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1. INTRODUCTION 
Immigration and border security undoubtedly have been major issues confronting all levels of government and 
society. These issues constitute an extremely complex system with many dimensions, such as law enforcement, 
public policy, socio-economics, etc. They came even more to the forefront after the September 11, 2001, terrorist 
attacks and the resulting creation of the Department of Homeland Security (DHS). For example, “securing and 
managing our borders” is one of the DHS’s missions (DHS 2010a).  

There is a consensus that the current immigration and border security policies need an overhaul, but the political 
climate has thus far prevented a comprehensive reform. Nevertheless, DHS’s Office of Program Analysis and 
Evaluation (PA&E) sponsored a study to investigate analytic tools that can analyze the impacts associated with 
changes to immigration and border security policies. These impacts can potentially include factors such as resource 
allocation, performance measurement, stocks and flows of immigration, macroeconomic outcomes, etc.  

As immigration (both legal and illegal) and border security as a whole is an exceedingly complex, multi-faceted 
problem, a decision was made early on to first focus on illegal immigration between ports of entry (POEs). While 
many studies exist that focus on some particular aspects (e.g., the flow of illegal aliens between POEs, effectiveness 
of border enforcement, migration decisions, etc.), we identified only two existing comprehensive models that 
address many related issues in an integrated manner. These two models are the Wein model (Wein et al. 2009; Liu 
and Wein 2008) and the Secure Border Initiative (SBI) model (MITRE 2008).  

The Wein model consists of four submodels that deal with various aspects of the illegal immigration system between 
ports of entry (POEs), including (1) a multinomial logit submodel (Ben-Akiva and Lerman 1985) describing the 
choice made by illegal aliens; (2) a border apprehension submodel accounting for the interaction among Border 
Patrol (BP) agents, surveillance technology, and illegal aliens along the border between POEs; (3) a removal 
submodel accounting for the probability of removing an apprehended alien subject to available detention bed space; 
and (4) an illegal wage model including worksite enforcement and the supply of and demand for unskilled labor. All 
these submodels are further interconnected via feedback mechanisms so that a change in one submodel will 
propagate throughout the system. These feedback mechanisms require the solving of a number of nonlinear equation 
systems. 

The SBI model is more comprehensive, as it attempts to address both illegal and legal immigration, and both at 
POEs and between POEs. Even though the model is not as mathematically complex as the Wein model (i.e., not 
solving any nonlinear equations), it is rather tedious as it tries to simulate, using the system dynamics approach (see 
Forrester 1994), the stocks and flows of about two dozen “states” in the overall immigration system. A stock 
represents an accumulation of population at a state, while a flow transitions people in or out of the state. An inflow 
increases a stock, and an outflow depletes a stock. As a result, the SBI model requires numerous engineering 
assumptions about the stocks and even more assumptions about the flows. These assumptions are rather ad hoc and 
do not take migrants’ behaviors into consideration.  

As a result, the Wein model appears to provide the best analytic framework for the illegal immigration system, as it 
does have appealing technical attributes and is built upon well-tested operations research methodologies (e.g., 
multinomial logit model, game theory, queueing theory, etc.). Chang et al. (2011) describe in detail how we re-
implemented the Wein model in a much more computationally efficient software platform. We updated the data 
used in the model so that it better reflects the current landscape of border security. For example, the catch-and-
release practice for other-than-Mexican (OTM) aliens has ended (DHS 2006), the number of detention bed spaces 
has increased (ICE 2008), the number of BP agents has increased (DHS 2010b), and the number of apprehensions 
between POEs has decreased (CBP 2011). We also updated some of the formulations to increase the model’s 
robustness. 
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This paper primarily highlights the results of the model. The reader should refer to Wein et al. (2009) and Chang et 
al. (2011) for other details concerning the model. Section 2 gives a brief overview of the Wein model. Section 3 
describes the model results. Conclusions appear in section 4. 
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2. INTRODUCTION TO THE WEIN MODEL 
Wein et al. (2009) and Liu and Wein (2008) describe the model’s formulations and assumptions in detail. This 
section provides only a high-level description. Additional technical details on the model’s solution procedure, 
software implementation, updates, and instructions can be found in Chang et al. (2011). 

The Wein model is a sophisticated mathematical model consisting of four interconnected submodels that deal with 
various aspects of illegal immigration. These four submodels are: 

• a discrete choice border crossing submodel based on the utility (i.e., economic gains) of an illegal 
migrant deciding whether and where to cross; 

• a border apprehension submodel similar to a Stackelberg game—i.e., migrants responding to U.S. 
Border Patrol (BP) agents’ moves—and a single-server loss queueing system; 

• a removal submodel based on a single pooled queueing system for the allocation of Enforcement 
and Removal Operations (ERO) bed spaces according to detention priority, with an ultimate goal 
that sufficient beds are available to detain and eventually remove all apprehended illegal 
migrants; and 

• an illegal wage submodel based on economic equilibrium theory that accounts for labor supply 
and demand and worksite enforcement. 

