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Abstract
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1 Introduction

This paper studies optimal monetary policy under precommitment in a state-dependent pricing

environment in contrast to the standard assumption of time-dependent pricing. Currently there

are a large and growing number of studies in the literature that analyze the nature of optimal

monetary policy. A common denominator of all these studies is that the nature of the pricing

friction responsible for the presence of predetermined prices is time-dependent. That is, �rms have

no choice about the timing of their price adjustments, as in the familiar work of Calvo (1983) and

Taylor (1980). One reason why time-dependent pricing (henceforth, TDP) models are popular in

optimal monetary policy analysis is that there is no need to track the price distribution of �rms and

the frequency of price adjustment� for example, in Calvo (1983), a single parameter, the probability

of price adjustment, is a su¢ cient statistic to summarize the entire price distribution, given the reset

price and the lagged aggregate price level. In state-dependent pricing (henceforth, SDP) models,

one needs to track many state variables involving predetermined prices and the distribution of �rms

according to the time since the last price adjustment, further complicating the models and their

analyses.

Yet, there are several reasons why it is desirable to move away from the realm of TDP in optimal

monetary policy analysis. The endogenous timing of price adjustment under SDP may alter the

in�ation-output tradeo¤ faced by the monetary authority. Since monetary policy works primarily

because of the existence of this tradeo¤, such a modi�cation in the tradeo¤ may in turn lead to a

di¤erent prescription as to the optimal conduct of monetary policy. In such an environment, the

monetary authority needs to take into account the e¤ect of its policy on the frequency of price

adjustment, since this also a¤ects the course of real economic activity. The literature ignore the

incorporation of SDP arguably because there is a belief that TDP is a good approximation to the

more-realistic assumption of SDP (see e.g. Klenow and Kryvtsov, 2008). However, this is only

true in an economy with small and stable in�ation. When in�ation is high and highly variable,

SDP is a better and more accurate representation of the true �rms�price adjustment decision. How

should monetary policy be conducted in such an environment is therefore an important question for

academics and practitioners alike. In terms of data evidence, there is growing evidence documenting

state dependence in �rms� price adjustment activities. For example, Nakamura and Steinsson

(2008), among others, show that it is the frequency, rather than the size of price adjustment, that

has a strong positive correlation with in�ation� this evidence is more consistent with the SDP
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assumption.

The speci�c state-dependent pricing framework used in this paper is the model of Dotsey,

King, and Wolman (1999), in which �rms are allowed to endogenously change their timing of

price adjustments by paying a small �xed menu cost.1 In terms of the optimal monetary policy

approach, this paper follows the common practice in the public �nance literature, for instance, as

in Chamley (1986). Other examples of optimal monetary policy studies in the literature using this

approach include Erceg, Anderson, and Levin (2000); Khan, King, and Wolman (2003); Levin et. al.

(2005); Schmitt-Grohe and Uribe (2005, 2007), all of whom analyze a closed-economy setting, while

Benigno and Benigno (2003) and Faia and Monacelli (2004) analyze an open-economy setting. This

paper thus departs from the widespread use of the linear-quadratic (LQ) approach, as surveyed in

Clarida, Galí, and Gertler (1999). In such an approach, one needs an explicit reduced-form equation

involving in�ation dynamics (the Phillips curve) and the literature has not provided a convenient

and thorough representation of state-dependent pricing for that purpose.2 Furthermore, the public

�nance approach uses a direct and natural criterion for the evaluation of welfare: households�

lifetime utility. In this approach, market distortions (ine¢ ciencies) are identi�ed and monetary

policy a¤ects welfare through its in�uence on the variations in these distortions.

Speci�cally, there are four set of distortions present in the model: (i) the markup distortion that

arises from �rms�monopoly power, which causes market-generated output level to be ine¢ cient;

(ii) the relative-price distortion arising from �rms�asynchronous price-adjustment process; (iii) the

monetary (exchange) distortions due to the use of money and credit to purchase �nal consumption

goods; and (iv) the menu cost distortion due to the �xed cost of price adjustment. There are

generally tradeo¤s between these distortions requiring the monetary authority to balance the extent

of these distortions in the process of achieving the socially optimum allocation. The monetary

authority is assumed to solve a precommitment Ramsey problem in a decentralized economy setting

where the private sector�s e¢ ciency conditions must be respected at all times.

Another contribution of this paper is in terms of the method used to solve for the optimal policy

problem. Starting from the work of King, Plosser, and Rebelo (1988), most dynamic stochastic

general equilibrium models are solved using a �rst-order (linear) approximation method. Many
1The choice of which SDP model to use matters little for the general results in this paper. One can use, for

example, the model of Golosov and Lucas (2007) instead of Dotsey, King, and Wolman (1999). The key ingredient
for the results is that �rms are allowed to respond to shocks and changing states of the economy by adjusting their
prices� subject to some regularity conditions, e.g. the optimal reset price is increasing with in�ation.

2Studies that attempt to derive a state-dependent pricing Phillips curve include Bakhshi, Khan, and Rudolf
(2007), Gertler and Leahy (2008), and Hernandez (2004).
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have argued that linear approximations to SDP models miss the state-dependence nature and

the nonlinearity property of such models. In light of recent development in the literature on

second-order approximation solution methods� for instance, Kim et. al. (2008), Lombardo and

Sutherland (2007), and Schmitt-Grohe and Uribe (2004)� this paper shows that one can easily solve

and analyze this class of models to the second order. In particular, I use the recent perturbation

approach of Johnston, King, and Lie (2009). This approach is convenient and straightforward since

the second-order approximate solution can be directly cast in a state-space form, permitting a ready

comparison to the �rst-order approximate solution.3

The �rst �nding of this paper involves the timeless perspective (Woodford, 2003) responses to

a temporary productivity shock and a temporary government purchase shock. I show that the

optimal response to either shock can be characterized as an approximate price stability rule, in a

sense that the price level is still largely stabilized around its deterministic trend. Hence, the optimal

policy under SDP is to closely replicate the dynamics under the TDP assumption previously found

in studies such as Khan, King, and Wolman (2003) and Schmitt-Grohe and Uribe (2007). Despite

the close association to optimal response under TDP, the presence of endogenous timing of price

adjustment under SDP alters the policy tradeo¤ faced by the monetary authority. In particular,

I show that it is optimal for the monetary authority to let in�ation vary more under SDP. As we

shall see, this somewhat smaller focus on in�ation stabilization is precisely due the changing nature

of the policy tradeo¤ under SDP.

Additionally, this paper also studies the optimal monetary policy start-up problem. As de-

scribed in Woodford (2003), a timeless perspective policy is a policy that is assumed to have been

long implemented. Most studies on optimal precommitment monetary policy have focused exclu-

sively on optimal timeless-perspective policies. However, even though a precommitment policy is

optimal from the timeless perspective, it is not the true Ramsey solution that maximizes the wel-

fare of the representative agent. The true Ramsey solution speci�es that the monetary authority

should treat the early period of precommitment policy implementation di¤erently than subsequent

periods. This is because in the starting period, there is no past commitment that the monetary

authority must follow through. With monopolistically competitive �rms and nominal price rigidity

as in the model in this paper, this so-called start-up problem is manifested in the optimal decision

3An earlier version of this paper also presents the optimal second-order approximate responses to various shocks.
The current version of the paper eliminates these results and only illustrates that such an analysis is feasible and is
potentially important.
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of the monetary authority to temporarily stimulate the economy by generating surprise in�ation

in the starting period. It is optimal to do so since the economy operates ine¢ ciently due to the

presence of �rms�monopoly power. Given the suboptimality of the timeless perspective policy, it

is of interest to investigate the cost of adopting this policy instead of the true Ramsey policy. The

start-up problem essentially measures the welfare loss of ignoring this starting period of policy im-

plementation. Furthermore, the start-up problem analysis more clearly highlights the modi�cation

in both in�ation-output and policy tradeo¤s since in such a case the general price level deviates

further away from its deterministic path.

I �nd that incorporating SDP in the model leads to di¤erent start-up dynamics compared to the

dynamics under the standard TDP assumption along several interesting and important dimensions.

In particular, it is optimal to generate much higher start-up in�ation despite the fact that the

monetary authority is shown to have less leverage over real activity in the presence of SDP. This

result is once again due to the subtle modi�cation to the policy tradeo¤ involving the lower cost of

in�ation variation on the relative-price distortion. The welfare improvement from generating this

surprise in�ation, however, is shown to be relatively small. Thus, the timeless-perspective policy

may be a good approximation to the true Ramsey policy.

The rest of this paper is organized as follows. Section 2 presents the model used in the analysis,

and lays out the optimal monetary policy approach and the solution methodology. I also present the

calibration of the model and the steady-state property under the optimal precommitment policy.

Section 3 analyzes the timeless perspective (long-run) responses to the two shocks up to the �rst-

order approximation. Section 4 considers some robustness analyses. Section 5 investigates the

start-up problem. Section 6 concludes.

2 The model

This section �rst presents the private sector�s e¢ ciency conditions of the model economy. The

description of the optimal precommitment policy problem, in which all the private sector�s e¢ ciency

conditions must be respected at all times, follows next.
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2.1 The private sector�s constraints

The private sector consists of two sets of agents, a representative household and a continuum of

intermediate-good �rms on a unit measure. These private sector agents solve dynamic optimization

problems given the state of the economy and the knowledge of the optimal policy rule employed by

a committed monetary policy authority.4 The economy has two sets of state variables. The �rst

set, s1t , concerns those state variables involving the private sector. Further, s
1
t can be decomposed

into the endogenous state vector, kt and the exogenous state vector, &t. Hence, s1t = (kt; &t). The

exogenous state vector evolves according to the process &t+1 = v(&t; �t+1), where �t is a vector of

serially independent shocks. Lagged optimal policy multipliers, collected in a vector s2t , are the

additional set of state variables. These multipliers summarize the past policy plans of the monetary

authority that must be respected under the precommitment policy. The entire set of state variables

is st, with st = (s1t ; s
2
t ). Later in the section the individual elements of these state vectors will be

clari�ed. Aggregate �uctuations are driven by two exogenous shocks, a productivity shock and a

government purchase shock, which a¤ect st.

2.1.1 Intermediate-good �rms

There is a continuum of monopolistically competitive �rms in the economy, indexed by i 2 [0; 1],

where each �rm produces a di¤erentiated intermediate good. These varieties of intermediate goods

are bundled together into a �nal consumption good according to the constant elasticity of substi-

tution (CES) aggregator,

ct =

�Z 1

0
ct(i)

"�1
"

� "
"�1

,

where " is both the constant elasticity of substitution and the relative demand elasticity for any

variety i. There is also a government that purchases �nal consumption goods (gt) aggregated

according to the same process.5 Let pt(i) be the relative price of variety i. The demand for variety

i is then given by pt(i)�"yt = pt(i)
�"(ct + gt), where yt = ct + gt is the aggregate economy-wide

output.

Each �rm i is subject to a �xed cost that needs to be paid every time it adjusts its (nominal)

price. As in Dotsey, King, and Wolman (1999), the �xed adjustment costs (in labor units) are het-

4This paper abstracts from deriving such an optimal policy rule. Instead, I search for the allocation consistent
with this optimal policy rule.

