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Abstract

This paper uses Bayesian methods to estimate the probability of sovereign default im-
plied by a rational expectations framework and data for two OECD countries: Greece
and Italy. We build a real business cycle model that allows interactions among fiscal
policy instruments, stochastic ‘fiscal limits,’ and sovereign default risks. The fiscal
policy specification takes into account government spending, lump-sum transfers, and
distortionary taxation. A fiscal limit measures the debt level beyond which the gov-
ernment is no longer willing to finance, causing a (partial) default to occur. Using
the particle filter to perform likelihood-based inference, we estimate the full nonlin-
ear model for the two countries with post-EMU data. We find substantial differences
in the probability of default across the two countries. Although we find that Greece
historically had a lower probability of default for a given level of debt, our estimates
suggest that the Italian government is more willing to service its debt than the Greek
government.
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1. Introduction

Since 2009, mounting fears over a Eurozone sovereign debt crisis have lengthened risks of

sovereign debt restructuring and outright default. The long term interest rate spread in

the secondary market between Greek government bonds and German bonds rose from 8.99

percentage points in November 2010 to 16.05 in November 2011, and the same spread between

Italian and German bonds widened from 1.65 percentage points to 5.19 during the same

period. A key issue is to understand the probability of (partial) default in Greece and other

Eurozone countries, which is at the heart of this paper.

While there is a growing literature on sovereign default risk premia for developed coun-

tries, a divide between empirical and theoretical studies remains. Using rational expectation

models, the theoretical studies show that (1) the government’s ability to service its debt,

or ‘fiscal limit,’ depends on the underlying macroeconomic fundamentals and, therefore, is

country-specific; (2) economic agents’ beliefs about the future states of the economy are

crucial for the formation of default probabilities (see Bi (2011), Bi and Leeper (2010), and

Juessen et al. (2011) among many others). On the other hand, many empirical studies use

panel regressions that cannot account for country heterogeneity (see the literature review

below), or use historical fiscal responses to construct ‘debt limits’ that are backward-looking

in nature (see Ostry et al. (2010)).

This paper aims to bridge this gap by using Bayesian methods and likelihood-based

inference to estimate a standard real business cycle (RBC) model that allows for sovereign

default. We estimate the nonlinear model using post-EMU data for Italy and Greece and

evaluate each country’s historical probability of sovereign default. The dynamic stochastic

general equilibrium (DSGE) approach allows us to estimate structural parameters associated

with a model of sovereign default, which provides a coherent framework to explore the

forward-looking ‘fiscal limits,’ to identify the country-specific probabilities of default, and to

conduct counterfactual exercises.

We consider a closed economy in which the government finances lump-sum transfers and

an exogenous level of purchases by collecting distorting taxes and issuing bonds. The bond

contract, nevertheless, is not enforceable and depends on the maximum level of debt that the

government is able to service, which we call the ‘fiscal limit.’ The fiscal limit is stochastic

and its distribution follows a logistical function. At each period, an effective fiscal limit is

drawn from the distribution. If the level of government debt surpasses the effective limit,

then the government reneges on a fraction of its debt. Based on the fiscal limit distribution,

households can decide the quantity of government debts that they are willing to purchase

and the price at which they are willing to pay.
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The economy may switch between the default and no-default regimes endogenously, de-

pending on the government debt level and the fiscal limit distribution. The model, therefore,

cannot be solved using a first-order approximation and using the Kalman filter to calculate

the likelihood function; instead, it is solved using the monotone mapping method (or policy

function iteration) and estimated using the particle filter. After estimating the structural

parameters, we construct a model-implied distribution for the fiscal limit that is defined as

the sum of the discounted maximum fiscal surplus in all future periods. This model-implied

limit reflects the pure economic limit in raising tax revenue: the maximum fiscal surplus is

obtained at the peak of the Laffer curve, beyond which a higher tax rate reduces the tax rev-

enue. The estimated distribution for fiscal limit, however, reflects both the political and the

economic limit in raising tax revenue. By comparing the model-implied and the estimated

distributions, we derive the ‘political factor,’ which measures the political willingness/ability

to service its debt.

We estimate the model for Italy and Greece during the post-EMU period until 2010Q3.

Two findings emerge. First, the estimated distribution for fiscal limits is slightly higher for

Greece than for Italy. Since the two countries joined the EMU and until 2010Q3, the market

had priced the government bonds in such a way that they perceived the Greek government

was able to afford a higher debt burden than he Italian government. Second, the model-

implied political factor, nevertheless, is lower for Greece than for Italy. The market perceived

that the Italian government was more willing to service its debt than the Greek government

by a probability of 12%, suggesting that even from the pure economic point Greece has more

room to raises tax revenue and service its debt.

Our paper can contribute to the large empirical literature that studies the determinants

of sovereign default risk premia through reduced-form regressions. Focusing on different

time periods, Lonning (2000) and Lemmen and Goodhart (1999) find that sovereign yield

differentials are correlated with various macroeconomic variables, including government debt

to GDP ratios. Codogno et al. (2003) find that default risk explains a substantial part of

changes in yield spreads in Italy and Spain, but not in other EU countries. Alesina et al.

(1992) find that sovereign default risks are affected by the debt level at high levels of debt,

but not influenced by the debt level at low levels of debt. Bernoth et al. (2006) and Haugh

et al. (2009) find that deteriorations in fiscal performance increase the spread in a nonlinear

way. Some recent papers adopt the time-varying coefficient approach. Bernoth and Erdogan

(2011) find the estimated coefficients of the deficit variable was insignificant before the crisis,

but becomes positive and shows an increasing trend since 2009. Abmann and Hogrefe (2009)

find the debt to GDP ratio was the single most important variable between 2003 and 2007,

while Maltritz (2011) show that the budget balance to GDP is very likely to influence spreads.
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2. Model

Following Bi (2011), our model is a closed economy with linear production technology,

whereby output depends on the level of productivity (At) and the labor supply (nt). House-

hold consumption (ct) and government purchases (gt) satisfy the aggregate resource con-

straint,

ct + gt = Atnt. (1)

Technological productivity At follows the AR(1) process

At −A = ρA(At−1 −A) + εAt εAt ∼ N (0, σ2
A). (2)

2.1 Government

The government finances lump-sum transfers to households (zt) and exogenous and unpro-

ductive purchases by levying a tax (τt) on labor income and issuing one-period bonds (bt).

