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Introduction

While there is still considerable controversy over the root causes of the Financial Crisis of 2007–

2009, there is little dispute that regulators, policymakers, and the financial industry did not have

ready access to information with which early warning signals could have been generated. For

example, prior to the Dodd Frank Act of 2010, even systemically important financial institu-

tions such as AIG and Lehman Brothers were not obligated to report their amount of financial

leverage, asset illiquidity, counterparty risk exposures, market share, and other critical risk data

to any regulatory agency. If aggregated over the entire financial industry, such data could have

played a critical role in providing regulators and investors with advance notice of AIG’s un-

usually concentrated position in credit default swaps, as well as the exposure of money market

funds to Lehman bonds. Of course, such information is currently considered proprietary and

highly confidential, and releasing it into the public domain would clearly disadvantage certain

companies and benefit their competitors. But without this information, regulators and investors

cannot react in a timely and measured fashion to growing threats to financial stability, thereby

assuring their realization.

At the heart of this vexing challenge is privacy. Unlike other industries in which intel-

lectual property is protected by patents, the financial industry consists primarily of “business

processes” that the U.S. Patent Office deems unpatentable, at least until recently [1]. There-

fore, trade secrecy has become the preferred method by which financial institutions protect the

vast majority of their intellectual property, hence their need to limit disclosure of their business

processes, methods, and data. Forcing a financial institution to publicly disclose its proprietary

information—and without the quid pro quo of 17-year exclusivity that a patent affords—will

obviously discourage innovation, which benefits no one. Accordingly, government policy has

tread carefully on the financial industry’s disclosure requirements.
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In this paper, we propose a new approach to financial systemic risk management and mon-

itoring via cryptographic computational methods in which the two seemingly irreconcilable

objectives of protecting trade secrets and providing the public with systemic risk transparency

can be achieved simultaneously. To accomplish these goals, we develop self-regulated pro-

tocols for securely computing aggregate risk measures. The protocols are constructed using

secure multi-party computation tools [2, 3, 4, 5, 6, 7], specifically using secret sharing [8]. It is

known from [6, 2] that general Boolean functions can be securely computed using “circuit eval-

uation protocols”. Since computing any function on real-valued data is approximated arbitrarily

well by computing a function on quantized (or binary) data, such an approach can theoretically

be used. However, for arbitrary functions and high precision, the resulting protocols may be

computationally too demanding and therefore impractical. We show in this paper that for com-

puting aggregate risk measures based on standard sample moments such as means, variances,

and covariances—the typical inputs for financial risk measures—simple and efficient protocols

can be achieved using secret-sharing over large finite fields or directly over the reals.

With the resulting measures, it is possible to compute the aggregate risk exposures of a group

of financial institutions—for example, a concentration (or “Herfindahl”) index of the credit

default swaps market, the aggregate leverage of the hedge-fund industry, or the margin-to-equity

ratio of all futures brokers—without jeopardizing the privacy of any individual institution. More

importantly, these measures will enable regulators and the public to accurately measure and

monitor the amount of risk in the financial system while preserving the intellectual property

and privacy of individual financial institutions.

Privacy-preserving risk measures may also facilitate the ability of the financial industry

to regulate itself more effectively. Despite the long history of “self-regulatory organizations”

(SROs) in financial services, the efficacy of self regulation has been sorely tested by the re-

cent financial crisis. However, SROs may be considerably more effective if they had access to
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timely and accurate information about systemic risk that did not place any single stakeholder at

a competitive disadvantage. Also, the broad dissemination of privacy-preserving systemic risk

measures will enable the public to respond appropriately as well, reducing general risk-taking

activity as the threat of losses looms larger due to increasing systemic exposures. Truly sustain-

able financial stability is more likely to be achieved by such self-correcting feedback loops than

by any set of regulatory measures.

Secure Protocols

Many important statistical measures such as, mean, standard deviation, concentration ratios,

pairwise correlations can be obtained by taking summations and inner products on the data.

Therefore, we present secure protocols for these two specific functions.

We start with a basic protocol to securely compute the sum of m secret numbers. This pro-

tocol result from an application of secret-sharing [8] and basic probability results. We assume

that each number belongs to a known range, which we pick to be [0, 1] for simplicity. Recall

that the operation amodulom (written a mod m) produces the unique number a+km ∈ [0,m)

where k is an integer, e.g., 3.6 mod 2 = 1.6.

Secure-Sum Protocol

For i = 1, . . . ,m, each party i possesses the secret number xi ∈ [0, 1] as an input, and the

output to each party is s =
∑m

i=1 xi (where the addition is over the reals).

The protocol is as follows:

1. Each pair of parties exchange privately random numbers. Namely, for all i, j with i 6= j,

party i provides to party j a random number Rij drawn uniformly at random in [0,m].

2. For each i, party i adds to its secret number the random numbers it has received from
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other parties and subtracts the random numbers it has provided to other parties. More

formally, party i computes Si = xi +
∑

j∈{1,...,m}
j 6=i

Rji −
∑

j∈{1,...,m}
j 6=i

Rij modm. Each

party publicly reveals Si.