5Government purchases are assumed to be �nanced by lump-sum taxes.
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erogenous across �rms and are drawn each period independently from a time-invariant continuous

distribution with cumulative distribution function (CDF) G(�). Firms that choose not to adjust

prices, after observing the �xed cost draw and the state of the economy, do not have to pay these

�xed costs but must keep the nominal price from the previous period. This speci�cation means

that, at any given period, �rms will be distributed according to "the time since the last price

adjustment" j, with j = 0 indicating those �rms that adjust in the current period. Let !j;t be

the end-of-period fraction of �rms that last adjusted their prices j periods ago.6 These variables

summarize the distribution of �rms according to the time since the last price adjustment and can

be expressed as

!j;t = (1� �jt)!j�1;t�1 (1)

for j = 1; :::; J � 1, where J is the longest period of price �xity that has to be endogenously

determined in the steady state.7 For each j, the variable �j;t is the fraction of �rms j� �rms that

last adjusted prices j periods ago� that decide to adjust at the beginning of period t right after

the �xed cost draw. Since the fraction of all �rms sums to one, the fraction of adjusting �rms in

the current period t (!0;t) is then given by

!0;t = 1�
XJ�1

j=1
!j;t . (2)

Note that in the current SDP speci�cation, both f�jtgJ�1j=1 and f!j;tg
J�1
j=0 are determined endoge-

nously and depend on aggregate variables and �rms�prices. Under the TDP assumption as in Levin

(1991) and Khan, King, and Wolman (2003), these variables are exogenous and become parameters

of the model.8

Next, I describe the dynamic maximization problem for adjusting �rms. Firms are monopolisti-

cally competitive and use labor as the only production input. Speci�cally, the production function

for any �rm i is given by yt(i) = atnt(i) where at is the exogenous aggregate productivity level and

nt(i) is the production labor used by �rm i. The labor market is global so that all �rms faced the

same real marginal cost wt=at, where wt is the aggregate real wage. Let pj;t be the relative price

of �rms that have not adjusted for j period(s) at time t. Given the form of the CES consumption

6By end-of-period, I mean that these fractions are observed in the current period t after �rms�production and
pricing decisions are made.

7As long as in�ation is not zero and the support of the �xed cost distribution is �nite, J will be �nite as well.
8The TDP speci�cation is a generalization of two popular price/wage rigidity speci�cations. When J ! 1 and

�j are identical across j, the speci�cation collapses to Calvo (1983). For any �nite J and f�jgJ�1j=1 = 0 with �J = 1,
we have the contracting model of Taylor (1980).
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aggregator above, it follows that the real pro�t of a �rm with price pj;t is given by

z(pj;t; st) = [pj;t �
wt
at
] � p�"j;t (ct + gt) .

Let�s denote v0(st) as the value function of a typical adjusting �rm, gross of the adjustment cost.

Given the state vector st, the maximization problem of a typical adjusting �rm is

v0(st) = max
p0;t

fz(p0;t; st) + �Et
�t+1
�t

(1� �1;t+1)v1(p1;t+1; st+1)

+�Et
�t+1
�t

�1;t+1v0(st+1)� �Et
�t+1
�t

�1;t+1wt+1�1;t+1g , (3)

where the choice variable p0;t is the optimal relative price. The above expression says that an

adjusting �rm chooses the optimal price to maximize its expected present discounted values of

current and future pro�ts. In doing so, it has to take into account the possibility of price adjustment

in future periods. There is an expected probability of (1� �1;t+1) that it will choose not to adjust

so that its expected value in the next period is v1(p1;t+1; st+1). With expected probability �1;t+1,

it will optimally choose to adjust so that its value becomes v0(st+1). The last term in the second

line of (3) re�ects the fact that if the �rm decides to adjust in the next period, it must also pay the

�xed adjustment cost. In the Bellman equation above, �1;t+1 is the expected �xed adjustment cost

in the future period, conditional on adjustment. Since the �xed costs are in terms of labor unit,

the expected cost in consumption units is then given by wt+1�1;t+1. Note that since households

own the �rms, future periods are discounted by the e¤ective discount factor �Et
�t+1
�t
, where �t is

the shadow value of households�income.

For �rms that do not adjust (j = 1; :::; J � 1) and hence simply apply prices from the previous

period, the value functions can be expressed as9

vj(pj;t; st) = z(pj;t; st) + �Et
�t+1
�t

(1� �j+1;t+1)vj+1(pj+1;t+1; st+1)

+�Et
�t+1
�t

�j+1;t+1v0(st+1)� �Et
�t+1
�t

�j+1;t+1wt+1�j+1;t+1 . (4)

The �rst order necessary condition of the the dynamic problem (3) and recursive di¤erentiation of

(4) lead to a formula for the optimal nominal price,

P0;t = p0;t � Pt =
"

"� 1

PJ�1
j=0 �

jEt
!j;t+j
!0;t

�t+j
�t

Wt+j

at+1
(Pt+j)

"yt+jPJ�1
j=0 �

jEt
!j;t+j
!0;t

�t+j
�t
(Pt+j)"�1yt+j

, (5)

9There is no max operator in this expression since the only decision made by non-adjusting �rms is the input
decision for production to meet demand.
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where Pt and Wt are the aggregate price level (index) and nominal wage at time t, respectively.

The CES aggregator implies the aggregate price index is given by

Pt =

�Z 1

0
Pt(i)

1�"
� 1
1�"

.

The expression (!j;t+j=!0;t) = (1 � �j;t+j) � (1 � �j�1;t+j�1)� :::� (1 � �1;t+1) in the optimal price

equation is the expected probability of keeping the price constant (non adjustment) from time t

until time t+ j. Equation (5) is similar in many respects to the optimal nominal price expression

under the familiar time-dependent Calvo pricing. In such a setup, (!j;t+j=!0;t) is constant but it

still re�ects the probability of non adjustment for j periods. In the current SDP speci�cation, this

term is time-varying and thus serves as a time-varying e¤ect on the discount factor. The optimal

price thus depends on current and expected future demands, price levels, marginal costs, and

probabilities of non adjustment. In a special case where the price level, the adjustment probability,

and the marginal cost are expected to be constant, the optimal nominal price is simply a constant

markup over current nominal marginal cost (P0;t = ("=(" � 1)) � (Wt=at)), as in the �exible-price

solution.

On the equilibrium determination of the probability of adjustment, �rms only adjust if there is

a positive bene�t of doing so; that is, if the value of adjustment outweighs the �xed cost associated

with adjustment. Given the continuous distribution of the �xed adjustment cost, there will be a

mass of �rms at the margin for each j that are indi¤erent between adjusting or keeping the price from

the previous period. For these �rms, there is a zero bene�t to adjust, so that (v0;t � vj;t) = wt��j;t,

where ��j;t is the �xed cost at the margin for bin j.10 Hence, the proportion or probability of �rms

adjusting for each j is given by

�j;t = G

�
v0;t � vj;t

wt

�
(6)

for j = 1; :::; J � 1. For j = J , we have �J;t = 1 since all �rms will �nd it optimal to adjust after J

periods. Finally, the average or expected adjustment cost conditional on adjustment is given by

�j;t =
1

�j;t

Z G�1(�j;t)

0
xdG(x) (7)

for j = 1; :::; J . This concludes the description of the decisions faced by intermediate-good �rms.

As a preview of the optimal monetary approach used in this paper, all the e¢ ciency conditions

of the �rms�problem above become relevant constraints that must be respected by the committed

10This �xed cost at the margin is the largest cost that is actually paid by adjusting �rms.
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monetary authority. Speci�cally, the monetary authority must respect the optimal price decisions

by adjusting �rms given by equation (5).11 It must also respect the �rms�adjustment decision,

which are summarized by (3) and (6). The evolution of the distribution of �rms in (1) and (2) must

also be respected. In particular, note that some of these constraints are forward-looking, which is

why there needs to be a commitment mechanism in the optimal policy problem. This commitment

mechanism is summarized by the lagged policy multipliers in a recursive Lagrangian problem, as

will be made clear shortly.

2.1.2 Households

I turn next to the households� optimization problem. Since most elements of the households�

optimization problem are identical to those in Khan, King, and Wolman (2003), I simply mention

the core assumptions and proceed directly to the resulting e¢ ciency conditions. Appendix A

provides additional detail on the households�optimization problem.

Households choose the amount of �nal goods consumption (ct) and leisure (lt) to maximize a life-

time utility function subject to a budget constraint. The instantaneous utility function is assumed

to be given by u(ct; lt) = 1
1�� c

1��
t + � 1

1�� l
1��
t . Here, � is the inverse elasticity of intertemporal

substitution and the parameter � governs the labor supply elasticity. Final consumption goods can

be purchased using credit or money (cash). Speci�cally, households choose to purchase a fraction of

goods �t with credit and the balance 1��t with money. There is a cost associated with using credit,

as in Baumol (1954) and Tobin (1956).12 These transaction time costs of using credit (in terms of

labor time units) are heterogenous across goods and are randomly drawn from a continuous distrib-

ution with cumulative distribution function (CDF) F (:). Since using credit is costly, money can be

used to facilitate the purchase of �nal consumption goods. However, there is an opportunity cost

to using money since households can purchase one-period discount bonds and obtain a return of Rt

(the nominal interest rate). Households thus must balance the costs associated with holding cash

and using credit in purchasing �nal consumption goods. In the absence of costly credit (transac-

tion time), households would purchase all goods using credit, as in the cashless model of Woodford

(2003). At the other extreme where no credit is allowed, we have a familiar cash-in-advance model

11 In terms of actual computation of the optimal policy, equation (5) must be written in a recursive form. This can
be done by reformulating this constraint using the marginal value recursions, meaning the derivatives of the value
functions (3) and (4) with respect to the optimal relative price p0;t.

12Baumol (1954) and Tobin (1956) analyze the transaction cost model in a partial equilibrium setting. For
applications in a general equilibrium setting, see e.g. Prescott (1987) and Dotsey and Ireland (1996).
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as in Lucas (1980). Finally, households also derive income from their labor e¤ort in the amount of

wtnt.

Proceeding to households� e¢ ciency conditions, the labor-leisure optimal choice implies the

equality between the utility cost of foregone leisure and the value of income gained by working;

thus,

ul(ct; lt) = wt�t . (8)

The holdings of one-period nominal discount bonds require that

�t
1 +Rt

= �Et
�t+1

1 + �t+1
, (9)

where �t is the net in�ation rate. Next, the marginal utility of consumption must equal to the full

price of a unit of �nal consumption good,

uc(ct; lt) = �t (1 +Rt (1� �t)) . (10)

Note that since there is an opportunity cost of using money, the full consumption price above

involves the nominal interest rate Rt, multiplied by the fraction of goods bought using money,

(1� �t). In the cashless version of the model, the condition is simply uc(ct; lt) = �t.

The largest credit time cost that the representative household will choose to pay is Rtct=wt so

that the fraction of goods purchased using credit is given by

�t = F

�
Rtct
wt

�
, (11)

where F (�) is the CDF of the distribution of time costs of credit use. Finally, the time use constraint

for the economy is given by

lt + nt +

Z (Rtct=wt)

0
xdF (x) = 1 , (12)

where
Z (Rtct=wt)

0
xdF (x) is the aggregate time costs of credit. Note that given �t, the real money

demand in the economy at any period t is then mt = (1� �t)ct. Appendix B provides more details

on the money demand function, along with the credit cost distribution.13

13 In addition to being more realistic, the inclusion of a monetary sector in the model is required from a technical
standpoint. Note that without a monetary sector, the optimal steady-state in�ation is zero. But the SDP model of
Dotsey, King, and Wolman (1999) used here requires a non-zero steady state in�ation rate. If in�ation rate is zero,
all �rms would then optimally choose not to adjust forever in the steady state, so that J ! 1. Hence, computing
optimal policy under SDP here is not possible (without additional restrictions or assumptions) in a cashless model
such as Woodford (2003).
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2.1.3 Other equilibrium conditions and the state vectors

To complete the model, there are several aggregate equilibrium conditions that need to be satis�ed.

First, the aggregate production of goods must be equal to the aggregate demand:

atn
y
t =

�XJ�1

j=0
!j;tp

�"
j;t

�
(ct + gt) , (13)

where nyt represents the total labor used in production. Since the �xed adjustment costs are in

term of labor costs, there is also the aggregate labor used for this price adjustment process given

by

npt =
XJ�1

j=0
!j;t�1 (�j+1;t�j+1;t) . (14)

The sum of the aggregate production labor and pricing labor must be equal to the total labor

supply so that we have

nyt + n
p
t = nt . (15)

Next, the relative price aggregation implied by the CES aggregator is given by

XJ�1

j=0
!j;tp

1�"
j;t = 1 . (16)

Given the gross in�ation (1+�t), the evolution of predetermined relative prices (for j = 1; :::; J�1)

can be expressed by14

pjt = pj�1;t�1
1

1 + �t
. (17)

Together with the lagged fractions of �rms, f!j;t�1gJ�1j=0 , the lagged relative prices, fpj;t�1g
J�2
j=0 , are

elements of the endogenous state vector kt in s1t .

