price elasticities. Section 4.2 discusses the implications of these findings: specifically, how

the choice of noise distribution determines the relationship between competition and prices.

Section 4.3 briefly discusses some implications for consumer surplus under random demand

frameworks.

4.1 Asymptotic Expressions for Markups

Taking Proposition 1 and substituting into (4), (7) and (11), we immediately obtain asymp-

totic approximations for equilibrium markups for each of the Perloff-Salop, Sattinger and Hart

models.

Theorem 2 Assume that F is well-behaved, and that f 2 (x) is [wl, wu)-integrable. For the

Perloff-Salop and Sattinger models, assume that −1.45 ≤ γ ≤ 0.64.5 For the Hart model with

parameter ψ, assume that −1 < γ ≤ 0; if γ = 0, we further require that 1− ψa > 0.

Then the symmetric equilibrium markups in the Perloff-Salop, Sattinger and Hart models are

asymptotically

µPSn = µSattn /c ∼ µHartn /c ∼ 1

nf
(
F
−1

(1/n)
)

Γ (γ + 2)
. (18)

Theorem 2 treats the Hart model for the case where taste shocks have weakly thinner

tails than the exponential distribution. There is no such restriction for the Perloff-Salop and

Sattinger models; we are able to obtain markup expressions for fat-tailed taste shocks as well.

The proof of Theorem 2 is in Appendix C.

Theorem 2 delivers the perhaps unexpected result that the three models generate asymp-

totically equal (up to a multiplicative constant) markups. Hence, they exhibit a sort of

“detail-independence”: equilibrium markups do not depend on the details of the model of

competition. This logic underlying this phenomenon will be developed in section 4.4. The

markup under a limit pricing model of competition is also asymptotic to our markups in The-

orem 2. Hence, the key ingredient in the modeling is the specification of the noise distribution,

rather than the details of the particular oligopoly model.

The key mathematical objects in Theorem 2, γ and f
(
F
−1

(1/n)
)

, are easy to calculate

for most distributions of interest. Table 1 lists nf
(
F
−1

(1/n)
)

and γ for commonly used

distributions, from which the asymptotic markup may immediately be calculated.

5This is the range over which the second order condition holds; the first order condition holds whenever
γ > −2.
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The following proposition shows that γ has a concrete economic implication. The tail

parameter γ in (13) is the asymptotic elasticity of the markup with respect to the number of

firms. In other words, the markup behaves locally as µ ∼ knγ. We interpret n as a continuous

variable in the expression of the markup.

Proposition 2 Assume that the conditions in Theorem 2 hold. Further, assume that logF (x) f 2 (x)

is [wl, wu)-integrable. Then the asymptotic elasticity of the Perloff-Salop, Sattinger and Hart

markups with respect to the number of firms n is:

lim
n→∞

n

µn

dµn
dn

= γ.

For taste shocks with distributions fatter than the uniform (γ > −1), Proposition 2 shows

that the mark-up falls more slowly than 1/n. The proof is relegated to Appendix C.

Finally, the following fact, which is easily verified using Lemma 3 part 6, may often be

useful to simplify calculations further. As n→∞,

1

nf
(
F
−1

(1/n)
) ∼

γF
−1

(1/n) , γ > 0

−γ(wu − F
−1

(1/n)), γ < 0
.

4.2 Applications to Markup and Industry Equilibrium

We discuss the economic implications of the industry equilibrium. We will use µn to denote

the Perloff-Salop markup (with n firms) while keeping in mind that, in virtue of Theorems

2 and 4, the Hart, Perloff-Salop and Sattinger markups are asymptotically equal up to a

constant multiplicative factor. This allows us to unify the discussion for all four models.

To analyze the impact of competition on markups, we examine the equilibrium markup

for various noise distributions. Table 2 shows how markups change as competition intensifies.

The distributions in Table 2 are generally presented in increasing order of fatness of the

tails. For the uniform distribution, which has the thinnest tails, the markup is proportional

to 1/n. This is the same equilibrium markup generated by the Cournot model. However the

uniform cum Cournot case is unrepresentative of the general picture. Table 2 implies that

markups scale with nγ. For the distributions reported in Table 2, γ is bounded below by −1,

so the uniform distribution is an extreme case.

In the Perloff-Salop and Sattinger cases, for the distributions with the fattest tails, the
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Table 2: Asymptotic Expressions for Markups
This table lists asymptotic markups (under symmetric equilibrium) for various noise distributions as a

function of the number of firms n. The column f describes any parameter restrictions on the density f . Dis-

tributions are listed in order of increasing tail fatness. The µPS , µSatt, µHart are respectively markups under

the Perloff-Salop, Sattinger and Hart models. Asymptotic approximations are calculated using Theorem 2

except where the markup can be exactly evaluated. Note that µ is asymptotically equal for all three models

for large n. Note that the Hart markup is not defined for distributions fatter than the exponential.

f µPSn = µSattn /c µHartn /c limn→∞ µn

Uniform 1, x ∈ [−1, 0] 1/n ∼ 1/n 0

Bounded Power Law
α (−x)α−1

α > 0, x ∈ [−1, 0]

Γ(1−1/α+n)
αΓ(2−1/α)Γ(1+n) ∼

n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Weibull
α (−x)α−1 e−(−x)α

α ≥ 1, x < 0

1
αΓ(2−1/α)

n1−1/α

n−1 ∼
n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Gaussian (2π)−1/2 e−x
2/2 ∼ (2 log n)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−x
φ ∼ 1

φλ1/φ
(log n)1/φ−1 0

Gumbel exp(−e−x − x) n
n−1 ∼ 1 1

Exponential e−x, x > 0 1 1

Rootzen Gamma

(τ < 1)

τxτ−1e−x
τ

x > 0, τ < 1
∼ 1

τ (log n)1/τ−1 − ∞

Log-normal

exp(−2−1 log2 x)

x
√

2π

x > 0
∼ 1√

2 lnn
e
√

2 lnn − ∞

Power law
αx−α−1

α > 1, x ≥ 1

Γ(1+1/α+n)
αΓ(2+1/α)Γ(1+n) ∼

n1/α

αΓ(2+1/α) − ∞

Fréchet
αx−α−1e−x

−α

α > 1, x ≥ 0

1
αΓ(2+1/α)

n1+1/α

n−1 ∼
n1/α

αΓ(2+1/α) − ∞
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markups paradoxically rise as the number of competitors increases.6 Intuitively, for fat-tailed

noise, as n increases, the difference between the best draw and the second-best draw, which

is proportional to nf
(
F
−1

(1/n)
)

, increases with n (see section 4.4 below). However, even

though markups rise with n, profits per firm go to zero (keeping market size constant) since

firm prices scale with nγ but sales volume per firm is proportional to 1/n in the Perloff-Salop

case and 1/n1+γ in the Sattinger case.

This phenomenon whereby prices rise with more intense competition has recently attracted

some attention. Chen and Riordan (2008) present a model where markups rise when com-

petition goes from one to two firms. As in our paper, this is because consumers can become

less price-sensitive when there are more firms.7 In the context of a broad analysis of pass-

through, Weyl and Fabinger (2012) clarifies this effect by showing that the right-hand side of

our mark-up formula (18) falls with n for log-concave distributions, and rises with n for log-

convex distributions. The result can also be verified by taking the derivative of our asymptotic

formula with respect to n. Weyl and Fabinger show how in the log-concave case pricing strate-

gies are strategic complements, while in the log-convex case, they are strategic substitutes.8

Their analysis is qualitative and general, or is quantitative and specific.

Thin-tailed distributions (e.g. uniform) and fat-tailed distributions (e.g. power-laws) are

the extreme cases in Table 2. Most of the distributional cases imply that competition typically

has remarkably little impact on markups. For instance with Gaussian noise, the markup µn is

proportional to 1/
√

lnn, and the elasticity of the markup with respect to n is asymptotically

zero. So µn converges to zero, but this convergence proceeds at a glacial pace. Indeed, the

elasticity of the markup with respect to n converges to zero.

To illustrate the slow convergence, we calculate µn when noise is Gaussian for a series of

values of n. Table 3 shows that in the models we study and with Gaussian noise, a highly

competitive industry with n = 1, 000, 000 firms will retain a third of the markup of a highly

concentrated industry with only n = 10 competitors. We also compare markups in our

monopolistic competition models to those in the Cournot model, which features markups

proportional to 1/n and a markup elasticity w.r.t. n of −1 (note that this is equal to markups

in the Perloff-Salop model with uniformly distributed noise.)

6No symmetric price equilibrium can be calculated in the Hart model for these distributions, because each
firm would face infinite demand.

7See also Bénabou and Gertner (1993), Carlin (2009), Bulow and Klemperer (2002) and Rosenthal (1980)
for perverse competitive effects generated by different microfoundations.

8For more background, see Bulow, Geanakoplos and Klemperer (1985).
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Table 3: Markups with Gaussian Noise and Uniform Noise
Markups are calculated for (i) the symmetric equilibrium of the Perloff-Salop model for Gaussian noise and

(ii) under Cournot Competition, for various values of the number of firms n. Note that markups in the

Sattinger model and the Hart model are asymptotically equal, up to a constant cost factor c, to markups

in the Perloff-Salop model. The number of firms in the market is n. Markups are normalized to equal one

when n = 10.

n Markup with Gaussian noise Markup under Cournot Competition

10 1 1

100 0.61 0.1

1, 000 0.47 0.01

10, 000 0.40 0.001

100, 000 0.35 0.0001

1, 000, 000 0.32 0.00001

More generally, in cases with moderate fatness, such as the Gumbel (i.e. logit), exponential,

and log-normal densities, the markup again shows little (or no) response to changes in n.

Nevertheless, the markups become unbounded for the lognormal distribution. Finally, the

case of Bounded Power Law noise shows that an infinite support is not necessary for our

results. In this case the markup is proportional to n−1/α and markup decay remains slow for

large α.

In practical terms, these results imply that in markets with noise we should not necessarily

expect increased competition to dramatically reduce markups. The mutual fund industry

may exemplify such stickiness.9 Currently 10,000 mutual funds are available in the U.S. and

many of these funds offer similar portfolios. Even in a narrow class of homogenous products,

such as medium capitalization value stocks or S&P 500 index funds, it is normal to find

100 or more competing funds (Hortacsu and Syverson 2004). Despite the large number of

competitors in such sub-markets, mutual funds still charge high annual fees, often more than

1% of assets under management. Most interestingly, these fees have not fallen as the number of

homogeneous competing funds has increased by a factor of 10 over the past several decades.10

9Carlin(2009) makes a similar point in a model of price complexity with boundedly rational consumers.
10Finally, we add a note about the well-known behavior of markups when the noise is multiplied by a

constant. Consider random shock X and its linear transform X ′ = σX + k. A higher σ means that there is a
higher standard deviation of the noise, while k is simply a shift. Calling µn = µn (1, 0) the markup under X
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4.3 Consumer Surplus

Sometimes the random utility framework is criticized as generating too high a value for con-

sumer surplus. Indeed, if the distribution is unbounded, the total surplus goes to ∞ as the

number of firms increases. Our analytical results allow us to examine this criticism. For

brevity, we restrict ourself to the Perloff-Salop case, with unbounded distributions and γ ≥ 0.