3. Each party computes S =
∑m

i=1 Si modm, which equals s =
∑m

i=1 xi.

Numerical example. Let m=3 (i.e., three parties), x1 =0.1, x2 =0.2 and x3 =0.3. In the first

round of the protocol, the parties exchange random numbers Rij . For example,

Party 1 Party 2 Party 3
Party 1 provides 1.4 2.1
Party 2 provides 1.1 2.3
Party 3 provides 0.3 2.9

In the second round, party i adds to its secret number the elements of the i-th column and

subtract the elements of the i-th row (using modulo 3 arithmetic). Each party publishes the

result Si:

S1 S2 S3

1 1.1 1.5

Finally, the parties add these numbers (modulo 3) and compute the output sum:

s = 3.6 mod 3 = 0.6.

Protocol correctness and secrecy. If the parties follow the protocol correctly, it is easy to check

that the correct sum is always obtained, since each element Rij is added and subtracted once in

S. In addition, we show that this protocol reveals nothing else about the secret numbers than

their sum, even if the parties attempt to infer more from the exchanged data. For example, Party

1 may try to learn more about other parties’ secret numbers by using the information gathered

in S1, S2, S3. We state informally the secrecy guarantee in the following theorem and provide
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Figure 1: Each point in the plot is a realization of (S1, S2, S3) (step 2 in the secure-sum protocol)
for a drawing of the matrix R, keeping x1 = 0.1, x2 = 0.2 and x3 = 0.3 fixed. As illustrated by
the plot, the set of points (s1, s2, s3) for which s1 + s2 + s3 mod 3 = 0.6 is uniformly covered,
suggesting that the Si’s do not carry any other information about the xi’s than their sum.

m privately known real numbers and does not reveal any additional information about the

individual numbers.

To compute securely the inner-product of two real vectors, a slightly more sophisticated

protocol is developed, using secret-sharing (6), as employed in the protocols of (2, 3). The

obtained protocol, named secure-inner-product, is described in details in the appendix. We

state here the security guarantee.

Theorem 2. The secure-inner-product protocol is a self-regulated protocol which outputs the

inner-product of two privately own real vectors and does not reveal any additional information

about the individual vectors.

Previous theorems hold provided that the parties follow the protocol requirements. Exten-

sions to malicious parties or other type of functions can be considered but are not discussed

here.
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Figure 1: Each point in the plot is a realization of (S1, S2, S3) (step 2 in the Secure-Sum proto-
col) for a drawing of the matrix R, keeping x1 = 0.1, x2 =0.2 and x3 =0.3 fixed. As illustrated
by the plot, the set of points (s1, s2, s3) for which s1+s2+s3 mod 3 = 0.6 is uniformly covered,
suggesting that the Si’s do not carry any other information about the xi’s than their sum.

a formal statement and proof in the appendix. We first illustrate a weaker fact here by plotting

the values of S1, S2, S3 for several realizations of the random numbers Rij , while keeping fixed

x1 =0.1, x2 =0.2 and x3 =0.3. As shown in Figure 1, the realizations of (S1, S2, S3) uniformly

cover the set of points (s1, s2, s3) for which s1+s2+s3 mod 3 = 0.6, suggesting that there is no

relevant information in the Si’s other than their sum.

The following is obtained assuming that parties follow the protocol requirements without

deviating from it.

Theorem 1. The Secure-Sum protocol outputs the sum of m privately owned real numbers and

does not reveal any additional information about the individual numbers.

This theorem follows directly from secret-sharing [8] and basic probability results. For

convenience, we provide a proof in the Appendix.

Secure-Inner-Product Protocol

To compute securely the inner product of two real vectors, slightly more sophisticated protocols

are developed and presented in the appendix, using basic secret sharing [8], secret-sharing as
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employed in [7, 3, 4], and Oblivious Transfer [9, 10]. The variants include information-theoretic

and cryptographic protocols on quantized or real data, and have different attributes discussed in

the appendix. We state here an informal result regarding one of these protocols which we call

Secure-Inner-Product protocol 1.

Theorem 2. The Secure-Inner-Product protocol 1 outputs the sum of two privately owned quan-

tized vectors and does not reveal any additional information about the individual vectors.

Note that the previous two theorems hold provided that the parties follow the protocol require-

ments (without colluding or cheating). Extensions to malicious parties or other type of functions

can also be developed but are not discussed here.

Illustrative Example

To illustrate the practical implementation of privacy-preserving measures, we provide a simple

numerical example using publicly available quarterly data from June 1986 to December 2010

(released in arrears by the U.S. Federal Reserve) on the total amount of outstanding loans linked

to real estate issued by three major bank holding companies: Bank of America, JPMorgan, and

Wells Fargo [11]. Suppose that the aggregate value of these loans across the three banks is the

risk exposure of interest, and the magnitude of outstanding loans for each bank is the proprietary

data to be kept private. The historical time series of these data are displayed in Figure 2(a); the

bar graph in blue is the aggregate risk exposure to be computed and the three line graphs are the

proprietary inputs.