Finally, I assume simple driving processes for the exogenous variables (productivity and gov-

ernment purchases),

log(at) = �a log(at�1) + �aez;t (18)

log(gt) = �g log(gt�1) + �geg;t , (19)

where [ez;t; eg;t] 2 �t are i.i.d. shocks, normalized to have unit variance. Here, �a and �g are the

standard deviations of productivity and government purchase shocks, respectively. The exogenous

state vector &t thus consists of at and gt. This completes the de�nition for the state vector s1t .

14Speci�cally, suppose that Pj�1;t�1 is the nominal price of the intermediate-goods for �rms that have not adjusted
their prices for j � 1 periods at time t� 1, with j � J � 1. If a �rm in this bin chooses not to adjust at time t, then
Pj;t = Pj�1;t�1, so that Pj;t=Pt = Pj�1;t�1=Pt ) pj;t = (Pj�1;t�1=Pt�1)(Pt�1=Pt) ) pj;t = pj�1;t�1

1
1+�t

.
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2.2 Identifying the four sets of distortions

As mentioned previously, monetary policy in�uences various distortions in the economy; hence it

is useful to explicitly identify these distortions. There are four sets of distortions present in the

model economy. One can view these distortions as ine¢ ciencies that exist in the economy.15

First, there is a distortion due to �rms�monopoly power that is frequently termed the markup

distortion and is captured by the reciprocal of the real marginal cost,

 t =
at
wt
. (20)

If �rms are perfectly competitive as in a standard real business cycle (henceforth, RBC) model,

 t = 1 since the real wage is always equal to productivity. This distortion in�uences, for example,

the �rms�value functions (3), (4) and the optimal price chosen by adjusting �rms (5).

Second, there is a distortion arising from infrequent price adjustments (sticky prices), frequently

termed the relative-price distortion16

�t =
atn

y
t

(ct + gt)
=
XJ�1

j=0
!j;tp

�"
j;t . (21)

This distortion measures the extent of lost aggregate output due to sticky prices� if �t is greater

than unity, then it takes more labor to produce a given volume of output as suggested by (13).

Both the markup and relative-price distortions are eliminated at zero in�ation where both  t and

�t are equal to unity. The model then collapses to a standard RBC framework if monetary frictions

are absent.

The third set of distortions involve the use of money and credit in purchasing consumption

goods. Frequently termed the monetary distortions, these distortions can be decomposed further

into the monetary wedge and shopping-time distortions. The monetary wedge distortion is the

ine¢ ciency that arises because the full cost of consumption is augmented by the requirement that

money must be held to �nance a portion of consumption purchase. It can be expressed as

�t = Rt(1� �t) . (22)

As suggested by (10), this distortion drives a wedge between the marginal utility of consumption

and the shadow value of wealth.17 The shopping-time distortion arises because the use of credit in
15Although I choose not to pursue it here, it is possible to eliminate these distortions through the use of �scal

subsidies, as in Woodford (2002) and Levin et.al. (2005).
16This relative-price distortion is already widely identi�ed in various studies in the literature, such as Damjanovic

and Nolan (2006) King and Wolman (1999), and Yun (2008).
17This monetary-wedge distortion is highlighted in cash-in-advance models, for instance, Cooley and Hansen (1991)

and Stockman (1981).
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purchasing consumption goods requires some use of labor; this distortion a¤ects the total available

resources in (12). It is governed by the expression

ht =

Z (Rtct=wt)

0
xdF (x) . (23)

Both the monetary wedge and the shopping-time distortions are minimized at zero nominal interest

rate as prescribed by the Friedman rule, so that the in�ation rate must be negative (de�ation).

In the time-dependent-pricing version of the model, all three distortions mentioned above are

present. Under SDP, there exists another distortion involving the costs associated with price

adjustments, represented by (14):

npt =
XJ�1

j=0
!j;t�1 (�j+1;t�j+1;t) .

Like the shopping-time distortion, this menu cost distortion can be viewed as a drain on the

economy�s resources.

To gain more insight into the distortions, Figure 1 looks at the steady-state implications of these

various ine¢ ciencies in the model economy. First, we look at the relationship between in�ation and

the relative price distortion in panels A and B. For simplicity and comparability to the literature,

these two panels are produced under the assumptions that there are no monetary distortions and

�rms�pricing decisions are time-dependent.18 Looking �rst at panel A, the optimal relative price

(p0) is equal to 1 (one) under zero in�ation and is increasing with in�ation. When in�ation is

positive, price-adjusting �rms will charge a higher price since they anticipate that the relative price

will be eroded by future in�ation. On the contrary, under negative in�ation (de�ationary steady

state), the optimal relative price is lower since the relative price will increase if �rms do not adjust

in future periods. That is, those �rms which do not adjust will be faced with a decreasing relative

price under positive in�ation and an increasing relative price under de�ation� as a consequence,

price dispersion is increasing with both non zero in�ation and de�ation (panel B). Only under zero

in�ation is the relative price distortion is eliminated and a unit of labor will exactly produce a

unit of output. Panel C looks at the implication of varying degrees of average markup on market

activity (production labor). As the average markup increases, there is a corresponding decrease

in the real wage paid by �rms so that households substitute away from market activity. As we

18Speci�cally, I assume that J = 6, with f!jgJ�1j=0 and f�jgJ�1j=1 equal to their steady-state values under the
optimal policy presented in �gure 2. For any given in�ation rate, we can compute the optimal reset price and the
corresponding relative price distortion at the steady state. Assuming state dependence does not change the �gures
in panels A and B.
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will see in a later section, the monetary authority can temporarily erode this average markup by

generating surprise in�ation.

Moving on to the monetary distortions in the right-side panels of Figure 1, we see that house-

holds substitute away from cash transactions into costly credit since the opportunity cost of holding

money becomes higher as the nominal interest rate increases.19 As a consequence, the fraction of

goods bought using credit increases with the nominal rate (panel D). Higher nominal rates are also

associated with higher monetary wedge distortions (panel E), which in turn create a substitution

away from consumption since this wedge a¤ects the full cost of consumption as shown in equation

(10). Finally, as displayed in panel E, the higher fraction of credit goods associated with higher

nominal rates will in turn increase the transaction (shopping) time associated with costly credit.

Figure 1 also shows that there is a tradeo¤ among the distortions, even in this simple static

illustration. As an illustration, we know from panel B that the relative price distortion is minimized

at zero steady-state in�ation. However, at zero in�ation, the nominal interest rate must be positive

for the Fisher equation (9) to be satis�ed� hence, the monetary wedge distortion (panel E) is not

minimized. On the contrary, if the nominal interest rate is zero so that there is a small de�ation

at the steady state, the relative price distortion will not be minimized. The task of the monetary

authority then is to balance the costs of these various distortions, both in the steady state and in

the near-steady-state dynamics in response to any exogenous shock.

2.3 Optimal monetary policy: approach and methodology

2.3.1 The optimal policy approach

Several private sector e¢ ciency conditions described above involve forward-looking constraints and

are de�ned recursively. As such, I use the recursive optimal policy design approach along the

lines of Kydland and Prescott (1980) and Marcet and Marimon (1999). I present this approach

brie�y below, where a complete and formal treatment can be found in Johnston, King, and Lie

(2008). This optimal policy approach is similar to that used, for example, in Schmitt-Grohe and

Uribe (2007). Yet, as shown in Rotemberg and Woodford (1999) and Woodford (2002) in the case

of undistorted steady state and Benigno and Woodford (2004, 2008) in the more general case of

19To generate panels D, E, and F, I assume that the credit cost distribution is Beta with the parameters as in
table 1. I also assume that the production labor is ny = 0:2, and the real wage w = a = 1, with consumption
c = a � ny = 0:2. For any given nominal interest R, we can then compute the credit good fraction � and the two
monetary distortions.

14



distorted steady state, the optimal policy problem described below can be also presented in a linear-

quadratic (LQ) framework. That is, under some regularity conditions, one can derive a quadratic

loss function using the second-order approximation to the lifetime utility function. The problem of

the monetary authority is then to minimize this loss function with the constraints being the linear

approximations to the private sector e¢ ciency conditions, which usually result in an aggregate

supply equation (the Phillips curve) and an aggregate demand equation (the IS curve). In addition

to having to derive such a loss function, which is not a trivial task itself, a drawback of this approach

is that the resulting policy reaction function is linear. The optimal policy problem presented below

allows an implied policy reaction function that is nonlinear if the equilibrium equations of the model

are approximated to the second order or higher. Hence, it allows for a richer analysis, especially if

one is interested in analyzing the degree of nonlinearity and state-dependence in the model and in

the policy rule.20

The benevolent policy authority is concerned with the maximization of the present value ex-

pression

Et

nX1

j=0
�jU(bt+j ; kt+j ; x(&t+j))

o
via suitable choices of control variables, bt, and is subject to constraint sets

 (bt; kt; x(&t)) � 0 (24)

g1(bt; kt; x(&t)) + �Etg
2(bt+1; kt+1; x(&t+1)) � 0 , (25)

where kt and &t are vectors of endogenous and exogenous state variables, respectively. The processes

for these state vectors are given by

&t+1 = �(&t; �t+1) (26)

kt+1 = �(bt; kt; x(&t); x(&t+1)) . (27)

Note that I only present the case where the forward-looking constraints involve one-period ahead

in time, but it is possible to generalize this set to include forward-looking constraints that stretch

to in�nity as shown in Marcet and Marimon (1999). One can then form a standard Lagrangian

problem with (24), (25), (26), and (27) as the full constraint sets.

20Note that this section on the optimal policy approach has a separate notation than the rest of the paper, as it
only serves to present the general methodological approach.
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Following Marcet and Marimon (1999), the set of forward-looking constraints can be handled

with a generalization of Bellman equation of the form

W (�t; kt; &t) = min
t
max
bt
fh(bt; 
t; �t; kt; x(&t)) + �EW (�t+1; kt+1; &t+1)j(�t; kt; &t)g

where the evolution of the pseudo state vector, �t, is given by

�t+1 = 
t . (28)

Here, 
t is the vector of current (time t) multipliers associated with the forward-looking constraints

(25) and �t is the vector of the lags of these multipliers. One can view these lagged multipliers as

explicit commitment technologies. Note that in the Bellman equation above the modi�ed objective

function takes the form

h(bt; 
t; �t; kt; x(&t)) = u(bt; kt; x(&t))

+
tg
1(bt; kt; x(&t))

+�tg
2(bt; kt; x(&t)) .

Further, the modi�ed objective function above can be augmented with the Lagrangian terms in-

volving the point-in-time constraint sets in (24) yielding pt (bt; kt; x(&t)), where pt is the vector

of Lagrange multipliers associated with these constraints. We can thus focus our attention on the

composite expression

W (�t; kt; &t) = min
pt;
t

max
bt
fw(bt; pt; 
t; �t; kt; x(&t))

+�EW (�t+1; kt+1; &t+1)j(�t; kt; &t)g , (29)

where the maximization-minimization problem is also subject to the state evolution equations in

(26), (27), and (28) and the initial conditions on �t; kt; and &t. In the above expression the function

w(:) is h(bt; 
t; �t; kt; x(&t)) + pt (bt; kt; x(&t)). The results of solving this problem are the decision

rules

bt = b(kt; &t; �t)

pt = p(kt; &t; �t)


t = 
(kt; &t; �t) ,

16



so that the state and pseudo-state vectors evolve according to

&t+1 = �(&t; �t+1)

kt+1 = �(kt; b(kt; &t; �t); x(&t); x(&t+1))

�t+1 = 
(kt; &t; �t) .