Expected gross surplus is E [Mn], where Mn is the highest of n draws. Theorem 1 shows that

E [Mn] ∼ Γ (2− γ)F
−1

(1/n) for γ ≥ 0. For all the distributions that we study except the

unbounded power law case, F
−1

(1/n) rises only slowly with n. Hence, even for unbounded

distributions, and large numbers of producers, consumer surplus can be quite small. For

example, for the case of Gaussian noise when consumer preferences have a standard devia-

tion of $1, F
−1

(1/n) ∼
√

2 lnn. So, with a million toothpaste producers, consumer surplus

averages only $5.25 per tube. Hence, in many instances, the framework — even with un-

bounded distributions — does not generate counterfactual predictions about consumer surplus

or counterfactual predictions about the prices that cartels would set.

4.4 Limit Pricing Model Interpretation

We now derive equilibrium markups for an alternative model of oligopolistic competition,

and show that it produces markups that are asymptotically equal to those from the Perloff-

Salop, Sattinger, and Hart models. Importantly, we explain how the same logic underlies the

equilibrium markups for all of these models. This generates an simple but useful interpretation

of our economic results from Section 4. As an aside, we demonstrate an equivalence between

our results and the mathematics of second-price auctions in Section 5.4.

This model is sometimes called “limit pricing”, and has proved very useful in trade and

macroeconomics (e.g. Bernard et al. 2003, see also Auer and Chaney 2009). Each firm i

draws a quality shock Xi, then sets a price pi. (This is in contrast with the models of Section

2, where prices are set before taste shocks are observed.) The representative consumer needs

to consume one unit of the good, and picks the firm with the largest of Xi−pi. As before, call

Mn = maxi=1...nXi the maximum draw of the n qualities, and Sn the second-largest draw. In

the competitive equilibrium, the firm with the highest quality, Mn, gets all the market share,

and µn (σ, k) the markup under the distribution of X ′, we have µPSn (σ, k)
′

= σµPSn i.e., the markup is simply
multiplied by σ, while k does not matter for the markup (it is the difference in qualities that matters, not
their absolute level). Likewise, µSattn (σ, k)

′
= σµSattn , and µHart (ψ, σ) = σµHart (ψσ, 1). So asymptotically,

the markup is simply multiplied by σ.
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and sets a price p = c + Mn − Sn. This is just enough to take all the market away from the

firm with the second-highest quality. So, the markup is µLPn = Mn − Sn.

The next Proposition analyzes the average behavior of that Limit Pricing markup.

Proposition 3 Let F be well-behaved with tail index γ < 1, and assume that xf (x) is

[wl, wu)-integrable. Call Mn and Sn, respectively, the largest and second largest realizations of

n i.i.d. random variables with CDF F . Then limit pricing markup is µLPn = Mn − Sn, and

E
[
µLPn

]
∼n→∞

Γ (1− γ)

nf
(
F
−1

(1/n)
) . (19)

We see that the markup is asymptotic to the markup in the other three random utility

models, derived in Theorem 2. This strengthens the result that the behavior in the markup

is in many ways independent of the details of the modelling of competition. There is also an

intuitive interpretation for Proposition 3, which clarifies the general economics of competition

with a large number of firms.

We observed that E
[
F (Mn)

]
' 1/ (n+ 1), which suggested that Mn will be close to

F
−1

(1/n). Similarly, with Sn the second-highest draw, E
[
F (Sn)

]
' 2/ (n+ 1). So it is likely

that Sn−1 ≈ F
−1

(2/n). So

E
[
µLPn

]
≈Mn − Sn ≈ F

−1
(1/n)− F−1

(2/n) = F
−1

(1/n)− F−1
(1/n+ 1/n)

≈ − dF
−1

(x)

dx

∣∣∣∣∣
x=1/n

· 1

n
by Taylor expansion

=
1

nf
(
F
−1

(1/n)
) .

Proposition 1 shows that the heuristic argument generates the right approximation for the

distributions when γ = 0 (e.g. Gaussian, logit (Gumbel), exponential, and lognormal), and

that the approximation remains accurate up to a corrective constant in the other cases. So

an informal intuition for the Perloff-Salop, Sattinger and Hart models is as follows. To set

its optimum price, a firm conditions on its getting the largest draw, then evaluates the likely

draw of the second highest firm, and engages in limit pricing, where it charges a markup equal

to the difference between its draw and the next highest draw.
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5 Extensions and Applications

This section discusses two extensions of our basic models and an application to macro. Section

5.1 endogenizes the degree of product differentiation between firms, and in doing so demon-

strates a connection between our results and the functional form of the Dixit-Stiglitz (1977)

demand function. The Dixit-Stiglitz specification is highly popular in macroeconomics. We

develop a simple macroeconomic framework in Section 5.2 to demonstrate how the random

demand specification may be used in place of the common Dixit-Stiglitz specification. In

Section 5.3, we enrich the Perloff-Salop model and show that (i) our mathematical methods

can be applied to richer oligopoly models that incorporate complicated assumptions about

consumer preferences (beyond the standard models that we previously introduced), and that

(ii) our economic insights about the “noise-dependence” of equilibrium markups remain under

such additional assumptions.

5.1 Endogenous Product Differentiation or Noise

So far, the models we analyze have assumed that the standard deviation of the noise term

exogenous. This section relaxes this assumption and allows firms to choose the degree of

differentiation (in the traditional interpretation), or the degree of “confusion” (in a behavioral

interpretation). As a bonus, we show that with Gumbel-distributed noise, the Hart model

with endogenous differentiation produces the familiar Dixit-Stiglitz (1997) demand function.

Assume that firms can choose the degree to which their own product is differentiated from

the rest of the market; specifically, assume that each firm i can choose σi at a cost c (σi) so

that the firm’s demand shock is Xi = σiX, where X has CDF F . The game then has the

following timing:

1. firms simultaneously choose (p, σ).

2. random taste shocks are realized.

3. consumers make purchase decisions.

4. profits are realized.

Firm i’s profit function is given by

π ((pi, σi) , (p, σ) ;n) = (pi − c (σi))D ((pi, σi) , (p, σ) ;n)
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in step 1, where D ((pi, σi) , (p, σ) ;n) is the demand for good i when the firm chooses (pi, σi)

and the remaining n − 1 firms choose (p, σ). Each firm i then chooses (pi, σi) to maximize

π ((pi, σi) , (p, σ) ;n); the symmetric equilibrium is then characterized by

(p, σ) = arg max
(p′,σ′)

π ((p′, σ′) , (p, σ) ;n) .

Our techniques allow us to analyze the symmetric equilibrium outcome of this game, for

each of the Perloff-Salop, Sattinger and Hart models.

Proposition 4 Consider the Perloff-Salop, Sattinger and Hart models where firms simulta-

neously choose p and σ, under the same assumptions as Theorem 2. Assume that wu > 0.11

Further, in the Perloff-Salop and Sattinger cases, assume that xf 2 (x) dx is [wl, wu)-integrable,

and that c′ > 0, c′′ > 0, limt→∞ c
′ (t) = ∞. In the Hart case, assume that c′ > 0, (ln c)′′ >

0, limt→∞ (ln c (t))′ =∞.

Then the equilibrium outcome with n firms is asymptotically, as n→∞

µPSn (σn) =
µSattn (σn)

cSatt (σn)
∼ µHartn (σn)

cHart (σn)
∼ σn

nf
(
F−1

(
1− 1

n

))
Γ (γ + 2)

,

cPS
′

(σn) =
cSatt

′
(σn)

cSatt (σn)
∼ cHart

′
(σn)

cHart (σn)
∼

{
F
−1

(1/n) : wu <∞
F
−1

(1/n)
Γ(γ+2)

: wu =∞
.

That is, at the symmetric equilibrium, the normalized marginal cost of σ (c′ (σn) in the

Perloff-Salop case and c′ (σn) /c (σn) in the Sattinger and Hart cases) asymptotically equals

F
−1 ( 1

n

)
, up to a corrective constant. In particular, it goes closer to the upper bound of

the distribution as the number of firms increases. In other terms, more firms create more

product differentiation (in the optimistic traditional interpretation), or more confusion (in

the pessimistic behavioral interpretation), in a way quantified by Proposition 4. We note that

this potentially perfect effect of competition of the supply of noise is an important effect, see

e.g. Carlin (2009), Ellison and Ellison (2009), and Spiegler (2006).

We can use the limit pricing heuristic from Section 4.4 to obtain an intuition for this result.

Again, consider the Perloff-Salop case. Since the firm engages in limit pricing, it can charge

11This assumption that the largest possible realization of Xi is positive (possibly infinite) makes the firm’s
problem economically sensible. If, on the contrary, wu ≤ 0, then each realization of Xi would be negative
with probability 1. In that case, increasing σ would reduce the attractiveness of the firm’s product to the
consumer. To eliminate this possibility, we assume wu > 0.
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a markup of σMn − σ∗Sn where σ is the firm’s product differentiation choice and σ∗ is the

choice of all other firms, which we take as given. The marginal value of an additional unit of

noise σ is thus Mn ' F
−1 ( 1

n

)
.

Interestingly, the Hart model with Gumbel-distributed noise generates the familiar demand

function from Dixit-Stiglitz (1977), as the following proposition shows.12

Proposition 5 Let Xi be Gumbel distributed with parameter φ: F (x) = exp
(
−e−x/φ

)
.Then

in the Hart model, demand for good i equals

D (p1, ..., pn; i) = Γ (1− φψσ∗) p
−(1+1/(φσ∗))
i(∑n

i=1 p
−1/(φσ∗)
j

)1−φψσ∗

where σ∗ is the symmetric equilibrium choice of σ.

This result may be of independent interest. For example, it suggests that our framework

may be used to model Dixit-Stiglitz demand functions with endogenous elasticity.

5.2 A Macroeconomic Framework with Random Demand

To model pricing power macro economists typically utilize the monopolistically competitive

differentiated goods specification of Dixit and Stiglitz (1977) with a large number of goods.

Shocks to the demand side are often modeled by shocking the coefficient of substitution in

the Dixit-Stiglitz specification; see e.g. Woodford (2003, ch. 6), Smets and Wouters (2003)

and Gali et al. (2012). This practice is criticized by Chari, Kehoe and McGrattan (2009),

who argue that such shocks are not structural. To meet this criticism, we investigate the

implications of a random demand specification. As we show below, demand shocks in the

random demand approach are taken into account by the firms when setting prices, rather

than treating these exogenously. Here we take an extreme view of demand shocks and model

these as a taste of the entire population for a specific item from the set of differentiated goods

(one year everybody desires a BlackBerry, the next year the iPhone).

To be able to demonstrate the implications of random demand for macro, we develop two

macro models. One is based on the traditional Dixit-Stiglitz (DS) specification, the other is

based on the Random Demand (RD) specification. The two models only differ with respect

12Anderson et al (1992, pp. 85-90) derive this result for the case ψ = 0.
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to utility function. The Dixit-Stiglitz specification with endogenous labor supply is

U = Z1−θ

[
1

n

n∑
i=1

Q
1/(1+τ)
i

]θ(1+τ)

− 1

1 + η
L1+η, (20)

where Z is the composite good, the Qi are the differentiated goods and L is labor. The

substitution coefficient τ is constrained to τ ∈ (0,∞), which implies concavity; θ ∈ (0, 1).

The Random Demand model is based on Sattinger’s (1984) utility function (5) amended

with the same disutility of labor as in the DS specification

U = Z1−θ

[
n∑
i=1

exp (Xi)Qi

]θ
− 1

1 + η
L1+η. (21)

In this setup the taste shock affects all consumers equally, i.e.the demand shocks Xi are

identical across consumers.

The supply side technologies are linear:

Z = BN and Qi = ANi, (22)

where A and B are the labor productivity coefficients while N and Ni are the respective

labor demands. Note that A and B also capture the supply side productivity shocks. Perfect

competition in the composite goods market implies that prices equal the per unit labor costs.

