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Abstract

In this paper we examine the volatility of asset returns in a canonical stochastic overlapping

generations economy with sequentially complete markets. We show that movements in the in-

tergenerational wealth distribution strongly affect asset prices since older generations have a

lower propensity to save than younger generations. We investigate effects of aggregate shocks

on the wealth distribution and show that they are generally small if agents have identical be-

liefs. Differences in opinion, however, can lead to large movements in the wealth distribution

even when aggregate shocks are absent. The interplay of belief heterogeneity and life-cycle

investments leads to considerable changes in the wealth distribution which, in turn, result in

substantial asset price volatility. In fact, the model generates realistic second moments of asset

returns.
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1 Introduction

How does the distribution of wealth in an economy evolve over time and how do movements in

the wealth distribution affect asset prices and the interest rate? To answer these important ques-

tions, we examine a canonical stochastic OLG model with dynamically complete markets. In the

presence of uncertainty, asset prices depend both on the exogenous shock and the distribution of

wealth (at the beginning of the period). If beliefs are identical then the wealth distribution changes

little in equilibrium and the resulting impact on asset prices is quantitatively tiny. Differences in

beliefs, however, lead agents to place large bets against each other and, as a result, wealth shifts

across agents and across generations. Such changes in the wealth distribution strongly affect asset

prices since older generations have a much higher propensity to consume than younger gener-

ations and as a result have much stronger incentives to divest of their asset investments. Put

differently, prices of long-lived securities are typically considerably lower when ‘old’ generations

hold most of the wealth than when ‘young’ generations hold most of the wealth in the economy.

Belief heterogeneity leads to considerable changes in the wealth distribution which in turn result

in substantial asset price volatility.

There is a large literature on the evolution of the wealth distribution and the effects of the

wealth distribution on prices in general equilibrium models. In a model with infinitely lived

agents, identical beliefs and complete financial markets there are no endogenous movements in

the wealth distribution in equilibrium; all shocks are perfectly smoothed out and the wealth dis-

tribution as well as prices and choices just depend on the current exogenous shock (Judd et al.,

2003). If beliefs differ, the wealth distribution changes in the short run, but in the long run only the

agents with correct beliefs survive (see e.g. Sandroni, 2000, and Blume and Easley, 2006). When

markets are incomplete these results are no longer true. However, under identical beliefs, in the

stochastic growth model with ex ante identical agents and partially uninsurable income shocks,

market incompleteness does not seem to matter quantitatively. Krusell and Smith (1998) show

that in this model macroeconomic aggregates can be almost perfectly described using only the

mean of the wealth distribution. Incomplete financial markets alone, therefore, cannot generate

movements in asset prices as a result of (mean-preserving) movements in the wealth distribution.

In models with overlapping generations, the distribution of wealth across generations has po-

tentially large effects on stock returns and the interest rate, since ‘old’ agents have a much higher

marginal propensity to consume than ‘young’ agents. This fact was first discovered by Huffman

(1987). He points out that a stochastic OLG model can “yield price volatility that would be dif-

ficult to rationalize within the context of other models.” However, in many specifications of the

model, the distribution of wealth moves little in response to aggregate shocks and has a minor

effect on aggregate variables. Rios-Rull (1996) shows that the cyclical properties of a calibrated
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life-cycle model (with identical beliefs) are very similar to the properties of the model with a sin-

gle infinitely lived agent. Storesletten et al. (2007) consider a model of an exchange economy with

incomplete markets and identical beliefs. The fact that their computational strategy yields accu-

rate results shows that just as in Krusell and Smith (1998), movements in the wealth distribution

are negligible in their model. Models with demographic changes deliver different results. The

wealth distribution moves due to changes in the size of different cohorts and these movements

have strong effects on asset prices (see, e.g., Geanakoplos et al., 2004).1

The main result of this paper is that relatively small belief differences across agents in an OLG

economy lead to large movements in the wealth distribution which, in turn, strongly impact aggre-

gate variables. We examine a canonical stochastic OLG model with dynamically complete markets

and assume that all agents have log-utility. Under this assumption there exists a recursive equi-

librium with linear consumption policies and linear pricing functions. This feature enables us to

analyze models with a large number of generations and substantial intra-generational heterogene-

ity. We begin our analysis by examining a stylized specification of our OLG model similar to the

model in Huffman (1987). For this model we can derive closed-form solutions for the price of a

stock (“Lucas tree”) and the risk-free rate. The analytical solutions clearly demonstrate that the

wealth distribution in the economy affects different assets differently. The tree price varies greatly

with the wealth distribution while the risk-free rate is constant over an economically relevant

(large) set of possible wealth distributions. The analytical results, therefore, suggest that our par-

simonious OLG model can, via movements in the wealth distribution, simultaneously generate

substantial stock price volatility and modest interest rate volatility.

We continue our theoretical analysis by proving two theorems contrasting OLG economies

with identical beliefs and aggregate uncertainty with OLG economies with heterogeneous beliefs

and no uncertainty in endowments and dividends. We first demonstrate that the OLG model with

identical beliefs exhibits a stochastic steady state with a constant wealth distribution (conditional

on exogenous shocks) if all endowments and dividends are collinear. Asset prices and consump-

tion allocations only depend on the exogenous shock. This result insinuates that a parsimonious

OLG model with identical beliefs and aggregate uncertainty cannot generate endogenous stock

price volatility substantially exceeding exogenous dividend volatility for the simple reason of in-

adequate movements in the wealth distribution. Our result provides a theoretical explanation for

the findings in Rios-Rull (1996) and Storesletten et al. (2007). For OLG economies with hetero-

geneous beliefs we can establish an opposing result. For any given stock return volatility and

any arbitrarily small (positive) interest rate volatility, we construct an OLG economy in which the

1Benhabib et al. (2011) characterize the dependence of the wealth distribution in an OLG framework on technology,

preferences and �scal policy instruments. In particular, they examine wealth inequality and determine the extreme

right tail of the wealth distribution. However, they do not analyze movements in the wealth distribution nor their

impact on asset prices.
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(unique) equilibrium exhibits at least this stock return volatility and at most the given interest

rate volatility. This result holds despite the fact that all agents agree on the distribution of the

stock’s dividends (it pays one unit of the consumption good in all states). The key idea behind the

construction of the equilibrium is to choose beliefs in the Huffman-style OLG economy that lead

to large movements in the wealth distribution which then yield the desired values for the price

volatility of the assets.

Our theoretical results prompt the question whether they extend to realistically calibrated OLG

economies. We first answer this question for OLG economies with identical beliefs. Agents’ en-

dowments in the economy are given by a life-cycle income function that was estimated from the

Consumer Expenditure Survey (CEX) and the Panel Study of Income Dynamics (PSID). We delib-

erately choose shocks to endowments and dividends that are considerably larger than in the data

so that the resulting models generate higher asset price volatility than properly calibrated models.

Despite the large shocks, the resulting movements in the intergenerational wealth distribution are

generally tiny. Not surprisingly, the stock return volatility is quite small and, in relation, the inter-

est rate volatility is large. As Campbell (1999) points out, standard models cannot explain why the

observed volatility of real US stock returns is so high in relation to the volatility of the short-term

real interest rate. Our theoretical analysis and the numerical results show that this is also true for

models with overlapping generations.

In the final step and most important step of the analysis, we examine the variability of the

wealth distribution and the resulting asset price volatility for OLG economies with economically

sensible belief differences. Agents’ endowments are given by the afore-mentioned estimated life-

cycle income process. Both endowments and dividends exhibit no uncertainty. If beliefs are iden-

tical in such an economy, then the unique long-run equilibrium is a steady state with a constant

wealth distribution and constant asset prices. For economies with heterogeneous beliefs, however,

the predictions of the model are dramatically different. We consider three different specifications

for beliefs. There are three types of agents in the OLG economy. A common feature of all three

specifications is that agents of type 1 always hold the correct beliefs. In the first specification,

termed “persistent subjective beliefs”, agents of types 2 and 3 have beliefs deviating antisymmet-

rically from the correct beliefs. Beliefs of agents of the same type are identical across generations.

We vary both the proportion of type 1 agents as well as the magnitude of belief deviation for agents

of the other two types. The stock return volatility in this economy exceeds the corresponding value

of the homogeneous-beliefs model (with rather unrealistic aggregate shocks) for all examined be-

liefs deviations whenever the proportion of type 1 agents falls below 50 percent. In fact, for many

parameter combinations the stock return volatility matches or exceeds the second moments ob-

served in U.S. data. The large values for the stock return volatility are generally accompanied by

very low values for the interest rate volatility. The wealth distribution in this economy exhibits

very large movements. Moreover, it correlates with the stock price as predicted by our theoretical
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analysis. When the young are rich, the stock price tends to be high; when the old are rich, the

stock price tends to be low.

An unattractive feature of our first belief specification is that agents do not learn. Type 2 and 3

agents do not revise their beliefs during their life cycle. While we need to remain silent on learn-

ing, introducing Bayesian learning in our framework renders the model intractable, we examine

two modifications of the first specification. In the second belief specification, termed “converging

beliefs”, agents’ beliefs converge to the correct beliefs as they age. That is, agents of types 2 and 3

always enter the economy with incorrect prior beliefs but ‘learn’ while they are alive. OLG models

with this belief specification yield almost the same quantitative results as models with persistent

subjective beliefs. As long as there is sufficient belief heterogeneity among the young there are

large movements in the wealth distribution. In the third specification, termed “temporary dis-

agreement”, agents of types 2 and 3 typically have the correct beliefs but with low probability a

regime shift occurs. After such a shift, type 2 and 3 agents have temporarily antisymmetric incor-

rect beliefs. For many parameter values, this belief specification also leads to high volatility.

Our model violates the common prior assumption that underlies much of applied general

equilibrium modeling. As Morris (1995) points out, this assumption does not follow from ratio-

nality. However, any reasonable model that attempts to explain prices in financial markets needs

to impose some discipline on the choice of beliefs. The focus of this paper is to highlight the large

effects of small differences in beliefs, but we do not present a model which explains these differ-

ences. Kurz and Motolese (2001) use a theory of rational beliefs and argue in the context of an OLG

economy with two-period-lived agents that belief heterogeneity is “the most important propa-

gation mechanism of economic volatility.” Our results support this finding but the underlying

economic mechanism in our model with long-lived agents is quite different. In behavioral eco-

nomics there are various models and explanations for different beliefs, see e.g. Bracha and Brown

(2010).

Following Harrison and Kreps (1978), there is a large literature in finance that examines the

effects of differences in beliefs and speculation on asset prices and bubbles (see, e.g., Scheinkman

and Xiong, 2003). This literature has little relation to our paper; in our economy bubbles are im-

possible (see Santos and Woodford, 1997) and speculation in the sense of Harrison and Kreps

(1978) is ruled out by the absence of short-sale constraints. There is also a large literature on the

survival and price impact of noise traders, i.e. agents with wrong beliefs, see, among many others,

DeLong et al. (1990), and Kogan et al. (2006). In our economy, new agents with wrong beliefs are

born every period, so these have a persistent price impact. The relevant question for us is whether

this price impact is quantitatively relevant.

The remainder of this paper is organized as follows. In Section 2 we describe the OLG model
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and introduce linear recursive equilibria. Section 3 illustrates the main mechanism in the context

of special cases that allow for general theoretical statements. In Section 4 we discuss the effects

of exogenous shocks on asset prices. Section 5 considers model specifications without uncertainty

but with differences in beliefs. Section 6 concludes. The appendix contains all proofs and a de-

scription of the numerical method.

2 Model

In this section we first describe our model of stochastic overlapping generations economies. Sub-

sequently we show that the unique equilibrium of our OLG model allows for a linear recursive

formulation.

2.1 Stochastic OLG economies

Time is indexed by t = 0, 1, 2, . . .. A time-homogeneous Markov chain of exogenous shocks (st)

takes values in the finite set S = {1, . . . , S}. The S × S Markov transition matrix is denoted by Π.

We represent the evolution of time and shocks in the economy by a countably infinite event tree

Σ. The root node of the tree represents the initial shock s0. Each node of the tree, σ ∈ Σ, describes

a finite history of shocks σ = st = (s0, s1, . . . , st) and is also called date-event. We use the symbols

σ and st interchangeably. To indicate that st
′

is a successor of st (or st itself) we write st
′ � st.