Figure 1 shows the schematic of the Wein model, with the four shaded rectangles representing the main output of 
each submodel. The ovals show the key decision variables of each submodel. These key decision variables were 
varied in this study to simulate different policy options. As described in Wein et al. (2009) and Chang et al. (2011), 
many other parameters are also required by each submodel. The double blue arrows indicate feedback between 
submodels. For example, the probability of apprehension affects the crossing rate, which in turn affects the 
probability of apprehension. The figure shows that most of the relationships among submodels entail feedback 
mechanisms. This property makes the model more realistic, but requires significantly more computational resources 

The four submodels are briefly described in the following sections. 
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Figure 1. Schematic of the Wein model. 
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2.1. Discrete Choice Border Crossing Submodel 
The Wein model uses a multinomial logit model (see Ben-Akiva and Lerman 1985) to describe the discrete choice 
made by a migrant. The likelihood that a potential migrant decides to illegally cross the southwestern border into the 
United States is described by the following expression for the crossing probability: 

21
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where u1 and u2 are the utilities (i.e., economic gains) for crossing and not crossing the border, respectively, and θ is 
a scale variable that measures population heterogeneity (i.e., not everyone will make the same choice given the same 
utilities). The crossing utility includes the illegal wage gain if the entry is successful minus the cost of traveling to 
the border (including hiring a smuggler, or a “coyote”) and the cost of detention if the entry is unsuccessful. The 
not-crossing utility simply includes the wage gain in home countries. The utility formulations for Mexican and 
other-than-Mexican (OTM) migrants are necessarily different due to the voluntary return program for apprehended 
Mexican migrants (see Wein et al. 2009). 

The scale variable θ measuring population heterogeneity can be illustrated by considering two limiting cases. When 
θ approaches zero, the discrete choice becomes purely random, i.e., the probability is always one half, like a coin 
toss, regardless of utilities. When θ approaches infinity, the discrete choice becomes purely deterministic, i.e., the 
crossing probability is always one, even if the crossing utility is just marginally greater than the not-crossing utility. 
This scale variable is typically estimated by surveys or by numerical calculations based on certain integral 
constraints. The Wein model uses the latter approach 

In addition to the decision of whether to cross, the same discrete choice model is also used in (1) the decision of 
where to cross (i.e., a migrant arriving at location x may choose to cross at location y due to the government’s 
border enforcement posture) and (2) the decision of whether an illegal worker is willing to work for a firm targeted 
for worksite inspection at a lower wage (see section 2.4). The utility formulations for these cases are structurally 
different, but the Wein model assumes that the same scale variable applies to all these choices. Ideally, each choice 
should probably have its own scale variable. However, this would significantly increase the model’s complexity. 

This submodel’s primary outputs are the crossing rates of Mexican and OTM migrants at each of the discrete 
locations along the border (see section 2.2). As shown in figure 1, the crossing rates further impact the probability of 
apprehension, the equilibrium illegal wage, and the probability of removal. Similarly, through feedback mechanisms 
allowed by the model, these three factors also impact the crossing rates. 

2.2. Between-POEs Border Apprehension Submodel 
The border apprehension submodel first discretizes the ~2,000 miles of the southwestern border into 60 line 
segments. The interaction among illegal crossers, BP agents, and surveillance technology between POEs is 
accounted for at each of these segments similar to a sequential Stackelberg (i.e., leader-follower) game (see Osborne 
and Rubinstein 1994). The government chooses the number of BP agents, their locations, and portions and locations 
of the border with surveillance technology. The illegal crossers in turn arrive at the border at a rate proportional to 
BP agents (as the government is likely to deploy BP agents based on the arrival of illegal crossers), and determine 
where to cross. This decision process is simulated through the discrete choice model mentioned above. There are 
busy and quiet areas along the border in terms of where crossers arrive and where BP agents are deployed. To 
account for this spatial heterogeneity in the simplest way, Wein et al. (2009) assume that both crosser arrivals and 
BP agents follow sinusoidal functions with the same frequency. 

The interaction between illegal crossers and BP agents is further described by a single-server loss queueing system. 
In this case, a BP agent is patrolling back and forth along the border segment for which he or she is responsible. At 
the same time, an illegal crosser may arrive randomly at any location of that segment according to a Poisson process 
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(i.e., their inter-arrival times follow an exponential distribution; see Banks et al. 2001). The distance between the 
agent and the crosser can then be formally described by a probability density function. It is further assumed that a 
BP agent has a certain radius of influence, depending on whether surveillance technology is present. A BP agent 
aided by technology is assumed to have a larger radius of influence than an agent who is not. Additionally, when an 
agent is busy with an apprehension, he or she cannot make another apprehension. In other words, in queueing 
theory’s terminology, each newly arriving customer (i.e., crosser) immediately goes into service (i.e., being 
apprehended) if a server (i.e., BP agent) is available, and that customer is lost (i.e., successful entrance) if the server 
is busy (i.e., being occupied with an ongoing apprehension). 

The primary outputs of this submodel are the probability of apprehension (depending solely on a BP agent’s ability 
to apprehend) at each of the 60 border segments and the aggregate probabilities of apprehension of unauthorized 
Mexican and OTM aliens for the entire border. Mathematically, the aggregate probabilities of apprehension of 
Mexican and OTM aliens are simply weighted averages of the BP apprehension probability according to the 
crossing rates given by the discrete choice submodel.1 As result, the aggregate probabilities of apprehension of 
unauthorized Mexican and OTM aliens might be slightly different because their respective crossing rates are 
different. 