The differentiated goods producer exploits his direct pricing power, but ignores his pricing

effect on the price index of the differentiated goods and the consumer income. For the Random

Demand case, the markup is µn from (7); in the Dixit-Stiglitz specification, the markup is τ .

Note that the markup factors τ and µn can take on similar values, cf. Table 2. The models’

solutions from the first order conditions is given in the Appendix C.

By dividing (60) by (59), and similarly dividing (57) by (55) from the solution, we calculate

the respective labor productivities for the competitive good:

Lemma 2 The labor productivities under the Dixit-Stiglitz and Random Demand specifica-

tions are, respectively,

Qj/L =
θA

1 + (1− θ) τ
and Qi/L =

θA

1 + (1− θ)µn
. (23)
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The following is an immediate implication:

Corollary 1 The labor productivity in the Dixit-Stiglitz specification is a mixture of demand

and supply shocks, while in the Random Demand specification there are only supply shocks.

The main difference between the two demand specifications stems from the way in which

demand shocks impinge on the macro variables. Woodford (2003, ch. 6), Smets and Wouters

(2003) and Gali et al. (2012) generate demand shocks by shocking τ . This is different from the

demand shock that arises from the random utility concept. Letting τ be random produces a

time varying markup factor. The markup factor µn in the case of random utility, though, is not

random, see (7). Only the amount demanded is random as Xi is part of the demand function.

The deterministic markup in case of the random demand model can be explained by the fact

that the uncertainty is anticipated on the supply side and ‘disappears as an expectation’.

In the Random Demand expression from (23), the number of competitors n plays a role

through the markup µn. In the case of the Dixit-Stiglitz specification, however, n does not

enter as τ is exogenous. Consider the implications for the goods ratios Q/Z:

Proposition 6 In the Dixit-Stiglitz specification, the goods ratio Qj/Z does not depend on

n. In the Random Demand case, if the distribution of the fashion shock is bounded or has

exponential like tails, then Qi/Z (approximately) equals the ratio of the expenditure shares

θ/ (1− θ) times the ratio of the productivity shocks A/B. But in the case that the preference

shocks have fat tails, the goods ratio Qi/Z → 0.

Proof of Proposition 6 Combining (60) and (61), and (57) and (58) yields for respectively

the DS and RD specifications

Qj

Z
=

θ

(1− θ) (1 + τ)

A

B
and

Qi

Z
=

θ

(1− θ) (1 + µn)

A

B
. (24)

Then use Table 2 to plug in the details for µn depending on the type of distribution. With

γ ≥ 0 and a unbounded, limn→∞ (Qi/Z) = limn→∞ (1/µn) = 0. �

Thus in the case that the preference shocks have fat tails and with numerous competitors,

the differentiated good becomes unimportant relative to the competitive good.

5.3 Enriched Linear Random Utility (ELRU)

In this section we add two features, drawn from recent random demand models (see, for

example, Berry, Levinsohn and Pakes 1995), to the Perloff-Salop model: an outside option

25



good, and stochastic consumer price sensitivity. We call this enriched model Enriched Linear

Random Utlity (ELRU). We will show that the essential insights we obtain in Section 4

are maintained in this setting. As before, we go through the modeling assumptions, then

introduce the mathematical machinery before applying it to the equilibrium markup problem.

The proofs are in Appendices C and D.

5.3.1 Model Setup: ELRU

There are n firms each producing a monopolistically competitive good, and a consumer who

chooses either to purchase exactly one unit of the good from one firm, or to take his outside

option. The consumer’s utility from consuming firm i’s good is

ui = −βpi +Xi, u0 = ε0,

where pi is the price of good i (set by firm i), β ≥ 0 is a “taste for money”, ε0 ≥ 0 is the value

of the consumer’s outside option, and Xi is the random taste shock associated with good i.

Each of X1, ..., Xn are identically distributed and independent of each other and (β, ε0). The

ε0 may not be independent of β. Each Xi has CDF F . The joint distribution of (β, ε0) is

denoted by H(., .) and has a density h(., .); some times we use vector notation y = (β, ε0) and

will just write H(y) and h(y) respectively.

The demand function for good i at price p (given that all other goods are priced at p′) is

the probability that the consumer’s payoff for good i exceeds his payoff to all other goods, as

well as the outside option:

D (p1, ..., pn; i) = P
(
−βpi +Xi ≥ max

{
max
j 6=i
{−βpj +Xj} , ε0

})
.

If we set ε0 = −∞ and β to be a constant, this simplifies to the Perloff-Salop model. Evaluation

of (2) gives the following markup expression for the symmetric equilibrium of the ELRU model:

µELRUn =
E [1− F (max {Mn−1, βp+ ε0})]
E [f (max {Mn−1, βp+ ε0}) β]

. (25)

where Mn−1 = maxj=1,...,n−1Xj is the maximum of n − 1 independent random variables Xj

with distribution F .
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5.3.2 Equilibrium Markup: ELRU

We limit the calculation of equilibrium markups to the case where teh distribution satisfies

γ = 0 and a < ∞; that is, to distributions that are weakly thinner than the exponential.

This restriction allows us to retain common distributions such as the Gumbel, Gaussian, and

Exponential; put another way, distributions that produce equilibrium markups that are weakly

decreasing with the degree n of competition. The main result of this section is that, with some

mild assumptions on the distributions of β and ε0, equilibrium markups are asymptotically

equal (up to a factor E [β]) to the Perloff-Salop, Sattinger and Hart markups. We separately

consider the cases of bounded and unbounded support for the distribution H(y).

The first result is for the case that H(y) has bounded support and where the densities

f(x) are of the Rootzen (1987) type

f (x) ∼ κλφxφ+ν−1 exp
(
−λxφ

)
, κ > 0, λ > 0, φ ≥ 1, ν ∈ R. (26)

It is a simple calculation to check that for this class γ = 0 and a = 0 whenever φ > 1. Note

that the classic tail expansion of the normal distribution 1−Φ (x) ∼ φ (x) /x fits the Rootzen

class (38) when we set φ = 2, λ = 1/2, κ = 1/
√

2π and a = −1.

Theorem 3 Assume that f(x) is of the Rootzen type as defined in (26). Assume that the

density function h (y) has bounded support. Then the symmetric equilibrium markup in the

ELRU model is asymptotically

µELRUn ∼ 1/E[B]

φλ1/φ (lnn)1−1/φ
. (27)

The second result treats the case when the density h(y) has unbounded support. It requires

the assumption that h(y) is multivariate regularly varying:13

Definition 4 A multivariate density function h : (R+)
k → R on a random vector Θ is

regularly varying at ∞ with index ρ if the density hv of every linear combination v ·Θ ∈ R of

Θ is regularly varying:

∀λ > 0, lim
x→∞

hv (λx)

hv (x)
= λρ. (28)

13This condition is not difficult to satisfy. For example, it is satisfied if each element of y is independent and
regularly varying. See Basrak, Davis, and Mikosch (2002) for more details and alternative characterizations
of multivariate regular variation.
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Theorem 4 Assume that F is well-behaved with tail index γ = 0 and a < ∞, that f (x)

is non-increasing for x ≥ 0, and that f 2 (x) is [wl, wu)-integrable. Assume that the density

function h (y) is multivariate regularly varying at infinity with wu = ∞, that E
[
β2+δ

]
< ∞

for some δ > 0 and that ε0 ≥ 0. Then the symmetric equilibrium markup in the ELRU model

is asymptotically

µELRUn ∼ 1/E [β]

nf (F−1 (1− 1/n))
. (29)

Note that in each of the Hart, Perloff-Salop, and Sattinger models, the marginal utility of

money equals 1, which corresponds to the case β ≡ 1 in the ELRU model.

5.4 Auctions

Consider an second-price auction with a single good and n bidders where each bidder i pri-

vately values the good at Xi, which is i.i.d. with CDF F . It is well-known that if F is strictly

increasing on (wl, wu), then the equilibrium outcome of this auction is that each bidder makes

a bid equal to his private valuation; the bidder with the highest valuation (Mn) wins and pays

the second-highest valuation (Sn). Thus the expected revenue in a second price auction equals

E [Sn], and the expected surplus for the winner in a second price auction equals E [Mn − Sn].

We can apply Theorem 1 and Lemma 1 to obtain asymptotic approximations for both of these

expressions.14 Since this is closely related to the results for limit pricing model, we state the

following without proof.

Proposition 7 Let F be well-behaved with tail index γ < 1, and assume that xf (x) is

[wl, wu)-integrable. Then in a second-price auction where valuations are i.i.d. as F , the

expected revenue to the seller, E [Sn], is

E [Sn] ∼n→∞ F
−1

(1/n) Γ (2− γ) if wu =∞,

E [Sn] = wu −
(
wu − F

−1
(1/n)

)
Γ (2− γ) + o

(
wu − F

−1
(1/n)

)
if wu <∞,

and the expected surplus for the winner of the auction is:

E [Mn − Sn] ∼n→∞
Γ (1− γ)

nf
(
F
−1

(1/n)
) . (30)

14Result (30) appeared in Caserta (2002, Prop. 4.1) in the case γ 6= 0. Caserta does not have the key
argument of the proof, with the integration by parts.
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6 Conclusion

The choice of noise distribution in existing models of consumer choice is generally dictated by

tractability concerns. This raises the question of how sensitive the implications of these models

are to assumptions about the noise distributions. The increasing popularity of structural

estimation techniques makes this question particularly important. We make progress on this

issue in two ways.

First, we demonstrate a tractable technique for modelling general noise distributions. We

have characterized equilibrium markups in markets where product differentiation is generated

by idiosyncratic taste shocks. We managed to calculate equilibrium markups for general noise

distributions in various examples of monopolistic competition models. We demonstrate that

our approach is applicable even to richer consumer choice models such as that incorporate

various technically challenging assumptions.

Second, our results reveal a somewhat surprising “detail-independence” of the behavior of

price markups, which are asymptotically identical (up to a constant factor) for all four models.

For a wide range of commonly used distributions, including the canonical case of Gaussian

noise, we show that the elasticity of markups to the number of firms is asymptotically zero,

so that markups are relatively insensitive to the degree of competition.
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7 Appendix A: Proofs

First, to clarify notation: denote fn ∼ gn if fn/gn → 1, fn = o(gn) if fn/gn → 0 and

fn = O(gn) if there exists M > 0 and n′ ≥ 1 such that for all n ≥ n′, |fn| ≤ M |gn|. We start

by collecting some useful facts about regular variation, see Resnick (1987) or Bingham et al.

(1989).

Lemma 3 1. If g (t) ∈ RV 0
a , then limt→0 g (xt) /g (t) = xa holds locally uniformly (with

respect to x) on (0,∞).

2. If limx→0 h(x)/s(x) = 1, limx→0 s (x) = 0 and g(x) ∈ RV 0
ρ , then g(h(x)) ∼ g(s(x)).

3. If g (t) ∈ RV 0
a and h (t) ∈ RV 0

b , then g (t)h (t) ∈ RV 0
a+b.

4. If g (t) ∈ RV 0
a , h (t) ∈ RV 0

b and limt→0 h (t) = 0, then g ◦ h (t) ∈ RV 0
ab.

5. If g (t) ∈ RV 0
a and non-decreasing, then g−1 (t) ∈ RV 0

a−1 if limt→0 g (t) = 0.

6. Let U ∈ RV 0
ρ . If ρ > −1 (or ρ = −1 and

∫ x
0
U (t) dt < ∞), then

∫ x
0
U (t) dt ∈ RV 0

ρ+1

and

lim
x→0

xU (x)∫ x
0
U (t) dt

= ρ+ 1.