At each date-event H agents commence their economic lives; they live for N periods. An

individual is identified by the date-event of his birth, σ = st, and his type, h = 1, . . . ,H . The

age of an individual is denoted by a = 1, . . . , N ; he consumes and has endowments at all nodes

st+a−1 � st, a = 1, . . . , N . An agent’s individual endowments are a function of the shock and

his age and type alone, i.e. es
t,h(st+a−1) = ea,h(st+a−1) for some functions ea,h : S → R+, for all

h = 1, . . . ,H, a = 1, . . . , N .

Each agent has an intertemporal time-separable expected utility function,

U s
t,h(c) = log

(
c(st)

)
+
N−1∑
a=1

δa
∑

st+a�st
πa,h(st+a|st) log

(
c(st+a)

)
.

The discount factor δ > 0 is constant and identical across agents, while the subjective probabilities

πa,h(σ′|σ) > 0, σ′ � σ, may vary with age a and type h. The Markov chain describing the agents’

subjective beliefs2 may not be time-homogenous and vary with age. In particular it may differ

from the “true” law of motion generated by Π.

2We denote the Markov transition matrix for an agent's subjective law of motion by πa,h. That is, the agent who

is currently of age a assigns the probability πa,h(s, s′) to a transition from the current exogenous state s to the state

s′ in the next period when he is of age a + 1. Occasionally it is necessary to refer to multi-step probabilities or to

transition probabilities between nodes across the event tree. We denote such probabilities by πa,h(σ′|σ) for nodes

σ′ � σ. The same convention applies to the �true� law of motion generated by Π.
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At each date-event st, there are S Arrow securities in zero net supply available for trade. Prices

of the Arrow securities are denoted by q(st) ∈ RS . The portfolio of such securities held by agent

(σ, h) is denoted by θσ,h(st) ∈ RS . We use subscripts to indicate the Arrow security for a particular

shock. The price at node st of the Arrow security paying (one unit of the consumption good) at

date-event (st, st+1) is denoted by qst+1(st). Similarly, the holding of agent (σ, h) of this security is

denoted by θσ,hst+1(st).

There is a Lucas tree in unit net supply paying dividends d(st) > 0. Dividends are a function

of the shock alone, so d(st) = d(st) for some function d : S → R++. Let φσ,h(st) denote the holding

of individual (σ, h) at date-event st and let p(st) denote the price of the tree at that node.

Observe that the presence of a complete set of Arrow securities ensures that markets are dy-

namically complete. It is, therefore, without loss of generality that our economy has only a sin-

gle Lucas tree since its primary purpose is to ensure that aggregate consumption exceeds ag-

gregate endowments. The aggregate endowment in the economy is ω(st) = ω(st) = d(st) +∑N
a=1

∑H
h=1 e

a,h(st).

At time t = 0, in addition to the H new agents (s0, h), h = 1, . . . ,H , commencing their eco-

nomic lives, there are individuals of each age a = 2, . . . , N and each type h = 1, . . . ,H present in

the economy. We denote these individuals by (s1−a, h) for h = 1, . . . ,H and a = 2, . . . , N . They

have initial tree holdings φs
1−a,h summing up to 1. These holdings determine the ‘initial condition’

of the economy.

2.2 Sequential competitive equilibrium

The consumption at date-event st of the agent of type h born at node st−a+1 is denoted cs
t−a+1,h(st).

Whenever possible we write ca,h(st) instead. Similarly, we denote this agent’s asset holdings by

φa,h(st) and θa,h(st). This simplification of the notation allows us to use identical notation for the

variables of individuals “born” at t = 0 and later as well as those of individuals born prior to

t = 0.

A sequential competitive equilibrium is a collection of prices and choices of individuals(
q(st), p(st),

(
θa,h(st), φa,h(st), ca,h(st)

)
a=1,...,N ;h=1,...,H

)
st∈Σ

such that markets clear and agents optimize.

(1) Market clearing equations:

N−1∑
a=1

H∑
h=1

φa,h(st) = 1,
N−1∑
a=1

H∑
h=1

θa,h(st) = 0 for all st ∈ Σ.

(2) For each st, individual (st, h), h = 1, . . . ,H , maximizes utility:

(cs
t,h, φs

t,h, θs
t,h) ∈ arg max

c≥0,φ,θ
U s

t,h(c) s.t.
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budget constraint for a = 1

c(st)− e1,h(st) + q(st) · θ(st) + p(st)φ(st) ≤ 0,

budget constraints for all st+a−1 � st, a = 2, . . . , N − 1

c(st+a−1)− ea,h(st+a−1)−
(
θst+a−1(st+a−2) + φ(st+a−2)(p(st+a−1) + d(st+a−1))

)︸ ︷︷ ︸
beginning-of-period cash-at-hand

+

(
q(st+a−1) · θ(st+a−1) + p(st+a−1)φ(st+a−1)

)︸ ︷︷ ︸
end-of-period investment

≤ 0,

budget constraint for all st+a−1 � st, a = N

c(st+N−1)− ea,h(st+N−1)−
(
θst+N−1(st+N−2) + φ(st+N−2)(p(st+N−1) + d(st+N−1))

)
≤ 0.

The utility maximization problems for the agents (s1−a, h), a = 2, . . . , N , h = 1, . . . ,H , who are

born before t = 0 are analogous to the optimization problems for agents (st, h). The budget equa-

tion for agents of age N shows that these agents do not invest anymore but instead consume their

entire wealth. As a consequence their portfolios do not appear in the market-clearing equations.

The price of a riskless bond in this setting is simply equal to the sum of the prices of the Arrow

securities. We denote the price of the riskless bond by 1/Rf , where Rf denotes the risk-free rate.

2.3 Linear recursive equilibria

Huffman (1987) considers an OLG economy with incomplete markets, a single Lucas-tree, and

logarithmic utility in which agents receive an individual endowment only in the first period of

their life. These assumptions lead to a closed-form function for the price of the tree. In our OLG

model such a closed-form pricing function does not exist. But the assumption of logarithmic

utility allows us to express the equilibrium consumption allocations, the price of the Lucas-tree,

and the riskless rate as simple functions of state variables. The natural endogenous state variables

in the OLG economy are the beginning-of-period cash-at-hand positions of the agents of ages a =

2, . . . , N −1. Cash-at-hand of agents of age N who are in the last period of their economic lives do

not need to be included in the state space. Agents of age a = 1 always enter the economy without

any initial cash-at-hand. Let κa,h(st) denote beginning-of-period cash-at-hand of an individual of

age a and type h at node st, that is,

κa,h(st) = φa−1,h(st−1)(p(st) + d(st)) + θa−1,h
st (st−1)

for a = 2, . . . , N − 1 and h = 1, . . . ,H . The following theorem is proved in the appendix.

Theorem 1 Given a shock st = s ∈ S, consumption of the agent of age a = 1, . . . , N − 1, and type

8



h = 1, . . . ,H, is a linear function of the individual cash-at-hand positions, that is

ca,h(st) = αa,h1s +

N−1∑
j=2

H∑
i=1

αa,hjisκ
j,i(st), (1)

for some coe�cients αa,hjis ≥ 0. The price of the tree is also a linear function of the individual cash-at-hand

positions, that is

p(st) = β1s +
N−1∑
a=2

H∑
h=1

βahsκ
a,h(st), (2)

for some coe�cients βahs ≥ 0. The riskless rate Rf satis�es the relation

1/Rf (st) = γ1s +

N−1∑
a=2

H∑
h=1

γahsκ
a,h(st), (3)

for some coe�cients γahs ≥ 0.

The three linear functions in the theorem look deceivingly simple. Observe that an agent’s

cash-at-hand κa,h(st) depends on the price of the Lucas-tree p(st) whenever he holds a nonzero

position of the tree. Equation (2), therefore, is a fixed-point equation instead of a closed-form

expression such as the pricing formula in Huffman (1987). Nevertheless the three formulas prove

to be very helpful for our analysis because they enable us to compute the OLG equilibrium and to

simulate the economy. Unfortunately, we cannot determine the coefficients α, β, and γ analytically

unless we make additional assumptions, see Section 3.1 below. We describe how we can compute

these quantities numerically in Appendix B.

The state of the economy comprises the exogenous shock s ∈ S and the endogenous vector

of beginning-of-period cash-at-hand holdings κ ≡ (κa,h)h=1,...,H;a=2,...,N−1. A recursive equilib-

rium (for a general treatment of recursive equilibria in stochastic OLG economies see Citanna and

Siconolfi, 2010) consists of a policy function that maps the state of the economy, (s, κ), to current

prices and choices as well as a transition function that maps the state in the current period to a

probability distribution over states in the subsequent period.

An interesting special case arises in the absence of exogenous shocks. In this case, the dynamics

of the wealth distribution depends crucially on agents’ beliefs. The policy functions, however, are

independent of beliefs.

Proposition 1 For given deterministic endowments and dividends, the coe�cients α of the consump-

tion functions (1) and the coe�cients β and γ of the pricing functions (2) and (3) in Theorem 1 are

independent of the speci�cation of beliefs. That is, for given endowments and dividends, the consumption

function is

ca,h(st) = αa,h1 +

N−1∑
j=2

H∑
i=1

αa,hji κ
j,i(st), (4)
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for some coe�cients αa,hji , a = 1, . . . , N − 1, h = 1, . . . ,H, which do not depend on beliefs. The price

of the Lucas-tree at any date event st is given by an expression of the form

p(st) = β1 +

N−1∑
a=2

βa

H∑
h=1

κa,h(st) (5)

for some coe�cients βa, a = 1, . . . , N − 1, which do not depend on beliefs. Similarly, the risk-free rate

Rf satis�es the relation

1/Rf (st) = γ1 +

N−1∑
a=2

γa

H∑
h=1

κa,h(st) (6)

for some coe�cients γa, a = 1, . . . , N − 1, which do not depend on beliefs.

Clearly the proposition does not generalize to economies with uncertain dividends. In such

economies the beliefs of the agents owning the Lucas-tree matter for its price.

3 Some theoretical results

We first consider some stylized specifications of our general model for which we can prove ana-

lytical results about equilibrium asset prices and the wealth distribution.

3.1 The intergenerational wealth distribution and asset prices

We first examine a deterministic special case of our OLG model which admits an analytical solu-

tion. We assume that agents only have positive endowments in the first period of their lives. For

notational simplicity, we consider the case H = 1 since intragenerational heterogeneity adds little

to the results in this section. This allows us to drop the superscript for the type throughout this

section. We assume that ea,1 = ea = 0, for a = 2, . . . , N and that e1 = 1. The Lucas-tree pays

deterministic dividends d > 0. The assumption of a deterministic economy allows us to assume

without loss of generality that agents only trade in the stock, i.e., the endogenous state can be

written as

κa,(t) = φa−1(t− 1)(p(t) + d(t))

for a = 2, . . . , N − 1. The results in this section provide an important benchmark for our analysis

below where we introduce uncertainty and heterogenous beliefs. Proposition 1 implies that the

pricing and consumption functions in a model where all endowments and all dividends are con-

stant across shocks (i.e., where shocks only play a role because agents can gamble on them) are

the same as in the deterministic model.

The model without uncertainty is a special instance of the asset-pricing model in Huffman

(1987). He also assumes that agents only receive endowments in the first period in their lives and

that the only asset available for trade is the tree. While he allows for uncertainty, his result obvi-

ously also holds in a deterministic model. Huffman’s (1987, p. 142) analysis yields the following
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coefficients for the linear tree price expression,

β1 =
δ − δN

1− δN
, βa =

δ − δN−a+1

1− δN−a+1
, for a = 2, . . . , N − 1,

for δ 6= 1. Applying L’Hospital’s rule as δ → 1 we obtain for δ = 1 the coefficients

β1 =
N − 1

N
, βa =

N − a
N − a+ 1

, for a = 2, . . . , N − 1.

All coefficients are positive and bounded above by 1.

While Huffman considered an economy with a single tree, in our deterministic economy we

can also easily determine the bond prices. While this price follows by the absence of arbitrage it is

easier to derive using the Arrow-Debreu equilibrium as in the following proposition.

Proposition 2 In the deterministic economy with ea = 0, for a = 2, . . . , N , and e1 = 1, the bond-

pricing coe�cients γ are

γ1 =
δ

(1 + d)
∑N−1

j=0 δj − 1
and γa =

∑N
j=1 δ

j(
(1 + d)

∑N−1
j=0 δj − 1

)∑N−a
j=0 δj

, a = 2, . . . , N − 1.

