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Abstract

We present a structural approach to identify tipping points and stable
equilibria in social interaction models and implement it to analyze racial
segregation in Los Angeles schools from 2001 to 2006. We allow for het-
erogeneity in the existence and locations of tipping points and stable equi-
libria across schools and within schools over time. We find that 53% of
schools feature a tipping point ranging from 25% to 75% minority share.
Nearly all schools possess a stable, segregated, minority equilibrium, and
over half of schools also possess a stable, segregated, white equilibrium.
Similar results are also found in other cities.

1 Introduction

Models of social interaction feature agents who have preferences over stan-
dard (private) amenities and social amenities. Social amenities differ from pri-
vate amenities in that choices made by one agent affect only the social amenities
for other agents and not the private amenities. For example, a student’s peer
group is a social amenity to prospective parents since other parents’ enroll-
ment decisions may influence their children’s schooling outcomes through peer
effects, whereas the facilities of a school, which are unaffected by other parents’
decisions, are private amenities.

∗University of Rochester. We thank David Card, Tasos Kalandrakis, Joshua Kinsler, Ro-
mans Pancs and Jesse Rothstein for their helpful comments and suggestions. All errors are
our own.
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In such social settings, it is common for multiple equilibria to exist (Durlauf
(2001)). Context-specific models of tipping (Schelling (2006)), herding (Baner-
jee (1992)), technological adoption (Jackson and Yariv (2006)), and collective
action (Maheshri (2011)) provide frameworks in which relevant equilibria can
be identified and selected. In the case of school or neighborhood segregation,
social interactions may manifest themselves in tipping behavior. If, for exam-
ple, parents of white students have a stronger preference for white peers relative
to minority parents, then a simple model of tipping implies that there exists
a threshold minority share in a given school above which the school will “tip”
towards a stable equilibrium with a greater share of minority students and be-
low which the school will tip towards a stable equilibrium with a lower share
of minority students.1 This threshold in the social amenity (minority share of
enrollment) is commonly referred to as a tipping point, and it represents an
unstable equilibrium.

In this paper, we provide a new empirical method to identify tipping behavior
in a richer model with novel theoretical and empirical features, and we apply
our method to the case of segregation in public schools. Our approach offers
three innovations on existing methods: First, we explicitly identify and estimate
parental preferences for schools in a multinomial discrete choice setting that
allows for heterogeneity in the preferences of parents for both private and social
school related amenities (McFadden (1974), Berry (1994), Berry et al. (1995)).
Second, we identify school specific tipping points at each point in time. Third,
we provide the first method to identify one or more stable equilibria for each
school at each point in time.

We demonstrate how tipping arises in the context of segregation with a
model in the spirit of Becker and Murphy (2000). This suggests a natural
reduced form approach to identify tipping points as thresholds around which the
flows of both white and minority student enrollment are qualitatively different
(Pryor (1971), Card et al. (2008a)). When the share of minority students in
a school exceeds a tipping point, we expect relative outflows (inflows) of white
(minority) students, and when the share of minority students in a school falls
short of a tipping point, we expect the opposite. However, implementation of
this approach assumes a common tipping point across schools and within schools

1In an admitted abuse of nomenclature, we hereafter refer to all non-white and white
Hispanic parents and students as minorities in spite of the fact that non-Hispanic white
students constitute fewer than 50% of the public school population in Los Angeles. For the
purposes of discussion, we also assume that parents and children are of the same race, although
this assumption plays no role in our empirical analysis.
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Figure 1: Empirical Distribution of Tipping Points, Los Angeles Schools, 2006
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Note: Tipping points are computed using the method proposed in this paper.

over time, which is generally invalid if schools offer different or changing levels
of private amenities (e.g., teachers, facilities, location) or if white and minority
parents have changing relative valuations for these amenities. Indeed, we find
evidence of substantial heterogeneity in tipping points, and we preview this
result in figure 1, which features the distribution of tipping points in Los Angeles
schools in 2006 estimated with our proposed method. Similar heterogeneity is
found in other years in Los Angeles and in other major cities.

To allow for this heterogeneity, we develop a structural approach to identify
tipping points by modeling parental decisions in a framework with multino-
mial choices (Brock and Durlauf (2002)) instead of a binary choice framework
(Schelling (1971), Becker and Murphy (2000)). In this model, parents select
a particular school for their child based on a comparison of private and social
amenities provided by all available schools. We estimate parental preferences
for these amenities allowing for heterogeneity in white and minority preferences.
Using these estimates, we then compute the expected future enrollment of both
groups within a school for different counterfactual levels of the share of minority
students who are enrolled in that school. For any counterfactual value of the
share of minority students in a school in a given year, we are able to simulate the
expected future share of minority students in that school by allowing parents
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to re-sort holding all other school amenities constant. We can then recover the
unique tipping points and stable equilibria for each school in each time period
from the simulated schedule of the expected future share of minority students.2

An additional benefit of our approach is the identification of single or mul-
tiple stable equilibria. We believe that this is of first order importance from
a policy perspective, as these equilibria represent the expected steady state al-
locations of whites and minorities in each school. To the extent that policies
aim to reduce segregation, they must focus primarily on changing the locations
of stable equilibria, since a change in the location of a school’s tipping point
will likely have no effect on enrollment if the allocation of minority and white
students within the school is at or near a steady state. Indeed, we show that
the locations of stable equilibria can be manipulated solely through policies that
affect school amenities.

We implement our approach using a sample of all public schools in Los
Angeles from 2001-2006 and find that race based tipping is a widespread and
diverse phenomenon. Around 53% of the schools in our sample feature a tipping
point in a given year, and these tipping points range from a minority share of
25% to a minority share of 75%. Nearly all schools in the sample possess a
stable, segregated equilibrium with a minority share in excess of 80%, and over
half of the schools in the sample also possess a stable, segregated equilibrium
with a minority share less than 20%.3 We find substantial heterogeneity in
the locations of stable equilibria across schools within time but relatively little
heterogeneity in their locations within schools over time.

The remainder of the paper is organized as follows. In section 2, we present
a theoretical discussion of tipping behavior, and we highlight the challenges in
identifying tipping points and stable equilibria. In section 3, we present an
empirical strategy that addresses these challenges. In section 4, we present the
data and detailed results for the Los Angeles metropolitan area. We also show
similar results for schools in New York City, Chicago and Houston. In section
5, we discuss extensions of our approach, and we conclude by highlighting the
implications of our results and methodology.

2Bayer and McMillan (2010) estimate a model of school choice and suggest a simulation
technique to estimate measures of school competition, but they do not consider social inter-
actions. In a computational study of residential segregation, Bruch and Mare (2006) simulate
flows of white and minority residents between neighborhoods under a variety of assumptions,
but they do not empirically identify tipping points or stable equilibria.