Let qt be the price of the bond in units of consumption at time t. For each unit of the bond,

the government promises to pay the household one unit of consumption in the next period.

However, the bond contract is not enforceable. At each period, a stochastic fiscal limit (b∗t )

is drawn from its distribution, b∗t ∼ B∗. We specify the cumulative density function of the

fiscal limit distribution as a logistical function with parameters η1 and η2 dictating its shape.

p∗ ≡ P (bt−1 ≥ b∗t ) =
exp(η1 + η2bt−1)

1 + exp(η1 + η2bt−1)
(3)

If the debt surpasses the fiscal limit, then it partially defaults. The default scheme can be

summarized as

∆t =

{

0 if bt−1 < b∗t

δ if bt−1 ≥ b∗t

The government’s budget constraint is given by

τtAtnt + btqt = (1−∆t)bt−1
︸ ︷︷ ︸

bdt

+gt + zt. (4)
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The tax rate and government spending evolve according to the rules,

τt = (1− ρτ )τ + ρττt−1 + ετt
︸ ︷︷ ︸

uτ
t

+γτ
(

bdt − b
)

ετt ∼ N (0, σ2
τ) (5)

gt = (1− ρg)g + ρggt−1 + εgt
︸ ︷︷ ︸

ug
t

+γg
(

bdt − b
)

εgt ∼ N (0, σ2
g) (6)

with AR(1) components being denoted as uτt and ugt . The non-distortionary transfers are

modeled as a residual in the government budget constraint, exogenously determined by the

AR(1) process,

zt − z = ρz(zt−1 − z) + εzt εzt ∼ N (0, σ2
z). (7)

Since transfers are not an observable in our estimation, zt can be thought of as capturing all

movements in government debt that are not explained by the model.

2.2 Household

With access to the sovereign bond market, a representative household chooses consumption

(ct), labor supply (nt), and bond purchases (bt) by solving,

max E0

∞∑

t=0

βt (log (ct − hc̄t−1) + φ log(1− nt)) (8)

s.t. Atnt(1− τt) + zt − ct = btqt − (1−∆t)bt−1 (9)

The household’s first-order conditions are,

φ
ct − hc̄t−1

1− nt
= At(1− τt) (10)

qt = βEt

(

(1−∆t+1)
ct − hc̄t
ct+1 − hc̄t

)

(11)

The bond price reflects the household’s expectation about the probability and magnitude of

sovereign default in the next period. The optimal solution to the household’s maximization

problem must also satisfy the following transversality condition,

lim
j→∞

Etβ
j+1uc(t+ j + 1)

uc(t)
(1−∆t+j+1)bt+j = 0. (12)
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2.3 Model Solution

Other than the specifications for exogenous state variables, the core equilibrium equations

are,

qt =
bdt + zt + gt − τtAtnt

bt
(13)

qt = β(ct − hct−1)Et
1−∆t+1

ct+1 − hct
. (14)

The first equation is derived from the government budget constraint, while the second is

from the household’s first-order conditions. We use the monotone mapping method (or

policy function iteration) to solve the decision rule of the bond price in terms of the state

vector. At time t, the state vector is (bdt , ct−1, At, u
g
t , zt, u

τ
t ), and the decision rule of the bond

price can be written as qt = q(bdt , ct−1, At, u
g
t , zt, u

τ
t ).

In terms of computation, the most time-consuming part is the loop iterations of the

numerical integration in equation (14).

Et
1−∆t+1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

∫

b∗t+1

1−∆t+1

ct+1 − hct
(15)

=
(
1− Φ(bt ≥ b∗t+1)

)
∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
|no default

+ Φ(bt ≥ b∗t+1)

∫

εAt+1

∫

εgt+1

∫

ετt+1

1− δ

ct+1 − hct
|default

Given the utility function, consumption is given by

ct =
φhct−1 + (At − gt)(1− τt)

1 + φ− τt
. (16)

Thus, the integration in Equation (15) can be re-written as

∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

1 + φ− τt+1

(1− τt+1)(At+1 − gt+1 − hct)
(17)

=

∫

ετt+1

1 + φ− τt+1

1− τt+1

∫

εAt+1

∫

εgt+1

1

At+1 − gt+1 − hct
(18)

The logarithmal utility function helps to reduce the 4-dimension integration into 1- and

2-dimension integrations. Appendix A discusses the solution procedure in details.
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3. Estimation

The model is estimated for two countries: Italy (1999:2-2010:3) and Greece (2001:2-2010:3).

The start dates represent the quarter following each country’s official adoption of the Euro,

because the interest rates during the pre-Euro period are susceptible to exchange rate risk

from which our model abstracts. Five observables are used for the estimation, including

real output, government spending, tax revenue, government debt, and a 10-year real interest

rate. Appendix B.1 provides a detailed description of the data.

