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Abstract

We illustrate the challenges in Antitrust analysis of merger effects using sophisticated

aggregate demand systems, such as the random-coefficient logit of Berry, Levinsohn, and

Pakes (1995). Based on data from the cereal and automobile industries, we document

variation in hypothetical post-merger prices and its implication for consumer welfare and

firm variable profits. We identify two sources of post-merger price variation. The first

source is due to variation in demand estimates obtained by different starting values and

non-linear search algorithms. The second source is due to variation in the solutions of the

non-linear optimization problem associated with the Bertrand equilibrium. More impor-

tantly, the solutions to the first-order conditions do not meet the second-order conditions

of the assumed oligopoly game. Overall, our results present a cautionary tale not only

for the use of random-coefficient logit models in merger analysis, but also the use of the

Bertrand first-order conditions in demand estimation for same class of models.
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1 Introduction

We illustrate the challenges in simulating merger effects using sophisticated aggregate demand

systems, such as the random-coefficient (RC) Logit of Berry et al. (1995)—BLP, henceforth.

The first challenge is the solution of a highly non-linear minimization problem associated with

demand estimation, as documented in Knittel and Metaxoglou (2008). Different starting values

and non-linear search algorithms yield different demand estimates. These different demand

estimates lead to economically significant variation in post-merger market performance. The

second challenge is the solution of a complex non-linear optimization problem associated with

the Bertrand-Nash equilibrium. Holding the set of demand parameters constant, post-merger

market performance varies significantly across different starting points used to find the Bertrand

equilibrium.

We quantify the effects of these two sources of variation in post-merger market performance

using cereal data from Nevo (2000a) and automobile data from BLP. The hypothetical merger

in the cereal industry involves Kellogg’s and General Mills. The hypothetical merger in the

automobile industry involves GM and Chrysler. The difference between post- and pre-merger

cereal prices lies between -0.05 cents per serving to over 50 cents. The cereal post-merger

consumer welfare and variable profits also exhibit significant variation: -$180 million to $7.6

billion, and $75 million to $5.8 billion, respectively. The difference between post- and pre-

merger automobile prices is as low as $28 and as high as $200. Automobile consumer welfare

and variable profits vary significantly: $219M to $1.9B, and $5B to $187B, respectively.

The variation in merger outcomes holding demand estimates constant, as the one presented

here for the cereal industry, is due to nonlinearities in firms’ best-response pricing strategies

and corroborates, to some extent, recent theoretical work. For example, Allon et al. (2010)

have shown that multiple equilibria may exist in sufficiently concentrated markets in the case

of Bertrand competition among single-product firms. In addition, we provide an example,

where solving the first-order conditions (FOCs) is not sufficient to obtain the equilibrium prices

because the second-order conditions (SOCs) are not met. Hence, although the solution of

the FOCs provides the Nash equilibrium for the simple Logit case because the SOCs are met

(Morrow and Skerlos (2010)), this does not seem to necessarily be the case for the RC-Logit

models.

Our finding that the SOCs are not met is problematic for two reasons. First, our read of the

literature suggests that SOCs are not typically tested when using a RC-Logit demand system

to calculate equilibria; at least, they are not mentioned or reported. Second, researchers have
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used the Bertrand FOCs as moment restrictions when estimating the demand parameters in a

GMM framework under the assumption of profit maximization. If when estimating the demand

parameters, the FOCs moments are met, but the SOCs are not, the GMM objective function

will be misspecification leading to inconsistent demand estimates.

We believe our work is of immediate interest to Antitrust agencies that routinely review a

large number of mergers and frequently employ simulation techniques to assess their potentially

anticompetitive effects. However, before providing an overview of the simulating techniques

used in antitrust analysis, as well as the details of the issues we have identified in this paper, it

is useful for the reader to understand the realities of the merger review process: large number

of filings and tight time constraints. We discuss the case of the U.S. because we are the most

familiar with.

Since the introduction of the Hart-Scott-Rodino (HSR) Antitrust Improvements Act of

1976, all U.S. mergers valued at more than a threshold are required to file with the Federal

Trade Commission (FTC) and the Antitrust Division of the Department of Justice (DOJ) –

collectively, the Agencies. Between 1991 and 2009, approximately 45,000 mergers were filed

with the Agencies. After various adjustments throughout the years, the filing threshold was set

at $65.2 million in fiscal year 2009 (FTC and DOJ (2010a)).