If ρ ≤ −1, then for x > 0,
∫ x
x
U (t) dt ∈ RV 0

ρ+1 and

lim
x→0

xU (x)∫ x
x
U (t) dt

= −ρ− 1.

7. If limt→∞ tj
′(t)/j(t) = ρ, then j ∈ RV ∞ρ . Similarly, if limt→0 tj

′(t)/j(t) = ρ, then

j ∈ RV 0
ρ .

8. If g ∈ RV ∞ρ and ε > 0, then g (t) = o (tρ+ε) and tρ−ε = o (g (t)) as t → ∞; and if

g ∈ RV 0
ρ and ε > 0, then g (t) = o (tρ−ε) and tρ+ε = o (g (t)) as t→ 0.

Proof

1. Follows upon inversion from Resnick (1987, Prop. 0.5).
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2. This fact follows from the observation that for g(s(x))
g(h(x))

=
g(
s(x)
h(x)

h(x))

g(h(x))
∼
(
s(x)
h(x)

)ρ
→x→0 1

where we can take the limit as x→ 0 because of Lemma 3(1). Going into more detail,

choose δ (·) such that limt→0 δ (t) = 0 and |s (t′) /h (t′)− 1| < δ (t) for t′ < t. Such

δ (·) exists by our assumptions on s and h. Choose ε (·, ·) such that limt→0 ε (t, δ) =

limδ→0 ε (t, δ) = 0 and |g (xt′) /g (t′)− xρ| < ε (t, δ) for x ∈ (1− δ, 1 + δ) and t′ < t.

Lemma 3(1) ensures that such ε (·, ·) exists. Then

|g (s (t′)) /g (h (t′))− 1| =
∣∣∣∣g( s (t′)

h (t′)
h (t′)

)
/g (h (t′))− 1

∣∣∣∣ < ε (h (t′) , δ (t)) + ρO (δ (t))

for t′ < t. Since the RHS goes to zero as t→ 0, the result follows.

3. Since limt→0
g(xt)
g(t)

= xa and limt→0
h(xt)
h(t)

= xb, we have limt→0
g(xt)h(xt)
g(t)h(t)

= xa+b.

4. Follows upon inversion from Resnick (1987, Prop. 0.8, iv).

5. Follows upon inversion from Resnick (1987, Prop. 0.8, v).

6. Both parts follow upon inversion from Resnick (1987, Th. 0.6, a).

7. Follows from Resnick (1987, Prop. 0.7) and by inversion.

8. Directly by Resnick (1987, Prop. 0.8, ii) and upon inversion. �

Our proof of Theorem 1 depends critically on the following result.

Theorem 5 (Karamata’s Tauberian Theorem) Assume U : (0,∞) → [0,∞) is weakly in-

creasing, U(x) = 0 for x < 0, and assume
∫∞

0
e−sxdU (x) < ∞ for all sufficiently large s.

With α ≥ 0, U(x) ∈ RV 0
α if and only if∫ ∞

0

e−sxdU (x) ∼s→∞ U (1/s) Γ (α + 1) .

For a proof, see Bingham et al. (1987, pp.38, Th. 1.7.1’) or Feller (1972, XIII.5, Th. 1)

for another version of Karamata’s Tauberian theorem.

Proof of Theorem 1

Assume for now that G (x) ≥ 0 for all x ∈ (wl, wu), and show later that this assumption

can be relaxed. Differentiation of P (Mn ≤ x) = F n (x) gives the density of Mn: fn(x) =
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nf(x)F n−1(x). Using the change of variable x = F
−1

(t) and observing that dF
−1

(t) /dt =

−1/f
(
F
−1

(t)
)

E [G (Mn)] =

∫ wu

wl

G(x)nf(x)F n−1(x)dx

= n

∫ wu

wl

G(x)F n−1(x) (f(x)dx)

= n

∫ 1

0

G(F
−1

(t))[F (F
−1

(t))]n−1dt

= n

∫ 1

0

Ĝ (t) (1− t)n−1 dt.

We next use the change in variables x = − ln (1− t), so t = 1− e−x, dt = e−xdx, and so

E [G (Mn)] = n

∫ ∞
0

Ĝ
(
1− e−x

)
e−xe−n

′xdx

where n′ = n− 1.

Next, define h (x) = Ĝ (1− e−x) e−x, and η(x) =
∫ x

0
h (y) dy. Since Ĝ is regularly varying

at zero with index ρ > −1, Lemma 3(8) implies that
∫ s

0

∣∣∣Ĝ (t)
∣∣∣ dt < ∞ for sufficiently small

s. This, with the assumptions G (t) ≥ 0 and
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt < ∞ for all s ∈ (0, 1), ensure that

µ(x) =
∫ 1−e−x

0
Ĝ (t) dt is finite and non-decreasing on [0,∞). By Lemma 3(2), h (x) ∼x→0

Ĝ(x). So h ∈ RV 0
ρ , and by Lemma 3(6)

η(x) =

∫ x

0

h (y) dy

∼x→0
1

1 + ρ
h(x)x

∼x→0
1

1 + ρ
Ĝ(x)x.

Therefore η(x) ∈ RV 0
ρ+1.
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Noting our assumption that ρ + 1 > 0, we can now apply Karamata’s Theorem 5 in

combination with the last expression to obtain∫ ∞
0

e−n
′xdη (x) ∼n′→∞ η (1/n′) Γ (2 + ρ)

∼n′→∞
1

1 + ρ
Ĝ (1/n′) (n′)

−1
Γ (2 + ρ)

∼n→∞ Ĝ (1/n)n−1Γ (1 + ρ) .

Thus

E [G (Mn)] = n

∫ ∞
0

e−n
′xdη (x)

∼ nĜ (1/n)n−1Γ (1 + ρ) = G(F
−1

(1/n))Γ (1 + ρ)

holds when G (x) ≥ 0 for all x ∈ (wl, wu).

Now relax the assumption that G (x) ≥ 0 for all x ∈ (wl, wu). Choose t ∈ (0, 1) such that

G (t) > 0 for t ∈
[
0, t
]
. The assumption that G (·) is strictly positive in a left neighborhood

of wu ensures that such t exists. Thus we can write

E [G (Mn)] = n

∫ t

0

Ĝ (t) (1− t)n−1 dt+ n

∫ 1

t

Ĝ (t) (1− t)n−1 dt

Consider G̃ : (0, 1)→ R defined by

G̃ (t) ≡

{
Ĝ (t) : t ≤ t

0 : t > t
.

It is easy to check that G̃ satisfies the conditions of the theorem and additionally is weakly

positive everywhere on (wl, wu). The argument above shows that as 1/n→ 0

n

∫ t

0

Ĝ (t) (1− t)n−1 dt = n

∫ 1

0

G̃ (t) (1− t)n−1 dt ∼ G̃ (1/n) Γ (1 + ρ) ∼ Ĝ (1/n) Γ (1 + ρ) .

(31)
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To complete the proof we demonstrate that as n→∞

∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ = o

(∫ t

0

Ĝ (t) (1− t)n−1 dt

)
.

First, by (31) for n→∞

∫ t

0

Ĝ (t) (1− t)n−1 dt ∼ n−1Ĝ (1/n) Γ (1 + ρ) ∈ RV ∞−ρ−1.

Lemma 3(8) implies that
∫ t

0
Ĝ (t) (1− t)n−1 dt > n−ρ−1−ε for sufficiently large n and given

some ε > 0. Also, ∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ ≤ ∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ (1− t)n−1 dt

≤
(
1− t

)n−1
∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ dt

≤
(
1− t

)n−1
∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt.

By assumption
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt <∞ for all s ∈ (0, 1), therefore

∣∣∣∫ 1

t
Ĝ (t) (1− t)n−1 dt

∣∣∣∫ t
0
Ĝ (t) (1− t)n−1 dt

≤

(
1− t

)n−1 ∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt

n−ρ−1−ε = o (1) as n→∞.

This completes the proof. �

Proof of Lemma 1.

1. Note that F
(
F
−1

(t)
)

= 1−t implies f
(
F
−1

(t)
)(

F
−1

(t)
)′

= −1. Let x = F
−1

(t) , j (t) =

f
(
F
−1

(t)
)

. Then tj′ (t) /j (t) = −tf ′
(
F
−1

(t)
)
/f 2

(
F
−1

(t)
)

= −F (x)f ′(x)/f 2 (x) =(
F/f

)′
(x) + 1, so limt→0 tj

′(t)/j(t) = limx→F−1(1)

(
F/f

)′
(x) + 1 = γ + 1 by Definition

1. Lemma 3(7) then implies the desired result.

2. Note that − d
dt
F
−1

(t) = 1/f
(
F
−1

(t)
)
∈ RV 0

−γ−1. So if wu < ∞ (which implies γ ≤ 0;
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see Embrechts et al., 1997) then Lemma 3(6) implies

F
−1

(0)− F−1
(t) =

∫ t

0

1/f
(
F
−1

(s)
)
ds ∈ RV 0

−γ.

If wu =∞ (which implies γ ≥ 0) then Lemma 3(6) implies, for any choice of t > 0, that

F
−1

(t) ∼ F
−1

(t)− F−1 (
t
)

=

∫ t

t

1/f
(
F
−1

(s)
)
ds ∈ RV 0

−γ;

see also Embrechts et al. (1997, pp. 160).

3. We have
t d
dt
eF
−1

(t)

eF
−1

(t)
=

−t

f
(
F
−1

(t)
) =

−F (x)

f (x)
for x = F

−1
(t) .

Lemma 3(7) then implies the desired result. �

8 Appendix B: Details of Monopolistic Competition Mod-

els

This section provides details to the derivation of the markup expressions for the four monop-

olistic competition models. The subsequent appendix provides the proofs for the economic

claims.
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8.1 Perloff-Salop

Recall from (3) that in the Perloff-Salop model, the demand function for good i is the proba-

bility that difference between the demand shock and the price is maximized by good i:

D (p1, ..., pn; i) = P
(
Xi − pi ≥ max

j 6=i
Xj − pj

)
= EXi

[∏
j 6=i

P (x− pi ≥ Xj − pj | Xi = x)

]

= EXi

[∏
j 6=i

F (x− pi + pj)

]

=

∫ wu

wl

f (x)
∏
j 6=i

F (x− pi + pj) dx.

Using D (pi, p;n) to denote the demand for good i at price pi when all other firms set price p

and using D1 (pi, p;n) to denote ∂D (pi, p;n) /∂pi, we may calculate

D (pi, p;n) =

∫ wu

wl

f (x)F n−1 (x− pi + p) dx

D1 (pi, p;n) = − (n− 1)

∫ wu

wl

f (x) f (x− pi + p)F n−2 (x− pi + p) dx.

Note that in a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx = 1/n,

D1(p, p;n) = − (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx.

It follows that

µPSn = − D(p, p;n)

D1(p, p;n)
=

1

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

To interpret the Perloff-Salop markup equation, use the notation Mn−1 (the largest of the

n− 1 noise realizations: Mn−1 ≡ maxj∈{1,...,n},j 6=iXj). Then, D (p, p;n) = P (Xi > Mn−1), so

D (p, p;n) = E
[
F (Mn−1)

]
. (32)
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This formulation emphasizes that the demand for good i is driven by the properties of the

right-hand tail of the cumulative distribution function F̄ , as Mn−1 is likely to be large.