The desired result can be obtained with an application of the Secure-Sum protocol described

above [12], which consists of two steps. In the first step, each institution produces two random

numbers to be shared, one for each of the other two participating institutions. These numbers

are shown in line graphs of Figure 2(b) where the color coding indicates the institution gen-
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erating the random numbers. Since these numbers are purely random, there is no relationship

between them and the private data of Figure 2(a), a fact that is clear from visual inspection of

the intermediate outputs in Figure 2(b).

In the second step of the Secure-Sum protocol, each institution uses its private data, the

two numbers it receives from the other two participating banks, as well as the two numbers it

sends to the other two institutions to produce a single value, which we refer to as the privacy-

preserving measure of its private data. This value will be revealed to the other two institutions.

While these privacy-preserving measures, shown in Figure 2(c), seem like a pure noise, they

have just enough of the original data so that the sum of these three numbers under modulo

arithmetic yields the correct sum of the original inputs. The key here is that the randomness

produced in the first step, as shown in Figure 2(b), exactly cancels in the second step due to

the way that the protocol in constructed. It is apparent that the aggregate loans outstanding in

Figure 2(c) is identical to the corresponding graph in Figure 2(a), but the former graph has been

computed using only the privacy-preserving measures of Figure 2(c).

Despite the fact that the underlying data used in this example is not confidential, even in this

simple illustrative case privacy-preserving measures may still prove useful in providing financial

institutions and regulators with an incentive to release the data without a lag. More timely

releases would obviously benefit all stakeholders by allowing them to respond more nimbly to

changing market conditions, but such releases could also disadvantage certain parties in favor

of others if privacy were not assured. Moreover, this example underscores the simplicity with

which more sensitive data such as leverage ratios, positions in illiquid assets, and off-balance-

sheet derivatives holdings can be shared regularly, securely, and in a timely fashion.

We consider only three institutions in this example because it is the simplest non-trivial

case in which privacy-preserving measures of aggregate sums can be constructed. Clearly, the

protocol is applicable for any number of participants greater than two, and implementation for
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even several thousand participants is extremely fast. More complex risk exposures such as

Herfindahl concentration indices require two applications of the Secure-Sum protocol, but the

computational burdens are still quite modest. The Secure-Inner-Product protocol can be used

to construct multi-point statistical measures such as average correlations between changes in

securities holdings or leverage across industry participants.

Discussion

By construction, privacy-preserving measures of financial risk exposures cannot be “reverse-

engineered” to yield information about the individual constituents. Accordingly, there is no

guarantee that the individual inputs are truthful. In this respect, the potential for misreporting

and fraud are no different for these measures than they are for current reporting obligations

by financial institutions to their regulators, and existing mechanisms for ensuring compliance—

random periodic examinations and severe criminal and civil penalties for misleading disclosures—

must be applied here as well.

However, unlike traditional regulatory disclosures, privacy-preserving measures will pro-

vide its users with a strong incentive to be truthful because the mathematical guarantee of pri-

vacy eliminates the primary motivation for obfuscation. Since each institution’s proprietary

information remains private even after disclosure, dishonesty yields no discernible benefits but

could have tremendous reputational costs, and this asymmetric payoff provides significantly

greater economic incentive for compliance. Moreover, accurate and timely measures of system-

wide risk exposures can benefit the entire industry in allowing institutions and investors to en-

gage in self-correcting behavior that can reduce the likelihood of systemic shocks. For example,

if all stakeholders were able to monitor the aggregate amount of leverage in the financial system

at all times, there is a greater chance that market participants would become more wary and less

aggressive as they observe leverage rising beyond prudent levels.
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Figure 2: An illustration of a privacy-preserving measure of the aggregate amount of real-estate-
linked loans outstanding for Bank of America, JPMorgan, and Wells Fargo from June 1986 to
December 2010. Panel (a) contains the three historical quarterly time series of outstanding
outstanding loans which is private and the aggregate sum which we wish to compute securely.
Panel (b) contains the six time series of intermediate numbers that are exchanged bilaterally
between all pairs. Panel (c) contains the three privacy-preserving values that are shared between
all banks and used to compute the aggregate sum, which is identical to the aggregate sum in
Panel (a).
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A related issue is whether participation in privacy-preserving disclosures of financial risk

exposures is voluntary or mandated by regulation. Given the extremely low cost/benefit ratio

of such disclosures, there is reason to believe that the financial industry may well adopt such

disclosures voluntarily. A case in point is Markit, a successful industry consortium of dealers of

credit default swaps (CDS) that emerged in 2001 to pool confidential pricing data on individual

CDS transactions and make the anonymized data available to each other and the public so as

to promote transparency and liquidity in this market [13]. According to Markit’s website, the

data of its consortium members are “. . .provided on equal terms to whoever wanted to use it,

with the same data released to all customers at the same time, giving both the sell-side and

buy-side access to exactly the same daily valuation and risk management information”. From

this carefully crafted statement, it is clear that equitable and easy access to data is of paramount

importance in structuring this popular data-sharing consortium. Privacy-preserving methods of

sharing information could greatly enhance the efficacy and popularity of such cooperatives.