3.1 Methodology

We estimate the model using Bayesian methods. The equilibrium system is written in the

nonlinear state-space form:

xt = f(xt−1, ǫt, θ) (19)

vt = Axt + ξt, (20)

where observables vt are linked with model variables xt via the matrix A, θ denotes model

parameters, and ξt is a vector of measurement error distributed N(0,Σ). We assume Σ is a

diagonal matrix and calibrate the standard deviation of each measurement error to be 20%

of the standard deviation of the corresponding observable variable.1

We use a particle filter to approximate the likelihood function.2 For a given sequence

of observations up to time t, vt = [v1, ..., vt], the particle filter approximates the density

p(xt|vt, θ) with a swarm of particles xit (i = 1, ..., N). See appendix B.2 for more details.3

We combine the likelihood L(θ|vT ) with a prior density p(θ) to obtain the posterior

density kernel, which is proportional to the posterior density, p(θ|vT ) ∝ p(θ)L(θ|vT ). We

assume that parameters are independent a priori. However, we discard any prior draws that

do not deliver a unique rational expectations equilibrium, as we restrict the analysis to the

determinacy parameter subspace.4 We construct the posterior distribution of the parameters

using the random walk Metropolis-Hastings algorithm (see appendix B.3 for more details).

1Estimating measurement errors provides complications in nonlinear models. See Doh (2011) for more
discussion on the role of measurement error in nonlinear DSGE model estimation.

2The particle filter is applicable for nonlinear and non-Gaussian distributions, to which class our nonlinear
model belongs. In addition, the particle filter is more robust than the unscented Kalman filter to sample
initialization date, as the particle filter assumes a distribution for the unobserved initial state.

3The particle filter is increasingly used to estimate nonlinear DSGE models. Recent examples include
An and Schorfheide (2007), Fernandez-Villaverde and Rubio-Ramirez (2007), Armisano and Tristani (2010),
Fernandez-Villaverde et al. (2011), and Doh (2011). See Doucet et al. (2001) for a textbook treatment.

4A technical appendix of the authors provides more discussion on this point.
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In each estimation, we sample 38,000 draws from the posterior distribution and discard the

first 15,000 draws.5 The sample is thinned by every 25 draws, and the likelihood is computed

using 40,000 particles.

3.2 Prior Distributions

We impose dogmatic priors over some parameters, which are listed in table 1. The discount

rate is 0.99, so that the deterministic net interest rate is 1%.6 We calibrate the household’s

leisure preference parameter φ such that a household spends 25% of its time working at the

steady state. We calibrate the deterministic debt to GDP ratio, government spending to

GDP ratio, and tax rate to the mean values of our data samples.

The priors for the remaining parameters are listed in table 1. The prior for habit per-

sistence h is similar to those in the linear DSGE estimation literature, for instance Smets

and Wouters (2007). For the remaining parameters, we first estimate using ordinary least

squares an AR(1) process for GDP and processes for government spending, the tax rate, and

transfers given by equations (5)-(7).7 The results are used as general guidance for the region

of the parameter space for the ρ, σ, and γ parameters.

For the responses of government spending and taxes to debt, we form priors for the long

run responses in terms of percentage deviations from steady state, that is

γg,L ≡
γg

ḡb̄(1− ρg)
, γt,L ≡

γτ

τ̄ b̄(1− ρτ )

These values are more comparable to estimates in the literature. Since determinacy is

sensitive to the combination of the γτ,L and γg,L parameters, we restrict the lower bound of

the γτ,L (γg,L) prior to a value that ensures determinacy when only γτ,L (γg,L) finances debt.

For the standard deviations of shocks, we form priors for the standard deviations relative

to relevant steady state variables: σk,p ≡ σk/J̄ for J = {A, g, τ, z} and k = {a, g, τ, z}. This

gives standard deviations as percentage deviations, which provides more intuitive compar-

isons across values.

5We use Fortran 90 code compiled in Intel Visual Fortran for the estimation. We use the computer server
system at the Bank of Canada, which uses Xeon CPU X7460 at 2.66GHz and has 23 processors with 64G
RAM. One evaluation using the particle filter takes 35 seconds. These computational constraints limit the
number of draws from the Metropolis-Hastings algorithm.

6The mean of our data is 0.6% for Italy and 0.8% for Greece.
7We back out the model-implied tax rate and transfers series implied by our observables.
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3.2.1 Fiscal Limit

We estimate one parameter from the fiscal limit distribution, which is represented by equation

(3). Given two points on the distribution, (b̃∗, p̃∗) and (b̂∗, p̂∗), the parameters η1 and η2 can

be uniquely determined by

η2 =
1

b̃∗ − b̂∗
log

(
p̃∗

p̂∗
1− p̂∗

1− p̃∗

)

, η1 = log
p̃∗

1− p̃∗
− η2b̃∗. (21)

Since (b̃∗, p̃∗) and (b̂∗, p̂∗) provide a more intuitive description about the fiscal limit distribu-

tion than η1 and η2, we can fix p̃∗ and p̂∗ at certain levels and estimate the corresponding

b̃∗ and b̂∗, instead of estimating η1 and η2 directly. We choose p̃∗ = 0.3 and p̂∗ = 0.999.

Unfortunately, given that defaults are never observed in our data, the data is uninformative

about the upper bound of the distribution. Therefore, we estimate b̃∗ and fix the difference

between b̃∗ and b̂∗ to be 40% of steady-state output. This difference is chosen to capture

the observation that once risk premia begin to rise, they do so rapidly.8 Given the lack of

guidance for the parameter b̃∗, we adopt a diffuse uniform prior over the interval 1.4 to 1.8.

3.2.2 δ Identification

To our knowledge, this paper is the first attempt to estimate a DSGE model of sovereign

default. Thus, prior to estimating the model with real data, we performed several estimations

with simulated data.9 Unfortunately, the results revealed that we cannot jointly identify the

rate of partial default δ and the fiscal limit parameter b̃∗ when the data excludes observed

defaults. Parameters related to default affect observable variables through their influence

on the risk premium. Since various combinations of δ and b̃∗ are consistent with the same

risk premium, we cannot jointly identify the parameters. Given this limitation, we estimate

our model for three different calibrations of δ: 0.0978, 0.05, and 0.0245. These calibrations

imply annualized rates of default δA of 37.88%, 20%, and 9.78% respectively. The range

covers the actual default rates of emerging market economies over the period 1983 to 2005,

as documented by Bi (2011).