3Hereafter, we use the minority share thresholds of 20% and 80% to define segregated
equilibria.
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2 Identification of Tipping Points and Stable Equi-
libria

In the context of segregation, the primary social amenity is the share of
a demographic subgroup. Even a slight perturbation in the level of the social
amenity around a tipping point may lead to very different demographic outcomes
if subgroups have different preferences over the social amenity (Schelling (1969),
Schelling (1971)).4 In this section we present a model of tipping behavior and
illustrate the challenges in the identification of tipping points as well as stable
equilibria.

Suppose there are two groups of parents indexed by r, where r = W if the
parent is white and r = M if the parent is a minority. Without loss of generality,
each parent has a single child of the same race. In the beginning of each period
parents choose which school their child will attend. Parents observe a set of
amenities for each school: a social amenity s, which represents the minority
share in the school, and a vector of all the other private amenities A, which
may include other characteristics of the school, the (implicit) price of attending
the school, and characteristics of competing schools. The aggregate parental
demand can be written as nr

j (s,A), which is the total number of parents of
race r who demand to send their child to school j. It follows that the resulting
expected minority share in school j in the next period will be

Sj(sj , Aj) ≡
nM
j (sj , Aj)

nW
j (sj , Aj) + nM

j (sj , Aj)
. (1)

Figure 2 illustrates a plot of Sj(s) for different values of s for particular
demand curves nW

j (s,Aj) and nM
j (s,Aj).5 Values of s where the curve crosses

the 45 degree line (i.e., Sj(s) = s) are equilibria; for these values of s, the
minority share of students at the school is not expected to change in the next
period. A tipping point s�, or unstable equilibrium, is a point that crosses the
45 degree line from below, and a stable equilibrium s�� is a point that crosses the
45 degree line from above.6 At a stable equilibrium, small deviations of s will

4Zhang (2009) generalizes Schelling’s model and shows that even when individuals have a
preference for integration in the aggregate, a slight difference in the preferences of two groups
for the social amenity can still lead to fully segregated equilibria.

5For purposes of exposition, we omit the argument Aj when referring to the expected
minority share function Sj .

6Points at which the curve Sj (s) crosses the 45 degree line from above with a negative
slope are not necessarily stable equilibria. For values of s around these points, we will observe
oscillating dynamics that can lead to either convergence towards the crossing point or diver-
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result in whites and minorities re-sorting in such a way that the minority share
will return to the stable equilibrium level. At a tipping point, small deviations of
s will result in whites and minorities re-sorting in such a way that the minority
share will diverge from the tipping point towards a stable equilibrium.

Figure 2: Identification of Tipping Points and Stable Equilibria
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Empirical identification of tipping points and stable equilibria is complicated
by the fact that the demand schedules of the groups are difficult to recover.
The identification becomes even more complicated if parents face a multinomial
choice rather than a binary choice, as Aj will include not only school j amenities
but also the amenities of other schools (including the share of minority students
in these schools). However, equation (1) suggests a reduced form approach to
identify tipping points and stable equilibria without the specification of all the
relevant demand functions. We describe this approach, discuss its drawbacks
and then propose an alternative identification strategy that does not face such
drawbacks.

Suppose sj is observed for two periods, t and t + 1, in a sample of several
schools with a common tipping point s� ≡ s�j . One could plot sjt+1 on sjt

for these schools on a single set of axes as in figure 2. Then the identification

gence towards a segregated equilibrium. As we do not observe these more complex dynamics
empirically, we ignore them in our analysis for simplicity.
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of tipping points and stable equilibria is reduced to finding those points on the
x-axis at which the plotted curve crosses the 45 degree line from below and from
above, respectively.

This identification strategy relies strongly on two assumptions. First, all
schools in the sample must have a common tipping point at period t. To the
extent that schools in the sample offer different private amenities to their stu-
dents, the demand schedules of parents for different schools are not generically
the same. It follows that figure 2 is unique to each school, so in general, schools
in the sample do not share a common tipping point. Second, the demand sched-
ules of parents in both groups must remain fixed from periods t to t+ 1. Shifts
in parents’ demand schedules from t to t+ 1 will generally result in changes to
s� and s��, rendering any fixed point approach that equates shares of minority
students in periods t and t + 1 flawed. To the extent that there is a change in
the relative income of parents of each group or that amenities change over time,
this assumption is also unrealistic.

In order to avoid these assumptions, we offer a new approach that allows
us to recover tipping points by constructing figure 2 separately for each school
in each period through simulated movements along parents’ demand schedules,
which correspond to movements along the curve Sj . The general idea is as
follows. First, we model parents’ school choices in a multinomial setting in
which parents select a particular school for their child based on a comparison of
social and private amenities provided by all available schools. Using a discrete
choice approach, we estimate parental preferences allowing for heterogeneity
in white and minority preferences for all amenities. With these estimates, we
can compute the expected future enrollment of both groups within a school as
a ceteris paribus function of the share of minority students who are enrolled
in that school. For any counterfactual value of the share of minority students
in a school in a given year, we are able to simulate the expected future share
of minority students in that school by allowing parents to re-sort. It is then
straightforward to recover school specific tipping points and stable equilibria.

3 Empirical Strategy

3.1 A Structural Model of School Choice

We analyze parents’ decisions in a multinomial choice framework (Durlauf and
Ioannides (2010)). In year t, Ngt children attend public school in grade g. Each
child i is either white (r = W ) or minority (r = M) and attends exactly one
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of Jgt schools available to grade g students. In a given year t, the total grade
g enrollment in school j is equal to the sum of white and minority enrollments
in that grade at that school and is given by njgt = nW

jgt + nM
jgt. The share of

minority students at the school is denoted sjt = Σgn
M
jgt/Σgnjgt. Similarly, the

total grade g enrollment of race r students in all schools in year t is equal to
nr
gt =

�

j

nr
jgt.

Parents make their enrollment decisions in period t having observed school
amenities at the end of period t− 1. The expected indirect utility of parents of
child i of race r enrolled at school j in grade g in year t is given by

Ur
ijgt = αr

gt + γj + βr
gtsjt−1 +X �

jt−1φ
r
gt + ηrijgt (2)

where Xjt−1 is a vector of other year- and school-specific amenities that were
observed at the end of the previous period. αr

gt is a fixed effect that varies
by race, grade and year, γj is a school level fixed effect, and the parameters
βr
gt and φr

gt are race-, year-, and grade level-specific parameters that relate
school amenities to indirect utility. The error term ηrijgt is an individual specific
unobserved component of utility that is assumed to be i.i.d. extreme value 1.7

Parent i of race r will choose to enroll their grade g child in school j in year
t if

Ur
ijgt > Ur

ikgt (3)

for all schools k �= j. We assume that school supply is perfectly elastic.8 In
addition, we assume that there are no moving costs associated with parent i’s
enrollment decision, so it suffices to consider the single period, static equilibrium
described above.9

We first collect the non-individual specific determinants of utility as δrjgt ≡
δrjgt (sjt−1) = αr

gt + γj + βr
gtsjt−1 +X �

jt−1φ
r
gt. Following equation (3), parent i

of race r will enroll their grade g child in school j at period t if ηrikgt − ηrijgt <

δrjgt − δrkgt for all k. We denote this probability of enrollment as πr
ijgt. The

assumption on the distribution of η implies that πr
ijgt is constant within race,

school, grade and year, hence we can drop the subscript i and denote this
7The distribution of ηrijgt can be generalized following Berry et al. (1995) to account for

other types of heterogeneity in preferences (see section 5.4 and for a more general treatment,
Brock and Durlauf (2007)).