2.3. Removal Submodel 
The removal submodel is based on a single pooled queueing system for the allocation of Enforcement and Removal 
Operations (ERO, formerly called Detention and Removal Operations or DRO) bed spaces to apprehended illegal 
migrants based on established detention priority. The ultimate goal is to have sufficient bed space so that all 
apprehended aliens will be detained and removed. The reason why it is a “pooled” queueing system is because the 
model assumes that all ERO detention facilities share their resources. The submodel assumes that apprehended 
illegal aliens arriving at ERO detention facilities are in two classes: mandatory and nonmandatory.2 A DHS 
memorandum (Hutchinson 2004) articulates the detention policy by defining the types of aliens for whom 
mandatory detention is required, and a prioritized list for the remaining nonmandatory detainees. In the removal 
submodel, priority is given to mandatory detainees. Nonmandatory detainees can be either blocked from entering a 
detention facility if bed space is unavailable and if they are not already in the system, or preempted (released) when 
they are already in a full detention facility and bed space is needed for a mandatory detainee. As a result, when bed 
space is insufficient, it is possible that nonmandatory detainees will be released and subsequently not removed from 
the United States. 

The submodel assumes a base case where all unauthorized OTM migrants apprehended at the border are 
nonmandatory, as most of the criminal aliens entering ERO detention facilities come directly from U.S. prisons and 
not from the border. The base case also assumes that all unauthorized Mexican migrants apprehended at the border 
are directly returned to Mexico and not detained. As described later, we devised a simple approach where this 
assumption concerning Mexican migrants was relaxed. 

The primary output of this submodel is the probability that a detained alien will be successfully removed. The 
probability of removal further impacts the utility calculation required by the discrete choice submodel, as illustrated 
in the feedback mechanism shown in figure 1. Furthermore, the probability of removal clearly depends on the 
detainee arrival rates, which in turn depend on the probability of apprehension described in the previous section. It is 
important to point out that this removal submodel plays a more prominent role if bed space is insufficient, leading to 

                                                 
1 For example, suppose the BP apprehension probability and the Mexican alien crossing rate at each border segment, 

y, are Pa(y) and λc1(y), respectively, then the aggregate probability of apprehension of Mexican aliens is Pa1= ∫ 
Pa(y)•λc1(y)dy/∫ λc1(y)dy. 

2 Detainees can also be classified as criminal and noncriminal.  All criminal aliens by definition are mandatory, but 
some noncriminal aliens are also mandatory. 
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a probability of removal less than one. However, once bed space becomes sufficient and the probability of removal 
is close to one, the removal submodel becomes less important (see Chang et al. 2011). 

2.4. Illegal Wage Submodel 
The illegal wage submodel consists of two interconnected components: an economic equilibrium model balancing 
the supply of and demand for unskilled labor, including both legal and illegal workers; and a worksite enforcement 
model accounting for the impacts (i.e., reduced wages) of enforcement on the labor market. 

The economic equilibrium model uses a Cobb-Douglass production function to describe the demand for unskilled 
labor (Cobb-Clark et al. 1995), where labor demand decreases as legal wage increases. The model considers four 
sources of unskilled labor:  

• Legal U.S. workers, as described by a neo-classical labor supply function (Deaton and 
Muellbauer 1980), where labor supply increases as legal wage increases. 

• Illegal aliens in the United States who have jobs but with less pay, assuming that employers pass 
along penalties resulting from worksite enforcement in the form of depressed wages. Behaviors of 
illegal aliens in the U.S. labor market are assumed to follow these rules: (1) illegal aliens decide 
whether to keep jobs based on the discrete choice model described above; (2) it is assumed that 
worksite enforcement follows a hybrid targeted-random strategy, where the wage at targeted 
firms is naturally lower than that at untargeted firms; (3) illegal aliens who quit their jobs from 
untargeted firms will go home as the wage for working for targeted firms will be even lower; and 
(4) those who quit jobs from targeted firms will enter a matching process of idle workers and 
vacated jobs at untargeted firms, where those illegal workers who are not matched will return to 
their home countries.  

• Illegal workers in the United States who become legalized and are paid regular wages (e.g., via 
some form of immigration reform). 

• New guest workers from other countries (e.g., via a temporary worker program). 

The worksite enforcement model assumes that the number of illegal workers per firm follows an exponential 
distribution in that many illegal workers are concentrated in a small number of firms. Worksite inspections can be 
both targeted (for certain selected industries) and random, and employers pass expected penalties onto illegal 
workers in the form of lower wages. 

The primary output of this submodel is the equilibrium wage of an illegal worker. This wage rate is further used in 
the discrete choice submodel by contributing to the expected utility gained from entering the United States, as 
depicted in the feedback mechanism shown in figure 1. 
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3. MODEL RESULTS 
This section discusses the model results. As described in Wein et al. (2009) and Chang et al. (2011), the Wein model 
is complex, with many input and output variables. Hence, the model results can be studied in a plethora of ways. We 
will first present more straightforward results, followed by those based on increasingly innovative ways to apply the 
model. It is important to point out that the model’s numerical outputs are primarily intended to capture qualitative 
impacts of various government decisions, hence over-interpretation of numerical accuracy should be avoided. 

3.1. Base Case Values 
It is necessary to first provide some supporting information to facilitate subsequent discussions. As described in 
Chang et al. (2011), the Wein model’s solution procedure first assumes the base case values of various parameters, 
including the key decision variables. Once the rest of the model parameters are estimated with this information, we 
then conduct “what-if” analysis to see the dependence of model results on the key decision variables while keeping 
the estimated model parameters fixed.  

Table 1 lists the values of the key decision variables for the base case, together with the corresponding costs of those 
decision variables that are related to enforcement. We retained the same base case values as the original Wein et al. 
(2009) model for key decision variables a, sb, rw, fw, ∆l, and Ng; and used updated values for key decision variables 
nb, s, and mw. 

Table 1. Key decision variables and their base case values and the corresponding costs for those variables 
related to enforcement. 