The same motivation applies to the sharing of aggregate financial risk exposures, but with

even greater stakes as the recent financial crisis has demonstrated. Once a privacy-preserving

system-risk-exposures consortium is established, the benefits will so clearly dominate the nom-

inal costs of participation that it should gain widespread acceptance and adoption in short order.

Indeed, participation in such a consortium may serve as a visible commitment to industry best

practices that yields tangible benefits for business development, leading to a “virtuous cycle” of

privacy-preserving risk disclosure throughout the financial industry

Conclusion

Privacy-preserving measures of financial risk exposures solve the challenge of measuring ag-

gregate risk among multiple financial institutions without encroaching on the privacy of any

individual institution. Previous approaches to addressing this challenge require trusted third
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parties, i.e., regulators, to collect, archive, and properly assess systemic risk. Apart from the

burden this places on government oversight, such an approach is also highly inefficient, requir-

ing properly targeted and perfectly timed regulatory intervention among an increasingly com-

plex and dynamic financial system. Privacy-preserving measures can promote more efficient

“crowdsourced” responses to emerging threats to systemic stability, enabling both regulators

and market participants to accurately monitor systemic risks in a timely and coordinated fash-

ion, creating a more responsive negative-feedback loop for stabilizing the financial system. This

feature may be especially valuable for promoting international coordination among multiple

regulatory jurisdictions. While a certain degree of regulatory competition is unavoidable given

the competitive nature of sovereign governments, privacy-preserving measures do eliminate a

significant political obstacle to regulatory collaboration across national boundaries.

Privacy-preserving risk measures have several other financial and non-financial applications.

Investors such as endowments, foundations, pension and sovereign wealth funds can use these

measures to ensure that their investments in various proprietary vehicles—hedge funds, private

equity, and other private partnerships—are sufficiently diversified and not overly concentrated in

a small number of risk factors. Financial auditors charged with the task of valuing illiquid assets

at a given financial institution can use these measures to compare and contrast their valuations

with the industry average and the dispersion of valuations across multiple institutions. Real-

time indexes of the aggregate amount of hedging activity in systemically important markets like

the S&P 500 futures contract may be constructed, which could have served as an early warning

signal for the “Flash Crash” of May 6, 2010.

More broadly, privacy-preserving measures of risk exposures may be useful in other in-

dustries in which aggregate risks are created by individual institutions and where maintaining

privacy in computing such risks is important for promoting transparency and innovation, such

as healthcare, epidemiology, and agribusiness.
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Appendix

In this appendix, we provide formal theorems and proofs of the security guarantees ensured

by the Secure-Sum and three Secure-Inner-Product protocols, assuming semi-honest parties

(possibly curious but following the protocol correctly). Extensions to malicious parties can be

considered but are not discussed here.

Secure-Inner-Product protocols 1 and 2 use a third dummy party to help with the compu-

tations while Secure-Inner-Product protocol 3 does not. The dummy party does not possess

inputs or receives meaningful information but simply helps with the computation (note that

for the applications in mind, the use of a dummy party does not represent a significant obsta-

cle). Secure-Inner-Product protocols 1 and 3 are defined on quantized data, while Secure-Inner-

Product protocol 2 applies directly to real-valued data. Finally, Secure-Inner-Product protocol

1 provides information-theoretic security, Secure-Inner-Product protocol 2 provides ‘almost’

information-theoretic security (as defined in Theorem 5) and both protocols require only ele-

mentary operations at a computational level, while Secure-Inner-Product protocol 3 provides

cryptographic security (i.e., it relies on computational-hardness assumptions) and uses OT pro-

tocols (hence non-elementary operations such as RSA [14] encryptions and decryptions).

An important benchmark for the practical consideration of secure protocols is the number of

communication rounds, which require exchange of data over communications media such as the

internet. With a standard internet connection and for arbitrary distances this can take no longer

than 2–3 seconds but may also dominate the protocol running time. All protocols proposed here

require few communication rounds. The following table summarizes these properties, where n

denotes the vector dimension and q the quantization level.
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Protocols Security Dummy party Data Rounds Complexity
Secure-Sum IT no real 2 elem. op.
Secure-Inner-Product 1 IT yes quantized 3 elem. op.
Secure-Inner-Product 2 almost IT yes real 3 elem. op.
Secure-Inner-Product 3 crypto no quantized 3 O(nq2) OT

Sum Protocols and Theorems

For convenience, we restate the Secure-Sum protocol.

Secure-Sum Protocol.

Inputs: for i = 1, . . . ,m, party i possesses the secret number xi ∈ [0, 1].