Following an HSR filing, the Agencies have 30 days to conduct their preliminary review

and decide whether or not to issue a “second request” for a more thorough investigation of a

potentially anticompetitive merger. Once a second request is issued, the merging parties have

usually 2 to 3 months to comply. After the parties have complied, the Agencies decide whether

to block the transaction, accept some type of remedy, or allow the merger to proceed within

30 days. Almost 97% of the HSR filings were allowed to proceed without a full investigation in

the period 1991-2009. The remaining 3% were subject to a second request with two thirds of

them being abandoned, blocked, or modified to address the Agencies’ concerns.

The Horizontal Merger Guidelines provide the Agencies’ analytical framework to determine

whether the proposed merger is likely to be anticompetitive (FTC and DOJ (2010b). The

to-do list of the Agencies’ staff in the course of the investigation, usually, includes product and

geographic market definitions, as well as evaluation of (unilateral and coordinated) price-effects

theories, entry conditions, and efficiency claims under very tight time constraints. The focus

of unilateral-effects theories is the change in the merged firm’s incentives to price its products

following the merger. In the textbook case, the merged firm will have an incentive to raise

prices above the pre-merger levels because it now internalizes some of the substitution due to
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price increases. Concerns about coordinated effects are raised if the proposed merger increases

the likelihood of collusion among competitors.

The simulation of market structures to predict the price effects of mergers has experienced

a substantial growth in popularity since the early 1990s. This growth is largely attributed to

developments in the industrial organization and the antitrust literatures in two areas: demand

calibration/estimation and game-theoretic models of competition Werden and Froeb (2006),

Budzinski and Ruhmer (2010), as well as Davis and Garces (2009), provide an in-depth discus-

sion regarding the use of demand and game-theoretic models for antitrust analysis.

Demand calibration, a less demanding exercise compared to estimation, offers a particularly

attractive analytical framework for the short-lived merger-review process. The most promi-

nent examples of calibrated demand models are the Antitrust Logit Model (e.g., Werden and

Froeb (2002)), and the Proportionately-Calibrated Almost Ideal Demand System (PC-AIDS)

of Epstein and Rubinfeld (2001).

Demand models that require more rigorous econometric exercises fall into two broad cate-

gories: continuous and discrete. Continuous models include the linear, log-linear, and constant-

elasticity models (Werden (1997)), as well as the AIDS models (Hausman et al. (1994)). These

models examine the relationship between prices and quantities assuming functional forms and

are, usually, suitable for analyzing markets with a small number of products.

Discrete choice models, where demand is derived from utility, other than the RC Logit (Berry

et al. (1995), Nevo (2000a)) discussed here, include the simple Logit, the nested Logit, and the

GEV models. Weinberg and Hosken (2008), Ivaldi and Verboven (2005), and Peters (2006)

illustrate the use of these discrete-choice models in merger simulations. They are particularly

suited for markets with many products and increase in their complexity as we move from the

simple Logit to the GEV.1 Of course, the tight time framework of the merger review process

very often imposes a reality check on the degree of complexity of the demand model considered

for the analysis.

As Nevo (2001) illustrates, a demand system combined with an oligopoly model of compe-

tition and some additional assumptions suffice to simulate merger effects. Abstracting from

technical details, the model of competition offers the FOCs that equate marginal revenue

to marginal costs. The demand system identifies the marginal revenue, yielding pre-merger

marginal costs through the FOCs. Assuming that a smaller number of competitors is the only

1Pinkse and Slade (2004), Chan (2006), and Davis and Ribeiro (2010) borrow ingredients of both continuous
and discrete choice demand models.
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difference between the pre- and post-merger industry structures, which can be easily handled

with an adjustment to the ownership matrix entering the same FOCs, post-merger prices are

solutions to a system of non-linear equations. Our work lies in the heart of the challenges of a

simulation exercise of this sort.2

The remaining of this paper is organized as follows. In Section 2, we discuss a typical

RC-Logit demand model and try to shed light in the challenges associated with the underlying

optimization problem. Issues associated with the calculation of post-merger prices are discussed

in Section 3. We present our findings using the cereal and automobile data in Section 4. We

finally conclude.