8The difference of 40% of output, albeit ad-hoc, should not change the key estimation results as the data
is not informative about the upper bound of distribution.

9The results are available in a technical appendix from the authors.
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4. Estimation Results

4.1 Posterior Estimates

Tables 2 and 3 compare the medians and 90% credible intervals of the posterior distributions

estimated from the three specifications for each country. For comparison, we also list the

estimates implied by a log-linearized version of our model without default.10 The data are

informative for all of the parameters, as the 90% credible intervals are smaller than those

from the prior distributions.

For the Italian estimates (table 2), several observations are noticeable when comparing

across the δ calibrations. The estimates of b̃∗ suggest that there is a 30% probability of

default when agents expect a 37.88% annualized rate of default and the current debt to

annualized steady state GDP ratio is between 1.46-1.60. In contrast, when agents expect

a 20% rate of default, the debt to GDP ratio associated with a 30% probability of default

ranges from 1.44-1.61. The lower b̃∗ estimates for a lower δA calibration are consistent with

theory. The model tries to match the risk premium in the data through the values of δA

and b̃∗. When δA is higher, agents expect to lose more of the face-value of debt following a

default. Thus, households demand a higher interest rate to compensate for this risk. Thus,

for the given risk premium implied by the data, a higher b̃∗ is needed to offset a higher δA

value.

With a low rate of default (δA = 0.0947), b̃∗ is not identified from Italian data, as the 90%

posterior credible interval mirrors the prior. As can be seen from figure 1, Italian government

debt and the 10-year interest rate often negatively co-move over our sample period,11 sug-

gesting any risk premium for Italian debt is low over our sample and not easily identifiable.

Thus, it appears that with a low default probability, which causes the model to more closely

resemble the no default log-linear approximation, the resulting loss in nonlinearity in the

model makes the data uninformative about b̃∗.

Turning to the Greek estimates (table 3), we see that the data is informative about b̃∗

for all δA calibrations. The estimates of b̃∗ suggest that there is a 30% probability of default

when agents expect a 37.88% annualized rate of default and the current debt to annualized

steady state GDP ratio is between 1.58-1.78. In contrast, when agents expect a 9.47% rate of

default, the debt to GDP ratio associated with a 30% probability of default ranges from 1.40-

1.57. As mentioned above, the lower b̃∗ estimates for a lower δA calibration are consistent

10These estimates use the Kalman filter to calculate the likelihood function and initialize the Metropolis-
Hastings algorithm using the posterior mode and inverse Hessian at the posterior mode. The system of
equations for the log-linearized model are listed in appendix C.

11The correlation between the two observables is 0.01.
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with theory.

Interestingly, the b̃∗ estimates for Greece are virtually identical for the high and mid range

default rate calibrations. Holding b̃∗ constant, a higher default rate implies a larger risk

premium in the model. In order to avoid this, γg,L, the response of government spending to

debt, adjusts. In the high δA calibration, the posterior for γg,L has more values concentrated

at higher levels than the posterior for the mid δA calibration. Ceteris paribus, a larger γg,L

implies a stronger response of government spending to debt, which lowers the risk premium.

Thus, the two specifications imply similar risk premiums despite the fact that b̃∗ is the same

in each case.

Looking across countries, we find that the debt level associated with a 30% probability

of default is higher in Greece than Italy. This is mainly driven by the stronger responses in

Greece of the tax rate and government spending to debt. Over the sample period, Greece

appears to have more systematically adjusted taxes and expenditures with fluctuations in its

debt. The results are consistent with attitudes towards Greece and Italy during the first half

of our sample. For instance, in 2003 Standard and Poor’s raised its long-term sovereign credit

rating for Greece, noting Greece had consistently narrowed its deficit for the last consecutive

seven years. In contrast, Italy was downgraded by Standard and Poor’s in 2003, who cited

“The weak fiscal position of the general government, which so far has achieved little in terms

of structural budget improvements,” as one of the major reasons for the downgrade.

4.2 Model Fit

To examine how well the model fits the data, we compute smoothed estimates of model

variables using the sequential monte carlo approximation of the forward-backward smoothing

recursion. Figures 1 and 2 compare the smoothed values from the various model specifications

to the observable variables. For each specification, the fitted values are computed using the

corresponding posterior mode. For both Italy and Greece, the fit for most variables is

accurate, with output being the least precise.

We also compute smoothed estimates of the measurement errors E(ξt|vT , θ) and report

their mean absolute values and relative standard deviations in table 4. The standard de-

viation of each measurement error was fixed to be 20% of the standard deviation of the

respective observable variable. However, for most observables, the estimated relative stan-

dard deviation is less than 20%, which suggests that the measurement error did not introduce

many constraints for the model fit. The exception is the measurement error for output, which

is probably due to the reduced-form nature of the private sector in our model. Relative stan-

dard deviations for the nonlinear specifications are smaller than those from a linear model.
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Table 4 also shows that mean absolute values of measurement error are close to zero.

4.3 Laffer Curve and Fiscal Limit

In this section, we use the structural estimates to further explore how the market perceives

the political willingness/ability to service its debt in Italy and Greece.

The proportional tax on labor income distorts a household’s behavior as it lowers the

after-tax wage and may induce households to work less. An increase in the tax rate can raise

tax revenue when the existing tax rate is low, but it can reduce tax revenue when the existing

tax rate is high, producing a Laffer curve. Laffer curves are usually dynamic in the sense

that the shape of the Laffer curve depends on the state of the economy.12 In our model, for

given levels of productivity and government purchases (At, gt), the government can collect

the maximum level of tax revenue, denoted as Tmax(At, gt), at the peak of the dynamic

Laffer curve, denoted as τmax(At, gt). The maximum level of debt that the government can

possibly pay back is the sum of the discounted maximum fiscal surplus in all future periods.