2.3.2 Application to the model economy

The optimal policy approach described above can be readily applied to solve for the optimal pre-

commitment policy that is the subject of this paper. The objective function of the monetary policy

authority is simply the households� lifetime utility function in our model economy. Each of the

private sector constraints described previously �ts into either the constraint set in (24) or (25)

and the evolution of the state vectors s1t fall into the restrictions described in (26) and (27). For

example, (6), (8), (10), and (13) are parts of the point-in-time constraint sets (24), while (3), (4),

and (9) are forward-looking constraints as identi�ed in (25). The evolution of the fractions of �rms

in (1) and predetermined prices in (17) would �t into the evolution equation described in (27). In

terms of vectors of variables, consumption (ct) and labor (nt) are parts of the control vector bt, for

example. The endogenous state vector kt would consist of the lagged predetermined relative prices,

fpj;t�1gJ�2j=0 and the lagged fractions of �rms, f!j;t�1g
J�2
j=0 . The vector pt includes the Lagrange mul-

tipliers attached to all of the point-in-time private sector constraints in the model. On the other

hand, the multipliers associated with forward-looking constraints such as (9) are elements of the

vector 
t. The vector �t consists of lagged multipliers associated with forward-looking constraints�

this vector is thus the model�s second set of state variables, s2t , described earlier. Recall that this

vector of lagged multipliers summarizes the past policy plans or commitment that must be followed

by the monetary authority. To solve for the optimal policy, we can form a saddle point functional

equation as in (29) and take all the private-sector e¢ ciency conditions as the policy constraints.

The �rst-order conditions of this optimization problem would then represent the allocations under

the optimal policy.

Recursive equilibrium The recursive equilibrium is de�ned as follows: given the state vector st,

the evolution of the exogenous state variables, and the optimal precommitment policy rule employed

by the monetary authority, both households and intermediate-good �rms solve their optimization

problems as described above. The market-clearing conditions for the goods and the labor markets,
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(13) and (15), are also satis�ed in equilibrium. Finally, the optimal policy rule is consistent with

and respects households�and �rms�(the private sector�s) e¢ ciency conditions.

2.3.3 Approximate solutions

The model is solved using the perturbation approximation solution method of Johnston, King, and

Lie (2009). Speci�cally, the �rst order necessary conditions of the optimal policy problem above

can be written as a system of nonlinear equations in the expectational form

EtF (zt+1; zt; �t+1) = 0 ,

where zt is the vector of all variables (including both endogenous and exogenous variables) at time

t and �t+1 is the vector of exogenous shocks at time t + 1. Johnston, King, and Lie (2009) show

that the solution to a second-order Taylor-series approximation to the above system can be cast

into a nearly linear state-space representation of the form

zt '
(z +�1dst)| {z }

1st
+

1

2
Ed2zt +

1

2

h
�1 �2

i24 d2st � Ed2st
�t

35
| {z }

2nd

(30)

26664
dst+1

d2st+1 � Ed2st
�t+1

37775 =
26664
� 0 0

0 � �

0 0 �

37775
26664

dst

d2st � Ed2st
�t

37775+
26664
� 0

0 
�

0 
e

37775
24 �t+1

et+1

35 (31)

where the �rst equation is the observational output equation and the second equation represents

the state evolution equation. Here djxt is the j � th di¤erential of the vector of variables xt,

�t = dstds
T
t � E(dstds

T
t ), and et+1 �

h
vech(�t+1�

T
t+1 � E(�t+1�Tt+1))T vec(dst�

T
t+1)

T
iT
.21 �1,

�2, �, �, �, �, 
�, and 
e are matrices of coe¢ cients. Also, Ed
2zt and Ed2st are the unconditional

expectations of the second di¤erential of the vector of endogenous and state variables, respectively.

Note that this second-order state space form also encompasses the linear (�rst-order) approximate

solution. That is, under a linear approximation, the output equation only contains the �rst brack-

eted term (1st) and the state evolution system in the second equation above only contains the �rst

line (dst+1 = �dst + ��t+1).

21The supercript T is the transpose of a vector or a matrix. Here, vec(:) is the standard vectorization operation.
For any symmetric matrix A, some of the elements of vec(A) are redundant. If we de�ne Dm as the unique duplication
matrix for A (see for instance, Magnus and Neudecker, 2002) that selects the unique (upper triangular) elements of
A, so we can then de�ne vec(A) = Dmvech(A), where vech(A) now contains only unique elements of vec(A).
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De�ning impulse response as the revision in forecast errors, Etzt+j � Et�1zt+j , one can apply

the state-space form above recursively to calculate the response of the economy to any given shock

for a given starting state.22 The analyses in the next section use this state-space form to generate

various impulse responses. For later references, I will call the response based on the �rst-order

approximate solution as the �rst-order impulse response, while the second-order impulse response

refers to the response based on the second-order approximate solution.

Several comments on the second-order state-space form are in order. Compared to the �rst-

order, there are some additional terms in the exogenous shock vector in the second-order state-space

form within (31). First, there is a vech(�t+1�
T
t+1 � 
��) term, where 
�� = E(�t+1�

T
t+1) is the

covariance matrix of the exogenous shocks�in the context of my model, 
�� =
h
�2a 0 ; 0 �2g

i
.

This term in general captures the nonlinearity of the exogenous shocks if the shocks themselves enter

nonlinearly in the model. Such a nonlinearity is not present in the �rst-order approximate solution.

Even when shocks enter linearly in the model as in the current model, the e¤ect of this term may

not be zero. This is because this term is also related to the uncertainty of the shock process itself,

meaning it is related to the "uncertainty correction" term in the jargon of the literature on second-

order approximation.23 This term then leads to asymmetric responses to di¤erent shock sizes. For

example, in the �rst-order impulse response when shocks enter linearly, the response to a two-

standard-deviation shock has the same property as the response to a one-standard-deviation shock.

That is, if output increases by 1 percent in response to a one-standard-deviation productivity shock,

a two-standard-deviation shock will increase output by 2 percent. A shock of a given magnitude

is also symmetric irrespective of whether the shock is positive or negative: to the �rst-order, the

response of a variable to an m percent negative shock is just the opposite of the response to an m

percent positive shock. This symmetric property is unappealing for various reasons. For example,

one might expect that the monetary authority or an optimizing agent might behave di¤erently in

response to an unfavorable shock compared to a favorable shock. Only in the second-order impulse

response is this asymmetric property captured.

The second additional term is the state-dependent response to shocks. This state-dependence

22The method here is related to several recent contributions on second-order approximations such as Schmitt-
Grohe and Uribe (2004), Lombardo and Sutherland (2007), and Kim, et. al. (2008). A main insight of Johnston,
King, and Lie (2009) is that if one derives restrictions directly on the equilibrium equations of the model, rather than
on the assumed policy function, the approximate solution will always be in a state-space form. Hence, no additional
modi�cation such as "pruning" in Kim, et. al. (2008) is necessary. Moreover, the state-space form is always achieved
for any n-th order approximation.

23See for example, Schmitt-Grohe and Uribe (2004).
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property is captured in the second-order approximation through the term vec(dst�
T
t+1). That

is, the economy�s response to a shock depends nonlinearly on the state of the economy, which

is an especially appealing property for state-dependent pricing models� the �rst-order impulse

response does not capture this state-dependence e¤ect. These two additional nonlinear terms can

be particularly important, especially when the state of the economy is farther away than the

certainty steady state.

2.4 Calibration and the steady-state in�ation under optimal policy

Table 1 presents the calibration of the parameters in the model. The time unit is meant to be a

quarter. The choice of � and � equal unity means that the utility function involves log function in

consumption and leisure. The parameter � in the utility function is chosen such that the steady-

state total labor is equal to 0:2. The choice of demand elasticity (" = 10) is a compromise among

various studies that report various values for this parameter, for instance Altig et. al. (2005), Basu

and Fernald (1997), and Rotemberg and Woodford (1999). This value implies that the markup is

equal to about 11.11 percent in the �exible-price equilibrium.

In terms of the �xed adjustment cost distribution, I use a Beta distribution with left and the

right parameters equal to al = 2:1 and ar = 1, respectively. This implies a probability density

function (PDF) that is strictly increasing and strictly convex.24 Appendix C provides more details

on the speci�cation of this adjustment cost distribution. I calibrate the largest possible �xed

cost paid by �rms, B, so that the maximum number of quarters of price �xity (J) is 6 quarters.

Figure 2 displays the steady-state probability (�j) and �rms�distribution (!j) of price adjustment

based on these calibrated parameters under the optimal precommitment policy. This �gure shows

that the price adjustment hazard is increasing with the time since last price adjustment, unlike

the constant hazard implied by the standard Calvo model. In addition, the �gure implies that

the mean and median durations of price �xity are 4.02 quarters and 3.00 quarters, respectively,

and the average frequency of price adjustment is about 24 percent per quarter. This degree of

price rigidity is in the ballpark of available empirical estimates using macroeconomic data such as

Christiano, Eichenbaum, and Evans (2005). It is higher than the evidence based on microeconomic

data reported in Bils and Klenow (2004), but still close to the �nding in Nakamura and Steinsson
24 I also experiment with various shape parameters of the Beta distribution that yield various shapes of the PDF:

linear, strictly increasing, strictly convex, or combinations of these. Each time, similar results are found for both the
steady-state and near steady-state dynamics analyzed in subsequent sections. Changing the distribution to the one
used in Dotsey and King (2005) also preserves the paper�s results.
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(2008).

The parameters of the credit cost distribution, which governs the demand for money, are set

according to the estimation in Khan, King, and Wolman (2003). Appendix B describes the implied

money demand function and elasticity based on their estimates. The rest of the parameters involve

the exogenous driving processes. Following King and Rebelo (1999), the aggregate productivity is

very persistent (�a = 0:95), with the standard deviation (�a) equal to 0:0072. Finally, the choices

of �g and �g are in line with the estimates in Ravn (2007).

Optimal steady-state in�ation I next consider the steady-state in�ation under the optimal

policy. Recall that the task of the benevolent monetary authority is to balance the costs of various

distortions in the economy. As shown by various studies, e.g. King and Wolman (1999) and

Woodford (2002), the optimal steady-state in�ation is zero when only relative-price and markup

distortions are present. That is, both of these distortions are eliminated under zero steady-state

in�ation and there is no long-run tradeo¤ between them. The presence of the menu cost distortion

in the current SDP model does not alter this conclusion since this distortion is also eliminated under

zero in�ation. (Firms would �nd no need to change prices under zero in�ation and hence would never

have to pay the adjustment costs.) However, as shown by Khan, King, and Wolman (2003) and

Schmitt-Grohe and Uribe (2007) in the TDP case, the presence of monetary distortions alters the

tradeo¤ faced by the monetary authority. As prescribed by the Friedman rule, the distortions due

to money demand are eliminated when the opportunity cost of holding money� the nominal interest

rate� is zero. This requirement implies that in�ation must be negative (de�ation). It follows that

the optimal steady-state in�ation when all distortions are present (henceforth, "full" distortions)

should also be negative, but not as negative as implied by the Friedman rule. Put another way, the

monetary authority compromises between maintaining price stability and following the Friedman

rule.

Table 2 shows that the optimal steady-state in�ation rate in the SDP model re�ects the above

discussion. As expected, in the benchmark case with all the distortions present, the steady-state

(net) in�ation is negative (�0:99 percent at the annualized rate under SDP) but not as negative

as the Friedman rule (�2:88 percent with the calibrated discount rate �). Under a lower elasticity

of demand (" = 7), the steady state de�ation increases to �1:50 percent per annum. This higher

de�ation is associated with the lower cost of relative price distortion implied by the lower elasticity

21



of demand. Next, when the variations in either the monetary wedge or the shopping-time distortion

are eliminated, the steady state de�ation is closer to zero since the relative-price, menu cost, and

markup distortions, which are minimized at zero in�ation, become relatively more important.25

Eliminating variations in the markup distortion leads to a larger steady-state de�ation due to

greater relative importance of the two monetary distortions.26

I next compare the optimal steady-state in�ation under SDP and TDP. Note that the TDP

model counterpart is constructed under the assumption that the parameters f�jgJj=1 and f!jgJ�1j=0

are equal to the steady-state values under the SDP model, with all other structural parameters

remain the same as their counterparts under SDP. In the "full" distortions case, there is a slightly

larger de�ation rate (-0.988 percent) under TDP than under SDP (-0.992 percent). This pattern

is also apparent under lower " or when one or more sets of distortions are eliminated. This can

be understood as follows. First, even though in the TDP model we have the same adjustment

patterns (�j and !j) as in the steady state under SDP, the steady state allocation under SDP is

not the equilibrium allocation under TDP. This is because there are "freed" resources in terms of

labor/leisure time under TDP since �rms do not have to pay the adjustment costs. These unused

resources would be optimally dispersed as additional leisure or labor time. Since this additional

labor time can be used to produce more output, the economy under TDP would be producing more

e¢ ciently (closer to potential) with lower average markup distortions than the economy under SDP.