2 The Demand Model

This section describes the first step of the merger simulation exercise, namely the estimation of

the underlying demand system. We start our discussion by presenting the standard BLP-type

model of aggregate demand.3 Following standard notation in the literature, we assume that a

consumer i derives utility from a product j in market t that may be written as:

uijt = xjtβi − αipjt + ξjt + εijt = Vijt + εijt, (1)

where pjt is the product’s price, xjt is a vector of non-price product characteristics. The vector

ξjt includes the unobserved to the econometrician features of the product, such as after-sale

services and image, which are valued by the consumers. Each individual is assumed to choose

one of the 1, . . . , J products available in the market, or to no purchase at all. The no-purchase

option is usually termed the outside good and its associated utility is ui0t = εi0t. The Logit

error term εijt is the first source of consumer heterogeneity in the utility function. The second

source of consumer heterogeneity are the random coefficients αi and βi, which may be written

as follows: [
αi

βi

]
=

[
α

β

]
+ ΠDi + Σvi, Di v PD (D) , vi v Pv (v) . (2)

The decomposition in (2) leads to terms that are common across consumers, such as α and β,

as well as to terms Di and vi, which are vectors of observed and unobserved consumer char-

2For a different angle on the evaluation of simulation techniques, see Bass et al. (2008), Weinberg and Hosken
(2008), Peters (2006), Hausman and Leonard (2005).

3There is an extensive literature that uses purchases of a particular product at the customer level that
employs random-coefficient logit models in the tradition of Train (2009).
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acteristics that affect purchasing decisions and follow the distributions PD and Pv respectively.

The coefficient matrices for Di and vi are given by Π and Σ. The main difference between Di

and vi is that we know something more about PD compared to Pv. The observed characteristics

in Di may be demographics, such as income, education, and family size. For example, in the

case of income, we may use data from Census surveys to either characterize its distribution

or use them while constructing Di per se. The vis capture intrinsic heterogeneity that is not

explained by any systematic or observable customer attributes. Often, standard normality is

the usual assumption for Pv with Σ containing the associated second moments.

Some preliminary, more descriptive type of analysis in the form of hedonic regressions, is

sometimes employed by researchers to identify product characteristics that “matter” and, hence,

should enter the utility function. Furthermore, the decomposition of consumer heterogeneity,

other than the Logit error term, into observed and unobserved is common.

The assignment of a random coefficient to price is probably the most common among prac-

titioners, due to its desirable property to generate more realistic substitution patterns among

products compared to more simple discrete-choice models, such as the Logit. Although at-

taching random coefficients to the remaining product characteristics is usually justifiable, it

increases computational complexity. As a result, it is not uncommon for the matrices Π and Σ

to be sparse. Using a more compact notation, and after combining equations (1) and (2), we

may use the following expression for the utility:

uijt = δjt(xjt, pjt, ξjt; θ1) + µijt(xjt, pjt, Di, vi, θ2) + εijt (3)

δjt = xjtβ − αpjt + ξjt, µijt = [pjt, xjt]
′(ΠDi + Σvi)

The δjts capture the mean utility associated with the consumption of good j that is common

across consumers in market t. Deviations from this mean utility are reflected in µijt and εijt. The

vectors θ1 and θ2 differ in that the former contains α and β, while the latter contains the elements

of matrices Π and Σ. Under independence of consumer idiosyncrasies for characteristics, the

market share of product j is given by:

sjt (x, p·t, δ·t; θ2) =

∫
Ajt

dP (D, v, ε) ,=

∫
Ajt

dPε (ε) dPv (v) dPD (D) , (4)

with Ajt (x, p·t, δ·t; θ2) = {(Di, vi, εit)|uijt ≥ uilt,∀l = 1, . . . J} .

In the share equation, x, includes the characteristics of the products while p·t = (p1t, . . . pJt)
′
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and δ·t = (δ1t, . . . δJt)
′. The error term ε can be integrated out analytically in (4) giving rise to

the well-known Logit probabilities. Given distributional assumptions for v and D, the integral

associated with market shares is commonly evaluated using Monte-Carlo simulation assuming

a number ns of individuals:

sjt (xjt, δjt, θ2) =
1

ns

ns∑
i=1

sijt =
1

ns

ns∑
i=1

exp(δjt + µijt)∑J
j=1 exp(δjt + µijt)

(5)

The aggregate demand shock ξjt, introduced by Berry (1994), plays the role of the conven-

tional linear-demand shock. In its absence, the market shares given by (5) are deterministic

functions of the product characteristics and price. The Logit error term has been washed out

and it cannot serve as a source of econometric uncertainty as it does in models employing

consumer-level data.

The presence of ξ implies prices are endogenous because both consumers and firm observe

ξ and therefore its value enters into the firms’ pricing decisions. The standard approach in

the literature to address the endogeneity is nonlinear GMM with the identifying assumption

E[ξjt|xjt, zjt] = 0 given an appropriate vector of excluded instruments zjt. Excluded instruments

may include costs, as well as functions of the observed product characteristics or prices of the

same product in different markets. Given a vector of mean utilities δ, a sample analog of the

moment condition can be constructed and the researcher may proceed with estimation in the

way described below.