Output: each party obtains s =
∑m

i=1 xi (where the addition is over the reals).

Protocol:

1. Each pair of parties exchange privately random numbers. Namely, for all i, j with i 6= j,

party i provides to party j a random number Rij drawn uniformly at random in [0,m].

2. For each i, party i adds to its secret number the random numbers it has received from

other parties and subtract the random numbers it has provided to other parties. In formula,

party i computes Si = xi +
∑

j∈{1,...,m}
j 6=i

Rji−
∑

j∈{1,...,m}
j 6=i

Rij modm. Each party publicly

reveals Si.

3. Each party computes S =
∑m

i=1 Si modm, which equals s =
∑m

i=1 xi.

One can define other variants and extensions of this protocol, in which fewer random num-

bers are exchanged to minimize information flow, or in which more information is exchanged

to check the correctness of parties computations (one may also use virtual parties for that).

Theorem 3. Let x1, . . . , xm be m privately owned real numbers. Let i ∈ {1, . . . ,m} and Viewi

denote the view of party i obtained from the Secure-Sum protocol with inputs x1, . . . , xm. The
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protocol outputs the sum s =
∑m

i=1 xi and the distribution of Viewi depends on x1, . . . , xm only

through s and xi.

We provide first the proof argument for m = 3. Assume that party 1 collects all the data it

possesses and received from other parties to try to learn something about their secret numbers.

That is, party 1 possesses its secret number x1, the numbers R12, R13, R21, R31 exchanged in

step 1, the numbers S1, S2, S3 revealed in step 2 and the output sum s (whose information is

already contained in the Si’s). From these, party 1 can subtract in S2, S3 the terms depending

on R12, R13, R21, R31 and obtain the right-hand side of

x2 + (R32 −R23) = S2 + (R21 −R12) mod 3 (1)

x3 − (R23 −R32) = S3 + (R31 −R13) mod 3 (2)

and this is all the information party 1 can gather about other parties secret numbers. Adding

these equations provides x2 + x3 = s− x1, i.e., what can be deduced from knowing the sum of

the secret numbers. To see that nothing else can be inferred from (1) or (2), note thatR32−R23 is

uniform on [0,m]. However, for any fixed number x ∈ [0, 1], if one adds to it a random number

R uniformly drawn in [0,m], the number x + R is also uniformly drawn in [0,m]. Therefore,

(1) (or (2)) does not provide any further information about x2 (or x3).

Proof of Theorem 3. All the arithmetic in this proof is modulo m. We first check that the proto-

col computes indeed the sum. We set Rii = 0 for all i, to simply notations. This is straightfor-

ward since Si = xi +
∑

j(Rji−Rij) and hence,
∑m

i=1 Si =
∑m

i=1 xi. Let View1 be the protocol

view of party 1, i.e.,

View1 = {x1, R1i, Ri1, Si, ∀1 ≤ i ≤ m}.

Party 1 can subtract the Rij’s it has access to in the Si’s, obtaining View′1 as a sufficient statistic

for View1, where

View′1 = {x1, Ii,∀i 6= 1}

18



and

Ii = xi + Zi

Zi =
∑

j 6=1,i

(Rji −Rij)

Let us define Z = [Z2, . . . , Zm]t and W = [R2, . . . , Rm]t, where Ri contains all the Rji for

which j 6= i (in increasing order). Note that Z and W are a random vectors of dimension

respectively (m− 1)× 1 and m(m− 1)× 1. We then have that

Z = AW − AΠW,

where A is the (m− 1)×m(m− 1) matrix whose i-th row is filled with 0’s except at columns

[i(m− 2) + 1, (i+ 1)(m− 2)] where it is 1, and Π is a permutation matrix. Note that the rank

of A and the rank of M := A(I − Π) is m− 2, implying that Im(M) = Σm
2 , where

Σm
2 := {u2, . . . , um ∈ [0,m] :

m∑

i=2

ui = 0}.

Therefore, for any z, d ∈ Σm−1, there exists w such that Mw = d and

P{MW ≤ z + d} = P{M(W − w) ≤ z} = P{MW ≤ z}

where the second equality uses the fact that W and W − w are both i.i.d. uniform over [0,m].

This shows that Z = MW is uniform over Σm
2 and I = [I2, . . . , Im] is uniform over

Σm
2 (x2, . . . , xm) := {u2, . . . , um ∈ [0,m] :

m∑

i=2

ui =
m∑

i=2

xi}.

Therefore, the distribution of View′1, and hence of View1, depends only on
∑m

i=2 xi = s − x1

and x1. By symmetry, the analogue conclusion holds for any parties, which concludes the proof

of the theorem.
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Inner-Product Protocols and Theorems

We now present secure protocols to compute the sample correlation, or equivalently the inner

product, between two real vectors. Recall that the sample correlation of two vectors x = {xi}ti=1

and y = {yi}ti=1 is given by

ρ(x, y) =

∑t
i=1 xiyi − tx̄ȳ
(t− 1)sxsy

=
t∑

i=1

x̃iỹi

where x̄ = 1
t

∑t
i=1 xi, sx = ( 1

t−1
∑t

i=1(xi − x̄)2)1/2, ȳ = 1
t

∑t
i=1 yi, sy = ( 1

t−1
∑t

i=1(yi −

ȳ)2)1/2, x̃i = 1
(t−1)1/2 (xi − x̄)/sx and ỹi = 1

(t−1)1/2 (yi − ȳ)/sy.