8.2 Sattinger

Under the utility specification (5), goods from the monopolistically competitive (MC) market

are perfect substitutes. The consumer optimizes by buying only one monopolistically com-

petitive good; the good i which maximizes eXi/pi. The consumer’s utility function is thus

Cobb-Douglas in the composite good and the chosen MC good; it is then easy to show that the

consumer spends fraction θ of his income on the chosen MC good. Without loss of generality,

normalize the consumer’s endowment y to equal 1/θ, so that the consumer always spends 1

unit of income on the MC good.

The demand function of firm i is the probability that the good i has a higher attraction-

price ratio than all other goods, multiplied by the purchased quantity 1/pi of the chosen good

i; so

D (p1, ..., pn; i) =
1

pi
P
(
eXi

pi
= max

j=1,...,n

eXj

pj

)
=

1

pi
P
(
Xi − ln pi = max

j=1,...,n
Xj − ln pj

)
. (33)

We may rewrite this expression as

D (p1, ..., pn; i) =
1

pi

∫
f(x)

∏
j 6=i

F (x− ln pi + ln pj) dx.

Proceeding as in the case of the Perloff-Salop model, we get

D (pi, p;n) =
1

pi

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = − 1

p2
i

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx

− (n− 1)

p2
i

∫ wu

wl

f (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx
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In a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx =
1

pn
,

D1(p, p;n) = − 1

p2

(
1

n
+ (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx

)
After some simple manipulations, it follows that the Sattinger markup in symmetric equilib-

rium is

µSattn = − D(p, p;n)

D1(pi, p;n)
=

c

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

8.3 Hart

Recall that the consumer’s objective is to choose quantities to maximize:

max
i=1...n

max
Qi≥0

U =
n∑
i=1

[
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

]
. (34)

As in the Sattinger case, it is clear that because goods are perfect substitutes, the consumer

will purchase only from one firm, which we denote by i. The first-order condition of the

consumer’s problem is then

0 =
d

dQi

[
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

]
= eXiψ/(ψ+1)Q

−1/(ψ+1)
i − pi

which gives us the optimal quantity for the chosen good i: Qi = eXiψi /p1+ψ
i , and the total net

utility is:

Vi =
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

=

(
ψ + 1

ψ
− 1

)
piQi =

1

ψ
pie

Xiψ
i /p1+ψ

i =
1

ψ

(
eXii
pi

)ψ
The consumer chooses the good that maximizes his net utility, i.e. arg maxi

(
eXi/pi

)
. We may
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then calculate the demand function for good i as

D(p1, ..., pn; i) = E

[
eψXi

p1+ψ
i

I{eXi/pi=maxj=1,...,n eXi/pj}

]
(35)

= E

[
eψXi

p1+ψ
i

I{Xi−ln pi=maxj=1,...,nXj−ln pj}

]
(36)

where I {·} is the indicator function. Writing out the expectation and differentiating gives

D (pi, p;n) =
1

p1+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = −1 + ψ

p2+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx

− n− 1

p2+ψ
i

∫ wu

wl

eψxf (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx.

In a symmetric equilibrium

D(p, p;n) =
1

p1+ψ

∫ wu

wl

eψxf (x)F n−1 (x) dx

D1(p, p;n) = − 1

p2+ψ

(
(1 + ψ)

∫ wu

wl

eψxf (x)F n−1 (x) dx+ (n− 1)

∫ wu

wl

eψxf 2 (x)F n−2 (x) dx

)
.

With some simple calculations, it follows that the Hart markup in symmetric equilibrium is15

µHartn = − D(p, p;n)

D1(p, p;n)

= c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x)∫
eψxf (x)F n−1 (x) dx

)−1

.

15We can also describe a production problem with the same solution as the Hart model. A firm uses
two inputs, Q (capital) and L (labor), in production. When the firm chooses technology i ∈ {1, ..., n} and
input quantities Q and L, the production function is Y = (exp (Xi)Q)

a
Lb. Let Xi be a random technology

shock that is i.i.d. as F across technologies. The profit function is π = Y − tQ − wL, so that the output
price is normalized at unity while capital and labor have marginal cost t.and w respectively. Solving the
first order conditions for profit maximization, we get demand for Q = c(w)t−1−

a
1−a−b exp

( a
1−a−bX

)
where

c(w) = a1+
a

1−a−b b
b

1−a−bw−
b

1−a−b .Thus demand for capital Q now is like in (10), with ψ = a
1−a−b . Assuming

exogenous cost of labor w and an MC market for capital, we obtain the same pricing problem for technology
as in the Hart demand model.
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9 Appendix C: Proofs of Economic Claims

We give the proofs to the economic implications using the main Theorem 1.

9.1 Asymptotic Markups

This part derives the asymptotic markups for the three different pricing models.

9.1.1 Perloff-Salop, Sattinger and Hart Models

Proof of Theorem 2.

The Perloff-Salop and Sattinger cases follow immediately from Proposition 1; we will omit

those calculations and focus on the Hart case. Applying Proposition 1 to (11), we immediately

infer that
µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(γ+2−ψa)
Γ(1−ψa)

under the conditions of the theorem. We will use the fact that anf
(
F
−1

(1/n)
)
∼ 1, which

holds because

lim
n→∞

1

nf
(
F
−1

(1/n)
) = lim

x→wu

F (x)

f (x)
= a.

Consider first the case where a = 0. Then nf
(
F
−1

(1/n)
)
→∞, and the expression simplifies

to

µHartn

c
∼ 1

nf
(
F
−1

(1/n)
)[

ψ

nf
(
F
−1

(1/n)
) + Γ(γ+2−ψa)

Γ(1−ψa)

] ∼ 1

nf
(
F
−1

(1/n)
)

Γ (γ + 2)
.

Next, consider the case 0 < a <∞, which implies γ = 0. We have

µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(2−ψa)
Γ(1−ψa)

=
1

ψ + nf
(
F
−1

(1/n)
)

(1− ψa)

=
1

ψ
(

1− anf
(
F
−1

(1/n)
))

+ nf
(
F
−1

(1/n)
)

∼ 1

nf
(
F
−1

(1/n)
) =

1

nf
(
F
−1

(1/n)
)

Γ (2 + γ)
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when γ = 0. �

9.2 Economic Implications

Proof of Proposition 2.

First we treat the Perloff-Salop case. Treating n as continuous, we have

n

µPSn

dµPSn
dn

= −
(

2n− 1

n− 1
+
n
∫
f 2 (x)F n−2 (x) logF (x) dx∫

f 2 (x)F n−2 (x) dx

)
.

Noting that − log (1− x) ∼ x ∈ RV 0
1 , applying Theorem 1 to G (x) ≡ f(x)

F (x)
logF (x), using

Lemma 3(3), we obtain∫
f 2(x)F n−2(x) logF (x)dx ∼ −n−2f

(
F
−1

(1/n)
)

Γ(3 + γ).

Together with Theorem 2, it follows that

n

µn

dµn
dn

= −

2−
n−2nf

(
F
−1

(1/n)
)

Γ(3 + γ)

n−2nf
(
F
−1

(1/n)
)

Γ(2 + γ)
+ o (1)

 = γ + o (1) .

Note that this also proves our claim for the Sattinger case. Next we treat the Hart case.

Notationally, let

Jψ,n (k, l) =

∫
eψxfk (x)F n−k (x) (logF (x))l dx.

Then we have

µHartn = c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x) dx∫
eψxf (x)F n−1 (x) dx

)−1

, so

n

µHartn

dµHartn

dn
= −n

(
Jψ,n(2,0)

Jψ,n(1,0)
+ (n− 1)

Jψ,n(1,0)Jψ,n(2,1)−Jψ,n(2,0)Jψ,n(1,1)

Jψ,n(1,0)2

)
(
ψ + (n− 1)

Jψ,n(2,0)

Jψ,n(1,0)

) .

Again, using the methods from Proposition 1, we may show that

Jψ,n (k, l) ∼

 (−1)l n−l−1fk−1
(
F
−1

(1/n)
)
eψF

−1
(1/n)Γ ((γ + 1) (k − 1) + l + 1) : γ < 0

(−1)l n−l−1fk−1
(
F
−1

(1/n)
)
eψF

−1
(1/n)Γ (k + l − ψa) : γ = 0

.
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In the case a = 0, we may then verify that

n

µHartn

dµHartn

dn
= −2Γ (γ + 2)− Γ (γ + 3)

Γ (γ + 2)
+ o (1) = γ + o (1) .

In the case 0 < a <∞ (which implies γ = 0; we do not consider γ > 0), we may verify that

lim
n→∞

n

µHartn

dµHartn

dn
= − (1− ψa) [(1− ψa)− (1− ψa)] = 0.�

Proof of Proposition 3

We first show a lemma that links differences between the two top order statistics to the

behavior of the top tail statistics, and hence allows us to apply our general results.

Lemma 4 Call Mn and Sn, respectively, the largest and second largest realizations of n

i.i.d. random variables with CDF F and density f = F ′, and G a function such that∫
G (x) f (x) dx <∞, limx→F−1(0) G (x)F (x) = limx→F−1(1)G (x)F (x) = 0. Then:

E [G (Mn)−G (Sn)] = E
[
G′ (Mn)F (Mn)

f (Mn)

]
(37)

Proof : Recall that the density of Mn is nf (x)F n−1 (x), and the density of Sn is

n (n− 1) f (x)F (x)F n−2 (x) .

So

E [G (Sn)] =

∫
n (n− 1)G (x) f (x)F (x)F n−2 (x) dx

= n
[
G (x)F (x)F n−1 (x)

]F−1(1)

F−1(0)
−
∫
n
(
G (x)F (x)

)′
F n−1 (x) dx

= 0 +

∫
nG (x) f (x)F n−1 (x) dx−

∫
n
G′ (x)F (x)

f (x)
f (x)F n−1 (x) dx

= E [G (Mn)]− E
[
G′ (Mn)F (Mn)

f (Mn)

]

From this lemma, the proof follows for G (x) = x. As f(F
−1

(t)) ∈ RV 0
1+γ, t/f(F

−1
(t)) ∈

RV 0
−γ, and we may apply Theorem 1 to obtain the desired result. �

Proof of Proposition 4
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First, some notation: π ((p, σ) , (p∗, σ∗) ;n) denotes the profit function of a firm that chooses

(p, σ) when the remaining n − 1 firms choose (p∗, σ∗). Also, π (p, σ;n) denotes the profit

function of a firm when all n firms choose (p, σ).

Perloff-Salop Case

Call σ∗ and p∗ the equilibrium choices of the other firms:

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))P
(
σX1 − p ≥ max

j 6=i
σ∗Xj − p∗

)
= (p− c (σ))P

(
σ

σ∗
Xi +

p∗ − p
σ∗

≥ max
j 6=i

Xj

)
= (p− c (σ))

∫
f (x)F n−1

(
σ

σ∗
x+

p∗ − p
σ∗

)
dx.

The first-order conditions for profit maximization are as follows. Differentiating with respect

to p yields

p− c (σ) =

∫
f (x)F n−1 (x) dx

1
σ

(n− 1)
∫
f 2 (x)F n−2 (x) dx

and differentiating with respect to σ gives

c′ (σ)

∫
f (x)F n−1 (x) dx = (n− 1) (p− c (σ))

∫
xf 2 (x)F n−2 (x) dx

1

σ
.

Some manipulation reveals

c′ (σ) =

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

.

Now we consider two cases: wu <∞ and wu =∞. If wu <∞, then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=
n−1wuf

(
F
−1

(1/n)
)

Γ (γ + 2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
+ o (1) = wu + o (1) .