The vector of mean utilities δ is retrieved by equating the observed market shares from the

data with those implied by the model for a given vector of parameters θ2:

sobs·t = spredjt (x, p·t, δ·t; θ2) . (6)

As opposed to the simple Logit and nested Logit, where analytical solutions for δ are avail-

able for the system of equations in (6), the random-coefficient Logit requires a numerical solution

of a highly nonlinear system of equations whose dimension equals the number of products in

the market. Berry (1994) advocates a contraction mapping to retrieve δ whose kth iteration is

given by:

δ
(k+1)
.t = δ

(k)
.t + ln sobs.t − ln spred.t (x, pt, δ

(k)
.t , θ2). (7)

For a given value of θ2, the contraction mapping in (7) can be initiated with the Logit solution

δ
(0)
.t = ln(s·t)− ln(s0t), where s0t is the share of the outside good and continues until some norm
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of the difference between two consecutive iterates is smaller than some pre-specified tolerance.

The contraction mapping has been the most widely used method to retrieve the vectors of mean

utilities. Once δ is retrieved, ξ can be inferred from the following equation:

ξjt = δjt − xjtβ − apjt. (8)

The elements of θ1, namely α and β, in the last equation are retrieved using linear instrumental

variables (IVs). Having defined θ = (θ1, θ2), with the aggregate demand shock playing the

role of a structural error term that is a function of θ, the econometrician faces the following

nonlinear-GMM problem:

θ̂ = arg min
θ

ξ (θ)′ ZΦ−1Z ′ξ (θ) , (9)

where Φ is the covariance matrix of the moment condition in the case of optimal GMM, or some

other weighting matrix. Inference is performed using standard results from GMM theory (Pakes

and Pollard (1989). The methodology just described allows the econometrician to perform a

non-linear search in the parameter space only for θ2 by concentrating out θ1. This is feasible

because, for a given value of θ2, we infer δ using (6) and (7) and given δ we obtain θ1 using linear

IVs. Having δ and θ1 available, the researcher constructs the econometric error that appears in

(9). Draws from Pv and PD required in (5) are made once and are kept constant through the

estimation exercise.4

Following the publication of computer code by Nevo (2000b), the estimation of BLP-type

models has become increasingly popular. Recent studies have identified issues regarding com-

putational aspects of the methodology outlined here. As a background, we should keep in mind

that the objective function of a typical BLP-model has not been shown to be globally concave

(e.g., Bajari et al. (2007)). Additionally, a non-linear search in the parameter space requires

hundreds or even thousands of function evaluations, with each of them involving a call of the

contraction mapping.

Knittel and Metaxoglou (2008) illustrate that the underlying GMM problem is a non-trivial

one based on data from Nevo (2000a) and Berry et al. (1995). Using more than 10 optimization

algorithms from different classes (derivative based, direct searches, random searches) and 50

4Recent papers discuss alternative estimation methods for the class of demand models discussed here.
Kalouptsidi (2010) uses the MPEC approach for the special case of BLP-type models with a finite number
of consumers. Conlon (2010) combines the MPEC approach and Empirical Likelihood on the grounds of com-
putational and statistical efficiency gains, respectively. Petrin and Train (2010) advocate the use of a two-step
control-function approach to address price endogeneity. Jiang et al. (2009) implement Maximum Likelihood as
opposed to GMM using a Bayesian MCMC method assuming a normal distribution for the vector of demand
shocks ξ. Also for the special case of a finite number of consumers, Bajari et al. (2007) offer a non-parametric
series estimator via the means of an inequality constrained least-squares approach.
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starting values, they show that economic variables of interest such as elasticities and consumer

welfare, which are readily available upon estimation, vary widely depending on the choice of

optimization routine and starting value.

Dube et al. (2009) show that the temptation to implement loose stopping criteria for the

contraction mapping to speed up the estimation process may cause two types of errors in pa-

rameter estimates. First, the approximation error of the inner contraction mapping propagates

into the outer GMM objective function and its derivatives. Second, even when an optimization

run converges, it may falsely stop at a point that is not a local minimum. The authors offer

an alternative formulation of the GMM problem as a Mathematical Program with Equilibrium

Constraints (MPEC) building on earlier work of Su and Judd (2008). In a nutshell, the un-

constrained minimization problem with the contraction mapping is replaced with a constrained

minimization problem, with a system of nonlinear constraints requiring the model’s predicted

market shares to be equal to the observed market shares and nonlinear search over a parameter

space that is higher than implied by θ2.