Symbol Description Value (Reference) Unit Enforcement 
Cost 

a Number of apprehensions until 
detention of Mexicans 

∞ (Espenshade 
1995; Turner 2004) 

N/A 

nb 
Number of BP agents deployed at 
the border on a 24/7 basis3 2,947 (DHS 2010b) $1,173,000/agent-

year 

sb 
Length of border covered by 
surveillance technology 

322 miles (~1/6 of 
the border; Wein et 
al. 2009) 

$30,000/mile-year 

s Number of ERO beds 32,000 (ICE 2008) $32,600/bed-year 

rw 
Fraction of worksite inspections 
that are random 0.4 (Bosher 1987) N/A 

mw Number of worksite inspectors 400 (informal 
FY10 ICE data) 

$243,900/inspector-
year 

fw Fine per illegal worker-hour $5 (Wein et al. N/A 

                                                 
3 Based on DHS (2010b), the number of BP agents is around 20,500. A “24/7” BP agent mentioned here refers to an 

agent deployed at the border at all hours to conduct line watch. Due to such factors as work rules, non-line-watch 
activities, personal leave, etc., on average, a 24/7 agent deployed at the border roughly equals seven BP agents. 
The much higher cost ($1,173,000/agent-year) for each 24/7 agent also reflects this. 
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2009) 

∆l 

Number of illegal workers in the 
United States who become 
legalized 

0 N/A 

Ng 
Number of new guest workers 
from outside the United States 0 N/A 

The table suggests that the base case considered by the Wein model has an annual budget around $4.7B. These costs 
represent our best-effort estimates, and are probably subject to additional adjustments. Moreover, we considered 
only the costs of enforcement-related decision variables (i.e., nb, sb, s, and mw), but not those policy-related decision 
variables (i.e., a, rw, fw, ∆l, and Ng).  

3.2. Behavior of Basic Model Solutions 
The following series of figures show the behavior of model solutions in terms of:  

• the Mexican alien arrival and crossing rates at location y (λb1 and λc1, respectively);  

• the OTM alien arrival and crossing rates at location y (λb2 and λc2, respectively); and  

• the BP apprehension probability at location y (Pa, which is independent of the crosser being a 
Mexican or an OTM); 

where model assumptions are sequentially changed. Figure 2 shows the model solutions for the base case, where one 
sixth of the border is covered by surveillance technology, whose deployed locations coincide with the peak alien 
arrival locations. Figure 3 shows the base case when the entire border is covered by surveillance technology. Figure 
4 further assumes a uniform distribution of BP agents instead of the original sinusoidal distribution. Finally, figure 5 
assumes more effective technology with a fivefold increase in its radius of influence. 

Figure 2 for the base case shows Mexican aliens arriving at the border according to a sinusoidal distribution that is 
consistent with the distributions of BP agents and surveillance technology. As these unauthorized crossers try to 
avoid agents, the discrete choice border crossing submodel leads to a crossing distribution that is out of phase with 
the arrival distribution, e.g., crossings are highest where arrivals (and thus agents and technology) are lowest. The 
aggregate probabilities of apprehension of Mexicans and OTMs (i.e., the weighted averages of the BP apprehension 
probability according to the Mexican and OTM crossing rates) are 0.26 and 0.38, respectively. 

Figure 3 shows that the phase shift between arrivals and crossings still persists even when the entire border is 
covered with technology. This is because the BP agents’ distribution is still sinusoidal and aliens still try to exploit 
the areas with fewer agents. Nevertheless, the BP apprehension probability is now higher as a result of more 
technology. The aggregate probabilities of apprehension of Mexicans and OTMs are now 0.50 and 0.60, 
respectively. 

The phase shift between alien arrivals and crossings disappears in figure 4, when BP agents are now assumed to be 
uniformly distributed. At the same time, the BP apprehension probability is almost uniform along the border and at a 
higher value. The aggregate probabilities of apprehension of Mexicans and OTMs are now both 0.64. 

Figure 5 is similar to figure 4, except that surveillance technology is assumed to be five times more effective, i.e., 
having a radius of influence that is five times larger. In this case, the BP apprehension probability is even higher. 
The aggregate probabilities of apprehension of Mexicans and OTMs are now both 0.82. 



9 
 

0 10 20 30 40 50 60
Grid Point

0

500

1000

1500

2000

2500

A
rr

iv
al

/C
ro

ss
in

g
 R

at
e 

(#
/y

ea
r)

λc1, α2=2.025
λb1, α2=2.025

itech=1, αb=0.667, Mexicans

0 10 20 30 40 50 60
Grid Point

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f 
A
p
p
re

h
en

si
on

Pa, α2=2.025

itech=1, αb=0.667

0 10 20 30 40 50 60
Grid Point

0

50

100

150

200

A
rr

iv
al

/C
ro

ss
in

g
 R

at
e 

(#
/y

ea
r)

λc1, α2=2.025
λb1, α2=2.025

itech=1, αb=0.667, OTM

 