If wu =∞ then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

∼
n−1F

−1
(1/n) f

(
F
−1

(1/n)
)

Γ (2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
∼ F

−1
(1/n)

Γ (γ + 2)
.

Sattinger Case
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We have

π ((p, σ) , (p∗, σ∗) ;n) =
p− c (σ)

p
P
(
eσXi

p
≥ max

j 6=i

eσ
∗Xj

p∗

)
=
p− c (σ)

p

∫
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c
′ (σ)

p

∫
f (x)F n−1 (x) dx+

p− c (σ)

σp
(n− 1)

∫
xf 2 (x)F n−2 (x) dx

and

0 = π1 (p, σ;n) =
c (σ)

p2

∫
f (x)F n−1 (x) dx− p− c (σ)

σp2
(n− 1)

∫
f 2 (x)F n−2 (x) dx

Rearranging, we get
p− c (σ)

c (σ)
=

σ

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

and

c′ (σ) =

p−c(σ)
σp

(n− 1)
∫
xf 2 (x)F n−2 (x) dx∫

f (x)F n−1 (x) dx
,

so

c′ (σ)

c (σ)
=

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=

 F
−1

(1/n) + o
(
F
−1

(1/n)
)

= wu + o (1) : wu <∞
F
−1

(1/n)+o
(
F
−1

(1/n)
)

Γ(γ+2)
: wu =∞

as calculated in the Perloff-Salop case.

Hart Case
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We have

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))E

[
eψσXi

p1+ψ
I{

eσXi
p
≥maxj 6=i

e
σ∗Xj
p∗

}
]

= (p− c (σ))E
[
eψσXi

p1+ψ
I{ σ

σ∗Xi+
log p∗−log p

σ∗ =maxj 6=iXj}

]
= (p− c (σ))

∫
eψσx

p1+ψ
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c′ (σ)

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx+(p− c (σ))

{ ∫
ψx e

ψσx

p1+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
x e

ψσx

p1+ψ
f 2 (x)F n−2 (x) dx

}

and

0 = π1 (p, σ;n) =

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx− (p− c (σ))

{
(1 + ψ)

∫
eψσx

p2+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
eψσx

p2+ψ
f 2 (x)F n−2 (x) dx

}

so
p− c (σ)

c (σ)
=

∫
eψσxf (x)F n−1 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

and

c′ (σ)

c (σ)
=
p− c (σ)

c (σ)

∫
ψxeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx∫

eψσxf (x)F n−1 (x) dx

=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

.

Now we consider two cases: wu < ∞ and wu = ∞. If wu < ∞, then (noting that a = 0 in

this case)
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c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

=
ψn−1wue

σψwuΓ (1) + 1
σ
wue

σψwuf
(
F
−1

(1/n)
)

Γ (γ + k)

ψn−1eσψwuΓ (1) + 1
σ
eσψwuf

(
F
−1

(1/n)
)

Γ (γ + k)
+ o (1)

= wu + o (1) .

If wu =∞, then noting that γ = 0,

c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

∼
ψn−1F

−1
(1/n) eσψF

−1
(1/n)Γ (1− ψa) + 1

σ
ψF

−1
(1/n) f

(
F
−1

(1/n)
)
eσψF

−1
(1/n)Γ (2− ψa)

ψn−1eσψF
−1

(1/n)Γ (1− ψa) + 1
σ
ψf
(
F
−1

(1/n)
)
eσψF

−1
(1/n)Γ (2 + γ − ψa)

= F
−1

(1/n) .

Proof of Proposition 5

Recall that F (x) = exp
(
−e−x/φ

)
and f (x) = 1

φ
exp

(
−x
φ
− e−x/φ

)
. Starting with (10),

some calculations reveal

D (p1, ..., pn;σ∗) =
1

p1+ψ
i

∫ wu

wl

eψσ
∗xf (x)

∏
j 6=i

F

(
x+

ln pi − ln pj
σ∗

)
dx

=
1

φp1+ψ
i

∫ ∞
−∞

exp

(
x

(
σ∗ψ − 1

φ

)
−

n∑
j=1

(
pi
pj

)1/(φσ∗)

e−x/φ

)
dx

= Γ (1− φψσ∗) p
−(1+1/(φσ∗))
i(∑n

j=1 p
−1/(φσ∗)
j

)1−φψσ∗ .�

9.3 Results relating to Enhanced Linear Random Utility

Proof of Theorem 3.

Recall that the demand function for good i at price p (given the prices pj of all other

goods) is the probability that the consumer’s payoff for good i exceeds his payoff to all other
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goods, as well as the outside option:

D (p1, ..., pn; i) = P
(
−βpi +Xi ≥ max

{
max
j 6=i
{−βpj +Xj} , ε0

})
.

We start the analysis for the case that the densities f are of the Rootzen type (26).

Consider the symmetric pricing equilibrium pj = p. Define the convolution βp + ε0 = Q and

denote its distribution function and density respectively by K(.) and k(.). Suppose that the

support of K is bounded below by 0 and bounded above by q(p) <∞, say. Moreover, assume

that the distribution F (.) has a wider support such that F (q(p)) < 1, i.e. has mass beyond

q(p). Then the demand for the i-th differentiated good in the symmetric equilibrium reads

D(pi, pj) = P

{
Xi − βpi ≥

(∨
j 6=i

[Xj − βpj]

)
∨ ε0

}

= P

{
Xi ≥

∨
j 6=i

Xj ∨ [ε0 + βp]

}

= P

{
Xi ≥

∨
j 6=i

Xj ∨Q

}

= EQ

[
P

{
Xi ≥

∨
j 6=i

Xj ∨ q

}∣∣∣∣∣Q = q

]

= EQ
[∫ ∞

q

F n−1(s)f(s)ds

]
=

1

n
− 1

n
EQ [F n(q)]

=
1

n
+ o(

1

n
).

To obtain the partial derivative ∂D(pi, pj)/∂pi note that we can alternatively express
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demand in a symmetric equilibrium in terms of the distribution of Xi

D(pi, pj)|pi=pj=p = P

{
Xi − βpi ≥

(∨
j 6=i

[Xj − βpj]

)
∨ ε0

}∣∣∣∣∣
pi=pj=p

= P

{
Xi − βp ≥

(∨
j 6=i

[Xj − βp]

)
∨ ε0

}

= P

{
Xi ≥

∨
j 6=i

Xj ∨ [ε0 + βp]

}
= 1− P {Xi ≤Mn−1 ∨ [ε0 + βp]}

= 1− EQEMn−1 [P {Xi ≤ mn−1 ∨ q}|Mn−1 = mn−1, ε0 + βp = q]

= 1− EQEMn−1 [F (mn−1 ∨ q)] .

This facilitates the differentiation with respect pi at a symmetric equilibrium

∂D(pi, pj)

∂pi

∣∣∣∣
pi=pj=p

=
∂
{

1− EMn−1EY [F (mn−1 ∨ ε0 + βp)]
}

∂pi

= −Eβ,ε0EMn−1 [f (mn−1 ∨ q) ∗ β]

= −Eβ,ε0
[
β

∫ ∞
q

(n− 1) f(s)F n−2(s)f(s)ds

]
We like to use the Theorem 1. To this end we first need the asymptotic inverse of the

Rootzen distributions

F (x) = 1− F (x) ∼ κxν exp
(
−λxφ

)
, κ > 0, λ > 0, φ ≥ 1, ν ∈ R (38)

The inverse of the asymptotic upper tail of (38) reads

F
−1

(y) ∼
(

1

λ

)1/φ
[

ln

(
κλ−ν/φ

y
×
[
ln

(
κλ−ν/φ

y

)]ν/φ)]1/φ

for y close to zero, see Li (2008). We need to ensure that f
(
F
−1

(y)
)
∈ RV 0

ρ with ρ > −1.

To check this, we first simplify notation. Write shorthand A = κλ−ν/φ. Then for y close to
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zero,

f
(
F
−1

(y)
)
∼ κ

λφ
(1

λ

)1/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)]1/φ
φ − ν

×(1

λ

)1/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)]1/φ
ν−1

×

exp

−λ
(1

λ

)1/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)]1/φ
φ


= κ

{
φ ln

(
A

y
×
[
ln
A

y

]ν/φ)
− ν

}(
1

λ

)(ν−1)/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)](ν−1)/φ

×

exp

(
− ln

(
A

y
×
[
ln
A

y

]ν/φ))

= yλ1/φ

[
ln
A

y

]−ν/φ [
ln

(
A

y

[
ln
A

y

]ν/φ)](ν−1)/φ{
φ ln

(
A

y

[
ln
A

y

]ν/φ)
− ν

}
.

Taking ratios to investigate the regular variation property and writing t = 1/y

lim
y↓0

f
(
F
−1

(xy)
)

f
(
F
−1

(y)
) = lim

t→∞

f
(
F
−1

(x/t)
)

f
(
F
−1

(1/t)
)

= x lim
t→∞

[
ln At

x

]−ν/φ [
ln
(
At
x

[
ln At

x

]ν/φ)](ν−1)/φ {
φ ln

(
At
x

[
ln At

x

]ν/φ)− ν}
[lnAt]−ν/φ

[
ln
(
At [lnAt]ν/φ

)](ν−1)/φ {
φ ln

(
At [lnAt]ν/φ

)
− ν
}

= x.

Hence, f
(
F
−1

(y)
)
∈ RV 0

1 , so that ρ > −1. Define the function G(s) from the Theorem 1 as

the density f(s) from (26)

G(s) = κλφxφ+ν−1 exp
(
−λxφ

)
.

Thus G(x) is positive, moreover Ĝ(s) is integrable on (0, 1). Lastly, recall that q is bounded.

We can now apply the main Theorem 1 to obtain an asymptotic expression for the markup
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in the ELRU setting. At given values β and ε0:

∂D(p, p)

∂pi

∣∣∣∣
ε0+βp=q

= − (n− 1) β

∫ ∞
q

f(s)F n−2(s)f(s)ds

= − (n− 1) β

∫ ∞
q

G(s)F n−2(s)f(s)ds

∼ −βG
(
F−1

(
1− 1

n− 1

))
Γ (2)

∼ −βφλ1/φ 1

n
(lnn)1−1/φ .

Note that the lower bound in the integral disappears, since what matters in the main

Theorem 1 is the behavior of G at the upper end of the support of F . Next we take the

stochastic nature of β and ε0 into account. After substitution

−Eβ,ε0
[
β

∫ ∞
q

(n− 1) f(s)F n−2(s)f(s)ds

]
= −

[
φλ1/φ 1

n
(lnn)1−1/φ

]
E[β].

It follows that

µELRUn ∼ 1/E[β]

φλ1/φ (lnn)1−1/φ
.�

Next, we turn to the case where the distribution of (β, ε0) is unbounded and varies regularly

at infinity. The following results are used in the proof of Theorem 4, which we demonstrate

at the end of this section.

Lemma 5 Under the assumptions of Theorem 4 and assuming wu =∞ for simplicity,

D (p, p) ∼n→∞
1

n
.

Proof of Lemma 5

Some notation: we use x∨ y to denote max {x, y}. Let Hp (x) be the distribution function

and (as mentioned previously) hp (x) be the density function of βp + ε0. Abusing notation,

denote Hp = βp + ε0. Note that the assumption that the density h (β, ε0) is multivariate

regularly varying at infinity implies that hp (x) is regularly varying at infinity for all p.

Obviously, Mn−1 is independent of Q = ε0 + βp and therefore

D(p, p) = P[Xi ≥
∨
j 6=i

Xj ∨Q] =

∫ ∞
−∞

F n−1(s)H(s)dF (s).
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Let

φ =

∫ ∞
−∞

H(s)dF (s) = P[Q ≤ Xi]]

and

J(x) =

∫ x

−∞
H(s)dF (s)/φ.