8We discuss alternative assumptions on the elasticity of school supply in section 5.5.
9With more detailed data relating to the transition of students across schools, one could

relax the assumption of no moving costs. We are unable to obtain such data for our analysis.
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probability as

πr
jgt (sjt−1) =

exp
�
δrjgt (sjt−1)

�

Jgt�

k=1

exp
�
δrkgt (skt−1)

�
(4)

which is the familiar logit relationship. As δrjgt is denominated in units of utility,
we normalize δr1gt = 0 for each grade, year and race.10 Following Berry (1994),
we can estimate each δrjgt as

δ̂rjgt = log
nr
jgt

nr
1gt

(5)

directly from the observed nr
jgt. δ̂rjgt is the estimated mean utility that race r

parents enjoy from enrolling their grade g children in school j in year t. The
parameters in equation (2) can be estimated by least squares from the second
stage equation

δ̂rjgt = αr
gt + γj + βr

gtsjt−1 +X �
jt−1φ

r
gt + µr

jgt (6)

where µr
jgt = δ̂rjgt − δrjgt is an error term.

3.2 Recovering Tipping Points and Stable Equilibria

The “expected” future share of minority students in school j at time t, Sjt, can
be implicitly defined as11

Sjt (s) =

�

g

nM
gtπ

M
jgt (s)

�

g

�
nW
gt π

W
jgt (s) + nM

gtπ
M
jgt (s)

� (7)

The numerator of equation (7) is the total expected number of minority students
that would enroll in school j if its minority share is s, and the denominator is
the total expected enrollment in school j if its minority share is s. A plot of

10This normalization requires the inclusion of race-, grade- and year-specific fixed effects
(αr

gt) in our specification of indirect utility.
11Following the theoretical literature on tipping, we assume that parents do not strategically

extrapolate other parents’ future enrollment decisions when making their own enrollment de-
cisions. Hence, dynamic adjustment unfolds at a period by period pace. This assumption can
be weakened with an alternative specification of indirect utility in (2) that includes additional
lagged minority share terms and/or time derivatives of minority share (see section 5.2).
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Sjt on s is a natural analog to figure 2. Each simulated Sjt corresponds to the
expected future minority share for school j under the counterfactual assumption
that sjt = s.

Following our fixed point argument, in period t, school j possesses either a
tipping point or a stable equilibrium at any level of s where

Sjt (s) = s (8)

Because the expression on the left hand side is transcendentally valued and the
expression on the right hand side is algebraically valued, equation (8) does not
generically possess an analytical solution (Marques and Lima (2010)). For this
reason, we must use a numerical technique to estimate tipping points and stable
equilibria. We allow s to take on values ranging from 0 to 1 in increments of
0.01, and at each value of s, we simulate Sjt (s) using equation (7). We then
plot these simulated shares Sjt on s and locate the value(s) of s for which the
plot crosses the 45 degree line. A value of s for which the simulated function
Sjt crosses the 45 degree line from below (i.e., S�

jt > 1) represents a tipping
point s�, and a value of s for which S crosses the 45 degree line from above (i.e.,
S�
jt < 1) represents a stable equilibrium s��.12

3.3 Comparative Statics

Although closed form representations of tipping points s�jt and stable equilibria
s��jt do not exist, we can take advantage of the structure of the empirical model
in order to derive some useful theoretical predictions. We show that a change in
any amenity affects the locations of tipping points and stable equilibria. This
effect is especially transparent when white parents and minority parents have
opposite preferences over the amenity.

Proposition 1. (Comparative Statics on Xjt) An increase (decrease) in any
amenity that white parents enjoy and minority parents do not enjoy shifts the
simulated curve Sjt down (up). The opposite is true of an increase (decrease)
in any amenity that minority parents enjoy and white parents do not enjoy.

Proof. Let φ̌r
gt be the scalar coefficient on some particular amenity xjt of Xjt.

The result follows from differentiating equation (7) with respect to xjt and
noting that ∂πr

jgt

∂xjt
= φ̌r

gt.

12See footnote 6 for a qualification of this statement.
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An increase in the level of an amenity that white parents enjoy relative to
minority parents makes that school relatively more attractive to white parents
on average, which causes the expected future minority share of enrollment at
that school to decrease for value of s. This results in a downward shift of the
simulated curve Sjt as depicted in figure 3. Such a shift affects the locations of
tipping points and stable equilibria in a predictable way.

Corollary. Any increase in any amenity xjt that white parents enjoy and mi-
nority parents do not enjoy shifts the location of the tipping point up and shifts
the locations of stable equilibria down (If φ̌W

gt > 0 and φ̌M
gt < 0, then ∂s�jt

∂xjt
> 0

and ∂s��jt
∂xjt

< 0.) The opposite is true of an increase in any amenity that minority
parents enjoy and white parents do not enjoy (If φ̌W

gt < 0 and φ̌M
gt > 0, then

∂s�jt
∂xjt

< 0 and ∂s��jt
∂xjt

> 0.)

In general, a change in the amenity xjt will shift the curve Sjt even if white
and minority parents have similar preferences for the amenity. Hence, het-
erogeneity in amenities across schools (and within schools over time) implies
heterogeneity in tipping behavior as well as heterogeneity in the locations of
tipping points and stable equilibria.

Additionally, this suggests a tool that policymakers may utilize in order
to reduce school segregation. With estimates of parents’ preferences and the
simulated curve Sjt, policymakers can actively adjust the amenities in school j
in order to shift the relevant stable equilibrium to a more appealing location.

11



Figure 3: Comparative Statics on Xjt
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Note: The dashed line represents a shift in Sjt due to an increase in amenity
xjt for which φ̌W

gt > 0 and φ̌M
gt < 0.

4 Data and Results

4.1 Sample

We construct a sample of every public school in Los Angeles that offered in-
struction in any grade from kindergarten through 12th grade at any point be-
tween the years 2001 and 2006.13 For each of the 1815 schools in our sample,
we obtain grade level enrollment statistics from the Common Core of Data, a
public database maintained by the Center for Education Statistics at the US
Department of Education. Data in the Common Core are supplied by state
level departments of education. The average minority share in all schools in our
sample period is shown in figure 4 for selected grades. We present enrollment
statistics for Kindergarten, eighth grade and twelfth grade because these grades
represent the first year of schooling, the year before students begin to drop out
of school, and the final year of schooling.