3 The Bertrand Game

This section describes the second step of the merger simulation exercise assuming a Bertrand

oligopoly model. Having retrieved marginal costs using the demand estimates and the first-

order conditions of a Bertrand game, we solve for the post-merger prices via simulation. The

estimation of the demand model, as well as the merger simulations are often highly nonlinear

problems. Knittel and Metaxoglou (2008) contain the details of our methodology to address the

highly nonlinear nature of the optimization problem associated with the demand estimation.

The details of our approach in the case of merger simulation are provided below.

With demand estimates in hand, we infer marginal costs using the first-order conditions of

a static Bertrand model with multi-product firms:

p−mc = Ω (p)−1 s (p) , (10)

where p is the price vector, s(·) is the vector of market shares, and mc denotes the corresponding

marginal costs. The dimension of these vectors is equal to the number of the products available

in the market, say J . The Ω matrix is the Hadamard product of the (transpose) of the matrix of

the share price derivatives and an ownership structure matrix. The ownership structure matrix

is of dimension J × J, with its (i, j) element equal to 1 if products i and j are produced by the
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same firm and zero, otherwise. Because prices are observed and demand estimation allows us

to retrieve the elements of Ω, estimates of marginal costs, m̂c, are directly obtained using (10).

A simple change of ones and zeros in the ownership structure matrix along with a series

of additional assumptions (Nevo (2001)) allows the simulation of a change in the industry’s

structure, as the one implied by mergers among competitors. Simply put, a merger simulation

implies the same Bertrand equilibrium with a smaller number of firms. In what follows, we

analyze the range of values for a measure of consumer welfare on the basis of post-merger

equilibrium prices. For the automobile data, we assume GM and Chrysler merge. In the case

of the cereal data set, we assume Kellogg’s and General Mills merge. The vector of post-merger

prices ppost is the solution to the following system of nonlinear equations:

ppost = m̂c+ Ω̂
(
ppost

)−1
ŝ
(
ppost

)
. (11)

The elements of Ω̂ (ppost) reflect changes in the ownership structure implied by the hypothet-

ical merger. Solving for the post-merger prices is equivalent to solving a system of nonlinear

equations of dimension J in the market under consideration. For example, using the cereal

data, we have 94 markets with 24 products in each market. As a result, solving (11) requires

the solution of 94 systems of nonlinear equations of dimension 24. An approximate solution for

the post-merger prices, which avoids the need to solve the systems of nonlinear equations, is

given by:

papprox = m̂c+ Ω̂ (ppre)−1 ŝ(ppre), (12)

where ŝ(ppre) is the pre-merger vector of market shares, readily available from the data, and the

elements of Ω̂ associated with share price derivatives are evaluated at the pre-merger prices. In

the results discussed below, we solved the system of nonlinear equations in (11) using a dogleg

trust-region (DTR) version of Newton’s method.5

Newton’s method for the solution of nonlinear equations of the form r(x) = 0 may be

described as iterating on the equation xk+1 = xk − ∆(xk)
−1r(xk). In terms of notation, xk

denotes the kth iterate and ∆(xk) is the Jacobian of r(xk). Newton’s method can be made

more robust using trust-region techniques with “dogleg” being a special case. Trust-region

methods utilize the notion of a merit function, a scalar-valued function of x, which indicates

whether a new candidate iterate is better or worse than the current iterate, in the sense of

making progress toward the root of r. A widely used merit function is the sum of squares of

the form ||r(x)||2/2.
5Nocedal and Wright (1999) provide an excellent discussion of the method in their Chapter 11.
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We implement the DTR method using the MATLAB fsolve function. The termination

tolerances for both the merit-function value and the vector of prices we are solving for are

set equal to 1e-16. We also impose a maximum number of 1000 iterations. Additionally, the

Jacobian is approximated using finite differences.6 The remaining of the fsolve settings are

equal to their default values. Finally, we use three sets of starting values for the DTR, namely,

the pre-merger prices, the estimated marginal costs, and the vector of approximate solutions

for the post-merger prices, papprox. The use of multiple starting values for the DTR tries to

address, to some extent, the issues identified in the next paragraph.

In the case of Bertrand competition with multiproduct firms facing random-coefficient Logit

demands, there is no result that shows the following: (1) existence of an equilibrium in pure

strategies, (2) whether the equilibria are unique solutions to the systems of FOCs of the under-

lying game. In the papers we are aware of, both existence and uniqueness have been assumed

(e.g., footnote 12 in Berry et al. (1995)).