Given the pricing functions for the bond and the tree, we can now ask how asset prices change

with the wealth distribution. For the discussion of the benchmark model, we hypothetically as-

sume an exogenously given wealth distribution. We consider the special case δ = 1. This assump-

tion greatly simplifies the formulas. By continuity our qualitative insights carry over to economies

with discount factors close to but different from 1.

For δ = 1, Equation (5) can be used to solve for the price of the tree and implies that the tree

price must be

p(st) =

N−1
N + d

(∑N−1
a=2

N−a
N−a+1φ

a−1(st)
)

1−
∑N−1

a=2
N−a
N−a+1φ

a−1(st)
. (7)

Suppose the entire tree is held by the agents of a particular age a ∈ {2, 3, . . . , N − 1}. (This cannot

happen in equilibrium due to the zero endowment after the first period. However, the argument

is also correct but more tedious for a holding of 1− ε.) Then the tree price is

p(st) = (N − a)(1 + d) +
a− 1

N
.

If the entire tree is held by agents of age N then the price is p(st) = β1 = N−1
N .

Since ∂p(st)/∂a < 0 we observe that the younger the agents holding the entire tree are the

larger is its price. For agents of fixed age a < N holding the tree and increasing values of N , the

tree price grows without bound. If, on the contrary, the agents of age N hold the entire tree, then

its price is equal to N−1
N and thus bounded above by 1. So, the price of the Lucas-tree may vary

greatly as the wealth distribution changes.
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In Appendix A we derive the price of the riskless bond from Equation (6),

1/Rf (st) =
1

N(d+ 1)− 1
+

∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−
∑N−1

a=2

(
1− 1

N−a+1

)
φa−1(st)

. (8)

If the agents of age N have zero holdings of the tree then
∑N−1

a=2 φa−1(st) = 1 and the price of the

riskless bond is constant,

1/Rf (st) = 1 +
1

N(d+ 1)− 1
.

If the entire tree is held by agents of age N then the price of the riskless bond is 1/Rf (st) =

1
N(d+1)−1 .

Observe that as long as the agents of ageN have zero tree holdings the risk-free rate is constant.

This fact is perhaps somewhat surprising since the tree price may vary from large values such as

(N − 2)(d + 1) + 1
N (if agents of age 2 hold the entire tree) to small values such as (d + 1) + N−2

N

(if agents of age N − 1 hold the entire tree). For large ranges of the wealth distribution there

in no direct link between the risk-free rate and the price of the Lucas tree. In a deterministic

economy, if agents of age a hold the entire tree in the current period, agents of age a + 1 will

hold almost the entire tree in the next period. As a result, the price of the tree will slightly drop

and the (deterministic) return of the tree will be small (possibly negative). In the described model

specification, this absolute tree price decrease is independent of a, i.e., by the absence of arbitrage

the interest rate must remain the same as the wealth is held by agents of ages 1 through N − 1.

To illustrate the possible variability in asset prices, Table 1 displays the prices of the Lucas-tree

and the riskless bond for an economy in which agents live for N = 240 periods. The safe dividend

of the tree is d = 1. The tree price varies between 2.9917 and 476.00 without changes in the risk-free

a 2 5 10 100 200 230 239 240

p(st) 476.00 470.02 460.04 280.41 80.829 20.954 2.9917 0.99583

1/Rf (st) 1.0021 0.0020877

Table 1: Prices p(st) and 1/Rf (st) if agents of age a hold the entire Lucas-tree

rate.

The described price movements in the deterministic economy can only arise if we consider

unanticipated shocks to the wealth distribution and even then they are only transitory. The wealth

distribution converges quickly to a steady state distribution from any initial condition. Similarly,

the tree price and the risk-free rate converge fast to their respective steady-state values. Neverthe-

less the observed effects prove to be important in our model. In an economy with heterogeneous

beliefs the wealth distribution varies endogenously and no steady state exists. As a result, large

price movements persist indefinitely.
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3.2 The e�ect of aggregate shocks on the wealth distribution and prices

Before turning to the analysis of heterogenous beliefs, we first state a benchmark result for economies

with identical beliefs and aggregate shocks. The next theorem describes two benchmark specifi-

cations of our OLG model with aggregate uncertainty for which the wealth distribution remains

constant along the equilibrium path and thus does not matter for equilibrium allocations and

prices. While we can prove the theorem only for a specific initial condition, we found in many

simulations that, if the economy starts from other initial conditions, then the equilibrium quickly

converges to the stochastic steady state with a constant wealth distribution.

Theorem 2 Consider an economy where all agents a = 1, . . . , N , h = 1, . . . ,H, have identical and

correct beliefs, πa,h = Π. Then, under either of the following two assumptions, there exist initial

conditions κ such that in the resulting equilibrium, prices and consumption choices are time invariant

functions of the exogenous shock alone.

1. All endowments and dividends are collinear, i.e. for all agents a = 1, . . . , N , h = 1, . . . ,H, it holds

that
ea,h(s)

ea,h(s′)
=
d(s)

d(s′)
for all s, s′ = 1, . . . , S.

2. Shocks are i.i.d., i.e. for all shocks s′, Π(s, s′) is independent of s, and endowments of all agents

of age a = 1 are collinear to aggregate endowments, i.e. for all h = 1, . . . ,H,

e1,h(s)

e1,h(s′)
=
ω(s)

ω(s′)
for all s, s′.

See Appendix A for a proof of the theorem. Commonly applied realistic calibrations of asset

pricing models deviate from the assumptions of Theorem 2 in at least two directions. Either labor

endowments are assumed to be safe or shocks to labor endowments are assumed to be indepen-

dent of shocks to dividends. The question arises whether such calibrations of our OLG model lead

to substantially different equilibrium predictions. We investigate this question in Section 4 below.

3.3 Di�erences in beliefs and asset price volatility

To isolate the effects of beliefs, models with deterministic dividends and endowments serve as a

useful benchmark for our analysis. For the discussion in this section we assume that ea,h(s) = ea,h

and d(s) = d for all shocks s ∈ S . By continuity, the results for such models are similar to those

for models with very small shocks to these fundamentals. Thus we view this specification of the

general model as a limiting case for economies with little uncertainty.

If in such a model agents have identical beliefs then it is equivalent to a deterministic OLG

economy. The economy has a unique steady state, which is independent of beliefs, and for all

initial conditions the unique equilibrium converges to this steady state. If agents have differences
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in beliefs, however, then a steady state does not exist and the wealth distribution changes along

the equilibrium path. These changes can have very strong effects on asset prices as we show

below.

For comparison, note that in a model with infinitely-lived agents and deterministic endow-

ments and dividends, differences in beliefs do not affect asset prices (as long as all agents have

identical time preferences). Although the wealth distribution may change over time and across

shocks, all agents agree that the price of the tree should equal the discounted sum of its (safe)

dividends.

If we impose no restrictions on beliefs we can obtain arbitrary movements in the wealth distri-

bution across agents. We can construct beliefs such that in equilibrium, asN or δ become large, the

volatility of the tree price becomes arbitrarily large while the volatility of the bond price remains

arbitrarily low. The following theorem states these facts formally.

Theorem 3 Given any tree-return volatility, v̄ <∞, and any bond-price volatility, v > 0, for any time

horizon T > 1 and any initial condition κ � 0, we can construct an economy where the stock return

volatility is at least v̄ while the interest rate volatility is at most v, that is,

Std(Re) ≥ v̄, Std(Rf ) ≤ v .

The proof in the appendix constructs economies with δ = 1, letting N become arbitrarily large.

In light of the benchmark case above, we can either hold N fixed and choose δ and (πa)a=1,...,N−1

or we can hold δ ≥ 1 fixed and choose N and (πa)a=1,...,N−1 in order to obtain the desired return

volatility.

In an OLG model, movements in the wealth distribution can lead to large changes in the prices

of long-lived assets without changing the short-term interest rate. The intuition above applies

here, too. All agents believe that, with high probability, wealth will be passed down from agents

of age n to agents of age n+1, hence the bond-price stays relatively constant, independently of n as

long as it is smaller than N . The result accentuates that differences in beliefs can have potentially

huge effects on the price of the long-lived asset in this economy. If we can freely choose beliefs

over the exogenous shocks then we can generate arbitrary price volatility. The proof of the theorem

shows that the price of the tree can move arbitrarily far away from the discounted present value

of its dividends if these are discounted using the current interest rate. Following Harrison and

Kreps (1978) there is now a large literature in finance that demonstrates how asset pricing bubbles

can arise from differences in beliefs and speculation. It is important to note that in our model

there can never be bubbles in equilibrium, see Santos and Woodford (1999). Nevertheless, the

economy exhibits large swings in the price of the tree which could not be distinguished from an

asset pricing bubble if we only examined prices and observed aggregate variables.

Constantinides and Duffie (1996) describe an economy that theoretically generates a much

wider range of asset price processes than our OLG economy with heterogeneous beliefs. In their

14



economy, agents have permanent idiosyncratic income shocks, agents’ income risks are uninsur-

able, and there is a no-trade equilibrium. Moreover, any stochastic discount factor and so any

arbitrage-free asset price process can be generated in equilibrium for appropriately chosen in-

come processes. However, there is mixed evidence in the literature about the potential of their

mechanism to be important in realistically calibrated models (see, e.g., Storesletten et al., 2007).

Similarly our theoretical result of Theorem 3 relies on a careful construction of heterogeneous

beliefs for all agents. Thus, it gives no indication on the quantitative importance of the asset

price volatility when beliefs exhibit small differences. We report equilibrium quantities for our

OLG economy with heterogeneous beliefs in Section 5 below. Before we start with the numerical

analysis of our mode, it is interesting to note that equilibrium price volatility in this economy relies

crucially on the existence of a rich asset structure.

3.4 Incomplete vs. complete markets

In an OLG economy with a single tree but no other securities the pricing formula for the tree

remains the same as in our OLG model. As the analysis in Huffman (1987) shows, there is a steady

state with no trade even if beliefs are heterogeneous. In Huffman’s economy, agents’ consumption

and savings decisions are independent of their beliefs, they depend only on the discount factor δ

and the age of an agent. An agent of age a always consumes a fixed fraction of his cash-at-hand,

no matter what his expectations are for future prices. Therefore, in the absence of Arrow securities

there is no complex trading in this economy and zero price volatility in equilibrium in the long

run – for any beliefs and discount factors. On the contrary, when there is a complete set of Arrow

Securities available for trade as in our OLG model, price volatility can be arbitrary. In this sense,

a rich set of financial assets can lead to a huge increase in the volatility of the price of the tree.

4 Aggregate uncertainty and identical beliefs

Previous research revealed that in many specifications of the overlapping generations model with

aggregate uncertainty the wealth distribution changes very little in equilibrium if beliefs are iden-

tical, see, for example, Rios-Rull (1996) and Storesletten et al. (2007). We replicate their findings

in our model. The results serve as a useful benchmark for our analysis of OLG economies with

heterogenous beliefs.

4.1 A (rough) calibration

We consider a specification of the model with calibrated labor income. A time period is meant to

represent a quarter and so we assume that agents live for N = 240 periods. We use the parameter

values estimated by Davis et al. (2006) for a realistic calibration of life-cycle income. They follow
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the estimation strategy of Gourinchas and Parker (2002) and fit a 5th order polynomial to match

average income from the Consumer Expenditure Survey (CEX) and the Panel Study of Income

Dynamics (PSID). The resulting age-income profile is given by

log(ea) = 6.62362 + 0.334901(
a

4
+ 20)− 0.0148947(

a

4
+ 20)2 + 3.63424 · 10−4(

a

4
+ 20)3

− 4.41169 · 10−6(
a

4
+ 20)4 + 2.05692 · 10−8(

a

4
+ 20)5

for a ≤ 4 · 43 = 172 and ea = e172

2 for a = 173, . . . , 240. This profile is hump-shaped with a

replacement rate at retirement of 50 percent.

We normalize aggregate endowments to be on average ω̄ = 1 and assume that the stock’s av-

erage dividends are d̄ = 0.15, i.e. labor endowments are normalized to add up to 0.85 on average.

Assuming that dividends are 15 percent of aggregate endowments is motivated by the idea that

the tree in this model represents both the aggregate stock market and some fraction of the housing

market. The actual share of dividends in aggregate consumption is around 5 percent. The ef-

fects on volatility become larger as the dividend share becomes smaller. Fifteen percent certainly

appears to be an adequate upper bound.