13For our purposes, “year” refers to academic year by registration date, not calendar year.
For example, 2007 corresponds to the Fall 2007-Spring 2008 academic year.
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Despite our terminology, the number of minority students enrolled in Los
Angeles schools greatly exceeds the number of non-Hispanic white students in
all years of the sample. In general, there is a small absolute decline in white
enrollment, which is accompanied by moderate absolute increases in minority
enrollment in all grades over the sample period.14 This implies increasing mi-
nority shares in all grades over the sample period as seen in figure 4. There
is a dramatic amount of attrition in minority education, as nearly one third of
minority students enrolled in eighth grade do not enroll in twelfth grade; indeed,
the share of minorities enrolled in twelfth grade is over 3 percentage points lower
than the share enrolled in eighth grade.

Figure 4: Enrollment by Race and Grade, Los Angeles Schools, 2001-2006
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14This decline in white enrollment is likely due to declining fertility rates, as total pri-
vate school enrollment in California remained roughly constant over the sample period.
(Source: CBEDS data collection, Educational Demographics, October 2008, and 2008–09
Private School Affidavits.)
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Table 1: Summary Statistics
Variable 2001 2002 2003 2004 2005 2006

Minority Share 0.78
(0.24)

0.79
(0.24)

0.79
(0.23)

0.80
(0.23)

0.81
(0.22)

0.82
(0.22)

Academic Performance Index 625
(132)

648
(120)

661
(115)

692
(114)

700
(112)

715
(111)

Share of Students Eligible
for a Free or Reduced Price
Lunch

0.60
(0.31)

0.60
(0.31)

0.61
(0.31)

0.60
(0.31)

0.60
(0.32)

0.61
(0.32)

Average Class Size 21.14
(2.76)

20.94
(2.99)

21.16
(3.56)

21.36
(3.46)

21.44
(3.35)

21.35
(3.65)

Number of Observations 14260 14482 14954 15098 15194 15902

Number of Schools 1450 1476 1554 1571 1610 1701

Note: We present means of variables with standard deviations in parentheses.
To maintain consistency with our estimation approach, we measure all variables
at their prior year levels. For example, the average class size in our sample for
the 2000-01 academic year is 21.14.

The Common Core also includes limited demographic data for each school.
Summary statistics of the data are presented in table 1. Following our approach
the key variable of interest is the minority share in each school, which ranges
from six percent to nearly one hundred percent with an annual average close to
eighty percent (for schools in 2006, see figure 5).

For each school, we collect the base Academic Performance index (API), an
accountability measure devised by the California State Board of Education that
is specifically designed to compare overall performance across different schools
and within schools over time. The index is a composite of students’ performance
across multiple content areas based on statewide testing and ranges from 200
to 1000. For the schools in our sample, the average API consistently increased
from 625 in 2001 to 715 in 2006, although this falls below the target score of
800 established by the State Board of Education.
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Figure 5: Histogram of Minority Share in Los Angeles Schools, 2006
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We also compute the share of students in each school who are eligible for a
free or reduced price lunch under the National School Lunch Program (NSLP).
A student qualifies for a free lunch if their family’s income is below 130 percent
of the federal poverty threshold or a reduced price lunch if their family’s income
ranges from 130 to 185 percent of the federal poverty threshold. Accordingly,
this variable is a natural proxy for the average income level of a school’s student
body. In our sample, approximately 60 percent of students meet the eligibility
criteria set forth in the NSLP, which is higher than the national eligibility rate
of 40 percent and the California eligibility rate of 48 percent in 2006.15

Finally, we collect the average class size at each school. Average size has
remained relatively constant at around 21 students per class over the sample
period, which is nearly identical to the national average.16

4.2 Parameter Estimates

We estimate αr
gt, βr

gt and where applicable, φr
gt and γj under four specifications

of parents’ expected utility. Because of the large number of parameters, we
15We calculate the national and state eligibility rates from the Common Core.
16U.S. Department of Education, NCES. Schools and Staffing Survey (SASS), “Public, Pub-

lic Charter, and Private School and Teacher Surveys,” 2003-2004.
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present only a limited selection of parameter estimates for each specification.17

In table 2, we present parameter estimates only for parents who are enrolling
their children in kindergarten during the sample period. These parameters are
estimated along with the relevant βs for parents who are enrolling their children
in all other grades 1-12 during the sample period. All β̂r

gt are highly precisely
estimated with robust standard errors on the order of 3 to 10 percent of the
coefficient estimates.

In the first specification, we do not include other observable school ameni-
ties, and we do not include school fixed effects. Whites prefer enrolling their
children in schools with a lower minority share (β̂W < 0), whereas minorities
prefer enrolling their children in schools with a higher minority share (β̂M > 0),
although minorities’ racial preferences are moderately less intense than whites’
racial preferences.

In the second specification, we include other amenities that might affect
parents’ enrollment decisions. These amenities vary by school and year, but
we allow the coefficients φ̂r

gt to vary by race, grade and year as in the case
of the minority share coefficients. Estimates of β̂ are qualitatively similar to
and slightly smaller in magnitude than estimates in the first specification. The
modest increase in R2 suggests that these other amenities offer little additional
explanatory power.

The coefficients on API are extremely small in magnitude and precisely
estimated in roughly three fourths of the grades. The performance index does
not appear to affect schooling decisions in this specification. In general, parents
of high school (grades 9-12) students of both races prefer enrolling their children
in schools with larger average class size. This may reflect a preference for large,
suburban schools that can offer a wider variety of classes and extracurricular
activities than their smaller counterparts. However, the role of class size in
parents’ preferences is substantially smaller than the role of minority share;
on average, increasing class size by 10 percent has roughly the same effect on
parents’ preferences as increasing the minority share of students in a school by
3 percent.

17The remaining parameter estimates are available upon request.
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Table 2: Parameter Estimates for Parents of Kindergarten Students, 2001-2006
(1) (2) (3) (4)

2001 β̂W -4.547
(0.107)

-3.725
(0.176)

-3.298
(0.097)

-2.780
(0.139)

β̂M 2.356
(0.077)

1.948
(0.158)

3.605
(0.198)

2.893
(0.134)

2002 β̂W -4.768
(0.099)

-4.121
(0.158)

-3.411
(0.095)

-2.977
(0.120)

β̂M 2.299
(0.077)

1.714
(0.111)

3.656
(0.097)

2.858
(0.114)

2003 β̂W -4.736
(0.107)

-4.058
(0.176)

-3.479
(0.097)

-3.062
(0.120)

β̂M 2.177
(0.072)

1.728
(0.127)

3.434
(0.099)

2.725
(0.116)

2004 β̂W -4.784
(0.105)

-4.030
(0.170)

-3.514
(0.100)

-3.086
(0.125)

β̂M 2.209
(0.082)

1.861
(0.130)

3.478
(0.102)

2.804
(0.128)

2005 β̂W -4.961
(0.115)

-4.187
(0.182)

-3.735
(0.105)

-3.305
(0.135)

β̂M 2.146
(0.082

1.794
(0.125)

3.373
(0.105)

2.676
(0.121)

2006 β̂W -4.999
(0.111)

-4.113
(0.179)

-3.807
(0.105)

-3.250
(0.140)

β̂M 2.142
(0.080)

1.677
(0.118)

3.335
(0.102)

2.540
(0.129)

Other amenities? No Yes No Yes

School fixed effects? No No Yes Yes

R2 0.831 0.862 0.943 0.948

N 90022 90022 90022 90022

Note: The dependent variable is δ̂rjgt (see equation (6)). All specifications also
estimate β̂W and β̂M for grades 1-12 and fixed effects by grade-race-year. See
table 3 for parameter estimates from specification (4) for all grades. Robust
standard errors clustered by school-year are provided in parentheses.