Figure 2. (Upper left) Mexican alien arrival and crossing rates (λb1 and λc1, respectively), (upper right) 
OTM alien arrival and crossing rates (λb2 and λc2, respectively), and (bottom) the BP apprehension 
probability given by the Wein model for the base case, assuming one sixth of the border (itech=1) is 
covered by surveillance technology (aligned with the peak locations of alien arrivals) and BP agents are 
deployed according to a sinusoidal distribution (with a relative amplitude αb of 0.667, see Chang et al. 
(2011)). Variable α2 is the exponential apprehension parameter of technology; alternatively, its reciprocal 
gives the radius of influence of technology. 
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Figure 3. (Upper left) Mexican alien arrival and crossing rates (λb1 and λc1, respectively), (upper right) 
OTM alien arrival and crossing rates (λb2 and λc2, respectively), and (bottom) the BP apprehension 
probability given by the Wein model for the base case, assuming the entire border (itech=6) is covered by 
surveillance technology and BP agents are deployed according to a sinusoidal distribution (with a relative 
amplitude αb of 0.667, see Chang et al. (2011)). Variable α2 is the exponential apprehension parameter of 
technology; alternatively, its reciprocal gives the radius of influence of technology. 
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Figure 4. (Upper left) Mexican alien arrival and crossing rates (λb1 and λc1, respectively), (upper right) 
OTM alien arrival and crossing rates (λb2 and λc2, respectively), and (bottom) the BP apprehension 
probability given by the Wein model for the base case, assuming the entire border (itech=6) is covered by 
surveillance technology and BP agents are uniformly deployed (with a zero relative sinusoidal amplitude 
αb). Variable α2 is the exponential apprehension parameter of technology; alternatively, its reciprocal 
gives the radius of influence of technology. 
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Figure 5. (Upper left) Mexican alien arrival and crossing rates (λb1 and λc1, respectively), (upper right) 
OTM alien arrival and crossing rates (λb2 and λc2, respectively), and (bottom) the BP apprehension 
probability given by the Wein model for the base case, assuming the entire border (itech=6) is covered by 
surveillance technology with a five-fold increase in its radius of influence and BP agents are uniformly 
deployed (with a zero relative sinusoidal amplitude αb). Variable α2 is the exponential apprehension 
parameter of technology; alternatively, its reciprocal gives the radius of influence of technology. The 
value of α2 is 1/5 of that used in preceding figures, i.e., a five times larger radius of influence. 

3.3. Relationships of Equilibrium Illegal Wage to Key Decision Variables 
The illegal wage submodel (see section 2.4 and Wein et al. 2009) accounts for the supply of and demand for 
unskilled labor and the impact of worksite enforcement on wages. This submodel gives the equilibrium illegal wage 
(wu) as a function of five decision variables: 

• the number of worksite inspectors (mw); 

• the fraction of worksite inspections that are random (rw); 
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• the fine per illegal worker-hour (fw); 

• the number of illegal workers who become legalized inside the United States (∆l); and 

• the number of new guest workers from outside the United States (Ng). 

The equilibrium illegal wage in turn influences the discrete choice submodel. In other words, the influence of the 
five key worksite enforcement decision variables (mw, rw, fw, ∆l, and Ng) is absorbed into a single variable, wu. 
Hence, the Wein model implicitly assumes that any combinations of mw, rw, fw, ∆l, and Ng leading to the same 
resulting wu will have the same impact on the model, with the only exception that different budgets might be 
involved because of different values of mw (see table 1). This suggests that the five policy instruments (i.e., mw, rw, 
fw, ∆l, and Ng) all have the same goal of making working in the United States less attractive. As a result, policy 
makers should closely monitor the equilibrium illegal wage, for it summarizes the effectiveness of these instruments. 
More importantly, they should be seen as alternative means to the same end, rather than independent policies that 
should each be ramped up to the maximum value possible. 

Figure 6 through figure 8 summarize the dependence of wu on mw, rw, fw, ∆l, and Ng. Figure 6 suggests that mw has 
the biggest impact on wu. Stronger dependence of wu on rw and fw exists only for higher mw. Figure 7 focuses on a 
subset of the data used to create Figure 6 by inspecting the dependence of wu on rw for two values of mw (400 and 
3,000) combined with two values of fw (5 and 15). (Both Figure 6 and Figure 7 assume ∆l=0 and Ng=0.) The 
stronger dependence of wu on rw and fw for higher mw is again clear in Figure 7. It further shows an interesting 
dependence (also evident in Figure 6 upon a careful examination) of wu on rw. When the fine for hiring illegal 
workers is relatively low (i.e., fw=$5/worker-hour), more random worksite inspections lead to a lower wu. However, 
when the fine is relatively high (i.e., fw=$15/worker-hour), more random worksite inspections lead to a higher wu. In 
other words, in a low-fine regime, more random worksite inspections are more effective in reducing the illegal 
wage, whereas in a high-fine regime, more targeted worksite inspections are more effective. 

A close inspection of figure 8 shows rough equivalence between ∆l and Ng in terms of their impacts on wu. For 
example, the long blue dashed curve (∆l=0 and Ng=4M) almost completely overlaps the solid red curve (∆l=4M and 
Ng=0). This is intuitive because ∆l and Ng provide undifferentiated unskilled labor. 
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Figure 6. The equilibrium illegal wage (wu, in $K/year) as a function of the number of worksite 
inspectors (mw), the fraction of worksite inspections that are random (rw), and the fine per illegal worker-



14 
 

hour (fw). These charts assume the number of illegal workers who become legalized inside the United 
States (∆l) and the number of new guest workers from outside the United States (Ng) are at their base case 
values of zero.  
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Figure 7. The equilibrium illegal wage (wu, in $K/year) as a function of the fraction of worksite 
inspections that are random (rw) for different combinations of the number of worksite inspectors (mw; 400 
or 3,000) and the fine per illegal worker-hour (fw; 5 or 15). The figure assumes the number of illegal 
workers who become legalized inside the United States (∆l) and the number of new guest workers from 
outside the United States (Ng) are at their base case values of zero. 
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Figure 8. The equilibrium illegal wage (wu, in $K/year) as a function of the number of worksite 
inspectors (mw), the fine per illegal worker-hour (fw), the number of illegal workers who become legalized 
inside the United States (∆l), and the number of new guest workers from outside the United States (Ng). 
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These charts assume the fraction of worksite inspections that are random (rw) is at its base case value of 
0.4. 