Bmax = E

∞∑

t=0

βt+1u
max
c (At+1, gt+1)

umax
c (A0, g0)

(Tmax(At, gt)− gt − zt) (22)

umax
c represents the marginal utility of consumption when the tax rate is at the peak of the

Laffer curve (τmax). Bmax is obtained, however, under the assumption that the government

is willing to raise the tax at the peak of the Laffer curve, while angry protesters on Athen’s

streets illustrate the powerful political obstacles to achieve higher tax rates in reality. A

reduced-form representation of the political economy perspective is to discount the fiscal

surplus not only by a pure rate of time preference (β), but also by an additional political

factor (βpol).

B∗ = E

∞∑

t=0

βt+1βpolu
max
c (At+1, gt+1)

umax
c (A0, g0)

(Tmax(At, gt)− gt − zt) (23)

Given a particular set of parameter draws (θi), we can compute the model-implied dis-

tribution, Bmax(θi), and the corresponding b̃max(θi), at which the default probability is 0.3.

b̃∗i is the corresponding draw for the debt threshold from our estimated fiscal distribution.

Thus, the ratio between the estimated b̃∗i and the model-implied b̃max
i gives the political

factor βpol
i .

To compute the model-implied distribution, given the logarithm utility function, the tax

12Trabandt and Uhlig (2011) compute Laffer curves for the United States and 15 European countries using
a neoclassical model.
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revenue (Tt) can be written as,

Tt = τt
At(1− τt) + φgt + φhct−1

1 + φ− τt

= (1 + 2φ)At − φ(gt + hct−1)−
(

At(1 + φ− τt) +
(1 + φ)φ(At − hct−1 − gt)

1 + φ− τt

)

.(24)

The tax revenue reaches to the maximum level (Tmax
t ) when the tax rate reaches the peak

point of the Laffer curve (τmax
t ).

τmax
t = 1 + φ−

√

(1 + φ)φ(At − gt − hct−1)

At

(25)

(26)

There exists a unique mapping between the exogenous state space (At, gt) to τ
max
t and Tmax

t .

For a given set of parameter draws (θi), the distribution of fiscal limit (Bmax(θi)) can be

obtained using Markov Chain Monte Carlo simulation:

1. First, for each simulation j, we randomly draw the shocks for productivity (Aj
t), gov-

ernment purchases (gjt ), and the transfers (zjt ) for T = 1500 periods with the first

T0 = 500 as burn-in period. Assuming that the tax rate is always at the peak of

the dynamic Laffer curves, we compute the paths of all other variables following the

household first-order conditions and the budget constraints, and the discounted sum

of maximum fiscal surplus is specified below.

Bmax
j (θi) =

t=T∑

t=T0

βt+1−T0
umax
c (Aj

t+1, g
j
t+1)

umax
c (Aj

T0
, gjT0

)

(
Tmax(Aj

t , g
j
t )− gjt − zjt

)
(27)

2. Second, we repeat the simulation for 10000 times and obtain the distribution Bmax(θi)

using the simulated Bmax
j (θi) (j = 1, ..., 10000).13

3. Finally, using Kernal estimation, we can derive the cumulative density function for

the model-implied distribution Bmax(θi) for those particular parameter draws, and

therefore obtain the model-implied debt level b̃max(θi), at which the default probability

is 0.3.

By repeating the above procedure to the posterior parameter draws (θi, i = 1...920),

we obtain a set of b̃max(θi). The top row in table (5) shows the median and the 90%

13Increasing the number of simulations doesn’t change the simulated distribution much.
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credible intervals for b̃max for Italy and Greece for various δA calibrations. The default rate

specifications do not have much of an impact in either Italy or Greece. However, the model-

implied debt threshold is higher in Greece than in Italy. This implies that, were both Italian

and Greek governments willing to tax at the peak of their Laffer curves, the latter would be

able to service a higher level of debt, assuming the average levels of government spending

and transfers in the future are the same as the historical levels, which are higher in Italy

than in Greece. Bi (2011) shows that a lower level of government spending or transfers raises

the fiscal surplus at each period and can significantly raise the fiscal limit.

For comparison, the second row in table (5) lists the median and the 90% credible con-

fidence intervals for the estimated debt threshold b̃∗ in both countries. Interestingly, the

implied political factor βpol, calculated as the ratio between the estimated b̃∗ and the model-

implied b̃max, is lower in Greece than in Italy. The median is 0.62-0.65 for Italy, but 0.45-0.5

for Greece. One interpretation is that the market perceives the Italian government is will-

ing to raise taxes to the peak of Laffer curve with a probability of 62% to 65%, while the

probability of the Greek government’s willingness is a mere 45% to 50%. In other words, the

political willingness to service debt is 12% higher in Italy than in Greece.

5. Conclusion

This paper uses Bayesian methods to estimate the probability of sovereign default for Greece

and Italy. We build a real business cycle model that allows the interactions among fiscal

policy instruments, the stochastic fiscal limit, and sovereign default risks. The fiscal policy

specification takes into account government spending, lump-sum transfers, and distortionary

taxation. We model the fiscal limit distribution with a logistical function, which illustrates

the market’s belief about the government’s ability to service its debt at various debt levels.

Using the particle filter to perform likelihood-based inference, we estimate the full non-

linear model for the two countries with post-EMU data. We find substantial differences in

the probability of default across the two countries. For a given level of debt, we find that

Greece historically had a lower probability of default than Italy. In addition, we find that

the level of debt associated with a given level of default depends on agents’ expectations

about the size of a default.