Since a lower steady state markup is associated with smaller de�ation (in�ation is closer to zero), it

follows that the optimal steady-state de�ation rate should be smaller under TDP than under SDP.

However, the di¤erence is quite small since these extra resources from price adjustment activity

under SDP are also small.27 This result also means that if �rms under TDP were also required to

pay the same amount of �xed costs when they adjust as in the SDP case, the optimal steady-state

in�ation should be identical under the two cases. This is as expected since both cases are calibrated

under identical steady-state frequency of price adjustment, meaning �j and !j are identical in the

25By eliminating variations in distortions, we mean that we make it impossible for the monetary authority to
in�uence or manipulate the variations in the distortions. This can be thought using the idea of �scal subsidy:
government would provide subsidy when there are movements in distortions so that these distortions would always
be equal to a certain level. In terms of the model speci�c, for example when we want to remove variations in the
monetary-wedge distortion, we then set R(1 � �) in (10) to a certain constant level and resolve the model. At least
one of the distortions have to be present in the economy� otherwise, there is no scope for stabilization policy.

26Here, the (constant) markup is set to equal to the steady-state markup under optimal policy with all the
distortions present.

27Speci�cally, the aggregate labor resources used in price adjustment activities in the steady state is about 0.016
percent of aggregate steady-state total labor.

22



steady state for all j.

3 Optimal timeless perspective (long-run) responses

3.1 Productivity shock

This section considers the �rst-order optimal responses to a temporary productivity shock under

the assumption of timeless perspective (Woodford, 2003). That is, although the true Ramsey

solution involves a monetary authority that treats initial periods di¤erently due to the absence of

past commitments, we assume that the monetary authority ignores this "start-up problem." Put

another way, the monetary authority is assumed to have committed to the state-contingent policy

rule since time immemorial. The cost of ignoring these initial conditions is analyzed in section 5.

Throughout the analysis below the economy is assumed to be always at the steady state prior

to the shock and the shock size is 2 (two) standard deviations, normalized so that productivity

increases by 1 percent on impact relative to its steady state value.

RBC and TDP without monetary distortions I begin the analysis with a review of the

optimal monetary policy response in the time-dependent pricing (TDP) model with only relative-

price and markup distortions, as in Benigno and Woodford (2005), Goodfriend and King (1997),

King and Wolman (1999), and Woodford (2002). The response in a familiar simple real business

cycle (RBC) model is calculated and displayed as well to serve as a benchmark.28 Both the RBC

model and the "cashless" TDP model share the same zero steady-state in�ation.

The optimal response to a productivity shock in this cashless TDP model is to exactly replicate

the allocation in the RBC environment, albeit in a monopolistically competitive setting (Figure

3). Here, it is optimal to keep in�ation at its zero steady-state level and to fully accomodate the

productivity shock. That is, price stability in response to a productivity shock is optimal when

monetary distortions are absent. Consumption increases one-to-one (1 percent on impact) with the

shock throughout the whole period of higher productivity. Labor is essentially constant: there is an

exact o¤set of wealth and substitution e¤ects re�ecting the households�preference speci�cation.29

28To permit direct comparison with the TDP model, the �rms in the RBC model also use labor as the only
input in production, hence we abstract from capital accumulation. Prices are �exible and �rms are assumed to be
monopolistically competitive.

29Labor in this �gure and subsequent ones only include the dynamics of labor used in production. The dynamics of
production labor are virtually identical to the dynamics of total labor since labor used in costly credit transaction and
in price adjustment activity (under SDP) are small, both in the steady state and in the near steady-state dynamics.
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Since in�ation remains equal to its zero steady-state level, the average markup and relative price

distortions continue to be minimized and hence there are zero variations in each of these distortions

(not shown). Regarding the interest rate�s movements, initially there is a decrease in the real rate

when consumption is high relative to the steady state, but it grows over time to its steady-state

level as consumption is expected to decrease to its steady-state level. Since in�ation is zero, the

nominal rate and real rate responses exactly coincide.

This complete price stability result is in accord with that obtained in a linear-quadratic (LQ)

framework such as Clarida, Galí, and Gertler (1999) and Benigno and Woodford (2005). In an LQ

framework, the loss function in this two-distortion case is a quadratic function of in�ation and an

output gap measure. As stressed by Benigno and Woodford (2005) among others, in the isoelastic

utility case under zero steady-state government purchase, there is no tradeo¤ between in�ation and

output gap stabilizations in response to a productivity shock. Minimizing in�ation variation also

minimizes the variation in the output gap.

TDP with and without monetary distortions Figure 4 compares the optimal responses under

TDP with and without monetary distortions.30 The presence of additional frictions from money

demand alters the tradeo¤ faced by the monetary authority. In addition to the costs of variations

in the relative-price and markup distortions, the monetary authority also needs to manage the cost

of variations in the nominal interest rate that a¤ects the opportunity cost of holding money. As

shown in Figure 4, complete in�ation stabilization is no longer optimal, though feasible, in such an

environment. The monetary authority in this environment has to compromise between complete

price stability and the Friedman rule.

One can see this compromise from the responses of in�ation and the nominal interest rate in

Figure 4. First, it is no longer optimal for in�ation to stay constant since we know from Figure

3 that the nominal rate has to decrease by a bit more to be consistent with constant in�ation.

Hence, in such a scenario, the monetary authority completely ignores the welfare cost of nominal

interest rate movements. On the other hand, if the nominal rate is completely stabilized as in the

Friedman rule, in�ation has to vary by more to accomodate movements in the real interest rate

associated with consumption movements. Under the optimal policy, the compromise means that

30The case considered here with monetary distortions is identical to the model in Khan, King, and Wolman (2003),
with the exception of the di¤erence in calibration of the �rms�distribution parameters f!jgJ�1j=0 . Johnston, King,
and Lie (2008) instead consider Calvo (1983) price setting but with the same four distortions. Both studies display
largely similar dynamics as those presented here.
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the nominal rate responses are smoothed out relative to the case where monetary distortions are

absent. In�ation is no longer constant: there is a slight de�ation on impact but in�ation is higher

relative to the steady state in subsequent periods. The in�ation and nominal rate responses imply

that consumption increases by a bit less than 1 percent before subsequently tracking productivity.

Despite the di¤erences in the dynamics between the TDP case with and without monetary

frictions, the optimal policy here can still be considered as an "approximate price stability" rule

in a sense the price level remains largely stabilized. For example, the largest deviation of in�ation

is only about 5 basis points deviation (0.05 percent) at the annual rate. Using a medium-scale

macroeconomic model that accords well with postwar U.S. business cycles, Schmitt-Grohe and

Uribe (2007) report the same conclusion regarding this approximate price stability result.

TDP and SDP with "full" distortions Finally, Figure 5 compares the long-run timeless per-

spective responses under the TDP and SDP models when all four sets of distortions are present.

The optimal response under SDP is to closely replicate the dynamics under the TDP model coun-

terpart, indicating that approximate price stability is also optimal. It is again optimal to have a

slight de�ation on impact in response to a productivity shock, although the in�ation variation is

larger under SDP. However, in�ation response is again muted: the largest deviation of in�ation is

less than an 8-basis-point deviation from the steady-state value (in quarter three). The monetary

authority also smooths out the nominal interest rate movements due to the presence of the mone-

tary distortions. As in the TDP case, consumption also increases by a bit less than productivity,

although it is closer to the 1-percent increase in productivity. One subtle di¤erence between the

TDP and SDP cases is that there are now movements in the fraction of �rms adjusting (!0;t).

Under SDP, on impact, there is an increase in the fraction of �rms adjusting in response to higher

de�ation since �rms�relative prices increase more quickly than before. There is a high correlation

between the responses of in�ation and the fraction of �rms adjusting, which re�ects the fact that

�rms�adjustment decision crucially depends on the expected path of the price level.

Despite the conclusion that the long-run response to a productivity shock under SDP is largely

similar to that under TDP, I note that there are some important quantitative di¤erences in the

dynamics. The di¤erences are quantitatively small since in this case the optimal policy is close to

complete price stability, in which in�ation only deviates slightly from its deterministic path� as

shown in section 5, however, they can be quantitatively large when the response of in�ation is farther
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away from its deterministic steady-state point. In spite of these quantitatively-small di¤erences,

it is important to recognize that they still re�ect the e¤ect of the presence of endogenous timing

and frequency of price adjustment under SDP. Recall that the task of the monetary authority

is to optimally balance the costs of variations in various distortions. Since the variation in the

additional adjustment cost (menu cost) distortion under SDP is minimized when in�ation stays

constant, one might think that the optimal response should involve a smaller in�ation variation

under SDP. Yet, as shown in Figure 5, in�ation is actually more variable under SDP than under

TDP. This conjecture misses the changing nature of the relative costs of various distortions and

the policy tradeo¤ between various stabilization goals faced by the monetary authority under SDP.

The optimal policy response can be understood as follows. First, note that for a given change

in in�ation, the variation in the relative-price distortion is smaller under SDP than under TDP.

This smaller price dispersion is due to the fact that �rms are able to optimally respond to changing

in�ation. For example, if in�ation deviates farther away from zero or a trend, additional �rms will

choose to adjust so that prices are more closely synchronized. Under TDP, �rms do not have this

opportunity and will only adjust if they are given the exogenous signal to adjust, so that there is

higher price dispersion. This lower relative-price-distortion cost of in�ation variation under SDP

means that the monetary authority can "a¤ord" to let in�ation vary more and to optimally put

more weight on the stabilization of other distortions or variables. For example, this is apparent

in the response of the nominal rate, which a¤ect the variations in the two monetary distortions,

depicted in Figure 5. The nominal rate varies by less under SDP, indicating that the optimal policy

is closer to the Friedman rule. The monetary authority can also a¤ord to stabilize the average

markup distortion by more, which is apparent by looking at the consumption response relative to

productivity. Compared to under TDP, consumption tracks productivity much closer under SDP,

indicating a smaller decrease in the output gap.31 Overall, however, this modi�cation to the policy

tradeo¤ in response to a productivity shock is relatively small. Hence, from the timeless perspective,

the optimal response under TDP is a good approximation to the optimal response under SDP.

3.2 Government purchase shock

So far I have exclusively discussed the optimal response to a productivity shock. Figure 6 now

displays the dynamics when the economy is hit by a positive two standard-deviation government

31Government purchase is assumed to be at its zero steady-state level throughout this higher-productivity period,
so that consumption is always equal to output.
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purchase shock.32 A temporary, but persistent, government purchase shock can be thought as

a temporary drain on economy�s resources from the perspective of the representative household.

Households thus choose to reduce consumption (top left panel of Figure 6) and increase work e¤ort

in response to this negative wealth e¤ect. Since the increase in government purchase, and hence,

the decrease in consumption, are temporary, the real interest rate is temporarily higher. In�ation

movements are generally small so that the price level is largely stabilized around its steady state.

These dynamic patterns occur under both the TDP and SDP assumptions. As noted by Schmitt-

Grohe and Uribe (2007), the monetary authority chooses an allocation that resembles the allocation

in the �exible-price case, but with due consideration regarding the presence of predetermined prices

and monetary frictions.33

The conclusion regarding the optimal long-run dynamics in the SDP model versus the TDP

model in the productivity shock case carries over to the case of a government purchase shock. In

particular, in�ation tends to be more variable and the optimal policy is closer to the Friedman rule

under SDP. The latter point is apparent by a more muted nominal interest rate response under

SDP as depicted in the top right panel of Figure 6. Once again, the lower cost of in�ation variation

on the relative-price distortion under SDP is responsible for this result. As in the productivity

shock case, the response under SDP still closely tracks the response under TDP.