In this section we consider an economy with both endowment and dividend shocks – we ab-

stract from idiosyncratic shocks because financial markets are complete – therefore there is only

one type of agent per generation, so H = 1. To make the point that aggregate shocks do not move

the wealth distribution in this model, we deliberately consider rather large shocks; for smaller

shocks, the resulting volatility effects are obviously much smaller. Specifically, let dividends and

endowments be

d(1) = d(2) = 0.15(1 + η), d(3) = d(4) = 0.15(1− η),

ea(1) = ea(3) = 0.99ea, ea(2) = ea(4) = 1.01ea,

respectively. We vary the magnitude η of the dividend shock between 0.05 and 0.15. In the data,

quarterly dividends and aggregate consumption are essentially uncorrelated. In (detrended) lev-

els both shocks to dividends and shocks to labor income are persistent. We choose the probability

to remain in the same dividend state to be 2/3 while the probability to stay in the same labor-

income state is 3/4. The standard deviation of labor income shocks is chosen to roughly match the

data and we vary the size of the dividend shock in order to demonstrate that the magnitude of

this shock affects asset price volatility but does not affect the wealth distribution.

A proper calibration of the model leads to a discount factor of δ > 1. As we observe in our anal-

ysis of heterogenous beliefs in the next section, the effects of belief heterogeneity on the volatility

of the stock prices increase with δ. Therefore, we deliberately choose δ = 1 to stack the deck

against heterogenous beliefs. The resulting interest rate in the model is then slightly too high in

comparison to the average real interest rate of annually 1 percent observed in the data (see Camp-

bell, 1999).
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4.2 Results

Lettau and Uhlig (2002) report that the quarterly standard deviation of returns of S&P-500 stocks

in post-war US data is about 7.5 percent. On the other hand, the standard deviation of the quar-

terly real interest rate is around 1.4 percent; and as Campbell (1999) points out, a lot of this varia-

tion is due to inflation risk.

Table 2 reports the volatility of the tree returns and the real interest rate. The figures shows

η = 0.05 η = 0.1 η = 0.15

Std(Rf ) 0.66 1.09 1.57

Std(Re) 1.23 2.00 2.83

Table 2: Second moments (in %) � aggregate shocks

that even for very large shocks to dividends, the standard deviation of tree returns remains much

below the empirical value. Moreover, the figures point to the well-known close link between the

stock-return volatility and the interest rate volatility in consumption-based asset pricing models

with identical beliefs. This counterfactual result is caused by the lack of movements in the wealth

distribution. To a first approximation, individual consumption only depends on the current shock

and hence an agent’s intertemporal Euler equation necessarily gives a close link between stock

returns and the interest rate.

To illustrate the fact that the wealth distribution remains almost constant over time, we aggre-

gate all agents’ shares of beginning-of-period cash-at-hand κa,h(st) into ten groups. The cash-at-

hand shares of groups 1, 2, . . ., 10 are∑H
h=1

∑24
a=1 κ

a,h(st)

p(st) + d(st)
,

∑H
h=1

∑48
a=25 κ

a,h(st)

p(st) + d(st)
, . . . ,

∑H
h=1

∑240
a=217 κ

a,h(st)

p(st) + d(st)
,

respectively. Group 1 are the 72 agents who are in one of the first 24 periods of their lives, group

2 are the subsequent 72 agents who are in the 25th to 48th period of their lives, and so on. The

larger the group number the older are the agents in the group.

We report results from a simulation over 100’000 periods of the economy with η = 0.15. Table 3

displays the average cash-at-hand shares of all ten groups as well as the corresponding standard

deviations. The standard deviations vary around 7 × 10−5, thus we report the values in 1/1000

of a percent. The figures in the table clearly show that the wealth distribution practically does

not move in this calibration. Not surprisingly, we obtain similar results for smaller values of the

dividend shock η.

In sum, the results for our roughly calibrated OLG economy confirm some well-known failures

of parsimonious asset pricing models. The observed volatility of stock returns is considerably

higher than the observed dividend volatility. For realistic parameter values, parsimonious models

17



Group 1 2 3 4 5

average (%) 0.5 2.0 4.4 7.6 11.5

std. dev. ( 1
1000%) 7.4 7.9 7.1 5.4 2.8

Group 6 7 8 9 10

average (%) 15.6 19.1 19.5 14.1 5.7

std. dev. ( 1
1000%) 2.7 6.3 13.4 8.4 1.1

Table 3: Wealth distribution � aggregate shock η = 0.15

cannot match the observed high return volatility. And for the often unrealistic parameter values

that do allow these models to deliver a larger return volatility, the accompanying interest rate

volatility grows, too, and is much larger than in the data. This excess return volatility puzzle is

one of many (related) asset pricing puzzles, such as, among others, the equity premium puzzle

and the Sharpe ratio puzzle, see Campbell (1999).

5 Di�erent beliefs and changes in the wealth distribution

Theorem 3 shows that, without restrictions on beliefs, the described close link between stock re-

turn volatility and interest rate volatility can be broken in our OLG model. Put differently, the

theorem suggests that the OLG model, via movements in the wealth distribution, can simultane-

ously generate substantial stock price volatility and modest interest rate volatility. In this section

we investigate the influence of different specifications of heterogeneous beliefs on the wealth dis-

tribution as well as on asset prices.

Agents’ endowments are given by the afore-mentioned estimated life-cycle income process.

Both endowments and dividends exhibit no uncertainty. If beliefs are identical in such an econ-

omy, then the unique long-run equilibrium is a steady state with a constant wealth distribution

and constant asset prices. For economies with heterogeneous beliefs, however, the predictions of

the model are dramatically different. We consider three different specifications of beliefs.

5.1 Speci�cation of beliefs

There are three types of agents in the OLG economy. A common feature of all three specifications

is that agents of type 1 always hold the correct beliefs. In the first specification, termed “persistent

subjective beliefs”, agents of types 2 and 3 have beliefs deviating antisymmetrically from the cor-

rect beliefs. Beliefs of agents of the same type are identical across generations. We vary both the

proportion of type 1 agents as well as the magnitude of belief differences for agents of the other

two types. This specification allows us to clearly understand the role of belief heterogeneity for

the intergenerational wealth distribution and asset prices. A perhaps unattractive feature of this
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beliefs specification is the lack of learning on behalf of the agents. A possible interpretation (and

justification) of this set-up is that the agents receive signals and disagree on their interpretation

(see e.g. Acemoglu et al., 2006, or Xiouros, 2010). It is beyond the scope of this paper to introduce

a coherent theory of belief heterogeneity. We simply take some specifications as given and explore

their implications.

While we need to remain silent on learning, introducing Bayesian learning in our framework

renders the model intractable, we examine two modifications of the first specification. In the

second beliefs specification, termed “converging beliefs”, agents’ beliefs converge to the correct

beliefs as they age. That is, agents of types 2 and 3 always enter the economy with incorrect prior

beliefs but ‘learn’ while they are alive. In the third specification, termed “temporary disagree-

ment”, agents of types 2 and 3 typically have the correct beliefs but with low probability a regime

shift occurs. After such a shift, type 2 and 3 agents have temporarily antisymmetric incorrect

beliefs. With identical and correct probability, all agents believe that the economy returns to the

agreement state. This specification has the advantage that we can view the disagreement states as

a structural break in the sense of Cogley and Sargent (2008). Changes in belief heterogeneity over

time have been empirically well documented and have important implications for option prices

(see e.g. Buraschi and Jiltsov, 2006).

5.2 Persistent subjective beliefs

Throughout this first specification of the model, we assume that there are S = 2 i.i.d. and equiprob-

able shocks, that is, the data-generating Markov chain is given by Π(1, 1) = Π(1, 2) = Π(2, 1) =

Π(2, 2) = 1/2.

Using micro-data, Gourinchas and Parker (2002) estimate the annual discount rate to be around

0.97. This figure corresponds to a quarterly discount factor of 0.9924. Alternatively, we can choose

δ to match the average real riskless rate (of about 1 percent p.a.). We report the risk-free rate from

our specifications below and see that for many specifications we need a value of δ above 1 to match

the interest rate. Thus we vary agents’ discount factor and examine values of δ in {0.99, 1.0, 1.01}.

For the specification of beliefs, we assume that both agents believe (correctly) that the process is

i.i.d. Type 2 agents’ beliefs satisfy

πa,2(1, 1) = πa,2(2, 1) = 1/2 + ε, πa,2(1, 2) = πa,2(2, 2) = 1/2− ε, a = 1, . . . , N − 1

while agents of type 3 assume the following transition probabilities,

πa,3(1, 1) = πa,3(2, 1) = 1/2− ε, πa,3(1, 2) = πa,3(2, 2) = 1/2 + ε, a = 1, . . . , N − 1.

We denote the fraction of type 1 agents by λ.
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5.2.1 Second moments

Table 4 reports the volatilities Std(Rf ) and Std(Re). All entries are in percent. Unless the fraction

δ λ ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

0.99 0 0.58 3.07 0.71 4.60 0.35 3.93 0.10 2.61

0.99 10−3 0.57 3.04 2.47 8.84 3.03 9.90 3.53 8.98

0.99 0.1 0.47 2.30 1.01 5.04 1.11 5.58 1.37 5.59

0.99 0.3 0.35 1.73 0.55 3.39 0.64 3.87 0.65 4.04

0.99 0.5 0.26 1.33 0.34 2.41 0.37 2.83 0.41 2.95

0.99 0.9 0.01 0.55 0.01 0.82 0.01 0.95 0.13 0.98

1 0 0.67 5.26 0.77 8.59 0.48 8.81 0.11 6.78

1 10−3 0.67 5.22 2.69 12.81 3.27 14.51 3.83 13.04

1 0.1 0.56 3.89 1.15 8.14 1.29 9.18 1.59 9.12

1 0.3 0.41 2.88 0.65 5.73 0.76 6.71 0.78 7.00

1 0.5 0.31 2.20 0.41 4.17 0.45 5.05 0.50 5.27

1 0.9 0.01 0.89 0.02 1.41 0.01 1.74 0.01 1.82

1.01 0 1.13 8.69 1.48 16.08 1.01 17.62 0.18 14.31

1.01 10−3 1.29 8.37 3.14 17.26 3.50 18.46 3.81 16.50

1.01 0.1 0.88 6.11 1.39 11.27 1.53 12.28 1.86 11.98

1.01 0.3 0.61 4.40 0.83 8.17 0.94 9.34 0.97 9.47

1.01 0.5 0.46 3.33 0.55 6.11 0.59 7.20 0.67 7.34

1.01 0.9 0.19 1.29 0.22 2.18 0.18 2.60 0.21 2.76

Table 4: Volatility (Std(Rf ) and Std(Re) in %) � persistent di�erences in beliefs

of agents with correct beliefs is large (50 or 90 percent) and/or discounting is relatively low (δ =

0.99), the stock return volatility exceeds the corresponding value for the OLG economy with the

largest dividend uncertainty and identical beliefs, see Table 2 in the previous section. The stock

return volatility increases with δ. It is non-monotone in the belief parameter ε and the fraction λ

of agents with correct beliefs.

For λ = 0 the stock return volatility increases substantially from ε = 0.1 to ε = 0.2 but then

levels off or even decreases as ε increases further. The economic reason for the declining stock re-

turn (and interest rate) volatility is straightforward. For large values of ε, the relatively old agents

in the economy become poor with very high probability and are thus at their natural borrowing

constraint. They have no or little wealth left to invest and so their share of the wealth distribution

remains small over time. The declining movements in the wealth distribution lead to declining

asset price volatility.
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The dependence of the stock return and interest rate volatilities on the belief parameter ε is

markedly different when a very small fraction of agents has the correct beliefs, see the results for

λ = 10−3 in Table 4. For large values of ε there is a good chance that the old type 1 agents retire

quite rich. This phenomenon is perfectly in line with the well-known results for infinite-horizon

economies. In such economies the small fraction of type 1 agents would eventually hold the entire

wealth in the economy. Due to agents’ finite life span in the OLG economy, this limit effect does

not occur here. Nevertheless the presence of a small fraction of agents with correct beliefs leads to

large movements in the wealth distribution and large asset price volatility. The volatility of both

the stock return and the interest rate become large as ε increases. As it becomes more and more

likely that the very old hold substantial wealth in the economy, the interest rate volatility can no

longer be disentangled from the stock return volatility. For λ = 0.9 both volatilities remain small.

Finally note that in this simple setup without uncertainty, we are able to roughly match ob-

served volatility of stock returns and the real interest rate. In Section 3 we explained why this

is always theoretically possible without any restrictions on beliefs. Interestingly, heterogenous

beliefs within a generation that are constant across generations create enough movements in the

intergenerational wealth distribution to generate similar effects. We interpret these results fur-

ther once we describe the movements in the wealth distribution below. First we turn to the first

moments.