Having estimated the structural parameters of the model, we compute the dynamic Laffer

curves for each country and calculate the pure economic fiscal limit, that is the maximum

level of debt that the government is able to service. We compare the difference between

the estimated fiscal limit distributions and the pure economic fiscal limit and find that the

Italian government appears to be more willing to service its debt than the Greek government.

14



Although our nonlinear model allows complex interactions among fiscal policy instru-

ments and the fiscal limit, it is only a first step to understanding and estimating probabilities

of default for developed countries. In this paper, we show how to estimate a model with

sovereign default. To understand fully the complexities associated with default risk, several

other features are worthy of modeling attention, including the interaction of monetary and

fiscal policies; the interaction of the financial sector and the government; and open economy

issues including foreign holdings of debt and risks of contagion.
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A Solving the Nonlinear Model

Other than the end-of-period government debt, all other variables are either exogenous or

can be computed in terms of the current state ψt = (bdt , ct−1, At, u
g
t , zt, u

τ
t ).

τt = uτt + γτ
(

bdt − b
)

(A.1)

gt = ugt + γg
(

bdt − b
)

(A.2)

zt = (1− ρz)z + ρzzt−1 + εzt (A.3)

At = (1− ρA)A+ ρAAt−1 + εAt (A.4)

ct =
φhct−1 + (At − gt)(1− τt)

1 + φ− τt
(A.5)

∆t =

{

0 if bt−1 < b∗t

δ if bt−1 ≥ b∗t

The decision rule for government debt, bt = f b(ψt), is solved in the following steps:

• Step 1: Define the grid points by discretize the state space ψt. Make an initial guess

of the decision rule f b
0 over the state space.

• Step 2: At each grid point, solve the following core equation and obtain the updated

rule f b
i using the given rule f b

t−1. The integral in the right-hand side is evaluated as

described in Section 2.3 using numerical quadrature.

bdt + zt + gt − τtAtn(ψt)

f b
i (ψt)

= β(1−∆t+1)Et
c(ψt)− hct−1

c(ψt+1)− hc(ψt)
(A.6)

where ψt+1 =




(f b

i−1(ψt),∆t+1)
︸ ︷︷ ︸

bdt

, ct, At+1, u
g
t+1, zt+1, u

τ
t+1




.

• Step 3: Check the convergence of the decision rule. If |f b
i − f b

i−1| is above the desired

tolerance (set to 1e− 5), go back to step 2; other wise, f b
i is the decision rule and used

to evaluate the particle filter as described below.
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B Estimation

B.1 Data Description

Data are for Italy and Greece. For each series, we transform the series into percentage

deviations from the mean value of the sample and detrend each time series with its own

linear trend.

Real GDP. Taken from the OECD volume 88 and constructed by dividing the quarterly

nominal GDP series by the GDP deflator.

Debt. Using the annual gross debt to GDP ratio series from the OECD volume 88, we

interpolate the series to a quarterly frequency using the method of Chow and Lin (1971).14

The quarterly level of debt is found by multiplying the debt to GDP ratio by the real GDP

series.

Gov. Spending. Using the annual government final expenditure to GDP ratio series

from the OECD volume 88, we interpolate the series to a quarterly frequency using the

method of Chow and Lin (1971). The quarterly level of government spending is found by

multiplying the government spending to GDP ratio by the real GDP series.

Tax Revenue. Use the annual tax revenue to GDP ratio (tax revenue consisting of

indirect and direct taxes and social security contributions) from the OECD volume 88 (TIND

+ TY + SSRG), we interpolate the series to a quarterly frequency using the method of Chow

and Lin (1971). The quarterly level of tax revenue is found by multiplying the tax revenue

to GDP ratio by the real GDP series.

Real Interest Rate. To construct a 10-year real interest rate measure, we use data

for the nominal interest rate (taken from the BIS) and the expected inflation rate. Our

measure of expected inflation for Italy comes from Consensus Economics, who ask a number

of professional forecasters based in a variety of countries about their expectations of a wide

range of economic variables. We use their long-term (five to ten year) forecast, which has

been published biannually in April and October since the autumn of 1989.15 For Greece, we

use the expected inflation series from the Survey of Professional Forecasts EU-area five year

ahead expected inflation series, which is a general euro-wide inflation series. The gross real

interest rate is constructed using the relation

Rt =
1 + it
1 + πe

t

14We use the quarterly real GDP series as a relative measure for the interpolation. Forni, Monteforte, and
Sessa (2009) use a similar approach.

15This is the same method used in Upper and Worms (2003), and more details about the construction of
real long term interest rates can be found therein.
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B.2 Particle Filter Algorithm

Let vT denote {v̂t}
T
t=1, which evolves according to equations (19) and (20) in the text. To

evaluate the likelihood function L(θ|vT ), we use a sequential Monte Carlo filter (specifically,

the sequential importance resampling filter of Kitagawa (1996)). The algorithm is as follows:

• Step 1. Initialize the state variable x0 by generating 40,000 values from the uncondi-

tional distribution p(x0|θ). Denote these particles by xi0 for i = 1, ..., 40, 000. Draw

40, 000 values from standard normal distributions for each of the structural shocks (ǫA,

ǫg, ǫt, ǫz) and 40,000 values from a standard uniform distribution for fiscal limit prob-

abilities. Denote the vector of these particles by ui. By induction, in period t these

are particles ut|t−1,i.

• Step 2. Construct xt|t−1,i using equation (19) in the text. Assign to each draw (ut|t−1,i,

xt|t−1,i) a weight defined as:

wi
t =

1

(2π)5/2|Σ|1/2
exp

[

−
1

2

(
yt − Axt|t−1,i

)′
Σ
(
yt − Axt|t−1,i

)
]

(B.1)

• Step 3. Normalize the weights:

w̃i
t =

wi
t

∑N
i=1w

i
t

Update the values of xt|t−1,i by sampling with replacement 40,000 values of xt|t−1,i using

the relative weights w̃i
t and the residual resampling algorithm.