3.3 Additional discussions

The role of monetary distortions Most commonly optimal monetary policy studies in the

literature assume the presence of only two market distortions: the relative-price distortion and the

markup distortion. One may then wonder about the importance of the monetary distortions for

the above results.

From the model-solution standpoint, these additional distortions are needed so that the SDP

model used here has a determinate steady-state solution with �nite J . Note that in the absence

of monetary distortions, the steady-state in�ation under the optimal policy is zero� without some

additional, potentially restrictive, assumptions, all �rms would then optimally choose not to adjust

forever in the steady state, i.e. J ! 1. This would make the model intractable and infeasible to

solve quantitatively.
32As in the productivity shock case, the response is normalized so that government purchase increases by 1% on

impact.
33Schmitt-Grohe and Uribe (2007) consider a permanent increase in the growth rate of government purchase. Yet,

the same intuition holds in the case of a temporary shock.
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But more importantly, monetary distortions play an important role for the near steady-state

dynamics results presented above since these distortions cause the monetary authority to face an

additional policy tradeo¤. The presence of this additional tradeo¤ in turn makes it possible for us

to observe the change in the policy tradeo¤s faced by the monetary authority when �rms�pricing

decisions are state-dependent. For example, as is familiar and shown previously, there is no tradeo¤

between in�ation and output gap stabilizations if only the relative-price and markup distortions

are present when the economy is hit by a temporary productivity shock� the monetary authority

can optimally choose the allocation in which both distortions continue to be minimized. This result

continues to be the case even under the SDP environment. To observe the change in the policy

tradeo¤s under the productivity shock, we thus need the monetary authority to be faced by a policy

tradeo¤ in the �rst place, which is provided by the presence of the monetary distortions. When the

economy is hit by a government purchase shock, on the other hand, the monetary authority does

face a tradeo¤ between in�ation and output gap stabilizations even when monetary distortions are

absent. We should still then observe some di¤erences between the impulse responses under SDP

and those under TDP, provided we make additional assumptions so that steady state under the

optimal policy is determinate. The di¤erences between SDP and TDP responses are not therefore

due to the additional presence of monetary distortions per se as claimed by Nakov and Thomas

(2010).34 As long as there exists a policy tradeo¤ faced by the monetary authority we should still

observe the results exhibited above.

The second-order approximate solution The solution methodology employed in this paper

allows the model to be solved up to a second-order approximation and for the associated impulse

34Nakov and Thomas (2010), which came out in circulation after the �rst version of this paper, also study optimal
monetary policy under SDP using the model of Dotsey, King, and Wolman (1999), but without monetary distortions.
To obtain a determinate optimal steady-state solution with �nite J and non-zero mass of �rms adjusting for j < J ,
they make additional assumptions and restrictions on the distribution of the �xed adjustment costs. They conclude
that the responses under SDP and TDP are identical and claim that the results in this paper are entirely due to the
additional presence of monetary distortions. This conclusion is mainly based on the impulse responses in their �gure
2, which shows, among others, that the optimal response to a productivity shock is identical under TDP and SDP�
and in�ation does not deviate from its zero steady-state in�ation. Yet, as explained in the main text, one cannot
possibly observe the change in the policy tradeo¤s created by the presence of SDP in an environment in which there
doesn�t exist a policy tradeo¤ in the �rst place, as is the case in Nakov and Thomas under the productivity shock.
In their �gure 2, it is therefore expected that in�ation response should be identical under SDP and TDP. In fact, as
shown in their �gure 3, the responses under SDP when the economy is hit by a cost-push shock� a case in which
there is a tradeo¤ between in�ation and output-gap stabilizations even when monetary distortions are absent� are
indeed not the same as the responses under TDP. Even though the di¤erences are quantitatively small there (due to
fact that the optimal timeless-perspective policy is close to price stability), we can indeed still observe the change in
the tradeo¤s faced by the monetary authority.
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responses to be readily computed. Under the timeless perspective assumption where the optimal

policy is close to price stability and when the economy was initially at the steady state prior to

a shock, we should not expect much di¤erences, both qualitatively and quantitatively, between

the �rst-order and the second-order impulse responses.35 However, this may not be the case under

several scenarios where these two assumptions do not hold. One example would be a case where the

monetary authority is faced with a decision on how to optimally disin�ate a high-in�ation economy.

Another example is a scenario in which the economy is repeatedly hit by a series of shocks, instead

of a one-time shock. These two examples may be able to fully reveal the state-dependence nature

of state-dependent models such as in this paper, especially in relation to the optimal monetary

policy dynamics. For this, clearly we need to move away from the �rst-order or linear approximate

solution. Thoroughly analyzing SDP models where a second- or higher-order approximate solution

is employed is therefore an important future research agenda.

4 Robustness

In this section I perform several robustness analyses to check whether the results in section 3 above

still hold under several parametrizations in the model, focusing on the responses to a productivity

shock. Similar results are found under a government purchase shock.

The �rst robustness check involves a case where the demand elasticity is lower, i.e. " = 7. Other

parameter values are set as in Table 1� except for the largest possible �xed adjustment cost, B,

where it is adjusted so that we still obtain J = 6. This case thus corresponds to a case in Table 2

where the optimal steady-state in�ation under SDP is �1:5% per annum. Figure 7.A shows that

the main result in section 3 continues to hold. That is, it is still optimal for the monetary authority

to let in�ation vary more when �rms�pricing decisions are state dependent.

Figure 7.B shows a case where B is set so that J = 9� all other parameter values are set as

previously.36 As is expected, when J , the longest possibly period in which �rms�prices can remain

�xed, is higher, the impulse responses look smoother compared to the benchmark case of J = 6.

Yet, we can still clearly observe the same change in the policy tradeo¤s under SDP in comparison

to its TDP counterpart.

35This is indeed the case, as shown in an earlier version of this paper.
36The optimal steady-state in�ation in this case is equal to �0:565% per annum under SDP. It is equal to �0:561%

per annum under the TDP assumption.
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Finally, I look at the parametrization of the price adjustment cost distribution. Various choices

for the values of the left parameter and the right parameter of the Beta distribution do not change

the main conclusion in section 3.37 Changing the distribution to the one used in Dotsey and King

(2005) also preserves the above results.38

5 The start-up problem

I consider in this section a departure from the timeless perspective policy. One should note that

the optimal policy from the timeless perspective is not the true Ramsey solution, which generally

involves treating the starting period of optimal policy implementation di¤erently than the subse-

quent periods. That is, a Ramsey planner takes into account that there is no past commitment

that she must abide by in the starting period during which the optimal state-contingent plan is

set and announced. The timeless perspective optimal policy is thus suboptimal in a sense that

it is welfare-dominated by the true Ramsey solution, although it welfare-dominates other time-

consistent rules.39 This so-called "start-up problem" means that the policy rule in the starting

period is di¤erent than that in the subsequent periods. One reason to analyze this start-up prob-

lem is that it essentially measures the cost of adopting the timeless perspective policy instead of

the true Ramsey policy, which I undertake in this section.

In the context of monetary models with monopolistic competition like the model in this paper,

this start-up problem takes the form of a monetary authority that generates surprise in�ation in

the starting period of optimal policy implementation. It is optimal to do so since the economy

operates ine¢ ciently due to �rms�monopoly power. Generating temporary higher in�ation would

erode the markup of �rms when prices are sticky, and hence, would temporarily bring the economy

closer to the �rst-best allocation.

One question of interest that one can ask is whether the start-up in�ation would be more muted

under the SDP assumption. An implication of SDP is that in�ation is more variable since �rms can

change their prices more freely. This property of SDP means that the monetary authority has less

37Results are available upon request.
38Dotsey and King (2005) assume that the CDF of adjustment cost is F (x; a; b) = K1 tan(a + (b � a)x) + K2.

Here, a and b are parameter values (b > a) and K1 and K2 are appropriately chosen constant parameters that are
functions of a and b.

39One can view the optimal policy from the timeless perspective as time consistent since if the policy itself is
assumed to have been implemented since time immemorial, there is no reason for the monetary authority to deviate
from this behavior now or in the future.
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leverage over real activity� or from a standpoint of the New Keynesian Phillips curve, the slope of

the Phillips curve is steeper under SDP than under TDP. Hence, the conjecture that the start-up

in�ation would be lower under SDP is a reasonable one to make. As we see below, this conjecture

is incorrect for the very reason that the policy tradeo¤ is altered under SDP.

We can analyze the dynamics of the start-up problem in the context of the present model

by setting the lagged policy multipliers to zero since these multipliers essentially represent the

monetary authority�s past commitments.40 Furthermore, I assume that the economy was at the

steady state prior to t = 0 and there is zero stochastic disturbance or shock. These last two

assumptions make sure that the dynamics coming from this exercise are entirely due to the start-

up problem and not to the transition across steady states or to the response to an exogenous shock.

After the starting period, the monetary authority is assumed to follow the timeless-perspective

policy rule. We can then look at the response of the economy based on these assumptions. For

interested readers, appendix D provides further background on the analogous start-up problem in

a simple linear-quadratic (LQ) framework under the time-dependent Calvo pricing as in Clarida,

Galí, and Gertler (1999).

The start-up problem under TDP Let�s �rst look at the start-up problem under TDP, with

the dynamics depicted in Figure 8. As in the discussion above, the monetary authority optimally

chooses to generate higher in�ation in the starting period of the precommitment policy. In�ation

goes up initially by more than 250 basis points from its steady state and this higher-than-steady-

state in�ation lasts for about �ve to six quarters. The transition speed of in�ation back to its

steady-state level mainly depends on the probabilities of price adjustment (�j), which are assumed

to be constant under TDP.41 The top right panel of Figure 8 displays the motivation behind this

surprise in�ation: the temporary increase in in�ation temporarily erodes �rms�average markup,

which stimulates consumption and output. (Since there is no government purchase, output and

consumption dynamics are identical.) Cumulatively over the entire stimulation periods, consump-

tion is higher relative to its steady state by about 6 percent. Both the real and nominal interest

rates decrease during these early periods, but the nominal rate decreases less on average due to

expected in�ation.

40Speci�cally, I assume that the optimal policy�s starting period is at t = 0 and set the vector of state variables
s20 to zero, which re�ect the fact that there is no past commitment in this starting period.

41This also holds in the analysis of the start-up problem in a simple LQ framework in appendix D.
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Note that the size of the start-up in�ation depends on several factors. First, it depends on

the size of the �rms�monopoly power and hence, the size of the average markup distortion, in

the economy. The higher is the markup distortion, the higher the start-up in�ation is.42 Second,

it depends on the shorty-run in�ation-output tradeo¤, provided by the presence of predetermined

prices. Other things held constant, the start-up in�ation is lower if prices are more �exible as the

ability of the monetary authority to stimulate real activity in the short run is more limited. Third,

it depends on the relative cost of in�ation variation since the optimal decision of the monetary

authority to generate this surprise in�ation and to erode the average markup is not a free lunch. In

this case, higher in�ation increases the size of the relative-price distortion (price dispersion), which

a¤ects the welfare of the representative agent. In determining the size of the start-up in�ation, the

monetary authority has to take into account these various factors. The last two factors are especially

important when we consider the start-up problem under the corresponding SDP speci�cation, which

I discuss below.

The start-up problem under SDP Figure 9 compares the start-up problem in the SDP and

TDP models. We can see that it is still optimal for the monetary authority to generate surprise

in�ation in the �rst period under the SDP assumption. Yet, there are two important di¤erences

regarding the dynamics. The �rst one involves the size of the start-up in�ation at quarter zero.

Under SDP, the surprise in�ation is much higher: in�ation jumps by more than a 500 basis point

deviation from the steady state. This result can be understood as follows. As noted above, an

economy under SDP can be thought as one with less nominal rigidity due to �rms� ability to

change their timing of price adjustment. An implication of this lower degree of nominal rigidity

is that the monetary authority has less leverage over real activity. This is apparent if we look at

the relative consumption (output) and average markup movements in the top right panel of Figure

9. Under SDP, the average markup is eroded by less and consumption increases by less than in

the TDP case in spite of the higher increase in in�ation. It is in this sense that the presence of

endogenous timing of adjustment under SDP alters the short-run in�ation-output tradeo¤ faced by

the monetary authority. Yet, despite this lower leverage over real activity, it is optimal to generate

a higher start-up in�ation under SDP. This is precisely because the cost of in�ation variation on

the relative-price distortion is lower under SDP. That is, even though the decrease in the monetary

42 If there were no markup distortion so that market-generated output level is e¢ cient, there would be no need for
the monetary authority to generate this surprise in�ation.
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authority�s leverage over real activity means that there is less incentive to generate surprise in�ation,

the changing nature of the policy tradeo¤ involving the relative-price distortion makes it optimal

to increase in�ation by more.