5.2.2 The risk-free rate and the market price of risk

Not surprisingly, our parsimonious OLG model fails to simultaneously match observed risk-free

interest rates and stock returns. Markets are dynamically complete and agents’ risk aversion is

too low. Nevertheless we discuss the first moments because they shed some light on the economic

forces present in the model. Table 5 reports the average (quarterly) interest rate and the equity

premium (both in percent) for economies with a discount factor of δ = 1.

The equity premium is positive only for λ = 0. In such OLG economies, most of the time

younger agents hold all the wealth. But the stock is not really an attractive asset for them because it

loses value just as the agents get poorer. Thus, the equity premium must be positive for the agents

to buy the stock. As soon as a small fraction of agents has correct beliefs, the equity premium

drops substantially and even becomes negative. The agents with correct beliefs are (likely to be)

rich in old age and then hold most of the wealth in the economy. For them the stock is the only

investment vehicle to save for retirement and so they do not demand high excess returns. As the

fraction λ of (type 1) agents with correct beliefs increases and tends to one, the equity premium

becomes less negative and approaches zero. If all agents had the correct beliefs, that is, in the

absence of “belief risk” in the stock, the stock would be risk-free and redundant even though it is

an infinitely-lived security and the risk-free bond is a one-period asset. So, for λ = 1 the equity

premium would be zero.
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λ Moment ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

0 E(Rf ) 0.25 0.00 -0.01 -0.01

0 E(Re −Rf ) 0.37 0.90 1.04 1.00

0.1 E(Rf ) 0.54 1.75 2.20 2.33

0.1 E(Re −Rf ) 0.09 -0.32 -0.28 -0.23

0.3 E(Rf ) 0.60 1.21 1.44 1.54

0.3 E(Re −Rf ) 0.01 -0.21 -0.21 -0.19

0.5 E(Rf ) 0.59 0.93 1.01 1.01

0.5 E(Re −Rf ) 0.01 -0.13 -0.14 -0.14

0.9 E(Rf ) 0.57 0.61 0.66 0.67

0.9 E(Re −Rf ) 0.01 -0.01 -0.02 -0.03

Table 5: First moments (in %) � persistent di�erences in beliefs

5.2.3 The wealth distribution

Recall that in the benchmark economy in Section 3.1 the wealth distribution has a dramatic impact

on asset prices while in the calibrated example with aggregate uncertainty this effect is absent

simply because the wealth distribution does not move. Theorem 3 shows that with arbitrary

heterogeneous beliefs substantial movements in the wealth distribution are possible. We now

document that large effects are present in the calibrated economy.

We report results for the case δ = 1, λ = 0.3, and ε = 0.2. Table 6 displays the average cash-

at-hand shares of all ten groups as well as the corresponding standard deviations and also the

correlation coefficient of the cash-at-hand shares and the stock price.

Group 1 2 3 4 5

average (%) 1.17 -5.55 -8.47 -5.54 2.24

std. dev. (%) 18.29 26.21 22.10 17.26 15.49

r(p) 0.3579 0.6228 0.5554 0.3241 0.0458

Group 6 7 8 9 10

average (%) 12.99 24.99 33.01 30.30 14.94

std. dev. (%) 15.34 16.53 17.63 15.84 8.21

r(p) -0.2519 -0.5050 -0.6633 -0.7341 -0.7203

Table 6: Wealth distribution � persistent di�erences in beliefs

As we would expect in an OLG model, the second five groups (of older agents) hold, on aver-

age, a much larger share of aggregate wealth than the first five (younger) groups. Cash-at-hand
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shares peak for group 8 (agents living in their 169th to 192nd period, retiring in period 173) and

decrease subsequently. The shares do not grow monotonically across the age groups but fall until

group 3. In fact, groups 2, 3, and 4 have negative average shares. This effect is a result of the

agents with wrong beliefs losing (on average) money on their investments.

The standard deviations of the cash-at-hand shares range from 8% to more than 26%. These

figures indicate that the wealth distribution in this economy is very volatile. Groups 1, 2, and 3

have the largest standard deviation of cash-at-hand shares, so agents experience the largest volatil-

ity during the earlier periods of their lives. Since the agents are unconstrained and have their most

productive periods with the highest labor income ahead of them, they can make the largest “bets”

on the states they deem most likely. These investments result in volatile wealth levels for them

depending on the realization of the exogenous states.

The correlation coefficients highlight the impact of the wealth distribution on the stock price.

The cash-at-hand shares of the first five groups are positively correlated with the stock price; the

shares of the second five groups are negatively correlated with the stock price. The coefficients

for groups 2 and 3 have the highest positive value, those for groups 9 and 10 the most negative

value. (All ten coefficients are significant.) Figures 1 and 2 visualize the correlation between the

stock price and the wealth shares of groups 2 and 9, respectively. Figure 1 shows the positive

correlation between the wealth share of group 2 and the stock price. Figure 2 shows the negative

correlation between the wealth share of group 9 and the stock price. Simply put, when the young

are rich, the stock price tends to be high; when the old are rich, the stock price tends to be low. The

results in Table 6 and the two graphs clearly document a main theme of this paper, namely that

movements in the wealth distribution lead to changes in asset prices.

[FIGURES 1 AND 2 ABOUT HERE]

The pricing results above indicate that the fraction of agents with correct beliefs, λ, has an

important effect on the intergenerational wealth distribution. The following table shows the mo-

ments of the wealth distribution for the case δ = 1, λ = 0.3, and ε = 0.2.

Group 1 2 3 4 5

average (%) 28.33 31.10 18.46 9.45 4.37

std. dev. (%) 46.97 56.55 51.29 45.18 38.54

Group 6 7 8 9 10

average (%) 2.43 2.38 2.27 0.97 0.24

std. dev. (%) 32.28 26.66 20.49 13.41 5.45

Table 7: Moments of wealth distribution, λ = 0 � persistent di�erences in beliefs
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The numbers are in stark contrast to the ones in Table 6. When λ = 0, the old are very poor, the

young very rich and the standard deviations are much higher than in the economy with λ = 0.3.

The disparity between the two economies is also reflected in the first moments: for λ = 0, the

average interest rate is zero, for λ = 0.3 it exceeds 1 percent.

5.3 Converging beliefs

An unappealing feature of our analysis of heterogenous beliefs until now has been their persis-

tence. The agents do not learn and so do not adjust their subjective beliefs as a result of observed

relative frequencies of the shocks in the economy. In order to address this issue, we now modify

the specification of the economy and assume that the beliefs of the type 2 and type 3 agents within

a cohort converge to the correct beliefs. We consider two different speeds of convergence which

we term ‘slow’ and ‘fast’. In the first scenario of slow convergence, beliefs converge linearly over

time until all three agents in a cohort have the identical and correct beliefs in the very last period.

Formally, the beliefs of type 2 and type 3 agents in period a of their lives are

πa,2(1, 1) = πa,2(2, 1) =

(
1

2
+ ε

)(
1− a

240

)
+

1

2

a

240
,

and

πa,3(1, 1) = πa,3(2, 1) =

(
1

2
− ε
)(

1− a

240

)
+

1

2

a

240
,

respectively. In the second scenario of fast convergence, beliefs converge again linearly and are

identical after 120 periods. That is, in the second half of their life all three agents in a cohort have

identical and correct beliefs.

We report simulation results for economies with δ = 1 and λ = 0.3. Table 8 reports the second

moments of bond and stock returns for the two convergence scenarios.

Case ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

Slow 0.45 2.28 0.74 5.16 0.70 6.51 0.78 6.89

Fast 0.35 1.70 0.91 4.39 1.02 6.13 0.89 6.79

Table 8: Volatility (Std(Rf ) and Std(Re) in %) � converging beliefs

Comparing the figures in the table to the corresponding row in Table 4, we notice that con-

verging beliefs generate similar quantitative implications as persistent heterogenous beliefs. As

discussed previously, agents who hold incorrect beliefs often become relatively rich when they are

young but rarely manage to maintain their wealth for a long time. The wealth shares of the groups

of young agents fluctuate. The lack of substantial (if any) disagreement between the older agents

has only a small impact on the volatility of asset returns.

Table 9 provides information on the wealth distribution for the economy with fast converging

beliefs for λ = 0.3 and ε = 0.2. In comparison to the economy with persistent subjective beliefs,
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the volatility in the wealth shares for younger agents (groups 1 and 2) slightly decreases while

it increases for all other groups. When a cohort with wrong beliefs is lucky in young age and

accumulates a lot of wealth, then, with fast converging beliefs, they are more likely to keep this

wealth throughout their lifetime. As a result the volatility of their wealth shares increases. In

the economy with persistent differences, the wealth share of the old is always determined by

the agents with correct beliefs (type 1) since agents of the other types eventually become poor.

Therefore, the wealth shares of the older groups vary less.

Group 1 2 3 4 5

average (%) -0.15 -4.74 -5.26 -1.20 6.32

std. dev. (%) 15.14 23.98 23.82 22.97 23.32

r(p) 0.2412 0.4787 0.4685 0.3333 0.1486

Group 6 7 8 9 10

average (%) 15.41 24.33 29.16 24.71 11.42

std. dev. (%) 23.69 23.65 23.04 19.34 9.71

r(p) -0.0587 -0.2842 -0.4886 -0.6163 -0.6300

Table 9: Wealth distribution � fast converging beliefs

In sum, the described volatility of the wealth distribution and the resulting asset return volatil-

ity are robust to the stylized form of “linear” learning. We would expect to obtain similar results

if agents experienced Bayesian learning during their lifetimes. For the robustness of our results

it is only important that agents with heterogenous beliefs continually enter the economy. So, the

agents do not use past data to form (identical) prior beliefs at their date of birth.

5.4 Temporary disagreements

We consider a third specification of heterogenous beliefs in the OLG economy in which all agents

agree most of the time but in which temporary ‘regime switches’lead to disagreement. We assume

that there are three shocks s = 1, 2, 3. The true law of motion is as follows,

Π =


p 1− p/2 1− p/2

0.2 0.4 0.4

0.2 0.4 0.4

 .
In shock 1, all three types of agents agree and know the true probabilities. As before, agents of

type 1 have correct beliefs in all states throughout their life, i.e. πa,1 = Π for all a = 1, . . . , N − 1.

In shocks 2 and 3, the beliefs of types 2 and 3 are a = 1, . . . , N − 1,

πa,h(2, 1) = πa,h(3, 1) = 0.2, h = 2, 3
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and

πa,2(2, 2) = πa,2(3, 2) = 0.4 + ε and πa,3(2, 2) = πa,3(3, 2) = 0.4− ε,

respectively. For an interpretation of the results it is useful to consider the stationary distribution

(π̂1, π̂2, π̂3) of the Markov chain describing the regime shifts in agents’ beliefs. Table 10 reports the

stationary distribution for three different values of the probability Π(1, 1) = p. For p = 0.8 the

p π̂1 π̂2 π̂3

0.8 1
2

1
4

1
4

0.9 2
3

1
6

1
6

0.99 20
21

1
42

1
42

Table 10: Stationary distribution � temporary disagreement

agents disagree on average 50 percent of the time, for p = 0.9 they disagree 1/3 of the time, and

finally for p = 0.99 they disagree once every 21 quarters on average.

Table 11 reports the long-run measures Std(Rf ) and Std(Re) for different values of ε and p

for an economy with a discount factor of δ = 1 and a fraction of type 1 agents of λ = 0.3. Stock

p\ε 0.1 0.2 0.3

0.8 0.36 2.46 0.61 4.81 0.72 6.22

0.85 0.34 2.33 0.57 4.47 0.72 6.09

0.9 0.31 2.07 0.54 3.94 0.70 5.63

0.95 0.24 1.59 0.42 3.03 0.63 4.53

0.99 0.08 0.51 0.19 1.22 0.33 1.98

Table 11: Volatility (Std(Rf ) and Std(Re) in %) � temporary disagreement

returns exhibit considerable volatility even though disagreement is temporary and fundamentals

are deterministic. For p = 0.8 and ε = 0.3 the resulting volatility is close to the one observed in

the data. Not surprisingly, as p becomes large the return volatility decreases substantially and for

p = 0.99 is very small. For p = 0.99 all agents have identical and correct beliefs in more than

95% of all periods, that is, disagreement is rare. However, for the case λ = 0 (i.e., all agents have

incorrect beliefs), the volatility in this specification increases considerably. For example, for ε = 0.3

we obtain that Std(Rf ) = 0.89 and Std(Re) = 4.24.