• Repeat steps 2-3 for t ≤ T .

The log-likelihood function is approximated by

L(θ|vT ) ≃
T∑

t=1

ln

(

1

40, 000

40,000
∑

i=1

wi
t

)

(B.2)

B.3 MCMC Algorithm

The random walk Metropolis-Hastings algorithm used for estimation works as follows:

• Step 1. Compute the posterior log-likelihood for 500 draws from the priors. Call the

draw with the highest posterior log-likelihood value θ∗.

• Step 2. Starting from θ∗, generate a MCMC chain using the following random-walk

proposal density

θpropj+1 = θpropj + cN (0,Λ), j = 1, ..., 100, 000
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where Λ is the covariance matrix of 500 draws from the priors and c > 0 is a tuning

parameter set to determine the acceptance ratio.

• Step 3. Compute the acceptance ratio ϕ = min
{

p(θpropj+1
|vT )

p(θj |vT )
, 1
}

. Given a draw u from

the standard uniform distribution. Then θj+1 = θpropj+1 if u < ϕ and θj+1 = θj otherwise.

Repeat for j = 1, ..., 10, 000.

• Step 4. Update the random walk proposal density in the following way. Update Λ to

be the covariance matrix from the previous draws {θj}
10,000
1 . Update θ∗ to be the mean

of previous draws {θj}
10,000
1 . Starting from the new θ∗, proceed through steps 2 and 3

for 38,000 draws from the new MCMC chain.

We burn the first 15,000 draws from the final MCMC chain and thin every 25 draws.

C Log-Linearized Model Equations

The log-linearized system of equations for the variant of the model without default are:

ĉt −
1

1 + h
Etĉt+1 +

1− h

1 + h
R̂t =

h

1 + h
ĉt−1

1

1− h
ĉt +

n

1− n
n̂t − Ât +

τ

1− τ
τ̂t =

h

1− h
ĉt−1

c

y
ĉt +

g

y
ĝt = Ât + n̂t

b

y
b̂t −

g

y
ĝt −

z

y
ẑt + τ(τ̂t + Ât + n̂t) = R ∗

b

y
(R̂t−1 + b̂t−1)

ĝt = (1− ρg)ĝt−1 − γg,L(1− ρg)bt−1 + σg,pǫ
g
t , ǫgt ∼ N(0, 1)

τ̂t = (1− ρτ )τ̂t−1 + γτ,L(1− ρτ )bt−1 + στ,pǫ
τ
t , ǫτt ∼ N(0, 1)

ẑt = (1− ρz)ẑt−1 + σz,pǫ
z
t , ǫzt ∼ N(0, 1)

Ât = (1− ρa)Ât−1 + σa,pǫ
a
t , ǫzt ∼ N(0, 1)
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Figure 1: Fitted values for various estimations. Black, solid lines: data. Blue, dashed lines:
Nonlinear model with δA = 0.3788. Red, dotted-dashed lines: Nonlinear model with δA =
0.0947. Green, dotted lines: Linear model.
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Figure 2: Fitted values for various estimations. Black, solid lines: data. Blue, dashed lines:
Nonlinear model with δA = 0.3788. Red, dotted-dashed lines: Nonlinear model with δA =
0.0947. Green, dotted lines: Linear model.
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Table 1: Calibration and priors. For priors, the distribution and mean are denoted, as well
as the standard deviation in parenthesis.

Calibration

Italy Greece
β 0.99 0.99
n̄ 0.75 0.75
ḡ/ȳ 0.1966 0.1795
b̄/ȳ 1.19*4 1.14*4
τ 0.4148 0.3387

Priors

Function Italy Greece
h Beta 0.5 0.5

(0.2) (0.2)

b̃∗ Uniform 1.6 1.6
(0.013) (0.013)

γτ,L Gamma 1.1 1.1
(0.3) (0.3)

γg,L Gamma 0.4 1.1
(0.2) (0.3)

ρa Beta 0.8 0.8
(0.1) (0.1)

ρg Beta 0.8 0.8
(0.1) (0.1)

ρτ Beta 0.8 0.8
(0.1) (0.1)

ρz Beta 0.3 0.8
(0.1) (0.1)

σa,p Gamma 0.005 0.005
(0.003) (0.003)

σg,p Gamma 0.005 0.005
(0.003) (0.003)

στ,p Gamma 0.005 0.005
(0.003) (0.003)

σz,p Gamma 0.2 0.2
(0.1) (0.1)
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Table 2: Italy Estimates.

Prior Posterior: δA = 0.3788 Posterior: δA = 0.2 Posterior: δA = 0.0947 Posterior: Linear

mean [5, 95] median [5, 95] median [5, 95] median [5, 95] median [5, 95]

h 0.5 [0.17, 0.83] 0.14 [0.06, 0.21] 0.11 [0.03, 0.24] 0.11 [0.02, 0.26] 0.05 [0.01, 0.11]