In general, parents of white and minority high school students weakly pre-
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fer enrolling their child in schools with fewer students that qualify for NSLP.
The effect implied by these estimates is roughly one tenth of the magnitude
of white parents’ preference for enrolling their child in schools with fewer mi-
nority students on average (i.e., (φ̂r

gt ≈ 1/10β̂W
gt )). Minority parents of primary

school students do not exhibit a systematic preference for enrolling their child
in schools with more or fewer students that qualify for NSLP.

In the third specification, we include school level fixed effects but omit other
amenities. Once again, parameter estimates are qualitatively similar to their
counterparts in the first two specifications. The increase in R2 from 0.831 in
the first specification to 0.943 indicates that the γj capture a substantial amount
of variation in parents’ preferences. Moreover, this indicates that the γj offer
substantially more explanatory power than the other school amenities included
in the second specification.

In the fourth specification, we include all amenities and school level fixed
effects. Consistent with our earlier results, the other amenities do not demon-
strably increase the explanatory power of our parameter estimates, as the R2

is nearly unchanged from the third specification. As this specification offers
the most explanatory power for parents’ enrollment decisions, we employ its
parameter estimates in order to identify tipping points and stable equilibria.

The full set of β̂r
gt for all grades from this final specification can be found

in table 3. All parameters are precisely estimated. In general, the parameters
for both groups of parents are decreasing over time, indicating an increasing
distaste for minority peers by white parents and a decreasing preference for
minority peers by minority parents. The parameters are also very stable across
grades.

In summary, we find that a predominant determinant of parents’ enrollment
decisions for their children is the racial makeup of their children’s prospective
peers. The parameters capturing this preference (β̂r

gt) are all precisely estimated
and similar across various specifications of parents’ utility. We also find that
other school amenities, such as class size, average student achievement and
the income of their children’s prospective peers, do affect parents’ enrollment
decisions for their children in some cases, although we estimate these effects
to be much smaller in magnitude than the effects of racial characteristics on
parents’ enrollment decisions, and they do not systematically differ between
races. We also find that these amenities explain much less of the observed
variation in parents’ enrollment decisions than the minority share of students
enrolled in a school. We interpret this as evidence that minority share is the
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main social amenity affecting school segregation and that other observable school
characteristics can be treated approximately as private amenities.

Table 3: Parameter Estimates for Parents of All Students, 2001-2006
Grade 2001 2002 2003 2004 2005 2006

K.G. β̂W -2.780
(0.139)

-2.977
(0.120)

-3.062
(0.120)

-3.086
(0.125)

-3.305
(0.135)

-3.250
(0.140)

β̂M 2.893
(0.134)

2.858
(0.114)

2.725
(0.116)

2.804
(0.128)

2.676
(0.121)

2.540
(0.129)

1st β̂W -2.868
(0.127)

-2.947
(0.118)

-3.105
(0.123)

-3.278
(0.129)

-3.379
(0.138)

-3.423
(0.126)

β̂M 2.921
(0.108)

2.881
(0.106)

2.961
(0.118)

2.846
(0.120)

2.739
(0.113)

2.665
(0.116)

2nd β̂W -2.790
(0.115)

-2.951
(0.118)

-2.970
(0.116)

-3.210
(0.136)

-3.365
(0.127)

-3.273
(0.137)

β̂M 2.960
(0.113)

2.928
(0.103)

2.822
(0.106)

2.942
(0.108)

2.827
(0.107)

2.644
(0.122)

3rd β̂W -2.815
(0.117)

-2.824
(0.118)

-3.101
(0.121)

-3.131
(0.123)

-3.354
(0.130)

-3.301
(0.126)

β̂M 2.923
(0.104)

2.873
(0.102)

2.949
(0.115)

2.851
(0.110)

2.903
(0.105)

2.611
(0.113)

4th β̂W -2.835
(0.118)

-2.927
(0.121)

-2.924
(0.124)

-3.089
(0.124)

-3.211
(0.118)

-3.236
(0.126)

β̂M 2.918
(0.103)

2.908
(0.099)

2.834
(0.105)

2.819
(0.117)

2.754
(0.105)

2.749
(0.106)

5th β̂W -2.854
(0.131)

-2.873
(0.123)

-2.995
(0.125)

-3.055
(0.127)

-3.242
(0.130)

-3.051
(0.127)

β̂M 2.870
(0.102)

2.843
(0.103)

2.932
(0.108)

2.915
(0.118)

2.741
(0.108)

2.643
(0.115)
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Table 3: Continued
Grade 2001 2002 2003 2004 2005 2006

6th β̂W -2.676
(0.163)

-2.985
(0.163)

-2.936
(0.161)

-3.330
(0.178)

-3.275
(0.179)

-3.119
(0.190)

β̂M 3.105
(0.131)

2.849
(0.129)

2.976
(0.166)

2.890
(0.190)

3.001
(0.149)

2.883
(0.172)

7th β̂W -2.808
(0.254)

-2.771
(0.259)

-3.303
(0.224)

-3.457
(0.249)

-3.688
(0.279)

-3.148
(0.253)

β̂M 2.946
(0.238)

2.856
(0.308)

2.912
(0.217)

2.860
(0.291)

2.851
(0.215)

2.500
(0.244)

8th β̂W -2.795
(0.252)

-2.470
(0.294)

-3.375
(0.262)

-3.642
(0.244)

-3.598
(0.231)

-3.320
(0.237)

β̂M 2.987
(0.223)

3.152
(0.303)

3.232
(0.268)

2.898
(0.226)

2.814
(0.211)

2.815
(0.211)

9th β̂W -3.818
(0.349)

-3.689
(0.321)

-3.588
(0.375)

-3.853
(0.345)

-3.594
(0.388)

-3.652
(0.388)

β̂M 2.210
(0.341)

2.112
(0.354)

2.630
(0.354)

2.497
(0.390)

2.844
(0.409)

2.567
(0.398)

10th β̂W -3.941
(0.324)

-3.774
(0.357)

-3.877
(0.362)

-3.562
(0.318)

-3.894
(0.340)

-4.017
(0.413)

β̂M 2.341
(0.313)

1.944
(0.358)