Since the agents agree most of the time anyway, a very small fraction of agents with correct be-

liefs does not lead to a large change in the second moment, contrary to our benchmark economies,

see Table 4. However, this effect of a very small fraction of agents with correct beliefs is present

in economies where disagreement is more common. For example, for p = 0.9, when agents agree
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only 2/3 of the time, we obtain that for λ = 0 the standard deviation of stock returns is 9.91 per-

cent and the standard deviation of the interest rate is 1.11 percent (when ε = 0.3). If we introduce

a small fraction of agents with correct beliefs and set λ = 10−3, this standard deviation increases

to 12.80 percent for stock returns and 2.81 percent for the interest rate.

In sum, for many parameter values, the OLG economy with temporary disagreement also

leads to high stock return volatility. And again, the volatility of the stock return is substantially

larger than the interest rate volatility.

6 Conclusion

In this paper we have analyzed asset price volatility in an exchange economy with overlapping

generations. Our OLG model is both canonical and parsimonious – financial markets are com-

plete and there are no restrictions on asset trades. We have shown that with identical beliefs the

asset pricing implications of this model are similar to the implications of a standard Lucas (1978)

model with a representative agent. This finding is in line with the previous literature. However,

differences in opinion, even when they are small and unrelated to fundamentals in the economy,

can lead to completely different asset pricing implications. The interplay of belief heterogeneity

and life-cycle investments leads to considerable changes in the wealth distribution which in turn

result in substantial asset price volatility. In fact, the model generates realistic second moments of

asset returns.

Appendix

A Proofs

For the proofs of Theorem 1, Proposition 1 and 2 it is useful to consider the Arrow-Debreu equilib-

rium of the OLG economy. In finite Arrow-Debreu economies, the assumption of Cobb-Douglas

utility implies that the equilibrium is unique and that equilibrium prices are the solution of a

linear system of equations. These insights carry over to the Arrow-Debreu equilibrium of our

OLG model although the technical details are more complicated. Since it follows from Santos and

Woodford (1997) that there cannot be bubbles in our sequential equilibrium, there is a one-to-one

correspondence between the Arrow-Debreu equilibria and the sequential equilibria.

We first define the endowments of each agent appearing in the OLG economy at each node

of the event tree. Recall that we identify individuals (born into the economy) by the date-event

of their birth, σ ∈ Σ, and their type h = 1, . . . ,H . For each such agent define his endowment

ωσ,h(st) = eσ,h(st) for all nodes st ∈ Σ. Of course, the definition of e implies that an agent’s

endowment is zero at all nodes at which he is not alive. Recall that we denote individuals who
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are born before t = 0 by (s1−a, h) for a = 2, . . . , N and h = 1, . . . ,H . These agents’ endow-

ments include the dividends of the Lucas-tree over the whole event tree and are thus given by

ωs
1−a,h(st) = es

1−a,h(st) + φs
1−a,hd(st) for all nodes st ∈ Σ. The aggregate endowment in the

economy is

ω(st) = ω(st) =
∑
σ∈Σ

H∑
h=1

ωσ,h(st) +

N∑
a=2

H∑
h=1

ω−a+1,h(st).

Note that the aggregate endowment only depends on the current shock st. Denote the price for

the consumption good at each node st ∈ Σ by ρ(st) with the normalization ρ(s0) = 1.

The Arrow-Debreu equilibrium is defined as usual by prices (ρ(σ))σ∈Σ and consumption allo-

cations cσ,h such that markets clear and agents maximize utility.

Observe that a finite number of agents, namely those born before t = 0, hold a non-negligible

fraction of the aggregate endowment at all nodes. This fact ensures the existence of a competitive

equilibrium, see Geanakoplos and Polemarchakis (1991, Theorem 2). Moreover, in every equilib-

rium the value of the aggregate endowment must be finite. Our assumption of log utility implies

that excess demand functions satisfy the gross substitute property. As a consequence of these last

two properties the Arrow-Debreu equilibrium is unique, see Kehoe et al. (1991, Theorem A).

Building on the existence of a unique Arrow-Debreu equilibrium we can now prove Theo-

rem 1.

Proof of Theorem 1. We first determine the income of all agents in the economy. The income

of agent (s1−a, h) who is born before t = 0 is given by

Is
1−a,h = φs

1−a,h
∑
σ∈Σ

ρ(σ)d(σ) +
N∑
n=a

∑
sn−a�s0

ρ(sn−a)en,h(sn−a)

for a = 2, . . . , N and h = 1, . . . ,H . Analogously to our cash-at-hand definition for the sequential

equilibrium we can define cash-at-hand for the Arrow-Debreu equilibrium as

κs
1−a,h = φs

1−a,h
∑
σ∈Σ

ρ(σ)d(σ)

for a = 2, . . . , N − 1 and h = 1, . . . ,H . With this expression we can rewrite agents’ income as

follows,

Is
1−a,h = κs

1−a,h +

N∑
n=a

∑
sn−a�s0

ρ(sn−a)en,h(sn−a) for a = 2, . . . , N − 1, (9)

H∑
h=1

Is
1−N ,h =

∑
σ∈Σ

ρ(σ)d(σ)−

(
N−1∑
a=2

H∑
h=1

κs
1−a,h

)
+ ρ(s0)

H∑
h=1

eN,h(s0). (10)

The income of agent (σ, h) entering the economy at node σ = st ∈ Σ is given by

Iσ,h =

N∑
a=1

∑
st+a−1�σ

ρ(st+a−1)ea,h(st+a−1). (11)
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Next we derive the linear system of excess demand equations that determines equilibrium

prices. This system is analog to the system in finite economies with Cobb-Douglas utilities with

the exception that it has infinitely many equations and unknowns. For each agent st, h and age

a = 1, . . . , N define the weight

ξs
t,h(st+a−1) =

δa−1πs
t,h(st+a−1|st)∑N−1
j=0 δj

. (12)

For the agents (s1−a, h) who are present before t = 0 the coefficients ξs
1−a,h(st) are given by

ξs
1−a,h(st) =

δtπs
1−a,h(st|s0)∑N−a
j=0 δj

, t = 0, . . . , N − a,

for a = 2, . . . , N and st with t = 0, . . . , N − a. Observe that in the case a = N ,

ξs
1−N ,h(s0) = 1 for all h = 1, . . . ,H. (13)

The Arrow-Debreu prices, normalized such that ρ(s0) = 1, are now the unique solution to the

following linear system of equations.

N∑
a=1

H∑
h=1

ξs
1−a,h(s0) Is

1−a,h = ω(s0) (14)

N∑
a=1

H∑
h=1

ξs
t+1−a,h(st) Is

t+1−a,h = ρ(st)ω(st), for all st � s0 (15)

Observe that we can eliminate the income variables of the agents who are of age N at t = 0 from

Equation (14) since they both appear with a weight of 1, see Condition (13), by the right-hand

side of Equation (10). These two income variables do not appear in Equations (15). Moreover, we

can replace the incomes of all other agents by the corresponding expressions from Equations (9)

and (11). A close inspection of the resulting system of infinitely many equations and unknowns

reveals that all equations are linear in the cash-at-hand positions κs
1−a,h for a = 2, . . . , N − 1,

h = 1, . . . ,H , and the unknown Arrow-Debreu prices ρ(st) for st � s0. Therefore, the Arrow-

Debreu prices are a linear (affine) function of the initial positions κs
1−a,h. As a result the incomes

and thus the consumption allocations of all agents are linear functions of the initial conditions. In

particular, the individual consumption allocations at s0 are linear in the cash-at-hand positions.

The same must be true for the price of the Lucas-tree, q(s0) =
∑

st�s0 ρ(st)d(st), and the price of a

riskless one-period bond, 1/Rf (s0) =
∑

s1∈S ρ(s1).

Since the Arrow-Debreu equilibrium is unique for all initial conditions, the sequential equilib-

rium that implements the Arrow-Debreu outcome must be recursive with the state consisting of

the exogenous shock s ∈ S and the beginning of period cash-at-hand across agents, see Kubler

and Schmedders (2002).

Finally, note that all coefficients in the pricing and consumption functions, α, β, γ, must be

non-negative: If one of the coefficients were negative, we could find initial conditions for a mod-

ified economy where the agents of age N at t = 0 have arbitrarily large endowments and would

29



obtain negative prices or negative individual consumptions. �

Proof of Proposition 1. For a model without uncertainty we can simplify the linear system

of equations (14)–(15) that determines the Arrow-Debreu prices. Without uncertainty we can

identify an agent by the date of his birth, t, and his type, h. The weights (12) aggregate to

ξ̂t,h(t+ a− 1) =
δa−1∑N−1
j=0 δj

for a = 1, . . . , N . Similarly, expression (11) reduces to

Ît,h =
N∑
a=1

ρ̂(t+ a− 1)ea,h

where (ρ̂(t)) denotes the sequence of Arrow-Debreu prices. For the agents who are present before

time t = 0 the weights are

ξ̂1−a,h(t) =
δt∑N−a
j=0 δj

, t = 0, . . . , N − a,

for a = 2, . . . , N . These agents’ income is

Î1−a,h = κ1−a,h +
N∑
j=a

ρ̂(j − a)ej,h.

In the economy without uncertainty, the Arrow-Debreu prices are therefore determined by the

simplified linear system

N∑
a=1

H∑
h=1

ξ̂1−a,h(0) I1−a,h = ω (16)

N∑
a=1

H∑
h=1

ξ̂t+1−a,h(t) It+1−a,h = ρ̂(t)ω, for all t = 1, 2, . . . (17)

where ω ≡ ω(t), t = 0, 1, . . ., denotes the constant aggregate endowment.

In an economy with deterministic fundamentals but several states we have for any t that∑
st∈Σ

ξs
t−a+1,h(st)Is

t−a+1,h = ξ̂t−a+1,h(t)Ît−a+1,h.

with
∑

st∈Σ ρ(st) = ρ̂(t). (Note that we must add over all possible date-events st in the event tree

at time t.) It is easy to see that the prices ρ(st) solve the general system of linear equations (14)

and (15) if and only if the prices ρ̂(t) solve the specialized system (16) and (17). Since the general

system has a unique solution so does the specialized system. This solution does not depend on

agents’ beliefs and thus the same must be true for the price of the risk-free bond and the price

of the Lucas-tree. The consumption of an agent of age a and type h alive at t = 0 is given by

ξ̂1−a,h(0) I1−a,h. Clearly this is the same linear function of cash-at-hand for all beliefs. �
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Proof of Proposition 2. Equations (16) and (17) in the proof of Proposition 1 determine the

Arrow-Debreu prices in a deterministic economy. We rewrite Equation (17) for t = 1 and the

special case ea,h = 0 for a > 1 and e1,1 = 1. For simplicity we write this equation recursively and

denote by κa the cash-at-hand of agents of age a (at t = 0). We obtain

1∑N−1
j=0 δj

ρ̂(1) +
δ∑N−1

j=0 δj
+

δ∑N−2
j=0 δj

κ2 + . . .+
δ

1 + δ
κN−1 = ρ̂(1)(1 + d).

Note that the income of the agent of age 2 at t = 1 is Î0 = ρ̂(0)e1 = 1, while the income of the

agent of age 1 is ρ̂(1). Solving for the bond price, ρ̂(1), then gives the desired result. �

Derivation of Equation (8). Following Equation (6) the price of the riskless bond is

1/Rf (st) = γ1 +
N−1∑
a=2

γaφ
a−1(st)

N−1
N + d

1−
∑N−1

a=2 βaφa−1(st)

=
1

N(d+ 1)− 1
+ (

N − 1

N
+ d)

∑N−1
a=2 γaφ

a−1(st)

1−
∑N−1

a=2 βaφa−1(st)

=
1

N(d+ 1)− 1
+

N(d+ 1)− 1

N

(
N

N(d+ 1)− 1

) ∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−
∑N−1

a=2

(
1− 1

N−a+1

)
φa−1(st)

=
1

N(d+ 1)− 1
+

∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−
∑N−1

a=2

(
1− 1

N−a+1

)
φa−1(st)

. �

Proof of Theorem 2. We prove the theorem by a “guess and verify" approach. We guess that

consumption allocations are collinear and then derive values for all endogenous variables that

satisfy the equilibrium equations.