Allon et al. (2010) provide a sufficient condition under which a Bertrand equilibrium exists

and the set of Bertrand equilibria coincides with the solutions of FOCs in the case of single-

product firms facing random-coefficient Logit demands. This condition precludes a very high

degree of market concentration: no firm captures more than 50% of the potential market in any

of the consumer segments that it serves. A somewhat stronger version of the same condition,

namely, firms shares below 30%, establishes uniqueness. Allon et al. (2010) also provide a suffi-

cient condition for a (unique) equilibrium for markets with an arbitrary degree of concentration

in the presence of an exogenous price limit. However, in this case, the equilibrium may not

necessarily reside in the interior of the feasible price region and, hence, not be characterized by

the FOCs.

The goal of our simulation exercises is to investigate whether the FOCs are met at multiple

places for two data sets that have served as example data sets in the literature. Our empirical

exercise is not as extensive as in Knittel and Metaxoglou (2008) in the sense that conditional

on a set of demand parameters, we use three starting values to search for a Bertrand-Nash

equilibrium. Using only these three starting values, we find that the FOCs are indeed met at

different prices. We therefore find variation in these merger counterfactuals arising from both

variation in the demand estimates and solutions to the non-linear Bertrand-Nash FOCs.

6A more detailed description of fsolve is available at http://www.mathworks.com/help/toolbox/optim/ug/
fsolve.html. Alternative approaches to infer equilibria assuming a mode of competition are available in some
recent work. For example, Miller and Osborne (2010), who examine spatial pricing the cement industry, use of
the fsane function in R, which implements the non-linear equation solver of Cruz et al. (2006). Morrow and
Skerlos (2010) study the automobile industry and present a fixed-point-iteration algorithm as an alternative to
Newton’s method.
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4 Results

Tables 1 through 3 summarize our results of the hypothetical merger using the cereal data. We

report post-merger industry profits, the total compensating variation, and the average change

in prices.7 The price changes are weighted by pre-merger market shares. The tables report

results based on 13 algorithms used to obtain the demand estimates and 3 sets of starting price

vectors utilized in the solution of the Bertrand FOCs. We used 50 starting values for each of

the 13 algorithms in the case of demand estimation. We performed the simulation using the

demand estimates that gave rise to the lowest GMM objective function value. The three sets of

starting price vectors are the pre-merger prices, marginal costs, and approximate post-merger

prices. We report results for the market with the smallest share of the outside good.8

The entries in each of these three tables exhibit substantial variation both across columns

and across rows. The within-column variation is due to different demand estimates obtained

for each of the 13 algorithms we employed. The within-row variation is due to different starting

price vectors for the solution of the Bertrand FOCs. Using the merger approximation prices as

starting values for the FOC search, across algorithms post-merger variable profits range from

$75 million to $3.8 billion—two order of magnitudes. Using marginal costs as the starting

value, post-merger variable profits range from $456 thousand to $4.0 billion—a factor of over

8,000. Finally, using pre-merger prices, post-merger variable profits range from $75 million to

$5.8 billion—a factor of over 70. We note that the demand parameters from SOLVOPT and

KNITRO3 yield the lowest GMM objective value found.

Within rows, variable profits vary for the majority of algorithms. The variation often exceeds

an order of magnitude. Two points are worth noting. First, the demand parameters that lead

to the lowest GMM objective value (SOLVOPT and KNITRO3) show the most variation across

FOC starting values. Second, average post-merger variable profits are highest when using the

pre-merger prices as starting values. Below, we provide evidence as to why this is the case.

To conserve space, we do not go through, in detail, the results with respect to compensating

variation and prices, but note that they exhibit similar variation to post-merger variable profits.

A preliminary answer to the more fundamental question of whether the solutions to the

7Following McFadden (1974) and Small and Rosen (1981), the compensating variation for individual i in the
presence of linear income effects is CVi = (1/ai)

(
ln
[∑j=J

j=0 exp
(
V post

ij

)]
− ln

[∑j=J
j=0 exp

(
V pre

ij

)])
, We calculate

V pre
ij and V post

ij using the pre- and post-merger prices.
8We assume a market size of 250 million as if the single market analyzed is representative of the nation.

Although this assumption is somewhat arbitrary, it does not affect the variation in results discussed here.
We calculate the total compensating as market size times the average compensating variation. The average
compensating variation is given by CV = (1/ns)

∑n
i=1 CVi.
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FOCs represent Bertrand-Nash equilibria appears to be no. While we are in the process of

calculating the profit hessian for each firm in each of the 94 markets for all three sets of starting

points for the FOC solutions in the cereal data, we have checked the hessian for one firm and

market when the approximate post-merger prices are used to obtain the FOC solutions. Some

of the profit hessian eigenvalues have positive signs indicating that the SOCs are not satisfied.