Figure 9 jointly displays the dependence of the equilibrium illegal wage (wu) on the number of worksite inspectors 
(mw, solid black curve), the number of illegal workers in the United States who become legalized (∆l, dashed blue 
curve), and the number of new guest workers from outside the United States (Ng, dashed red curve), while all the 
remaining worksite enforcement decision variables are held at their base case values. For example, the dashed blue 
curve shows the relationship between ∆l and wu, while mw = 400, fw = $5/worker-hour, rw = 0.4, and Ng = 0. The 
figure has two noteworthy features. First, the curves for Ng and ∆l almost overlap, consistent with an earlier 
observation that these two variables have roughly the same impact on wu. Second, the figure can be used to 
graphically establish equivalence among mw, ∆l, and Ng by drawing a hypothetical vertical line (e.g., the thin green 
line, which corresponds to $14.3K/year for wu). For example, the figure suggests that hiring 3,000 worksite 
inspectors, legalizing 8 million illegal workers, and granting 8 million work visas have roughly the same effect in 
reducing the equilibrium illegal wage from the base case value of $15.4K/year to $14.3K/year. While these results 
should not be interpreted with absolute accuracy, the model does offer a framework to consider the trade-off 
between hiring more worksite inspectors and various immigration policies. 
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Figure 9. Dependence of the equilibrium illegal wage (wu) on the number of worksite inspectors (mw, 
solid black curve), the number of illegal workers in the United States who become legalized (∆l, dashed 
blue curve), and the number of new guest workers from outside the United States (Ng, dashed red curve), 
while all the remaining worksite enforcement decision variables are held at their base case values. The 
hypothetical green line corresponds to wu = $14.3K/year, and illustrates how the equivalence among mw, 
∆l, and Ng can be established. Note different ordinates for mw, ∆l, and Ng. 

To further study the relationships of mw, rw, fw, ∆l, and Ng to wu, we took the logarithm of the model-generated data 
used to create figure 6 through figure 8, and then applied linear regression on the transformed data, similar to a 
standard econometric approach. That is, we considered the following estimating equation: 

ε+β+∆β+β+β+β+α= g5l4w3w2w10u Nlnlnflnrlnmlnwln    (2) 

where β’s are the elasticities of wu with respect to mw, rw, fw, ∆l, and Ng; α0 is the intercept, and ε is the error term. 
The values of α0 and β’s are given in the table below, together with the t-statistics for hypothesis testing. The 
correlation coefficient, R, of the resulting regression equation is 0.597, meaning that R2 is 0.357. It is not surprising 
that β1 (the coefficient for mw) has the largest magnitude of -0.271, which means, as suggested by the illegal wage 
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submodel, a 1 percent increase in mw will lead to roughly 0.3 percent decrease in wu, if all other variables are held 
constant. On the other hand, β4 and β5, the coefficients for ∆l and Ng, are almost ten times smaller in magnitude and 
of equal value. This means that wu is much less sensitive to the two decision variables related to the number of 
illegal workers who become legalized in the United States and the number of new guest workers from outside the 
United States, and that these two variables have similar impacts on wu.  

Table 2. Coefficients of the estimating equation where wu is regressed against mw, rw, fw, ∆l, and Ng after 
a logarithmic transformation. 

Coefficient α0 β1 β2 β3 β4 β5 

Associated with:  mw rw fw ∆l Ng 

Value 4.987 -0.271 0.132 -0.104 -0.034 -0.034 

t-statistics 236.2 27.1 -140.6 -25.6 -9.7 -9.7 

3.4. Influence of Equilibrium Illegal Wage on Model Solutions 
Figure 6 through figure 9 primarily show how the equilibrium illegal wage, wu, varies with respect to the five 
worksite enforcement decision variables, mw, rw, fw, ∆l, and Ng. The influence of these five decision variables is then 
propagated through wu to the discrete choice submodel, and the rest of the Wein model. Hence, the next step is to 
investigate the impacts of wu on other model outputs, such as the aggregate probabilities of apprehension of 
unauthorized Mexican and OTM aliens (Pa1 and Pa2, respectively), the propensities of unauthorized Mexicans and 
OTM aliens to migrate (P11 and P21, respectively), and the probability of removal (Pr). The results are shown in 
figure 10, where it is assumed that the number of 24/7 BP agents and the number of detention beds are at their base 
case values of ~3,000 and 32,000, respectively, and that the entire border is covered with surveillance technology. 
Due to the fact that there is already sufficient bed space, the removal probability, Pr, remains close to one. The 
aggregate probabilities of apprehension along the border, Pa1 and Pa2, only marginally depend on wu. This makes 
sense as the probability of apprehension depends more on border enforcement than conditions inside the United 
States. On the other hand, the propensities, P11 and P21, show greater dependence on wu. It is interesting to note that 
P21 is consistently lower than P11, primarily due to the higher cost for OTMs to cross the border. 
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Figure 10. Dependence of the aggregate probabilities of apprehension of unauthorized Mexican and 
OTM aliens (Pa1 and Pa2, respectively), the propensities of unauthorized Mexicans and OTM aliens to 
migrate (P11 and P21, respectively), and the probability of removal (Pr) on the equilibrium illegal wage 
(wu). 