2.100
(0.379)

2.399
(0.355)

2.602
(0.348)

2.615
(0.380)

11th β̂W -3.816
(0.336)

-3.910
(0.329)

-4.528
(0.375)

-4.003
(0.346)

-4.014
(0.395)

-4.194
(0.430)

β̂M 2.426
(0.323)

2.233
(0.345)

2.082
(0.310)

1.976
(0.330)

2.353
(0.335)

1.759
(0.348)

12th β̂W -3.492
(0.503)

-3.531
(0.330)

-4.273
(0.365)

-4.446
(0.373)

-4.441
(0.417)

-4.173
(0.408)

β̂M 2.495
(0.384)

2.135
(0.359)

2.034
(0.354)

1.598
(0.367)

1.865
(0.383)

1.822
(0.366)

Note: The dependent variable is δ̂rjgt. These are the full set of estimates of
βr
gt based on specification (4) from table 2 which includes race-grade-year fixed

effects, school fixed effects, class size by school-year and free and reduced lunch
eligibility by school-year. Robust standard errors clustered by school-year are
provided in parentheses.
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4.3 Estimation of Tipping Points and Stable Equilibria

In figure 6, we present graphical simulations of the expected minority share in
three Los Angeles schools that exhibit qualitatively different tipping behavior.
These differences in tipping behavior could arise from several sources in our
estimation procedure. For instance, schools may offer different levels of observ-
able amenities (Xjt) or unobservable amenities which can be captured by school
fixed effects (γj). In addition, for students of a given grade, each school only
competes with other schools that offer instruction for that grade. For example,
elementary schools do not compete with high schools for students.

The simulation figure for Tierra Bonita Elementary School is typical of
schools in our sample. In addition to an integrated tipping point at s = 0.5,
this school possesses stable, segregated equilibria for very low and very high
values of s. Condit Elementary School does not possess a tipping point, as the
simulated curve does not cross the 45 degree line from below at any point.
However, this school possesses a single stable, segregated minority equilibrium.
Finally, Manhattan Beach Middle School also lacks a tipping point, but pos-
sesses a single stable, segregated white equilibrium. We describe Tierra Bonita
Elementary School as typical because, as shown in table 4, we find a tipping
point in a majority of schools in our sample. We also find stable, segregated
minority equilibria in nearly all schools and stable segregated white equilibria
in a majority of schools.

Table 4: Prevalence of Tipping Points and Stable Equilibria
2001 2002 2003 2004 2005 2006

Share of Schools With Tipping Points 0.53 0.52 0.55 0.55 0.57 0.52

Share of Schools with a Stable White
Equilibrium (s�� < .5)

0.57 0.55 0.59 0.60 0.62 0.57

Share of Schools with a Stable
Minority Equilibrium (s�� ≥ .5)

0.97 0.96 0.96 0.94 0.95 0.95
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Figure 6: Tipping Point Simulation for Selected Los Angeles Schools, 2001
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In figure 7 we show yearly histograms of the locations of tipping points for all
schools in Los Angeles for which we identified tipping points. The substantial
dispersion in the tipping points around the median value of 0.56 underscores
one of the contributions of our method since any estimation method that relies
on the assumption of common tipping points across schools within year will
likely misidentify their locations. The distribution of tipping points is roughly
unchanged over the sample period.

Figure 7: Histogram of Tipping Points for Los Angeles Schools, 2001-2006
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Note: Contains all Los Angeles schools that possess a tipping point.

We also show histograms of the locations of stable equilibria for all Los
Angeles schools in figure 8. Stable equilibria are doubly counted for schools that
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possess two of them. Every stable equilibrium that we identify is segregated
(i.e., s�� ≥ 0.8 or s�� ≤ 0.2). We also find substantial heterogeneity in the
locations of the segregated, stable equilibria as well as in the existence of a
second stable equilibrium (table 4). Although we do find heterogeneity in the
locations of tipping points and stable equilibria within schools over time, it is
much less pronounced than the heterogeneity in the locations of tipping points
and stable equilibria between schools. This is consistent with the similarities of
the distributions within figures 7 and 8.

Figure 8: Histogram of Stable Equilibria for Los Angeles Schools, 2001-2006
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Our panel data set also allows us to examine tipping dynamics within schools.
To illustrate, in figure 9 we present the tipping point simulations for Tierra
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Bonita Elementary School. We follow this school over the entire sample period
noting little changes in the simulated curves. For each simulation, we indicate
the observed level of minority share at the end of the previous year with a solid
vertical line and the observed level of the minority share in the current year
with a dashed vertical line. In 2001, minority enrollment stood at just below
60 percent, and in excess of the tipping point. Over the course of the next five
years, it increased toward the stable segregated minority equilibrium. When
the distance between the simulated curve and the 45 degree line was greatest at
previous enrollment levels as indicated by the solid line (e.g. 2002, 2003, 2005),
the minority share of students in Tierra Bonita Elementary School grew at the
fastest rate, as indicated by the distance between the dashed and solid lines. In
2006, as enrollment approached the stable equilibrium, growth in the minority
share of students tapered off.

4.4 Other Metropolitan Areas

As a robustness check, we replicate our analysis for the other three largest US
cities: New York City, Chicago and Houston. As before, all data comes from
the Common Core of Data. For schools in Chicago and Houston, our sample
spans the full period 2001-2006. For schools in New York City, we are only able
to obtain a full data set from 2001-2004 because Manhattan schools are absent
from the Common Core in the later years. Summary statistics of the data can
be found in the appendix.

Coefficient estimates of β̂r
gt for all cities in 2004 can be found in table 7 in

the appendix.18 All coefficients are highly statistically significant, and the R2

values for the regressions for each of the three cities are large, ranging from
0.885 to 0.946. In all cities, we find that whites negatively value minority share
in schools by roughly the same amount (β̂W

gt ≈ −3). Minorities also positively
value minority share in schools in all cities, although to varying extents. In
New York City, minorities have the strongest preference for other minorities
(β̂W

gt ≈ 5), which is approximately twice as strong as in Chicago and Houston.
Coefficient estimates for other amenities are similar to the estimates for Los
Angeles schools.

18Estimates of all other parameters of parents’ utility are available upon request.
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Figure 9: Tipping Dynamics in Tierra Bonita Elementary School, 2001-2006
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Note: The solid vertical line represents the observed level of minority share at
the end of the previous year, and the dashed vertical line represents the observed
level of minority share in the current year.