The second di¤erence between the start-up dynamics under the TDP and SDP assumptions is

in the transition of in�ation back to its steady-state level. Under SDP, in�ation is less persistent

than under TDP. This is intuitive since more �rms choose to adjust their prices in response to

higher in�ation in the SDP case, as can be seen in the bottom left panel of Figure 9.

To summarize, under the SDP environment, the lower cost of in�ation variation in terms of

relative price distortion gives rise to much higher start-up in�ation under SDP. This conclusion

is achieved even though the monetary authority has less leverage over real activity under SDP.

As shown in appendix D, a similar result can also be observed in a simple LQ framework with

Calvo pricing when we vary the parameter governing the probability of price adjustment. To a

certain degree, the incorporation of SDP in this context can be thought as a Calvo model with a

higher probability of price adjustment, provided that stabilization (welfare) weights are adjusted

appropriately.

Welfare cost The start-up problem involves the monetary authority choosing to in�ate (the true

Ramsey policy) rather than adopting the timeless perspective policy. There is a cost associated

with ignoring this start-up period. One way to quantify this cost is to compute the unconditional

welfare cost associated with not taking this opportunity to generate surprise in�ation in the starting

period of policy implementation. Following Schmitt-Grohe and Uribe (2005, 2007), I de�ne this

welfare cost as the fraction of consumption that the representative household would be willing to

give up in the benchmark policy environment without past commitment (the true Ramsey policy),

so that it would be as well o¤ to be in the alternative policy environment with past commitment

(timeless perspective). This welfare cost, wc, is implicit in the expression

E0

1X
t=0

�tu((1� wc)cct ; lct ) = E0

1X
t=0

�tu(ct; lt) ,

where the superscripts c in consumption and leisure variables in the left-hand-side of the above

expression indicate the contingent plans under the benchmark policy without past commitment.

The expectation operator above makes clear that the starting implementation period of the optimal

policy is at period t = 0. Hence, we can compute the welfare cost wc using the second-order
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approximation method employed here.43

I �nd that under SDP, wc is equal to about 0.0088 percent. Using the 2008 nominal U.S. per

capita personal consumption expenditures �gure of $33,264, this amounts to a welfare cost of about

$2.92 per capita per annum. This number means that the cost of adopting the timeless perspective

policy is quite small, although it is not negligible. Hence, even though the timeless perspective

policy is suboptimal, it is still a good enough representation of the true Ramsey solution.

6 Conclusion

This paper provides an analysis of optimal monetary policy under precommitment with the assump-

tion that �rms�pricing decisions are state dependent. The main �nding from the analysis is that

the presence of endogenous timing of price adjustment alters the tradeo¤ faced by the monetary

authority. I also show that the cost of in�ation variation on the relative-price distortion is lower

under state-dependent pricing than under the standard time-dependent pricing assumption. An

implication of this is that it is desirable for the monetary authority to put less weight on in�ation

stabilization, relative to other stabilization goals.

Several additional �ndings arise from the analysis in the paper. First, the optimal timeless

perspective responses to both productivity and government purchase shocks under state-dependent

pricing are shown to involve greater in�ation variations. Yet the optimal response can still be

characterized as an approximate price stability rule. Second, I show that even though the monetary

authority has less leverage over real activity under state-dependent pricing, the optimal policy

start-up problem involves a higher surprise in�ation. Once again, the changing nature of the policy

tradeo¤ is responsible for this result. I also show that the welfare cost associated with adopting the

timeless perspective policy instead of the true Ramsey policy is quite small, which is an indication

that the optimal policy from the timeless perspective is a good approximation to the true Ramsey

solution.

In terms of future research, the analysis of the paper can be extended in several ways. The

central focus of the present study is the characterization, and not the implementation, of optimal

monetary policy under state-dependent pricing. However, to be useful for policymakers, one should

consider the implementability issue in the future. Another important extension involves the driving
43A second- or higher-order approximation is generally needed for an accurate welfare computation. Kim and Kim

(2003) show that using linear approximation to compute welfare can lead to spurious welfare reversals, which is due
to the inaccuracy of the linear approximate solution.
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process in the model. In this paper, aggregate �uctuations are driven by two standard shocks in

neoclassical models: productivity and government purchase shocks. It would be desirable to extend

the analysis to a setup where there exists a cost-push shock as is common in the New Keynesian

literature (e.g. Clarida, Galí, and Gertler, 1999). Since the presence of such a shock means that

prices tend to move beyond the movement in excess demand, there will be a further nontrivial

modi�cation to the policy tradeo¤ in combination with the state-dependent pricing assumption.

Yet another promising research avenue is in terms of the use of a second-order approximation

method in characterizing the dynamics of the optimal response, given the state-dependence nature

of the state-dependent pricing framework.
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Tables and Figures

Table 1: Calibrated Parameters

Rate of time preference (�) 0.99

Labor supply elasticity (�) 1

Elasticity of intertemporal substitution (�) 1

Scale parameter in the utility (�) 3.59

Demand elasticity (") 10

Fixed adjustment cost distribution (Beta)

Beta left parameter (al) 2.10

Beta right parameter (ar) 1

The largest �xed cost (B) 0.00057

Credit cost distribution (generalized Beta)

Mass of goods with zero credit cost (��) 0.639

Beta left parameter (a1) 2.806

Beta right parameter (a2) 10.446

The largest credit cost (
c) 0.013

Productivity shock

Persistence parameter (�a) 0.95

Standard deviation of shock (�a) 0.0072

Government purchase shock

Persistence parameter (�g) 0.90

Standard deviation of shock (�g) 0.008
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Table 2: Steady-state annualized in�ation under optimal policy

SDP TDP

Benchmark ("full" distortions) �0:993% �0:988%

Lower " (" = 7) �1:502% �1:489%

Eliminating variations in

Shopping-time �0:471% �0:466%

Monetary wedge �0:661% �0:657%

Shopping-time and monetary wedge � � 0%

Markup �1:048% �1:048%

Notes: (1) the TDP model is constructed under the assumptions that
the probabilities of price adjustments (f�jgJ�1j=1 ) and �rms�distribution
(f!jgJ�1j=0 ) are equal to the steady-state values under TDP, with the
same J = 6; (2) the shopping-time distortion is eliminated by settingZ (Rtct=wt)

0

xdF (x) in equation (12) to a constant and resolving

the optimal policy problem; (3) the monetary wedge distortion is
eliminated by setting Rt(1� �t) in equation (10) to a constant
and resolving the optimal policy problem; (4) the markup distortion
is eliminated by setting wt=at to a constant and resolving the optimal
policy problem.
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Figure 1: Steady state implications of various distortions
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Notes: (1) panels A, B, and C are generated using J = 6 with f!jgJ�1j=0 and f�jg
J�1
j=1

equal to their steady-state values under the optimal policy presented in Figure 2,
with monetary and menu cost distortions are assumed to be absent; (2) panels
D, E, and F are constructed using a Beta distribution for the credit cost distribu-
tion, with parameter values as in table 1� further, I assume constant ny = 0:2
and w = a = 1 so that c = a � ny = 0:2, as the nominal interest rate (R) varies.
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Figure 2: Steady-state probability (�j) and distribution (!j) of price adjustment

Optimal policy under SDP
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Figure 3: Optimal timeless perspective responses to a productivity shock

RBC vs. TDP cashless
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Notes: (1) RBC refers to the dynamics of a real business cycle model with
�exible price and where �rms are monopolistically competitive; (2) TDP
cashless refers to the dynamics under TDP model when monetary distortions
(shopping-time and monetary wedge) are absent; (3) the shock size is 2
standard deviation, normalized so that productivity increases by 1 percent on
impact; (4) the TDP model is constructed under the assumptions that the
probabilities of price adjustments (f�jgJ�1j=1 ) and �rms�distribution (f!jg

J�1
j=0 are

equal to the steady-state values under TDP, with the same J = 6.
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Figure 4: Optimal timeless perspective responses to a productivity shock

TDP cashless vs. TDP money
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distortions, are present; (3) the shock size is 2 standard deviation, normalized so
that productivity increases by 1 percent on impact; (4) the TDP model is
constructed under the assumptions that the probabilities of price adjustments
(f�jgJ�1j=1 ) and �rms�distribution (f!jg
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j=0 are equal to the steady-state values under

TDP, with the same J = 6.
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Figure 5: Optimal timeless perspective responses to a productivity shock

TDP vs SDP

First-order approximation
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Notes: (1) the �gure is constructed under the assumption that all distortions
are present; (2) the shock size is 2 standard deviation, normalized so that
productivity increases by 1 percent on impact; (3) the TDP model is
constructed under the assumptions that the probabilities of price adjust-
ments (f�jgJ�1j=1 ) and �rms�distribution (f!jg

J�1
j=0 are equal to the steady-state

values under TDP, with the same J = 6.
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Figure 6: Optimal timeless perspective responses to a government purchase shock

TDP vs SDP

First-order approximation
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Figure 7.A: Optimal timeless perspective responses to a productivity shock
TDP vs SDP; First-order approximation; " = 7, J = 6
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Figure 7.B: Optimal timeless perspective responses to a productivity shock
TDP vs SDP; First-order approximation; " = 10, J = 9
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Figure 8: The start-up problem

Optimal policy under TDP
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deterministic steady state under optimal policy; (3) all market distortions
are assumed to be present.
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Figure 9: The start-up problem

Optimal policy under SDP vs. TDP
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Appendix

Appendix A: Details of households�intertemporal optimization problem

Households choose the amount of �nal goods consumption (ct) and leisure (lt) to maximize the
lifetime utility function,

U =
X1

t=0
�t
�

1

1� �c
1��
t + �

1

1� �l
1��
t

�
,

subject a budget constraint which I describe next. In each period households receive income from
their total labor labor e¤ort (nt) with nominal wage Wt, nominal one-period bond (Bt) from the
last period, and dividends from their ownership of the intermediate-goods �rms (Zt). Households
also inherit their previous period�s portfolio of intermediate-goods �rms (xt). The (pre-dividend)
value of the portfolio of �rms is Vt. They then pick the amount of consumption for that period,
buy current period bonds (Bt+1), and may buy more claims on the ownership of the intermediate
goods �rms. As mentioned in the main text, households optimally choose to �nance some portions
of consumption goods using money and the other portions using credit. Money is used since credit
is costly, as in the transaction cost models of Baumol (1954) and Tobin (1956). Some goods are
bought using credit because there is an opportunity cost of holding money (the nominal interest
rate). Households thus accumulate debt from the credit use. This debt is assumed to be paid in
the next period without any interest. Let �t be the proportion of credit goods at time t. If we let
�Pt as the nominal price of �nal consumption goods at time t, then the amount of nominal money
holding is Mt = (1� �t) �Ptct. The amount of nominal debt that must be paid in the next period is
then Dt+1 = �t �Ptct. There is also a lump-sum tax Tt that must be paid to the government. Hence,
the budget constraint at time t is given by

Mt +
1

1 +Rt
Bt+1 + xt+1(Vt � Zt) � xtVt +Bt +Wtnt �Dt + Tt .

Note that one can make the nominal budget constraint into a real one by dividing it by the aggregate
price level Pt - in the case of the CES aggregator,

Pt =

�Z 1

0
Pt(i)

1�"
� 1
1�"

,

where Pt(i) is the nominal price of intermediate good i. On the price of �nal consumption goods, �Pt,
the assumption is that the �nal-goods producers (retailers or households) must borrow to �nance
the production with interest rate Rt. Since the �nal-goods producers are perfectly competitive
and receive zero pro�ts, it follows that �Pt = (1 +Rt)Pt.