Suppose that consumption only depends on the shock and that individual consumption alloca-

tions are given by ca,hs = νa,hωs with νa,h > 0 and
∑N

a=1

∑H
h=1 νa,h = 1 for all states s = 1, 2, . . . , S.

Substituting these consumption allocations into the Euler equations yields the prices of the Arrow

securities,

qss′ = δΠ(s, s′)
νa,hωs
νa+1,hωs′

, ∀ a = 1, . . . , N − 1, h = 1, . . . ,H. (18)

The asset prices qss′ are obviously independent of the agent and thus we can define a new constant

f such that

f ≡ δ
νa,h
νa+1,h

∀ a = 1, . . . , N − 1, h = 1, . . . ,H. (19)

We can write an agent’s lifetime budget constraint, if he does not initially own shares of the tree,

as follows,

c1,h
s − e1,h

s +
S∑

s′=1

qss′

(
c2,h
s′ − e

2,h
s′ +

S∑
s′′=1

qs′s′′

(
c3,h
s′′ − e

3,h
s′′ +

S∑
s′′′=1

qs′′s′′′
(
c4,h
s′′′ − e

4,h
s′′′ + . . .

)))
= 0.
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Case 1. Individual labor endowments are collinear, that is, for each agent (a, h), there is a

weight ηa,h such that his endowments are given by ea,hs = ηa,hωs. Note that the weights ηa,h ≥ 0

do not sum to 1,
∑N

a=1

∑H
h=1 ηa,h < 1, since the social endowment ωs includes dividends ds.

In this case

c1,h
s − e1,h

s = (ν1,h − η1,h)ωs

v and using (18) and (19) also

S∑
s′=1

qss′(c
2,h
s′ − e

2,h
s′ ) =

S∑
s′=1

Π(s, s′)f
ωs
ωs′

(ν2,h − η2,h)ωs′

= f (ν2,h − η2,h)ωs.

Similarly,
S∑

s′=1

qss′
S∑

s′′=1

qs′s′′(c
3,h
s′′ − ω

3,h
s′′ ) = f2 (ν3,h − η3,h)ωs

and so on. Thus, the budget constraint of an agent of type h, born at shock s is equivalent to(
N∑
a=1

fa−1 (νa,h − ηa,h)

)
ωs = 0

which in turn is equivalent to
N∑
a=1

fa−1 (νa,h − ηa,h) = 0. (20)

The definition of the ratio f implies that fνa+1,h = δνa,h and thus fa−1νa,h = ν1,hδ
a−1 and so we

obtain for each agent h,

ν1,h

N∑
a=1

δa−1 −
N∑
a=1

fa−1ηa,h = 0.

These H equations together with the market-clearing condition

N∑
a=1

H∑
h=1

νa,h =

H∑
h=1

(
ν1,h

N∑
a=1

δa−1

fa−1

)
= 1

yields a system of H + 1 equations in the H + 1 unknowns f and ν1,h, h = 1, . . . ,H . Substituting

for ν1,h we obtain a polynomial equation in the single unknown f ,

fN−1
N∑
a=1

δa−1 −

(
N∑
a=1

fa−1
∑
h

ηa,h

)(
N∑
a=1

(
fN−aδa−1

))
= 0. (21)

Observe that the polynomial on the left-hand side is of the form g(f) =
∑2N−2

k=0 rkf
k with coeffi-

cients rk satisfying rk < 0 for k 6= N − 1 and rN−1 > 0. The classical Sign Rule of Descartes now

implies that equation (21) can have at most two positive solutions. Moreover, g(0) = r0 < 0 and

g(f) → −∞ as f → ∞. And since g(1) > 0 the polynomial g has two distinct positive roots, one

less than 1 and a second larger than 1.
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There are no bubbles in this OLG economy, see Santos and Woodford (1997). Moreover, the

stationarity of the prices of the Arrow securities implies that the tree price is also stationary, i.e.

p(st) = pst . Agents’ Euler equations then require

ps =
∑
s′

qss′ (ps′ + ds′) for all s = 1, . . . , S,

or, equivalently,

P = Q (P + d) (22)

where P (d) denotes the S-vector of tree prices (dividends) and Q denotes the (S × S)-matrix of

prices of Arrow securities. The matrix Q is the element-wise (Hadamard) product of the rank-one

positive matrix Ω with elements Ωss′ = ωs/ωs′ and the matrix fΠ with largest eigenvalue f . Thus

the matrix Q has also largest eigenvalue f . But for the solution f > 1 of (21) Equation (22) does

not yield a finite solution for P . The equation delivers only for f < 1 a finite price vector, namely

P = [I −Q]−1 d. Therefore, the solution f < 1 of Equation (21) yields the unique equilibrium. In

this equilibrium consumption allocations are collinear. This completes the proof of Case 1.

Case 2. Only the individual labor endowments of cohort 1 are assumed to be collinear

with the social endowment, e1,h
s = η1,hωs. Beliefs are i.i.d. so we can write Πs′ ≡ Π(s, s′) for all

s = 1, 2, . . . , S. As before we have for cohort 0,

c1,h
s − e1,h

s = (ν1,h − η1,h)ωs.

Now using (18) and (19) we obtain

S∑
s′=1

qss′(c
2,h
s′ − e

2,h
s′ ) =

S∑
s′=1

Πs′f
ωs
ωs′

(
ν2,hωs′ − e2,h

s′

)
= fωs

(
ν2,h −

S∑
s′=1

Πs′
e2,h
s′

ωs′

)
.

Similarly,
S∑

s′=1

qss′
S∑

s′′=1

qs′s′′(c
3,h
s′′ − ω

3,h
s′′ ) = f2ωs

(
ν3,h −

S∑
s′′=1

Πs′′
e3,h
s′′

ωs′′

)
and so on. Thus, the budget constraint is equivalent to

N∑
a=1

fa−1νa,h − η1,h −
N∑
a=2

fa−1

 S∑
s(i)=1

Πs(i)
ea,h
s(i)

ωs(i)

 = 0

where s′ = s(1), s′′ = s(2), and so on. Following the same steps as in Case 1 leads to the single

polynomial equation

fN−1
N−1∑
i=0

δi −

η0 +
N−1∑
i=1

f i

 S∑
s(i)=1

Πs(i)
ei
s(i)

ωs(i)

(N−1∑
i=0

fn−iδi

)
= 0. (23)
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in the single unknown f . As in Case 1 the left-hand side of this equation is a polynomial g(f) with

two sign changes and g(0) < 0, g(1) > 0 and g(f) → −∞ for f → ∞. Thus there are again two

solutions but, again, only the solution f < 1 leads to a well-defined stock price. This completes

the proof of Case 2. �

Proof of Theorem 3. We construct an economy with 3 shocks s = 1, 2, 3, that exhibits the

desired volatility. It suffices to consider an economy with one type per generation, H = 1. Let

δ = 1 and set e1 = 1 and ea = 0 for a = 2, . . . , N . Denote by p̄ the (hypothetical) price of the

tree if all wealth is held by the agent of generation a = 2 and denote by p the price of the tree

if all wealth is held by the agent of generation N − 2. The discussion in Section 3.1 implies that

p̄ ≥ (N − 2)(1 + d) and p ≤ 2 + d. Thus, p̄ grows with N and p is uniformly bounded for all N .

For the described specification of the OLG model, the proof of Proposition 1 (or, in fact, Huff-

man, 1987) implies that the consumption function of an agent of age a is independent of beliefs

and just depends on his cash-at-hand. For δ = 1 this function is given by

ca(κa) =
1

N − a+ 1
κa for a = 2, . . . , N.

Agents of age 1 always consume 1/N and the aggregate consumption of all other agents is N−1
N +

d. For a ≥ 2 the consumption function is injective, that is, it is a one-to-one mapping between

individuals’ cash-at-hand and consumption allocation. Thus there exist ε > 0 such the equilibrium

tree price exceeds ph = p̄−0.1 if and only if c2 ≥ (1−ε)(N−1
N +d) and this price is below pl = p+0.1

if and only if cN−1 ≥ (1 − ε)(N−1
N + d). We now construct an economy for which the equilibrium

allocations satisfy these properties and choose the “true” probabilities so that the desired volatility

is exhibited in equilibrium.

Choose the true law of motion to be Π(s, 1) = Π(s, 2) = 1/2 and thus Π(s, 3) = 0 for all

s = 1, 2, 3. All agents’ subjective beliefs are i.i.d., that is, we can write πas to denote the subjective

probability that the agent of age a = 1, . . . , N − 1 attaches to shock s in the next period. Choose

π1
1 < 1 close to one and define the price of the Arrow security for state 1 in the next period by

q1 = π1
1

1

N(N−1
N + d)(1− ε)

.

This is the supporting price that ensures that in the next period the agent of age 2 consumes exactly

(N−1
N +d)(1−ε) if shock 1 occurs. Whenever the equilibrium price for this Arrow security is below

this supporting price, the agent consumes more. Analogously, choose πN−2
2 < 1 close to one and

define for some lower bound on consumption, c,

q2(c) = πN−2
2 c

1

(N−1
N + d)(1− ε)

.

To achieve market clearing we now have to show that there exist probabilities such that for these

prices all other agents choose consumption below (N−1
N + d)ε/(N − 2) and that consumption of
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agents of age N − 2 is bounded below by c > 0. Define πa1 = πa2 = ζ for all a = 2, . . . , N − 3 as

well as π1
2 = πN−2

1 = ζ. Clearly we can choose ζ ≤ ε small enough to ensure that the agent of

age 3 consumes below (N−1
N + d)ε/(N − 2) even if the previous state was s = 1 and he consumed

(1 − ε)(N−1
N + d) in the previous period when he was of age 2. This choice of beliefs also ensures

that all other agents consume below (N−1
N +d)ε/(N−2) on the equilibrium path. In fact, it follows

from the first order conditions that it suffices to choose

ζ = ε/(N − 2) min {q1, q2(c)} .

Iterating on the first order conditions then yields a lower bound c on the consumption of agents

of age N − 2, namely

c ≥ εN−3

(N − 2)N−3

1

N
.

In the constructed equilibrium, the price always exceed ph in state 1 and falls below pl in state 2.

Using the true probabilities we can calculate a lower bound on the variance of the stock return,

(ph − pl)2

(
4d2 + 4d(ph + pl) + 3(ph)2 + 2phpl + 3(pl)2

)
16(ph)2(pl)2

.

Recall that pl is uniformly bounded above for all N while ph grows linearly in N . Thus, the (lower

bound on the) standard deviation of the stock return grows beyond any bound as N increases.

Finally, we choose πN−1
1 = πN−1

2 > 0 sufficiently small to ensure that via equation (8) the bond

price never falls much below its maximal value and so the interest rate varies by less than a pre-

specified v > 0. This completes the proof of the theorem. �

B Numerical solution

Recall that in our OLG economy markets are dynamically complete since each date-event st has S

successor nodes and agents can trade a full set of S Arrow securities at each date-event. Moreover,

the equilibrium consumption allocation is unique as the discussion preceding the proof of Theo-

rem 1 in Appendix A demonstrates. But agents’ portfolios are not unique in equilibrium since the

agents can trade the Lucas-tree in addition to the Arrow securities. Thus, in equilibrium, a con-

tinuum of portfolios supports the unique consumption allocation. At each date-event equilibrium

portfolios are a one-dimensional subspace of RS . For the computation of the linear policy and

pricing functions we exploit this multiplicity of portfolios supporting the equilibrium by impos-

ing an additional restriction. This condition on portfolios then uniquely determines one point in

the one-dimensional subspace.
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B.1 Equilibrium equations

The additional restriction forces the agent of age N − 1 and type 1 to buy the entire Lucas-tree. He

holds it for one period and then sells it in the last, N th, period of his life to the subsequent agent

of age N − 1 and type 1. All agents of ages a = 1, . . . , N − 2 and the type h = 2, . . . ,H agents

of age N − 1 are only permitted to trade Arrow securities. This choice of equilibrium portfolio

greatly simplifies the beginning-of-period cash-at-hand for all agents except for the one of age

N − 1 and type 1. The respective cash-at-hand positions at date-event st+1 = (st, st+1) are then

simply κa+1,h(st+1) = θa,hst+1(st), that is, an agent’s cash-at-hand is just his holding of the Arrow

security that pays in the current shock st+1.

With the special choice for the equilibrium portfolios we can now derive a nonlinear system of

equations that must hold in equilibrium. Let the current shock be s ∈ S and the current cash-at-

hand positions be κa,h for a = 2, . . . , N − 1, and h = 1, . . . ,H .