Then from Resnick (1971, pp. 204) we have

nD(p, p) = φn

∫ ∞
−∞

F n−1(s)dH(s)→ `,

if and only if

lim
x→∞

1− J(x)

F (x)
=
`

φ
. (39)

For (39) to hold we require

lim
x→∞

∫∞
x
H(s)dF (s)

F (x)
= `.

But then we see ` = 1 since

H(x)
F (x)

F (x)
≤
∫∞
x
H(s)dF (s)

F (x)
≤ 1 · F (x)

F (x)
,

and H(s)→ 1 as s→∞. �

We now develop the asymptotic form for D1(p, p). It will be convenient to use the function

Z(x) = − logF (x).

Note that

f
(
Z−1(1/t)

)
= f

(
F
−1 (

1− e−1/t
))
∼ f

(
F
−1
(

1

t

))
by Lemma 3(ii).

Before proceeding, we first introduce an intermediate lemma that follows immediately from

Proposition 1 and Lemma 1.1.

Lemma 6 Assume that the conditions of Lemma 5 are satisfied. Assume also that F is

well-behaved with tail index γ = 0, and that f 2 (x) is [wl, wu)-integrable. Then for any r ≥ 1,

E [f (Mn)r] ∼n→∞ Γ (1 + r)

(
f

(
F
−1
(

1

n

)))r
∈ RV ∞−r (40)
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Lemma 7 Let F be well-behaved with γ = 0 and a < ∞. Assume r ≥ 1, s ≥ 1 and

E [βs] <∞. Then

(E [(f(Q))r 1Mn≤Q]) ≤ o

(
f

(
F
−1
(

1

n

))r)
, n→∞, (41)

which implies

E [(f(Q)) 1Mn≤Qβ] ≤ (E [(f(Q))r 1Mn≤Q])
1/r E [βs]1/s = o

(
f

(
F
−1 1

n

))
. (42)

Proof of Lemma 7 Let

V̂ (n) = E [(f(Q))r 1Mn≤Q]

and

V (
1

n
) =

∫ 1/n

0

(
f(Z−1(y))

)r
h
(
Z−1(y)

)
d
(
−Z−1(y)

)
=

∫ 1/n

0

(
f(Z−1(y))

)r−1
h(Z−1 (y)))e−ydy

=

∫ ∞
n

(
f(Z−1(1/y))

)r−1
h(Z−1 (1/y)))e−1/y dy

y2
.

Note that Karamata’s Tauberian theorem (Bingham, Goldie and Teugels 1989, Theorem 1.7.1’,

p. 38) implies V̂ (n) = o
(
f
(
F
−1 ( 1

n

))r)
iff V (1/n) = o

(
f
(
F
−1 ( 1

n

))r)
. Write

V (1/n) ≤ sup
y≥n

h(Z−1(y))

∫ ∞
n

(
f(Z−1(1/y))

)r−1
e−1/y dy

y2

∼(const) sup
y≥n

h(Z−1 (1/y))
(
f
(
Z−1(1/n)

))r−1
/n

=(const) sup
y≥n

h(Z−1 (1/y))
(
f
(
Z−1(1/n)

))r
/
(
nf
(
Z−1(1/n)

))
=o
(
f
(
Z−1(1/n)

))r
.

We then apply Holder’s inequality with appropriate choice of r and s to obtain

E [(f(Q)) 1Mn≤Qβ] ≤ (E [(f(Q))r 1Mn≤Q])
1/r E [βs]1/s = o

(
f

(
F
−1 1

n

))
. (43)

Proposition 8 Let F be well-behaved with γ = 0 and suppose h−1(Z−1 (1/y)) is regularly
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varying and

lim
t→∞

sup
s≥t

h(s)
F (t)

f (t)
= 0, (44)

and that for some δ > 0, E
[
β2+δ

]
<∞. Then

−D1(p, p;n) = E (f(Mn ∨Q)β) ∼ E(β)f(F
−1
(

1

n

)
).

Proof of Proposition 8We have

−D1(p, p;n) =E [f(Mn ∨Q)β] = E [f(Mn)β1Mn>Q] + E [f(Q)β1Mn≤Q]

=E [f(Mn)β]− E [f(Mn)β1Mn≤Q] + E [f(Q)β1Mn≤Q] .

Lemma 6 shows that the first term

E [f (Mn) β] ∼n→∞ f

(
F
−1
(

1

n

))
E [β] . (45)

Lemma 7 shows that the last term

E [(f(Q)) 1Mn≤Qβ] = o

(
f

(
F
−1 1

n

))
. (46)

For the middle term note that, again applying Holder’s inequality for r ≥ 1, s ≥ 1 and

r−1 + s−1 = 1,

E [f(Mn)β1Mn≤Q] ≤ (E [f(Mn)β]r)
1/r P[Mn ≤ Q]1/s

= (E [f(Mn)]r)
1/r
E [βr]1/r P[Mn ≤ Q]1/s

∼
(
f(F

−1
(

1

n

)
)r
)1/r

E [βr]1/r P[Mn ≤ Q]1/s

=f

(
F
−1
(

1

n

))
o(1).

Corollary 2 Under the assumptions of Proposition 8 and assuming c ≤ p(n) ≤ M for some
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M and for all n, if hp (x) = 0 for x < 0 and if f (x) is non-increasing for x ≥ 0,

−D1(p (n) , p (n) ;n) = E (f (Mn ∨Q) β) ∼ E(β)f

(
F
−1
(

1

n

))
,

D(p (n) , p (n) ;n) ∼ 1

n
.

Proof of Lemma 2

We have, from the monotonicity of D (p, p;n) in p,

D (M,M ;n) ≤ D (p (n) , p (n) ;n) ≤ D (c, c;n) .

Since the extremes are asymptotic to 1/n, so is D (p (n) , p (n) ;n). Similarly, the monotonicity

of D1 (p, p;n) in p implies that −D1 (p (n) , p (n) ;n) ∼ E(β)f
(
F
−1 ( 1

n

))
.

Proof of Theorem 4

First, note that the condition

lim
t→∞

sup
s≥t

h(s)
F (t)

f (t)
= 0, (47)

in Proposition 8 is satisfied whenever γ = 0 and a <∞. Let q (p, n) = p−c+D(p, p;n)/D1(p, p;n).

We seek p(n) such that q(p(n), n) = 0. Clearly, q(c, n) < 0 for all n. Let M be large and

independent of n. Then q(M,n) = M − c+D(M,M)/D1(M,M). From Proposition 8,

lim
n→∞

(−D(M,M)/D1(M,M)) ∼ 1

nf
(
F
−1 ( 1

n

))
E [β]

.

Since a <∞,
1

nf
(
F
−1 ( 1

n

))
E [β]

= O (1) ,

So q(M,n) > 0 for large n and M . Thus a solution exists on the interval [0,M ], for large
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n. This verifies the assumption p (n) < M . We may then apply Corollary 2 to obtain

p (n)− c = − D (p (n) , p (n) ;n)

D1 (p (n) , p (n) ;n)

∼ 1

nE [f (Mn−1)]E [β]

∼ 1

nf
(
F
−1 ( 1

n

))
E [β]

.�

9.4 Macroeconomic Framework

We elaborate on the first order conditions for the Random Demand specification. Utility (21)

is to be maximized subject to the consumer budget constraint

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi (48)

and where w is the wage rate and q, pi are the goods prices, while Π(Q) are the profits received

from the differentiated goods sector. The number n equals the number of goods for which

demand is strictly positive, i.e. n =
∑

i χQi>0. Suppose that

eXi

pi
≥ max

{
eXj

pj

}
, for j = 1, ..., n.

Optimality requires

Qj = 0, for j 6= i.

(1− θ)Z−θ
[
eXiQi

]θ − λq = 0,

θZ1−θ [eXiQi

]θ−1
eXi − λpi = 0,

−Lη + λw = 0

and

wL+ Π(Q) = qZ + piQi.

Manipulating these conditions yields by dividing the first two conditions

piQi =
θ

1− θ
qZ.
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This together with the budget constraint implies

Z = (1− θ) wL+ Π(Q)

q
(49)

and

Qi = θ
wL+ Π(Q)

pi
. (50)

Furthermore, from the first three first order conditions

q/w = (1− θ)Z−θ
[
eXiQi

]θ
L−η

= (1− θ)
(

1− θ
θ

pi
q
Qi

)−θ [
eXiQi

]θ
L−η

so that

L =

(
w

q1−θpθi
(1− θ)1−θ θθ

)1/η

e(θ/η)Xi .

The well known consumer first order conditions for the Dixit-Stiglitz case imply the same

demand functions for Z and Qi as in (49) and (50) and are left to the reader. The only

difference is that in the Dixit-Stiglitz case there is demand for all differentiated goods.

Use that in the symmetric equilibrium all prices for the differentiated goods will be equal

pi = p. Conditional on eXi/pi ≥ maxj
[
eXj/pj

]
, we get for both specifications

Qi = θ
wL+ Π(Q)

p
(51)

and

Z = (1− θ) wL+ Π(Q)

q
. (52)

These demand functions reflect the expenditure shares inherent to the Cobb-Douglas type

utility function. The first order conditions imply for the RD case

L =

(
(1− θ)1−θ θθ

w

q1−θpθi

)1/η

e(θ/η)Xi , (53)

whereas labor supply in the DS case reads

L =

(
(1− θ)1−θ θθ

w

q1−θpθ

)1/η

. (54)
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On the supply side, the Ricardian technologies for the two types of goods are

Z = BN and Qi = ANi.

Here A and B are the labor productivity coefficients while N and Ni are the respective labor

demands. Perfect competition in the composite goods market implies that prices equal the

per unit labor costs q = w/B.

The differentiated goods producer exploits his direct pricing power, but ignores his pricing

effect on the price index of the differentiated goods and the consumer income wL + Π(Q).

For the Random Demand case, the markup is µn from (7), so that by (2) pi = (1 + µn)w/A

and where c = w/A. Substitute this and and q = w/B into (53) to determine the equilibrium

labor supply as a function of the markup factor conditional on the specific demand shock

L =
(
θθ (1− θ)1−θ AθB1−θ

)1/η
(

1

1 + µn

)θ/η
e(θ/η)Xi = ϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi , (55)

say, and where ϕ (A,B) is a composite of supply shocks A and B. Combine the differentiated

product sector profits (p− w/A)Qi with the demand Qi from (51) to get

Π(Q) =
θµn

1 + (1− θ)µn
wL (56)

Finally, combining (56) with (55) yields the unconditional per capita macro demand for the

differentiated good

Qi =
θ

1 + (1− θ)µn
Aϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi (57)

and

Qj = 0, ∀j 6= i

Similarly, the demand for the competitive good is

Z =
(1− θ) (1 + µn)

1 + (1− θ)µn
Bϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi . (58)

In the Dixit-Stiglitz specification, the pricing power requires setting prices in proportion

to unit labor costs and the markup factor τ , so that pi = (1 + τ)w/A. Labor supply then
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follows from (54)

L = ϕ (A,B)

(
1

1 + τ

)θ/η
. (59)

Analogous to the Random Demand case, the demand for the differentiated good is

Qj =
θ

1 + (1− θ) τ
Aϕ (A,B)

(
1

1 + τ

)θ/η
, ∀j (60)

and for the competitive good

Z =
(1− θ) (1 + τ)

1 + (1− θ) τ
Bϕ (A,B)

(
1

1 + τ

)θ/η
. (61)

To determine the price level, a simple quantity type relation M = wL suffices. This determines

wages w and prices pi, q in terms of the quantity of money M .