3.5. Effects of Increased Border Patrol Agents vs. Worksite Inspectors 
Table 1 suggests the base case annual budget considered by the Wein model to be about $4.7B. Changing that 
budget—by increasing the number of worksite inspectors or BP agents—may impact outcomes along the border. 
Figure 11 shows how increasing the budget for either worksite inspectors (mw) or BP agents (nb) affects the 
aggregate probabilities of apprehension of unauthorized Mexican and OTM aliens (Pa1 and Pa2, respectively) and the 
propensities of unauthorized Mexican and OTM aliens to migrate (P11 and P21, respectively). Figure 11 assumes that 
the entire border is covered by surveillance technology, and all curves in the figure start from the annual base case 
budget of $4.7B. The figure shows that more worksite inspectors primarily impact the propensities, whereas more 
BP agents primarily impact the aggregate probabilities of apprehension. For example, P11 has a dramatic decrease 
from 0.93 to 0.39 (the solid blue curve) if the increased money beyond $4.7B is entirely spent on worksite 
inspectors, and Pa1 increases from 0.57 to 0.75 (the dashed back curve) if the increased money beyond $4.7B is 
entirely spent on BP agents. This makes sense, as BP agents mainly impact the border apprehension submodel 
(section 2.2); and worksite inspectors mainly impact the equilibrium illegal wage (section 2.4), which affects the 
utility for crossing, which affects the propensity for crossing. This finding is consistent with the previous section, 
where the equilibrium illegal wage—on which the number of worksite inspectors has the strongest influence—was 
found to have a larger effect on the propensity to migrate. 
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Figure 11. Dependence of the aggregate probabilities of apprehension of unauthorized Mexican and 
OTM aliens (Pa1 and Pa2, respectively) and the propensities of unauthorized Mexican and OTM aliens to 
migrate (P11 and P21, respectively) on the increased budget to either worksite inspectors (mw) or BP agents 
(nb). 

3.6. Deterrence Due to E-Verify 
E-Verify has recently emerged as an important component of potential comprehensive immigration reform 
(Rosenblum 2011). It is an Internet-based DHS program that allows an employer, using the information reported on 
a new hire’s Form I-9, to determine whether the employee is eligible to work in the United States. The program is 
voluntary, with the exception that it is mandatory for federal contractors and subcontractors. The program is 
operated by DHS in partnership with the Social Security Administration. Congress has considered whether the 
program should be made mandatory for all employers. Nevertheless, in 2007 Arizona took the lead to pass a state 
law called the Legal Arizona Worker Act (LAWA) that, among other things, requires all employers to use the E-
Verify work authorization system for all new hires. Lofstrom (2011) finds that LAWA was largely successful in 
meeting its goals of deterring unauthorized immigration to Arizona and preventing employment of unauthorized 
workers. The Wein model may help demonstrate the outcomes of a program that deters employment of illegal 
workers, such as E-Verify. 

Within the model context, we assumed that E-Verify decreased the demand for illegal labor. We represented this 
decrease in demand as a multiplier less than one. Figure 12 shows the change in the equilibrium illegal wage (wu) 
from its base case value of $15.4K/year due to reduced labor demand. In this simple example, we considered a labor 
demand multiplier ranging between 0.5 and 1.0, i.e., a reduction in labor demand up to 50 percent. The figure 
suggests an almost linear relationship between wu and reduction in labor demand. Figure 10 and figure 11 can be 
used to further study the impacts of a reduced wu on other model outputs. 
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Figure 12. Change in the equilibrium illegal wage (wu) as labor demand is decreased by up to 50 percent 
due to the deterrent effects resulting from such program as E-Verify. 

3.7. Effects of Increased Post-Apprehension Consequence  
One of the basic assumptions of the Wein model is that most unauthorized Mexican crossers are offered voluntary 
return upon apprehension. However, to break the smuggling cycle and to reduce recidivism, DHS has developed the 
Consequence Delivery System (CDS) designed to deter further illegal activities (Fisher 2011). The CDS includes 
program components such as Operation Against Smugglers Initiative on Safety and Security, Operation Streamline, 
Alien Transfer Exit Program, Mexican Interior Repatriation Program, Expedited Removal, etc. (see also Fisher 
2011). It will be difficult to study the impacts of these individual components as they are inherently different. 
Therefore, we decided to study deterrence due to the CDS in a generic fashion as described below. 

To account for this deterrence, we focused on the utility calculation of an unauthorized Mexican alien arriving at 
location x and choosing to cross at location y in the discrete choice border crossing submodel. One of the terms 
included in the utility is the detention cost (i.e., negative contribution to the utility) 

 days2d~1 ψ=          (3) 

where ψ is the toll factor of apprehension and it is assumed that two days of salary are lost during the apprehension 
process. The square root function is used to crudely capture the psychological toll incurred regardless of the length 
of detention. As described in Chang et al. (2011), we used a simple scaling argument to estimate ψ to be in the order 
of ~$1K/√day. Therefore, a natural way to account for increased consequence after apprehension is to lengthen the 
days lost (i.e., the 2 days in eq. (3)). 

Figure 13 shows the propensity of unauthorized Mexican aliens to cross as the number of days lost to the CDS is 
increased. Of course, it would be unreasonable to assume the days lost to be as long as 400, as assumed in the figure. 
However, we decided to consider up to 400 days lost as it would be equivalent to doubling the value of ψ, which 
was measured in a crude way as just mentioned, and 100 days lost. The figure shows that the model predicts the 
propensity to decrease from 0.95 to 0.75, which is still relatively high. This is probably due to the fact that the scale 
variable θ that measures population heterogeneity was estimated to be 0.16 (see Chang et al. (2011)), a value that is 
still relatively high to make the discrete choice model more deterministic, i.e., a more determined migrant 
population. In the future, it is necessary to study more adequate ways to treat the impacts of these post-apprehension 
consequence programs. 
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Figure 13. Propensity of unauthorized Mexicans to cross versus the number of days lost to the 
Consequence Delivery System (CDS). 