Definition 1. We denote by Zq the set {0, 1, . . . , q − 1}, and by Fq the same set equipped with

the Galois field operations when q is a power of a prime. We define by Σk(x,Fq) the sets of

k-tuples in Fq which add up to x, i.e.,

Σk(x,Fq) := {(y1, . . . , yk) ∈ Fk
q : y1 + · · ·+ yk mod q = x}.

We may call the yi’s to be shares of x.

Secure-Inner-Product Protocol 1.

Common inputs: q ∈ Z+ (the quantization level), n ∈ Z+ (the vector dimensions) and p a prime

larger than q2n.

Party 1 inputs: x1, . . . , xn ∈ Zq.

Party 2 inputs: y1, . . . , yn ∈ Zq.

Party 3 inputs: none.

1. For i = 1, . . . , n, party 1 splits xi in three shares xi(1), xi(2) and xi(3) uniformly drawn

in Σ3(xi,Fp) := {(a, b, c) ∈ F3
p : a + b + c mod p = xi} and party 2 splits yi in three

shares yi(1), yi(2) and yi(3) uniformly drawn in Σ3(yi,Fp). Party 1 provides privately to
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party 2 the shares xi(1), xi(2) and privately to party 3 the share xi(3). Party 2 provides

privately to party 1 the shares yi(1), yi(2) and privately to party 3 the share yi(3).

2. Party 1 sets pi(1) = (xi(1)+xi(3))(yi(1)+yi(2)) mod p and ρ(1) =
∑n

i=1 pi(1) mod p,

party 2 sets pi(2) = yi(3)(xi(1) + xi(2)) + xi(2)(yi(1) + yi(2)) mod p and ρ(2) =
∑n

i=1 pi(2) mod p, and party 3 sets pi(3) = xi(3)yi(3) mod p and ρ(3) =
∑n

i=1 pi(3) mod p.

For m = 1, 2, 3, party m splits ρ(m) in three shares ρ(m, 1), ρ(m, 2) and ρ(m, 3) uni-

formly drawn in Σ3(ρ(m),Fp) and reveals privately ρ(m, k) to party k, for k = 1, 2, 3.

3. For k = 1, 2, 3, party k computes R(k) =
∑3

m=1 ρ(m, k) mod p. Parties 1 and 2 ex-

change R(1) and R(2) and party 3 provides R(3) to parties 1 and 2. Parties 1 and 2

compute R(1) +R(2) +R(3) =
∑n

i=1 xiyi.

Theorem 4. Let x = [x1, . . . , xn] and y = [y1, . . . , yn] be two privately owned vectors on Fn
q .

Let View1 denote the view of party 1 obtained from the Secure-Inner-Product protocol 1 with

inputs x, y. The protocol outputs the inner product ρ =
∑n

i=1 xiyi and the distribution of View1

depends on x, y only through ρ and x. The reciprocal result holds for party 2.

Proof of Theorem 4. The arithmetic is on Fp in the following. We first check that the protocol

computes indeed the inner product. For every i = 1, . . . , n, pi(1) + pi(2) + pi(3) = xiyi, hence

n∑

i=1

(pi(1) + pi(2) + pi(3)) = ρ(1) + ρ(2) + ρ(3) =
n∑

i=1

xiyi.

Moreover,
∑3

k=1 ρ(m, k) = ρ(m), hence

∑

k=1

R(k) =
∑

k=1

3∑

m=1

ρ(m, k) =
3∑

m=1

ρ(m) =
n∑

i=1

xiyi.

Let View1 be the protocol view of party 1, which is a function of

View′1 = {x, y(1), y(2), ρ(2, 1), ρ(3, 1), R(2), R(3)},
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where y(1) contains all components yi(1) for i = 1, . . . , n and similarly for the y(2). Note that

for i = 1, . . . , n, (pi(1), pi(2), pi(3)) are independent and uniformly drawn in Σ3(pi,Fp), where

pi = xiyi. Moreover, step 2. and 3. of the protocol are equivalent to running the secure-sum-

protocol on ρ(1), ρ(2), ρ(3). Hence, from Theorem 3, for any realization of ρ(1), ρ(2), ρ(3),

the distribution of ρ(2, 1), ρ(3, 1), R(2), R(3) depends only on the sum ρ(1) + ρ(2) + ρ(3) =
∑

i=1 pi and on ρ(1), where ρ(1) depends only on x and on y(1), y(2) which are independent

and uniformly distributed over Fp. Therefore, the distribution of View′1, hence View1, depends

only on
∑

i=1 pi = ρ and on x.