As in Khan, King, and Wolman (2003), I assume that the each of the (mass) of �nal consumption
goods has a random �xed time cost in terms of labor unit. (Although it is common to assume the
representative household is assumed to purchase a single �nal consumption good, one can think
of the �nal good as a continuum of �nal goods in a unit interval). Let F (:) be the cumulative
distribution function of the time cost. The largest time cost that households are willing to pay is
then F�1(�t). A good would be purchased with credit if its time cost is below this largest time
cost, while money would be used to purchase a good if its time cost is above this value. The total
transaction time at time t in labor unit is then given by

ht =

Z F�1(�t)

0
vdF (v) .
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Since labor must also be used in production (nyt ) and in price adjustment activity (n
p
t ), the total

labor time is then
nt = nyt + n

p
t + ht = 1� lt .

We can then form a Lagrangian to solve for the optimization problem described above. Let �t be
the multiplier attached to the budget constraint. Solving for the Lagrangian and rearranging the
�rst order necessary conditions lead to equations (8), (9), (10), (11), and (12) in the main text.

Appendix B: Credit cost distribution and money demand function

This appendix describes the credit cost distribution and the implied money demand function used
in the main text. In this shopping-time assumption, the implied optimal choice between using
money or credit based on households�e¢ ciency conditions is given by

F�1(�) =
Rc

w

where F (�) is the CDF of the credit cost distribution and � is the proportion of goods bought using
credit. If we let P as the nominal price of �nal goods (so that Pc is the nominal consumption
expenditure), it follows that the nominal demand for money is M = (1 � �)Pc. Combining this
with the e¢ cient credit used above, we have

M

Pc
= 1� F (Rc

w
)

Note that when all goods are bought using money (� = F (Rcw ) = 0), the money demand function
then collapses to M

P = c, as in cash-in-advance models.
Khan, King, and Wolman (2003) uses the above expression to estimate the money demand

function given a particular distribution F (�). Speci�cally, they assume that the distribution is a
generalized Beta distribution of the form

F (x) = �� + �̂ � F beta( x


; a1; a2)

where a1 and a2 are the two parameters the Beta distribution and where the support has to be
normalized by 
, the largest credit cost. Here, �� is the proportion of goods that have zero credit
cost with the property 0 < �� < 1, so that there are always some goods with zero credit cost.
�̂ � 1 � �� is then the proportion of goods that have non-zero cost distributed according to Beta
distribution. Given this speci�ed distribution, Khan, King, and Wolman (2003) estimate the �ve
parameters (��; �̂; a1; a2;
) by minimizing the distance (sum of squared errors) between 1� M

Pc and
F (Rcw ) based on the money demand function above and given data for M (nominal money), Pc
(nominal consumption expenditure), R (nominal interest rate), and w (real labor compensation).
The estimation used in this paper is for the sample period 1959:Q1 through 1989:Q4. The implied
money demand elasticity based on the estimation is less than 0:3 in absolute value throughout the
sample period used.

Appendix C: Adjustment cost distribution

The paper uses Beta distribution for the distribution of the price adjustment costs. Speci�cally,
the PDF of the Beta distribution is

gbeta(x; al; ar) =
1

�(al; ar)

�
xal�1(1� x)ar�1

�
,
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where �(al; ar) =
�(al+ar)
�(al)�(ar)

is the Beta function which is a normalization of the gamma function

�(�). This Beta function can also be written as �(al; ar) =
R 1
0 u

al�1(1 � u)ar�1du. Note that
the Beta distribution is known to be a �exible distribution in which various shapes of the PDF
(increasing, decreasing, convex, concave, etc) can be attained for suitable choices of parameters al
and ar. The CDF is given by

Gbeta(x; al; ar) =
�x(al; ar)

�(al; ar)
,

where �x(al; ar) is the incomplete beta function.
Since the support of the Beta distribution lies on a unit interval, x 2 [0; 1], we need to nor-

malize the support by the largest price adjustment cost B, so that the PDF of the distribution of
adjustment cost is given by

g(�; al; ar;B) = gbeta(
�

B
; al; ar)

for a given �xed adjustment cost �. Hence, the support for the distribution above lies on the interval
0 � � � B. The same procedure goes for the CDF as well. Next, using the speci�ed distribution
above, we can compute the expected level of cost of adjustment, �, for a given proportion of �rms
adjusting, �. Since in the model, � is the determined by the cuto¤ rule v0 � vj = w��, we can
express � as a function of the �xed cost cuto¤ ��. This expression can be cast as

�(��) = B

Z ��=B

0
xgbeta(x; al; ar)dx .

For the parameters of the distribution, I choose al = 2:1 and ar = 1. This leads to the following
shapes for the CDF and PDF

Appendix D: The start-up problem under linear-quadratic (LQ) framework

This appendix serves to put forth the start-up problem, present in all optimal monetary policy
models under precommitment with imperfect competition. I do this by considering optimal policy
problem in a familiar linear-quadratic (LQ) framework, for example as in Clarida, et. al. (1999)
with Calvo staggered pricing. I note some notational overlaps with the main text in the paper.

Here, the familiar model has two distortions present in the economy: the relative price distortion
and the markup distortion due to monopolistically competitive �rms that set prices according to

53



Calvo�s price setting. As in Woodford (2003) and Benigno and Woodford (2004, 2005), we can
derive a quadratic loss function using the second order approximation to the utility function. I
focus on the deterministic case and the case in which the size of the markup distortion is small in
deriving the loss function. The more realistic stochastic case is not relevant for our purpose here
since we can just consider the start-up problem assuming that the stochastic disturbances are zero.
It is true that the size of the markup distortion will matter for how large the start-up e¤ect is, but
since our purpose is just to collect idea on the monetary authority�s incentive to in�ate, we can
just assume a small markup distortion without any loss of generality� as long as there is a markup
distortion, there would an incentive to in�ate in the �rst period.

Given the discussion above, the monetary authority�s objective function is thus given by

L = �1
2
E0

( 1X
t=0

�t
h
� (xt � x�)2 + �2t

i)
, (32)

where xt is the output gap, �t is the in�ation rate (percentage change of price level from time
t� 1 to time t), and x� is the target output gap. The form of the loss function indicates that the
monetary authority should seek to stabilize in�ation around zero and the output gap around the
target level x�. To derive the loss function above, I assume that the momentary utility function

is given by u(ct; nt) = log(ct)� "n
1+v
t
1+v , with ct represents the Dixit-Stiglitz aggregate consumption.

The production function for the monopolistically competitive �rms is linear in labor and these
�rms hire labor competitively in a global labor market. Given these assumptions, it follows that
x� = v� = v(1 � ��1

� ), where � is the elasticity the substitution across goods varieties. In this
expression, � measures the ine¢ ciency of steady state output level due to the markup distortion.
Also, the relative weight on output gap stabilization is given by � = �

� , where � is the coe¢ cient
on the output gap in the Phillips curve

�t = �xt + �Et�t+1. (33)

With Calvo�s probability of non-adjustment denoted by � and assuming a unit output elasticity of
real marginal cost, it follows that � = (1� �)(1� ��)=�.

The optimal policy under commitment then involves a benevolent monetary authority that
selects a state-contingent sequence of output gap xt and in�ation �t for all periods t � 0 by
maximizing (32) subject to (33).44 The Lagrangian for the maximization problem is

L0 = �
1

2
E0

( 1X
t=0

�t
nh
� (xt � x�)2 + �2t

i
+ �t [�t � �xt + �Et�t+1]

o)

where �t is the multiplier of the constraint. The optimality conditions therefore are

�(xt � x�)�
�

2
�t = 0 (34)

�t +
1

2
�t �

1

2
�t�1 = 0 (35)

�0 +
1

2
�0 = 0 , (36)

44There is another constraint involving an aggregate demand condition (the IS curve equation), but this condition
is not needed to solve for the optimal sequences of in�ation and the output gap.
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where the �rst condition holds for all t � 0 and the second condition holds for all t > 0: Equations
(35) and (36) show that the monetary authority should treat the starting period (t = 0) di¤erently
than the subsequent periods. That is, the lagged multiplier associated with past commitments
prior to the start-up period is zero, highlighting that there is no past commitment in the start-up
period.

Following Marcet and Marimon (1999), we can cast the maximization problem into a recursive
form. Formally, let�s consider the following augmented Lagrangian:

V (��1; s0) = minf�tg1t=0maxf�t;xtg1t=0

�1
2E0

1X
t=0

�tf[� (xt � x�)2 + �2t ]

��t(�xt) + (�t � �t�1)g .

Recursively, the above Lagrangian can be written as

V (�t�1; st) = minf�tgmaxf�t;xtg
�1
2f[� (xt � x

�)2 + �2t ] + �EtV (�t; st+1)
��t(�xt) + (�t � �t�1)g .

Hence, by adding a lagged multiplier to the the policy problem, we get the same optimality con-
ditions, given by (34) and (35), for all periods t � 0. One can interpret this lagged multiplier as
the commitment that must be followed by the monetary authority. Note that equations (33), (34),
and (35) are a system of di¤erence equations, of which the stable stationary solutions are given by

xt = �xt�1

�t = ��t�1 +
2(� � 1)�

�
x�

�t = ��t�1 ,

where a � �
�(1+�)+�2

and � =
1�
p
1�4�a2
2a� 2 (0; 1). The unique solution for optimal �t that is

consistent with the initial condition ��1 = 0 is given by
45

�t = (1� �)
�

�
�tx� . (37)

Equation (37) shows that in�ation in the start-up period t = 0 is higher than those in subsequent
periods, illustrating that surprise in�ation is optimal in the start-up period. Several comments on
(37) are in order. First, the size of the start-up problem depends on several features of the model
economy, with the size of the target output gap x� playing a prominent role. In this model setup, we
can interpret the size of the target output gap x� as the size of the steady-state markup distortion
in the economy� that is, the ine¢ ciency in the economy due to �rms�monopoly power. If there is
no monopoly power, there would be no incentive to in�ate since x� = 0 in this case. Equation (37)
tells us that the monetary authority has an incentive to in�ate only if the steady-state output is

45Using the same technique, we can also �nd the evolution of the output gap that is consistent with ��1 = 0. This
is given by xt = �t+1x�.
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ine¢ cient (x� > 0). Put another way, the start-up problem is present because there is a markup
distortion that still exists even under zero in�ation, and the monetary authority can erode this
markup distortion because there is no past commitment that must be respected in the start-up
period 0 (��1 = 0). The higher is the degree of ine¢ ciency due to markup distortion (higher �
and x�), the higher would the start-up in�ation be. The start-up e¤ect will eventually die down
with the rate � per period.

What is the e¤ect of the probability of non-adjustment � on the start-up problem? We can
investigate this by decomposing (37) into period t = 0 and the subsequent periods:

�0 = (1� �)
1

�
x�, (38)

�t = ��t�1 , 8 t > 0. (39)

Note that I have used the fact that � = �=� in deriving (38) from (37). One can show that the
probability of price �xity � positively a¤ects � for given values of �, v, and �. Hence, based on (38),
a higher � (more price stickiness) translates into lower start-up in�ation in period 0, for a given
size of the steady-state markup distortion. This feature is related to the cost of higher in�ation on
the relative-price distortion: since a higher degree of price stickiness leads to a higher relative-price
distortion for a given in�ation rate, the optimal level of surprise in�ation in the �rst period should
be lower when � is higher. That is, the start-up in�ation is lower if prices are stickier since the
welfare cost of in�ation is higher. Equation (39) shows that the speed of the transition of in�ation
back to its steady state level depends entirely on �. The higher is the probability of price �xity, the
higher is �� hence, the slower the transition is. The �gure below shows the evolution of in�ation
as in (37) for several parametrizations of � , with all other parameters �xed at particular values.46
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Note that we can draw a parallel between the above �gure and the result on the start-up problem
under SDP in the main text. Within this context, the economy under SDP can be approximately
thought of as a Calvo model with a lower � (less price stickiness), provided that the relative
stabilization weight (�) is appropriately adjusted.

46Speci�cally, I assume the following parameter values: � = 0:99, � = 10, and v = 0:5.
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