We summarize tipping behavior and stable equilibria in these cities in table 5.
Of note is the substantial level of heterogeneity that we find in tipping behavior
across these four cities. Whereas over 80% of New York City schools possess
tipping points during the sample period, only 60% of Chicago schools possess
tipping points. Slightly over half of Houston schools possess tipping points,
which is roughly the same share found in Los Angeles schools. As before, nearly
all of the schools in these three metropolitan areas possess a segregated, stable
minority equilibrium, and those cities with more prevalent tipping behavior are
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more likely to feature schools with segregated stable white equilibria.
The within city heterogeneity in tipping points and stable equilibria that we

found in Los Angeles is also evident in these three other cities. In figure 10,
we present histograms of the locations of tipping points and stable equilibria
found in these cities in 2004. As before, the bulk of tipping points lies between
a minority share of twenty and eighty percent, and there is no clear modal
location of the tipping point in these cities. Stable equilibria are almost always
segregated, and there is less heterogeneity in the locations of these points. We
conclude that our main results do not appear to be driven by any features that
are particular to the Los Angeles schooling market.

Table 5: Prevalence of Tipping Points and Stable Equilibria, Other Cities
2001 2002 2003 2004 2005 2006

New York City

Share of Schools With Tipping Points 0.80 0.80 0.87 0.88 – –

Share of Schools with a Stable White
Equilibrium

0.85 0.83 0.90 0.91 – –

Share of Schools with a Stable
Minority Equilibrium

0.95 0.97 0.97 0.97 – –

Chicago

Share of Schools With Tipping Points 0.61 0.58 0.59 0.58 0.56 0.58

Share of Schools with a Stable White
Equilibrium

0.68 0.64 0.64 0.63 0.59 0.64

Share of Schools with a Stable
Minority Equilibrium

0.93 0.94 0.95 0.95 0.96 0.95

Houston

Share of Schools With Tipping Points 0.53 0.52 0.57 0.55 0.54 0.55

Share of Schools with a Stable White
Equilibrium

0.58 0.58 0.61 0.60 0.58 0.60

Share of Schools with a Stable
Minority Equilibrium

0.94 0.94 0.95 0.95 0.95 0.95
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Figure 10: Tipping Points and Stable Equilibria for Selected Cities in 2004
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5 Extensions

A strength of the approach proposed in this paper is that it provides a flexible
framework that is applicable to a variety of methodological and substantive
contexts. We proceed with a discussion of some of these extensions.

5.1 Multiplicity of Tipping Points

In the empirical model above, the social amenity, s, enters linearly into par-
ents’ indirect utility functions. This assumption is not overly restrictive in the
sense that it does not imply the existence or locations of tipping points or the
locations of stable equilibria. Indeed, our empirical analysis confirms this fact.
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Nevertheless, this assumption does not allow for the existence of multiple tip-
ping points. More precisely, this specification implies that our simulation of Sjt

will have at most one inflection point.
We can tailor our approach to allow for multiple tipping points by relaxing

the linearity assumption for the social amenity. Consider instead the following
modification to equation (2)

Ur
ijgt = αr

gt + fr
jt (sjt−1) +X �

jt−1φ
r
gt + ηrijgt (9)

where fr
jt is an unknown function. The function fr

jt can be estimated using any
non-parametric technique (Pagan and Ullah (1999)), which allows the simulated
function Sjt to take any shape. In a more complex context with further multi-
plicity of equilibria, this semi parametric approach can potentially identify more
than one tipping point (and hence more than two stable equilibria) or one-sided
tipping behavior (Card et al. (2008b)).

5.2 Multiplicity of Social Amenities

In our model, we assume that there is a single social amenity in parents’ indirect
utility functions. Certain markets may feature multiple social amenities, and
our model can be adapted to account for them. Consider, for example, the
following modification to equation (2)

Ur
ijgt = αr

gt + β1r
gt s

1
jt−1 + β2r

gt s
2
jt−1 +X �

jt−1φ
r
gt + ηrijgt (10)

in which there are two social amenities, s1jt and s2jt.
By specifying multiple social amenities, we are implicitly testing which so-

cial amenity is chiefly responsibly for tipping behavior. For example, if the
preference parameters for one social amenity are statistically indistinguishable
from each other across groups while the preference parameters for another so-
cial amenity are precisely estimated to be distinct across groups, then that is
evidence of tipping behavior in the latter social amenity.19 If multiple social
amenities are potentially responsible for tipping behavior, then our simulation
technique may be appropriately adapted to identify tipping points and stable
equilibria in a multidimensional setting.

19Indeed, our estimated preferences for amenities other than the minority share of enroll-
ment did not differ systematically across races.
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5.3 Unobserved Amenities

In our estimation of the preference parameters, we assume that ηrijgt is con-
ditionally uncorrelated with the observed social and private amenities which
determine parents’ indirect utility. We mitigate this assumption by controlling
for school level fixed effects. However, this assumption may fail if there exist un-
observed amenities that vary over time together with observed social and private
amenities that are valued differently by groups. A failure of this assumption will
yield inconsistent parameter estimates that will distort the simulation results.
Formally, consider the following modification to equation (2)

Ur
ijgt = αr

gt + γj + βr
gtsjt−1 +X �

jt−1φ
r
gt +Q�

jt−1λ
r
gt + ηrijgt (11)

where Qjt−1 is a vector of unobservable amenities for school j at the end of
period t − 1, and λr

gt is a vector of parameters that varies by race, grade and
year (similar to βr

gt and φr
gt). Estimation of βr

gt will generally be biased due to
the omitted variables Qjt−1.

Our approach can be adapted to address this source of endogeneity by
using the proxy-IV estimation method of Chamberlain (1977), Heckman and
Scheinkman (1987) and Caetano (2010). This method allows us to identify
the parameters in equation (11) (and hence simulate Sjt) without having to ob-
serve Qjt−1, effectively controlling for all unobserved amenities related to school
choice.20

5.4 Allowing for More Heterogeneity in Preferences

In our analysis, we assume that ηrijgt is an i.i.d. extreme value 1 random vari-
able in order to obtain a closed form solution for δ̂rjgt in equation (5). Suppose
instead that parents of the same race have heterogeneous preferences for minor-
ity share. For instance, rich, white parents may have different preferences for
minority share than poor, white parents. In this case, ηrijgt is no longer i.i.d.,
so estimates of parameters in parents’ utility functions will generally be incon-
sistent. Techniques from Berry et al. (1995) can be utilized to estimate the pa-
rameter δ̂rjgt consistently under the assumption that heterogeneity in preferences
due to income arises only with respect to observable amenities. Alternatively,

20To control for Qjt−1, we can use δWjgt and δMjgt for a specific grade g as proxy groups. The
proxy-IV method is particularly applicable in this context because it is plausible to assume
that βr

gt does not vary by grade as reflected in table 3.
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the method proposed in section 3 can be modified to address this issue with an
appropriate redefinition of relevant groups. For example, the analysis can be
reproduced with four (or more) groups comprising all possible combinations of
race and income.

5.5 Supply Side Considerations

In our simulation technique, we reallocate students between all schools in such
a way that parents enroll their children in their most favored school under the
counterfactual assumption that the school of interest has a particular minority
share s. By varying s, we can trace out figure 2 for the school of interest. In
doing so, we implicitly assume that the supply of schooling is perfectly elastic.