Secure-Inner-Product Protocol 2.

Common input: n ∈ Z+ (the vector dimensions) and τ ≥ n

Party 1 inputs: x1, . . . , xn ∈ [0, 1].

Party 2 inputs: y1, . . . , yn ∈ [0, 1].

Party 3 inputs: none.

1. For i = 1, . . . , n,

(a) party 1 splits xi in three shares by evaluating a random polynomial t 7→ Xi(t)

at (t1, t2, t3) = (1/4, 1/2, 3/4), where Xi(t) = xi + ait mod τ and where ai is

uniformly drawn in [0, τ ]. Party 1 reveals Xi(tj) to party j for j = 2, 3,

(b) party 2 splits yi in three shares Yi(tj) = yi + bitj mod τ , for j = 1, 2, 3, where bi is

uniformly drawn in [0, τ ], and reveals Yi(tj) to party j for j = 1, 3.

2. For j = 1, 2, 3,

(a) party j computes P (tj) =
∑t

i=1Xi(tj)Yi(tj) mod τ ,

(b) party j draws αj, βj independently and uniformly at random in [0, τ ] and for k =

1, 2, 3, sets Zj(tk) = αjtk + βjt
2
k mod τ and shares Zj(tk) with party k,
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(c) ρ(tj) = P (tj) +
∑3

k=1 Zk(tj) mod τ is made available to parties 1 and 2.

3. Party 1 and 2 compute ρ(0) by interpolating a degree 2 polynomial on ρ(tj), j = 1, 2, 3,

obtaining ρ(0) =
∑n

i=1 xiyi.

Theorem 5. Let x = [x1, . . . , xn] and y = [y1, . . . , yn] be two privately owned real vectors on

[0, 1]n, where n is fixed. Let View1 denote the view of party 1 obtained from the Secure-Inner-

Product protocol 2 (over the reals) with inputs x, y. The protocol outputs the inner product

ρ =
∑n

i=1 xiyi and the distribution of View1 can be approximated arbitrarily close (in total

variation distance and when τ increases) by a distribution depending on x, y only through ρ

and x. The reciprocal result holds for party 2.

We omit the proof of this theorem to conserve space since it does not concern the main scope

of the paper. We refer to Theorem 4 for a proof of a Secure Inner-Product protocol, which can

be used on real data via quantization.

We provide a third protocol to compute securely the inner-product function without using a

third dummy party but ensuring only cryptographic security. This protocol uses the Oblivious

Transfer (OT) protocol, developed by [9, 10], which is an important protocol for multi-party

computations as it allows to compute in particular secret shares of the product x ·y of two bits x

and y, and can then be used in the computation of more general circuit computations. The basic

OT protocol allows a sender to transfer one of potentially many bits to a receiver; however, the

sender remains oblivious as to what bit the receiver wants and the receiver remains oblivious

about any other bits than the one he has requested. In other words, the functionality in the OT

protocol takes the bits (b1, . . . , bk) as inputs for the first party and the index i for the second

party, and produces as output nothing for the first party and the bit bi requested by the second

party. Formally,

OTk
1((b1, . . . , bk), i) = (λ, bi),
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where λ denotes the no information symbol. We now describe OT2
1.

OT2
1 protocol

Sender inputs: (b0, b1) ∈ {0, 1}2 and a private key (n, d).

Receiver inputs: i ∈ {0, 1} and a public key (n, e).

Algorithm:

1. The sender generates two random numbers x0, x1 and transmit them to the receiver.

2. The receiver generates a random number k, encrypts it with the public key and scrambles

the outcome with xi to produce c = (xi + ke) mod n

3. The sender decrypts the two numbers (c− x0) and (c− x1) to get k0 and k1 respectively

(i.e., it computes kj = (c − xj)d mod n for j = 0, 1). Note that either k0 or k1 is equal

to k, but these are equally likely for the sender, and reciprocally, ki⊕1 is not accessible to

the receiver. The sender then transmits a0 = b0 + k0 and a1 = b1 + k1.

4. The receiver finds bi = ai − k.

The OTk
1 protocol is easily obtained by extending previous protocol to multiple sender bits, ad

similarly, one can extend the protocol to non binary fields.

We now present a cryptographic protocol for the inner product.

Secure-Inner-Product Protocol 3.

Common inputs: q (the quantization level), n (the vector dimensions).

Party 1 inputs: x1, . . . , xn ∈ Zq.

Party 2 inputs: y1, . . . , yn ∈ Zq.

1. For i = 1, . . . , n,
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(a) party 1 picks xi(2) uniformly at random in Znq2 and reveals it to party 2, who picks

yi(1) uniformly at random in Znq2 and reveals it to party 1.

(b) party 1 picks ai(1) uniformly at random in Znq2 and sends

{−ai(1),−ai(1)+xi(1),−ai(1)+2xi(1),−ai(1)+3xi(1), . . . ,−ai(1)+(nq2−1)xi(1)}

(all operations mod nq2) with OTnq2

1 to party 2 who picks the yi(2)-th element.