10 Appendix D: Second-Order Conditions for Profit

Maximization

Recall that the profit function π (pi, p) for firm i when it sets price pi and all other firms set

price p is

π (pi, p) = (pi − c)D (pi, p)−K. (62)

So far, we have analyzed the first-order condition for profit maximization, π1 (p, p;n) = 0,

which is necessary but not sufficient to ensure equilibrium. Anderson et al. (1992) show

(Prop. 6.5, p.171 and Prop. 6.9, p.184) that symmetric price equilibria exist in the Perloff-

Salop, Sattinger and Hart models when f is log-concave. Thus in these cases (62) defines the

unique symmetric price equilibrium. However, their results do not cover distributions where

f is not log-concave. We are unable to derive global conditions for existence of equilibrium

in these cases. Instead, we verify in this appendix that the markups we study satisfy the

second-order conditions for profit-maximization.
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10.1 Perloff-Salop, Sattinger and Hart Models

The following three propositions show that the symmetric equilibrium markup expression (2)

which we use in our calculations also satisfies the second-order condition for profit maximiza-

tion, π11 (p, p;n) < 0. It is useful to note that, via simple calculations, the second order

condition is

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) < 0. (63)

Proposition 9 Assume that F satisfies the conditions for Theorem 2, that f 3 (x) is [wl, wu)-

integrable, and that

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ < 0.64. Then the second-order condition for profit maximization

is satisfied in the symmetric equilibrium of the Perloff-Salop model.

Note that this covers all distributions with thin (−1 ≤ γ ≤ 0) and medium fat tails

(γ = 0), and all the heavy tailed distributions with a finite variance, i.e. γ ∈ (0, 1/2].

Proposition 10 Assume that F satisfies the conditions for Theorem 2, that f 3 (x) is [wl, wu)-

integrable, and that either γ > 0 or

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ ≤ 0. Then the second-order condition for profit maximization is

satisfied in the symmetric equilibrium of the Sattinger model.

Proposition 11 Assume that the conditions for Theorem 2 are satisfied, and that eψxf 3 (x)

is [wl, wu)-integrable. Then the second-order condition for profit maximization is satisfied in

the symmetric equilibrium of the Hart model.

Proof of Proposition 9

We use Un = F
−1

(1/n) as a shortcut notation in several of the proofs below. Note, from

Appendix B, that

D (pi, p) =

∫
f (x)F n−1 (x+ p− pi) dx and

D1 (pi, p) = − (n− 1)

∫
f (x) f (x+ p− pi)F n−2 (x+ p− pi) dx,
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from which we may calculate

D11 (p, p) =
(n− 1) (n− 2)

2

∫
f 3 (x)F n−3 (x) dx+

n− 1

2
f 2 (x)F n−2 (x)

∣∣∣∣∞
−∞

where the last term on the RHS vanishes. So, applying Proposition 1,

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n− 2)
∫
f 3 (x)F n−3 (x) dx

2n
∫
f 2 (x)F n−2 (x) dx

∼ −2f (Un) Γ (γ + 2) +
f (Un) Γ (2γ + 3)

2Γ (γ + 2)

=
f (Un)

2Γ (γ + 2)

(
−4Γ (γ + 2)2 + Γ (2γ + 3)

)
.

since we can easily verify numerically that −4Γ (γ + 2)2 + Γ (2γ + 3) < 0 for −1.45 < γ ≤ 0,

it follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0.64] .�

Proof of Proposition 10

Without loss of generality, let θy = 1. Then, from Appendix B,

D (pi, p) =
1

pi

∫
f (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2
i

∫
f (x)F n−1 (x+ ln p− ln pi) dx

− n− 1

p2
i

∫
f (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx,

from which we may calculate

D11 (p, p) =
2

p3

∫
f (x)F n−1 (x) dx+ 3

n− 1

p3

∫
f 2 (x)F n−2 (x) dx

+
(n− 1) (n− 2)

2p3

∫
f 3 (x)F n−3 (x) dx+

n− 1

2p3

[
f 2 (x)F n−2 (x)

]∞
−∞
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where the last term on the RHS vanishes. We may then substitute our expressions for

D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (63) and apply Proposition 1. The asymptotic ex-

pression simplifies to

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= − 2

p2

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)

+

(
2
∫
f (x)F n−1 (x) dx+ 3 (n− 1)

∫
f 2 (x)F n−2 (x) dx

+ (n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

)
p2n

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)
=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

In the case nf (Un) = o (1), which implies γ ≥ 0 and f (wu) = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + 2+3nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)

=
p−2

n

(
− nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)
< 0.

In the case limn→∞ nf (Un) ∈ (0,∞), which implies γ = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un)) +

2 + 3nf (Un) + (nf (Un))2

1 + nf (Un)
+ o (nf (Un))

)

=
p−2

n
(−nf (Un) + o (nf (Un)))

< 0.
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In the case limn→∞ nf (Un) =∞, which implies γ ≤ 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (nf (Un) Γ (γ + 2)) + o (nf (Un))

+
1
2

(nf(Un))2Γ(2γ+3)+o(nf(Un))2

nf(Un)Γ(γ+2)+o(nf(Un))

)

= p−2f (Un)

(
−2Γ (γ + 2) +

1

2

Γ (2γ + 3)

Γ (γ + 2)

)
;

since we can easily verify numerically that −2Γ (γ + 2) + 1
2

Γ(2γ+3)+1
Γ(γ+2)

< 0 for −1.45 < γ ≤ 0,

it follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0] .�

Proof of Proposition 11

Note that in the Hart case, we are restricted to γ ∈ [−1, 0]. We have, from Appendix B,

D (pi, p) =
1

p1+ψ
i

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2+ψ
i

{
(1 + ψ)

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx

+ (n− 1)
∫
eψxf (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx

}
,

from which we may calculate

D11 (p, p) =
1

p3+ψ


(1 + ψ) (2 + ψ)

∫
eψxf (x)F n−1 (x) dx

+3
(
1 + ψ

2

)
(n− 1)

∫
eψxf 2 (x)F n−2 (x) dx

+1
2

(n− 1) (n− 2)
∫
eψxf 3 (x)F n−3 (x) dx

 .

We may then substitute our expressions for D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (63) and

apply Proposition 1. This gives us

2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) =

eψUn

p2+ψ
i

(A+B) ,
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where

A ∼ −2 (1 + ψ) Γ (1− aψ)− 2nf (Un) Γ (γ + 2− aψ) , and

B ∼ Γ (1− aψ)


(1 + ψ) (2 + ψ) Γ (1− aψ)

+3
(
1 + ψ

2

)
nf (Un) Γ (γ + 2− aψ)

+1
2

(nf (Un))2 Γ (2γ + 3− aψ)


(1 + ψ) Γ (1− aψ) + nf (Un) Γ (γ + 2− aψ)

After some tedious but straightforward calculations: if a = 0, then nf (Un) →n→∞ ∞, and

the asymptotic expression simplifies to

π11 (p, p;n)

∼ eψUn

p2+ψ
i

nf (Un)

(
−2Γ (γ + 2) +

Γ (2γ + 3)

2Γ (γ + 2)

)
< 0 for γ ∈ [−1, 0]

Since we can verify that −2Γ (γ + 2) + Γ(2γ+3)
2Γ(γ+2)

< 0 for γ ∈ [−1, 0], our claim holds in the case

a = 0.

If 0 < a <∞, then γ = 0, nUn → 1/a and the asymptotic expression simplifies to

π11 (p, p;n) ∼ eψUn

p2+ψ
i

Γ (1− aψ)

−2 (1 + 1/a) +

{
(1 + ψ) (2 + ψ) + 3 (1 + ψ/2) (1/a− ψ)

+1
2

(2/a− ψ) (1/a− ψ)

}
1 + 1/a


= −e

ψUn

p2+ψ
i

Γ (1− aψ)

a
< 0.�

10.2 ELRU Model

Finally, we check the second order condition for the ELRU model in the case that the distri-

bution F (x) is of the Rootzen type.

Proposition 12 Assume that the conditions for Theorem 27 are satisfied. Suppose, moreover,

that the distribution for the “taste for money” is such that the variance is smaller than the

mean, i.e. V [B] < E[B]. Then the second-order condition for profit maximization is satisfied
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in the symmetric equilibrium of the ELRU model.

Proof of Proposition 12 First condition on β, ε0 and hence q = βp + ε0 having a fixed

value. Differentiation gives

∂2D(p, p)

∂p2
i

= −β2

∫ ∞
q

∂f(s)

∂s

[
(n− 1)F n−2(s)f(s)

]
ds

∼ −β2

∫ ∞
q

[
−κλ2φ2x2φ+ν−2 exp

(
−λxφ

)] [
(n− 1)F n−2(s)f(s)

]
ds.

Moreover, for s close to zero

f ′
(
F
−1

(s)
)
∼ −φ2λ2/φs

[
ln
A

s

]−a/φ [
ln

(
A

s

[
ln
A

s

]a/φ)]2+(ν−2)/φ

.

From this the regular variation at zero of f ′
(
F
−1

(y)
)

follows:

lim
y↓0

f ′
(
F
−1

(xy)
)

f ′
(
F
−1

(y)
) = lim

t→∞

f ′
(
F
−1

(x/t)
)

f ′
(
F
−1

(1/t)
)

= x lim
t→∞

[
ln At

x

]−ν/φ [
ln
(
At
x

[
ln At

x

]ν/φ)]2+(ν−2)/φ

[lnAt]−ν/φ
[
ln
(
At [lnAt]a/φ

)]2+(ν−2)/φ

= x lim
t→∞

(
1− lnx

lnAt

)−ν/φ{1− lnx
lnAt

+ ν
φ

ln(lnAt)
lnAt

1 + ν
φ

ln(lnAt)
lnAt

}2+(ν−2)/φ

= x.

Hence, f ′
(
F
−1

(y)
)
∈ RV 0

1 . So that by the main theorem

∂2D(p, p)

∂p2
i

∼ −b2f ′
(
F
−1
(

1

n

))
∼ b2φ2λ2/φ 1

n
[lnA+ lnn]−ν/φ

{
lnA+ lnn+

ν

φ
ln (lnA+ lnn)

}2+(ν−2)/φ

∼ b2φ2λ2/φ 1

n
(lnn)2−2/φ .
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Now integrate out over the random taste for money and outside option. This gives

∂2D(p, p)

∂p2
i

= φ2λ2/φ 1

n
(lnn)2−2/φE[B2]

The second order condition becomes

2D1 −
D

D1

D11 ' −2φλ1/φ 1

n
(lnn)1−1/φE[B]

+
1/n

φλ1/φ 1
n

(lnn)1−1/φE[B]
φ2λ2/φ 1

n
(lnn)2−2/φE[B2]

= −2φλ1/φ 1

n
(lnn)1−1/φE[B] + φλ1/φ 1

n
(lnn)1−1/φ E[B2]

E[B]

= −φλ1/φ 1

n
(lnn)1−1/φ 1

E[B]

{
2E[B]2 − E[B2]

}
= −φλ1/φ 1

n
(lnn)1−1/φ E[B]− V [B]

E[B]
.

Note that the SOC is satisfied if the variance of the taste for money is smaller than the mean.

Note that if the taste for money were non-random, then the SOC is certainly satisfied as in

this case

2D1 −
D

D1

D11 ' −φλ1/φ 1

n
(lnn)1−1/φ β < 0.�
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