3.8. Resource Allocation 
The Wein model provides an optimization framework to study resource allocation. For example, the analysis can be 
configured to answer such questions as, “given a budget level, what is the optimal resource allocation to achieve a 
certain objective?” Many objectives can be considered. The objective function we used here is slightly different 
from Wein et al. (2009). Specifically, we chose to minimize the probability that an unauthorized alien (either 
Mexican or OTM) can successfully enter the United States, and even if apprehended will not be subsequently 
removed. This probability is given by the following equation: 

 ( )raa P1PP1P −+−=         (4) 

where Pa is the aggregate probability of apprehension of all unauthorized aliens and is calculated as the weighted 
average of Pa1 and Pa2 by the crossing rates of Mexicans and OTMs (λc1 and λc2, respectively). That is, 

 
2c1c

2c2a1c1a
a

PPP
λ+λ

λ+λ
=         (5) 

Equations (4) and (5) ensure a balanced treatment of unauthorized Mexican and OTM aliens, not just OTMs as 
originally considered in Wein et al. (2009). The optimization framework works as follows. A certain budget level, 
say $5B/year, can be achieved by different combinations of BP agents, worksite inspectors, surveillance technology, 
and bed space (see table 1). Each of these combinations leads to different values Pa1, Pa2, λc1, λc2, Pr, and ultimately 
P. It is then possible to find the “optimal” combination that minimizes the value of P. Figure 14 presents the results 
of resource allocation for an annual enforcement budget up to $10B. Recall that the budget for the base case is 
roughly $4.7B, where for simplicity it is assumed that the entire border is covered by surveillance technology, as its 
cost is relatively low compared to other resources. It can be seen that the value of P gradually decreases from 0.57 to 
0.29 as the budget increases from $3B to $10B. The model suggests that the current number of beds (~32,000) is 
already sufficient to remove all detainees. As a result, the number of BP agents essentially drives the evolution of 
resource allocation. This is different from the results reported in Wein et al. (2009), as a few years ago a regime 
prevailed with a regime where there was a shortage of bed space, thus sometimes it was better to add more beds 
instead of more agents (i.e., the red and blue dashed curves would cross). The cross in the figure indicates the 
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current DHS resource allocation for the base case budget is essentially at an optimal level, in terms of minimizing P 
defined in eq. (4). However, as mentioned above, since BP agents and worksite inspectors have different impacts on 
the probability of apprehension and the propensity to migrate, the current allocation is not necessarily optimal if the 
objective is to minimize, say, the propensity to migrate 

It is important to recognize the many assumptions and simplifications associated with these resource allocation 
calculations. For example, the unit cost of surveillance technology needs refinement, a better treatment of the 
effectiveness and cost of fencing is  necessary, and the cost associated with other immigration policy options needs 
to be included. Therefore, a more realistic analysis will probably be much more nuanced. Nevertheless, these 
calculations demonstrate a rigorous, analytic framework to study resource allocation. 

 

Figure 14. Resource allocation with an objective to minimize the probability (P) that an unauthorized 
alien can successfully enter the United States, and even if apprehended will not be subsequently removed. 
The black curve indicates the optimal P that can be achieved at different budget levels. The dashed blue, 
red, and green curves indicate the fractions of budget allocated to ERO beds, 24/7 BP agents, and 
worksite inspectors, respectively, for the optimal resource allocation. The cross indicates the current 
resource allocation for the base case budget. 
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4. CONCLUSIONS 
Border security and immigration are an exceedingly complex system. Even by limiting scope to just a subset, i.e., 
illegal immigration between POEs, and by making many assumptions and simplifications, we are still led to a rather 
sophisticated model. Nevertheless, the unified model of the illegal system originally developed by Wein et al. (2009) 
and further updated by us provides a good framework to consider the important trade-offs of different policy 
options. The model has many desirable attributes, such as migrants’ behavior, economic equilibrium, and feedback 
mechanisms that are based on well-established modeling techniques. 

Some of the issues that we investigated include the efficacy of different distributions of BP agents, the dependence 
of the equilibrium wage that an illegal alien might receive as a function of worksite enforcement and immigration 
policy variables, the influence of this equilibrium illegal wage on the propensity to migrate, the trade-off between 
more BP agents vs. more worksite inspectors, deterrence due to the Consequence Delivery System, and optimal 
resource allocation based on a formal optimization framework. 

We caution that due to the many assumptions and simplifications involved, the model’s numerical outputs are 
primarily intended to capture qualitative impacts.  Hence, over-interpretation of numerical accuracy should be 
avoided. 

The Wein model can be further improved in a number of areas. For example, the model requires a large number of 
parameters, some of which are derived from data sources and some estimated by solving complex equation systems. 
Using more accurate data is always desirable. Some parameters that are estimated by solving equation systems 
might be better informed by surveys instead. All submodels are still simple representations of complex phenomena. 
For example, more robust and realistic treatments of surveillance technology, fencing, terrain, agent and alien arrival 
distributions, and the Consequence Delivery System are still necessary. Finally, the costs associated with 
immigration policy-related decisions (e.g., legalization of illegal aliens in the United States and a temporary worker 
program) should also be included. 
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