Reduced form approaches to identify tipping points have instead assumed
that supply is perfectly inelastic (Card et al. (2008a)), which may be more
plausible in certain contexts. We can adapt our structural identification strategy
to a context with perfect inelasticity by supplementing our estimation with
price data and by modifying our simulation technique appropriately. Before
reallocating students to their most favored school, we first allow prices to adjust
endogenously for each counterfactual value of the social amenity so that overall
enrollments for each school remain fixed. Formally, this is equivalent to holding
the denominator of equation (7) fixed.

6 Conclusion

Social interactions are fundamental to many economic phenomena. In order
to understand the implications of these interactions in a sufficiently rich model
– one that allows for heterogeneity in the dynamics of these interactions – we
argue that a structural empirical approach is warranted. To the extent that
demand (or supply) is determined socially, our approach offers a tool to identify
multiple market equilibria through a straightforward simulation technique.

By developing an identification strategy based on the primitives of con-
sumers’ indirect utility functions, our framework has substantial generality. For
example, our analysis can be extended to (1) markets in which consumers value
social amenities non-linearly, (2) markets in which consumers value multiple so-
cial amenities, (3) markets in which product amenities may be unobserved, (4)
markets in which consumers may possess highly heterogeneous preferences, and
(5) markets in which supply is jointly determined through a pricing mechanism.
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We apply our methodology to the case of segregation in public schools and
find that the market for public schooling is both diverse and dynamic. By iden-
tifying and characterizing school specific tipping behavior, we document sub-
stantial heterogeneity in schooling market equilibrium. We find tipping points
in over half of these schools. In addition, we find that stable equilibria of student
enrollment in metropolitan area public schools are overwhelmingly segregated.

We conclude by noting that with full knowledge of the locations of the tip-
ping point and stable equilibria, policymakers interested in combating school
segregation can shift stable equilibria to more appealing integrated locations by
manipulating school amenities accordingly.
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A Supplementary Data

Table 6: Summary Statistics, Other Cities
City Variable 2001 2002 2003 2004 2005 2006

New York
City

Minority Share 0.84
(0.23)

0.84
(0.22)

0.85
(0.22)

0.86
(0.21)

– –

Share of Students
Eligible for a Free or
Reduced Price Lunch

0.79
(0.26)

0.80
(0.25)

– – – –

Average Class Size 16.88
(4.89)

16.78
(4.63)

– – – –

Num. of Obs. 8922 9048 9304 9534 – –
Number of Schools 1068 1068 1119 1159 – –

Chicago Minority Share 0.59
(0.34)

0.61
(0.34)

0.61
(0.34)

0.63
(0.33)

0.64
(0.33)

0.66
(0.32)

Share of Students
Eligible for a Free or
Reduced Price Lunch

– 0.45
(0.38)

0.45
(0.38)

0.47
(0.38)

0.48
(0.38)

0.47
(0.38)

Average Class Size 16.39
(4.42)

16.70
(4.70)

16.22
(4.52)

16.71
(4.94)

15.86
(4.67)

15.18
(4.98)

Num. of Obs. 10690 10656 10540 10442 10234 10222
Number of Schools 1034 1041 1036 1047 1044 1050

Houston Minority Share 0.61
(0.31)

0.62
(0.31)

0.63
(0.31)

0.65
(0.30)

0.65
(0.30)

0.67
(0.29)

Share of Students
Eligible for a Free or
Reduced Price Lunch

0.49
(0.32)

0.50
(0.32)

0.52
(0.32)

0.54
(0.32)

0.55
(0.32)

0.58
(0.31)

Average Class Size 15.57
(4.55)

14.85
(4.29)

14.90
(4.13)

15.13
(3.64)

15.11
(3.72)

15.38
(3.79)

Num. of Obs. 9666 9908 9920 9904 10154 10222
Number of Schools 1134 1176 1191 1202 1222 1223

Note: Means of variables with standard deviations in parentheses. To maintain
consistency with our estimation approach, we measure all variables at their prior
year levels.
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Figure 11: Histograms of Minority Share in Other Cities, 2004
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B Supplementary Results

Table 7: Parameter Estimates for Parents of All Students, 2004
Grade NYC Chicago Houston

K.G. β̂W -2.697
(0.236)

-3.093
(0.127)

-3.036
(0.158)

β̂M 4.619
(0.230)

2.930
(0.126)

3.006
(0.143)

1st β̂W -2.667
(0.235)

-3.146
(0.135)

-2.934
(0.145)

β̂M 4.687
(0.231)

2.946
(0.115)

3.127
(0.141)

2nd β̂W -2.800
(0.232)

-3.372
(0.120)

-2.893
(0.144)

β̂M 4.726
(0.230)

2.797
(0.117)

3.210
(0.141)

3rd β̂W -2.735
(0.231)

-3.165
(0.116)

-2.889
(0.145)

β̂M 4.779
(0.228)

2.890
(0.121)

3.106
(0.140)

4th β̂W -2.719
(0.228)

-3.163
(0.115)

-2.905
(0.132)

β̂M 4.639
(0.228)

2.950
(0.112)

2.965
(0.139)

5th β̂W -2.729
(0.228)

-3.237
(0.135)

-2.563
(0.224)

β̂M 4.633
(0.230)

2.988
(0.116)

3.448
(0.215)
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Table 7: Continued
Grade NYC Chicago Houston

6th β̂W -3.010
(0.276)

-3.361
(0.156)

-2.555
(0.283)

β̂M 4.830
(0.278)

2.763
(0.152)

3.473
(0.264)

7th β̂W -2.982
(0.295)

-3.436
(0.142)

-2.734
(0.204)

β̂M 5.329
(0.276)

2.799
(0.121)

2.924
(0.204)

8th β̂W -2.826
(0.294)

-3.323
(0.157)

-2.638
(0.225)

β̂M 5.386
(0.276)

2.824
(0.127)

3.190
(0.309)

9th β̂W -2.294
(0.355)

-3.485
(0.341)

-2.795
(0.262)

β̂M 6.140
(0.428)

3.116
(0.267)

2.348
(0.250)

10th β̂W -3.006
(0.382)

-3.478
(0.314)

-3.315
(0.265)

β̂M 5.703
(0.367)

2.779
(0.305)

2.426
(0.277)

11th β̂W -2.165
(0.377)

-3.765
(0.294)

-3.243
(0.258)

β̂M 5.241
(0.385)

2.456
(0.259)

2.555
(0.256)

12th β̂W -2.342
(0.388)

-3.852
(0.286)

-3.062
(0.319)

β̂M 5.114
(0.372)

2.333
(0.316)

2.679
(0.309)

N 39092 62784 59774

R2 0.885 0.930 0.946

Note: The dependent variable is δ̂rjgt. These are the partial set of estimates
of βr

gt for 2004. Observations from all other years are used in this regression.
Additionally, we include race, grade, and year fixed effects, school fixed effects,
class size and free and reduced lunch eligibility at the school-year level. Robust
standard errors clustered by school-year are provided in parentheses.
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