(c) party 2 picks bi(2) uniformly at random in Znq2 and sends

{−bi(2),−bi(2)+xi(2),−bi(2)+2xi(2),−bi(2)+3xi(2), . . . ,−bi(2)+(tq2−1)xi(2)}

(all operations mod nq2) with OTnq2

1 to party 1 who picks the yi(1)-th element.

(d) party 1 computes pi(1) = xi(1)yi(1) + ai(1) + bi(1) mod nq2 and party computes

pi(2) = xi(2)yi(2)+ai(2)+bi(2) mod nq2. Note that these are shares of the product

xiyi.

2. Party 1 computes ρ(1) =
∑n

i=1 pi(1) mod nq2 and reveals it to party 2, who computes

ρ(2) =
∑n

i=1 pi(2) mod nq2 and reveals it to party 1.

3. Each party computes ρ(1) + ρ(2) mod nq2 =
∑n

i=1 xiyi.

From the protocol construction, we have the following result.

Lemma 1. Secure-Inner-Product protocol 3 privately reduces the correlation computation to

the OT protocol.

The notion of being “privately reducible” is formally defined in Section 2.2. of [15]. From

the composition theorem for the semi-honest setting in Section 2.2. of [15], one obtains as a

consequence of the previous lemma that Secure-Inner-Product protocol 3 privately computes
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Figure 2: Computational circuit for the secure-inner-product protocol 2.

(d) party 1 computes pi(1) = xi(1)yi(1) + ai(1) + bi(1) mod qt2 and party computes

pi(2) = xi(2)yi(2) + ai(2) + bi(2) mod qt2. Note that these are shares of the

product xiyi.

2. Party 1 computes ρ(1) =
∑t

i=1 pi(1) mod qt2 and reveals it to party 2, who computes

ρ(1) =
∑t

i=1 pi(1) mod qt2 and reveals it to party 1.

3. Each party computes ρ(1) + ρ(2) mod qt2, obtaining the correlation.

This protocol requires O(tq2) OT protocols. This means a possibly high number of pub-

lic and private encryptions/decryptions (e.g., with RSA). One can use (9) to improve the OT

protocols running time.
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Figure 3: Computational circuit for the inner product
∑8

i=1 xiyi, when the inputs are k-bit
numbers.

the inner product provided the existence of trapdoor one-way permutations. In particular, using

RSA for the encryptions in OT, the protocol is secure provided that RSA cannot be broken.

This protocol requires O(nq2) OT protocols but only three communication rounds. This

still means a possibly high number of public and private encryptions/decryptions (e.g., with

RSA). One may use [16] to improve the OT protocols running time. Another approach consist

in using a Boolean circuit for correlations as in Figure 3, using OT protocols to compute shares

of the multiplication gates (and simply adding shares for the XOR gates). Such an approach,

as developed in [2], or related approaches as in [6, 5], may be particularly useful for other

functions such as for the quantile function, which does not have the arithmetic structure of

the summation or inner-product functions. In particular, [6, 5] provide protocols with constant

communication rounds which may matter for practical considerations, although for real data

problems, the practicality of such algorithms need to be further investigated.

Related literature on MPCs
Theory

The problem of secure multi-party computation emerged with the work of Yao [6] in 1982,

and with the work of Goldreich, Micali and Wigderson [2] in 1987. It is shown in [6] that

any Boolean functionality can be computed without requiring an external trusted party for two
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parties, and [2] provides protocols for arbitrarily many parties. Since these papers, many have

proposed variations of MPC settings, allowing different kinds of adversarial parties, security,

and efficiency attributes. In particular, [5] introduces cryptographic protocols with bounded cir-

cuit depths (requiring finitely many communication rounds) and [7, 3, 4] develop information-

theoretic protocols. Homomorphic encryption has also been shown to provide another approach

to secure multi-party computations [17, 18], and more recently, Gentry [19] showed that fully

homomorphic encryption schemes can be constructed, allowing addition and multiplication to

be performed on encrypted data without having to decrypt it. This approach leads to MPC pro-

tocols that do not have communication rounds increasing with the circuit complexity, although

fully homomorphic encryption is still considered impractical. For certain functionality, progress

regarding practical fully homomorphic encryption have been achieved in [20] with somewhat

fully homomorphic encryptions schemes using the learning-with-errors assumption.

Applications

The main applications associated with MPCs in the literature include distributed voting [21],

private bidding and auctions [22], data mining [23], and sharing of signature [24]. MPCs have

been used for the first time in a real-world application only in 2008, when 1,200 farmers in

Denmark employed an MPC protocol in a nation-wide auction to determine the market price of

sugar-beets contracts without revealing their selling and buying prices [25]. The whole compu-

tation took about half an hour, a satisfactory time for this application. In a different context, [26]

introduces “Patient Controlled Encryption” scheme, where an electronic health record system

allowing searches to be done on encrypted data is developed.
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