Additional evidence for the FOC solutions failing to satisfy the SOCs is provided in Figures 1

through 3. Each of these histograms is constructed using the percentage change in market share

implied by the 13 demand-estimation algorithms for each of the 24 products in the cereal data.9

As the spikes at -100 illustrate, for a large fraction of the products the post-merger prices are so

high that they imply close-to-zero market shares. This spike pattern is particularly prominent

in the case of the simulations that used approximate post-merger prices and marginal costs for

the solution of the FOCs.

Figure 4 illustrates the failure of SOCs in an alternative way. Here, we profile the variable

profits of the firm whose hessian indicated violation of SOCs around the post-merger price for

one of its products with close-to-zero post-merger shares, while keeping the post-merger prices

of the remaing products constant. The hump of the profit function is not at the post-merger

price but somewhere between the pre- and post-merger prices.

Finally, we provide evidence consistent with recent theoretical results suggesting that mul-

tiple equilibria are more likely in markets with larger share of the inside goods. In our case,

only the cereal industry exhibits such property, where the share of the inside goods, before the

hypothetical merger, often exceeds 50% of the total market size. We can use the variation in the

inside-good share across geographic markets to see how variation in the solutions to the FOCs

correlated with inside-good share. Based on the theoretical results, we should observe more

variation in the Bertrand FOC solutions for those market with higher inside market shares.

Such variation in the FOC solutions should also translate into variation of economic variables

of interest, such as the average compensative variation (ACV).

We analyze the variation in ACV implied by variation in the share of the inside goods as

follows. First, we calculate the ACV and the share of the inside goods for each combination

of demand non-linear search algorithm, market, and FOC solutions.10 Second, we calculate

the standard deviation of ACV and the average share of the inside goods by algorithm and

9Therefore, these histograms are constructed using 24 × 13 = 312 observations for percentage change in
market shares.

10These calculations give rise to (3× 24× 3 = 936) values for ACV and the share of the inside goods.
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market.11 Figure 5 provides a scatterplot of these pairs of summary statistics illustrating

the positive relationship between inside shares and variation in FOC solutions. This positive

relationship appears to be stronger for pairs characterize by inside shares exceeding 30%, which

is in the spirit of the results of Allon et al. (2010) with respect to multiple equilibria in the case

of single-product firms.

Moving to the automobile data, Tables 4 through 6 indicate substantial variation due post-

merger market performance primarily due to variation in demand parameter estimates.12 Specif-

ically, post-merger variable profits range from $5 billion dollars to over $180 billion.13 Omitting

the Mesh Adaptive Direct Search demand estimates reduces the variation considerably, but

one could argue that variable profits differences of over $30 billion is still substantial ($35B

compared to $5B). Compensating variation shows similar variation ranging from $219 million

to $1.6 billion. Finally, average changes in prices range from $28 to $200. The market share

changes in Figures 6 through 8 show a more intuitive pattern for a Bertrand-Nash equilibrium.

No product exits the market, and the changes are, on average, negative with left part of the

distribution predominantly composed of products from the two merging firms.

5 Conclusions

We illustrate the challenges in merger simulations with sophisticated aggregate demand sys-

tems of the BLP tradition and Betrand competition. The first challenge is the solution of a

highly non-linear minimization problem associated with demand estimation, as documented in

Knittel and Metaxoglou (2008). Different starting values and non-linear search algorithms yield

different demand estimates. These different demand estimates lead to economically significant

variation in post-merger market performance. The second challenge is the solution of a complex

non-linear optimization problem associated with the Bertrand-Nash equilibrium. Holding the

set of demand parameters constant, post-merger market performance varies significantly across

different starting points used to find the Bertrand equilibrium.

The juxtaposition of the two industries is consistent with recent theoretical work which finds

that for single-product firms, multiple Bertrand-Nash equilibria may exist when the inside-good

11This new set of calculations gives rise to (13x24 = 312) pairs of ACV standard deviations and average inside
shares.

12The entries of these tables are calculated for year 1990, which corresponds to the market with the largest
potential size in the BLP data. We assume a market size of 94 million households.