b̃∗ 1.6 [1.42, 1.78] 1.52 [1.46, 1.60] 1.47 [1.44, 1.51] 1.60 [1.44, 1.78] - -
γτ,L 1.1 [0.64, 1.67] 0.53 [0.45, 0.66] 0.56 [0.45, 0.68] 0.56 [0.28, 0.70] 0.45 [0.33, 0.56]
γg,L 0.4 [0.12, 0.82] 0.30 [0.16, 0.56] 0.59 [0.17, 0.82] 0.54 [0.25, 0.80] 0.28 [0.09, 0.60]
ρa 0.8 [0.61, 0.94] 0.96 [0.95, 0.97] 0.96 [0.95, 0.97] 0.96 [0.94, 0.98] 0.96 [0.95, 0.97]
ρg 0.8 [0.61, 0.94] 0.84 [0.72, 0.87] 0.86 [0.80, 0.90] 0.86 [0.77, 0.91] 0.87 [0.80, 0.94]
ρz 0.3 [0.15, 0.48] 0.49 [0.38, 0.67] 0.46 [0.35, 0.63] 0.50 [0.32, 0.66] 0.46 [0.29, 0.63]
ρτ 0.8 [0.61, 0.94] 0.84 [0.81, 0.85] 0.84 [0.82, 0.87] 0.84 [0.81, 0.88] 0.85 [0.83, 0.87]
σa,p 0.005 [0.001, 0.01] 0.010 [0.009, 0.012] 0.01 [0.009, 0.011] 0.01 [0.009, 0.012] 0.01 [0.008, 0.012]
σg,p 0.005 [0.001, 0.01] 0.006 [0.005, 0.007] 0.006 [0.005, 0.007] 0.006 [0.005, 0.008] 0.005 [0.004, 0.007]
σz,p 0.2 [0.07, 0.39] 0.13 [0.10, 0.17] 0.14 [0.11, 0.19] 0.13 [0.10, 0.18] 0.13 [0.10, 0.18]
στ,p 0.005 [0.001, 0.01] 0.007 [0.006, 0.008] 0.008 [0.006, 0.008] 0.008 [0.006, 0.009] 0.007 [0.006, 0.009]

Table 3: Greece Estimates.

Prior Posterior: δA = 0.3788 Posterior: δA = 0.2 Posterior: δA = 0.0947 Posterior: Linear

mean [5, 95] median [5, 95] median [5, 95] median [5, 95] median [5, 95]

h 0.5 [0.17, 0.83] 0.13 [0.06, 0.25] 0.16 [0.11, 0.24] 0.08 [0.04, 0.18] 0.09 [0.02, 0.22]

b̃∗ 1.6 [1.42, 1.78] 1.67 [1.58, 1.78] 1.69 [1.57, 1.79] 1.45 [1.40, 1.57] - -
γτ,L 1.1 [0.64, 1.67] 0.82 [0.54, 1.09] 0.76 [0.46, 1.00] 1.14 [0.94, 1.48] 0.62 [0.41, 0.98]
γg,L 1.1 [0.64, 1.67] 1.73 [0.87, 2.97] 1.53 [1.22, 1.85] 1.51 [1.08, 1.78] 1.42 [0.85, 2.17]
ρa 0.8 [0.61, 0.94] 0.91 [0.89, 0.92] 0.91 [0.89, 0.93] 0.90 [0.88, 0.91] 0.91 [0.89, 0.93]
ρg 0.8 [0.61, 0.94] 0.88 [0.82, 0.96] 0.87 [0.83, 0.92] 0.87 [0.85, 0.96] 0.90 [0.81, 0.96]
ρz 0.8 [0.61, 0.94] 0.74 [0.62, 0.86] 0.77 [0.65, 0.87] 0.85 [0.76, 0.92] 0.81 [0.66, 0.92]
ρτ 0.8 [0.61, 0.94] 0.81 [0.75, 0.85] 0.80 [0.73, 0.84] 0.83 [0.81, 0.88] 0.77 [0.70, 0.82]
σa,p 0.005 [0.001, 0.01] 0.010 [0.009, 0.013] 0.012 [0.011, 0.015] 0.01 [0.009, 0.012] 0.012 [0.01, 0.014]
σg,p 0.005 [0.001, 0.01] 0.021 [0.017, 0.027] 0.023 [0.020, 0.026] 0.02 [0.019, 0.025] 0.023 [0.019, 0.028]
σz,p 0.2 [0.07, 0.39] 0.29 [0.24, 0.36] 0.28 [0.22, 0.36] 0.30 [0.23, 0.36] 0.26 [0.20, 0.35]
στ,p 0.005 [0.001, 0.01] 0.010 [0.008, 0.013] 0.010 [0.009, 0.012] 0.01 [0.008, 0.013] 0.01 [0.008, 0.013]

Table 4: Smoothed estimates of measurement error.
Italy

bt gt Tt yt Rt

Nonlinear δA = 0.0947
mean absolute value 0.0020 0.0015 0.0050 0.0058 0.0001
relative standard deviation 0.128 0.093 0.195 0.296 0.108

Nonlinear δA = 0.3788
mean absolute value 0.0021 0.0012 0.0040 0.0059 0.0001
relative standard deviation 0.128 0.093 0.195 0.296 0.108

Linear
mean absolute value 0.0021 0.0012 0.0052 0.0051 0.0001
relative standard deviation 0.089 0.059 0.295 0.375 0.013

Greece

bt gt Tt yt Rt

Nonlinear δA = 0.0947
mean absolute value 0.0022 0.0057 0.0032 0.0071 0.0003
relative standard deviation 0.089 0.137 0.105 0.227 0.114

Nonlinear δA = 0.3788
mean absolute value 0.0027 0.0048 0.0035 0.0069 0.0003
relative standard deviation 0.116 0.115 0.113 0.219 0.135

Linear
mean absolute value 0.0023 0.0044 0.0034 0.0060 0.0003
relative standard deviation 0.162 0.310 0.208 0.436 0.020
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Table 5: Model-implied b̃max and estimated b̃∗

Italy δA = 0.3788 Italy δA = 0.0947 Greece δA = 0.3788 Greece δA = 0.0947
median [5, 95] median [5, 95] median [5, 95] median [5, 95]

b̃max 2.45 [2.38, 2.49] 2.47 [2.24, 2.51] 3.32 [3.15, 3.36] 3.26 [3.07,3.35]

b̃∗ 1.52 [1.46, 1.6] 1.6 [1.44, 1.78] 1.67 [1.58, 1.78] 1.45 [1.40,1.57]
βpol 0.62 [0.59, 0.67] 0.65 [0.58, 0.73] 0.5 [0.48, 0.54] 0.45 [0.42, 0.48]
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