The first set of equations are the necessary and sufficient first-order optimality conditions for

the agents’ utility maximization problems. The generic first-order conditions with respect to port-

folio holdings of the Arrow securities are of the form

−qs′(st)u′(ca,h(st)) + δπa,h(s′|s)u′(ca+1,h(st, s′)) = 0 for a = 1, . . . , N − 1, (24)

where qs′(st) denotes the price of the Arrow security with a payoff in shock s′ in the next period.

Substituting the expressions (1) and (2) into these first-order conditions yields the following equa-

tions.

For a = 1:

−qs′

α2,h
1s′ +

N−1∑
j=2

H∑
i=1

α2,h
jis′θ

j−1,i
s′

+ δπ1,h(s′|s)

(
e1,h
s −

∑
s′

qs′θ
1,h
s′

)
= 0. (25)

For a = 2, . . . , N − 2:

−qs′

αa+1,h
1s′ +

N−1∑
j=2

H∑
i=1

αa+1,h
jis′ θj−1,i

s′

+ δπa,h(s′|s)

(
ea,hs + κa,h −

∑
s′

qs′θ
a,h
s′

)
= 0. (26)

For a = N − 1 and h = 1:

−qs′

eN,1s′ + θN−1,1
s′ + ds′ + β1s′ +

N−1∑
j=2

H∑
i=1

βjis′θ
j−1,i
s′

+ δπN−1,1(s′|s)

eN−1,1
s + κN−1,1 −

∑
s′

qs′θ
N−1,1
s′ −

β1s +

N−1∑
j=2

H∑
i=1

βjisκ
j,i

 = 0. (27)

For a = N − 1 and h = 2, . . . ,H :

−qs′
(
eN,hs′ + θN−1,h

s′

)
+ δπN−1,h(s′|s)

(
eN−1,h
s + κN−1,h −

∑
s′

qs′θ
N−1,h
s′

)
= 0. (28)
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Next we have the first-order condition of the agent of age N − 1 and type 1 with respect to his

holding of the Lucas-tree,

−p(st)u′
(
cN−1,1(st)

)
+ δ

S∑
s′=1

πN−1,1(s′|s)
(
u′(cN,1(st, s′))

(
ds′ + p(st, s′)

))
= 0.

Using the prices of the Arrow securities, see Equation (24), we can write the condition on the price

of the Lucas-tree as follows,

−

β1s +
N−1∑
j=2

H∑
i=1

βjisκ
j,i

+
∑
s′

qs′

ds′ + β1s′ +
N−1∑
j=2

H∑
i=1

βjis′θ
j−1,i
s′

 = 0. (29)

This equation completes the set of equations derived from agents’ first-order conditions.

We have S market-clearing equations.

N−1∑
a=1

H∑
h=1

θa,hs′ = 0 for s′ = 1, . . . , S. (30)

The third and last set of equations imposes consistency conditions on the linear consumption

functions.

For a = 2, . . . , N − 2, h = 1, . . . ,H , and the agents of age N − 1 and type h = 2, . . . ,H :

αa,h1s +

N−1∑
j=2

H∑
i=1

αa,hjisκ
j,i = ea,hs + κa,h −

∑
s′

qs′θ
a,h
s′ (31)

For the agent of age N − 1 and type 1

αN−1,1
1s +

N−1∑
j=2

H∑
i=1

αN−1,1
jis κj,i = eN−1,1

s + κN−1,1 −
∑
s′

qs′θ
N−1,1
s′ −

β1s +
N−1∑
j=2

H∑
i=1

βjisκ
j,i

 (32)

Equations (25)–(32) must hold for each s ∈ S and each initial condition κa,h for a = 2, . . . , N−1

and h = 1, . . . ,H . For fixed s and fixed initial condition, Equations (25)–(29) consist of H(N −

1)S+ 1 equations. In addition, there are S market-clearing equations. Finally there are H(N − 2)S

consistency conditions. For all s ∈ S combined there are

S (H(N − 1)S + 1 + S) +H(N − 2)S

equations. Observe that unlike the first-order conditions and market-clearing equations the con-

sistency conditions appear exactly once and are thus not again multiplied by S.

The unknowns in our system of equations are H(N − 2)S linear consumption functions (the

functions for agents of age 1 do not appear in the equations) with 1 +H(N − 2) coefficients each,
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S price functions for the Lucas-tree with 1 +H(N − 2) coefficients each, S2 Arrow security prices

and H(N − 1)S2 portfolio variables for agents’ holdings of Arrow securities for all possible com-

binations of s and s′.

To determine the coefficients of the linear policy and pricing functions we also need to vary

the initial conditions. For each value of κa,h we obtain another set of Equations (25)–(32). We do

not increase the number of coefficients but only the number of Arrow security prices and portfolio

variables. If we choose 1 + H(N − 2) affinely independent values for the initial conditions then

we obtain a system with

(1 +H(N − 2))
(
S (H(N − 1)S + 1 + S) +H(N − 2)S

)
= (H(N − 1) + 1)(H(N − 2) + 1)S2 + (H(N − 2) + 1)2 S

equations and unknowns. A convenient choice for the initial conditions are the zero vector and

all possible unit vectors for κa,h for a = 2, . . . , N − 1 and h = 1, . . . ,H . We denote this set of

1 +H(N − 2) values by G(κ).

For interesting model specifications the system of nonlinear equations becomes very large.

For example, for H = 2, N = 240 and S = 4 the system consists of 4,565,844 equations and un-

knowns. Systems of such size are impossible to solve on a laptop without state-of-the-art software

for Newton’s method or some other algorithm for nonlinear equations. We solve these systems

with a simple but slower iterative method based on a Jacobi scheme.

B.2 Iterative Jacobi method

At the beginning of an iteration, current iterates are available for the S(1+H(N−2))-dimensional

coefficient vectors αa,h and β. For each of the S(1 + H(N − 2)) possible combinations of s ∈ S

and κ ∈ G(κ) we solve a linear system of equations. Observe that Equations (25)–(28) are linear

in qs′ and qs′θ
a,h
s′ for s′ ∈ S , a = 1, . . . , N − 1, h = 1, . . . ,H . We can rewrite the market-clearing

equations (30) as
N−1∑
a=1

H∑
h=1

qs′θ
a,h
s′ = 0 for s′ = 1, . . . , S. (33)

The system (25)–(28) and (33) is a square linear system of H(N − 1)S+S equations in the H(N −

1)S unknowns qs′θ
a,h
s′ and the S unknowns qs′ . We solve this system with QR factorization with

very small error (close to machine precision).

After we have solved S(1 + H(N − 2)) such systems of linear equations we can determine

the new iterate for the coefficient vectors αa,h and β. Note that after substituting all possible

combinations of s ∈ S and κ ∈ G(κ) and the just computed accompanying solutions for qs′ and

qs′θ
a,h
s′ into Equations (29), (31), and (32) these in turn yield a system of S(1 + H(N − 2)) linear

equations in the S(1 +H(N − 2)) unknown new coefficients αa,h and β. The solution to this linear

system replaces the current iterate for the coefficients and serves as the next iterate. Now a new
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iteration starts. This iterative procedure terminates when the infinity norm of two subsequent

iterates falls below 10−10.

B.3 Computation of Aggregate Statistics

In our model, the transition matrix Π determines the probability distribution over exogenous

shocks in the next period. For a given shock in the following period the transition function of

the endogenous state vector κ is deterministic. This mapping is not linear but the cash-at-hand

of an agent in the next period can be written as the ratio of two linear functions of cash-at-hand

across agents in the current period. This can be seen easily from the analysis above. Both the

Arrow-prices qs and the expenditure in Arrow-securities qsθs are linear functions of the endoge-

nous state κ. In our algorithm we therefore not only compute the pricing and consumption-policy

coefficients, but we also compute the coefficients of the two functions that determine the transi-

tion. We can therefore easily simulate the economy and then compute the moments of interest.

We do not aim to numerically approximate the moments integrated over an invariant distri-

bution. Since the transition function in our economy is not monotone, standard techniques for

proving uniqueness of invariant distributions (see e.g. Bhattacharya and Majumdar, 2007, for an

overview) cannot be applied in our setting. Moreover, while we can do accuracy analysis for our

Monte-Carlo approximations for a given finite horizon T , we do not know of any methods to do

the same for the invariant distribution.
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[9] Cogley, T. and T. Sargent (2008), “The Market Price of Risk and the Equity Premium: A Legacy

of the Great Depression?” Journal of Monetary Economics, 55, 454–478.

[10] Davis, S.J., F. Kubler and P. Willen (2006), “Borrowing Costs and the Demand for Equity over

the Life Cycle,” Review of Economics and Statistics, 88, 348–362.

[11] De Long, J.B., A. Shleifer, L.H. Summers, and R.J. Waldmann (1990), “Noise Trader Risk in

Financial Markets,” Journal of Political Economy, 98, 703–738.

[12] Geanakoplos, J., M. Magill, and M. Quinzii (2004), “Demography and the Long-Run Pre-

dictability of the Stock Market,” Brookings Papers on Economic Activities 1:2004, 241–325.

[13] Geanakoplos, J.D. and H.M. Polemarchakis (1991), “Overlapping Generations,” in W. Hilden-

brand and H. Sonnenschein (eds.), Handbook of Mathematical Economics, Vol. IV, 1900–1960.

Elsevier, Amsterdam.

[14] Gourinchas P.-O. and J.A. Parker (2002), “Consumption over the Life Cycle,” Econometrica,

70, 47–89.

[15] Harrison, J.M. and D.M. Kreps (1978), “Speculative Investor Behavior in a Stock Market with

Heterogeneous Expectations,” Quarterly Journal of Economics, 92, 323–336.

[16] Huffman, G. (1987), “A Dynamic Equilibrium Model of Asset Prices and Transaction Vol-

ume,” Journal of Political Economy, 95, 138–159.

[17] Judd, K.L., F. Kubler, and K. Schmedders (2003), “Asset Trading Volume with Dynamically

Complete Markets and Heterogeneous Agents,” Journal of Finance, 58, 2203–2217.

[18] Kehoe, T.J., D.K. Levine, A. Mas-Colell and M. Woodford (1991), “Gross-Substitutability in

Large-Square Economies,” Journal of Economic Theory, 54, 1–25.

[19] Kogan L., S.A. Ross, J. Wang and M.M. Westerfield (2006), “The Price Impact and Survivial

of Irrational Traders,” Journal of Finance, 61, 195–229.

[20] Krusell, P. and A. Smith (1998), “Income and Wealth Heterogeneity and the Macroeconomy,”

Journal of Political Economy, 106, 867–896.

40



[21] Kubler, F. and K. Schmedders (2002), “Recursive Equilibria in Economies with Incomplete

Markets,” Macroeconomic Dynamics, 6, 284–306.

[22] Kurz, M. and M. Motolese (2001), “Endogenous Uncertainty and Market Volatility,” Economic

Theory, 17, 497–544.

[23] Lettau, M. and H. Uhlig (2002), “The Sharpe Ratio and Preferences: A Parametric Approach,”

Macroeconomic Dynamics, 6, 242–265.

[24] Lucas, R.E. (1978), “Asset Prices in an Exchange Economy,” Econometrica, 46, 1429–1445.

[25] Morris, S. (1995), “The Common Prior Assumption in Economic Theory,” Economics and

Philosophy, 11, 227–253.

[26] Rios-Rull, V. (1996), “Life-Cycle Economies and Aggregate Fluctuations,” Review of Economic

Studies, 63, 465–490.

[27] Sandroni, A. (2000), “Do Markets Favor Agents Able to Make Accurate Predictions?” Econo-

metrica, 68, 1303–1341.

[28] Santos, M.S. and M. Woodford (1997), “Rational Asset Pricing Bubbles,” Econometrica, 65,

19–58.

[29] Scheinkman, J. and W. Xiong (2003), “Overconfidence and Speculative Bubbles,” Journal of

Political Economy 111, 1183–1220.

[30] Storesletten, K., C. Telmer and A. Yaron (2007), “Asset Pricing with Idiosyncratic Risk and

Overlapping Generations,” Review of Economic Dynamics, 10, 519–548.

[31] Xiouros, C. (2010), “Differences of Opinion and the Price Volume Relation,” available at

SSRN: http://ssrn.com/abstract=1365096.

41



Figure 1: Wealth share (in%) of group 2 and stock price
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Figure 2: Wealth share (in%) of group 9 and stock price
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