13Using the demand parameters from the Mesh Adaptive Direct Search algorithm and marginal costs as
starting values for the FOC search, the FOC search did not converge.
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market share is high. While we do not claim to find multiple Nash equilibria, indeed we claim

that we do not, this theoretical result suggests that the pricing-best-response functions are more

likely to exhibit multiple cross points when this is the case. We find variation in the solutions

to the FOCs, across starting values, in the cereal industry, where the inside-good market share

for the cereal industry can be as high as 70 percent, but not in the automobile industry where

the inside-good market share is roughly 9 percent.

Our results highlight two separate, but related, points. First, while it seems like an obvious

point, merger simulations must be sure to check the second order conditions. Given our results,

merger simulations may be a time consuming endeavor. Because it appears that in some cases

non-linear search algorithms are prone to find local minima for at least some of the products,

searching for a Bertrand-Nash equilibrium may entail a large number of searches until the

second order conditions are met.

A second implication of our results is that including the FOCs from a Bertrand-Nash equilib-

rium as additional moments in the GMM objective function associated with demand estimation

can lead to inconsistent estimates. Including the FOCs in the GMM objective function is not

entirely analogous to our empirical exercise since demand estimation seeks to choose demand

elasticities to rationalize observed prices, whereas the merger simulation chooses prices to zero

out the FOCs, given elasticities. However, there is no guarantee, within the GMM problem,

that the FOC moments are not choosing elasticities to minimize the profits of a subset of the

products. Insofar as this occurs, the moments are misspecified leading to inconsistent estimates.
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A Tables and Figures

Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 19.553      3,649               3,768          3,768          
Quasi-Newton 2 Derivative based 4.562       1,440               3,538          265             
Conjugate Gradient Derivative based 18.561      3,040               3,798          3,798          
SOLVOPT Derivative based 4.562       1,441               3,539          266             
KNITRO 1 Derivative based 15.456      3,802               3,837          3,837          
KNITRO 2 Derivative based 15.465      3,802               3,837          3,837          
KNITRO 3 Derivative based 4.562       1,442               3,539          266             
Simplex Direct search 17.224      3,360               3,769          3,769          
Mesh Adaptive Direct Search Direct search 17.095      3,220               4,024          4,024          
Generalized Pattern Search Direct search 50.993      2,747               4,070          4,070          
Simulated Annealing 1 Stochastic search 131.321    2,307               5,775          2,691          
Genetic Algorithm Stochastic search 34.236      75                   75              0                
Simulated Annealing 2 Stochastic search 108.128    2,346               2,862          2,767          
Note: Post-merger annual industry profits in millions of dollars.

Demand Estimation Merger Simulation Starting Values

Table 1: Post-merger annual industry profits in the cereal industry

Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 19.553      31 -97 -97
Quasi-Newton 2 Derivative based 4.562       3,698 953 5,859
Conjugate Gradient Derivative based 18.561      1,111 -122 -122
SOLVOPT Derivative based 4.562       3,699 953 5,862
KNITRO 1 Derivative based 15.456      -48 -63 -63
KNITRO 2 Derivative based 15.465      -47 -62 -62
KNITRO 3 Derivative based 4.562       3,700 953 5,863
Simplex Direct search 17.224      116 -87 -87
Mesh Adaptive Direct Search Direct search 17.095      1,158 -129 -129
Generalized Pattern Search Direct search 50.993      1,502 -182 -182
Simulated Annealing 1 Stochastic search 131.321    5,972 817 7,602
Genetic Algorithm Stochastic search 34.236      44 44 98
Simulated Annealing 2 Stochastic search 108.128    1,679 -25 -1,024

Demand Estimation Merger Simulation Starting Values

Note: Change in annual consumer welfare in millions of dollars.

Table 2: Change in annual consumer welfare in the cereal industry
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Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 19.553      3.01 0.06 0.06
Quasi-Newton 2 Derivative based 4.562       27.42 8.38 36.22
Conjugate Gradient Derivative based 18.561      23.00 0.03 0.03
SOLVOPT Derivative based 4.562       27.41 8.38 36.22
KNITRO 1 Derivative based 15.456      2.67 0.12 0.12
KNITRO 2 Derivative based 15.465      2.53 0.12 0.12
KNITRO 3 Derivative based 4.562       27.41 8.38 36.22
Simplex Direct search 17.224      11.81 0.08 0.08
Mesh Adaptive Direct Search Direct search 17.095      28.94 0.09 0.09
Generalized Pattern Search Direct search 50.993      27.59 -0.05 -0.05
Simulated Annealing 1 Stochastic search 131.321    51.74 18.96 56.06
Genetic Algorithm Stochastic search 34.236      1.12 1.12 11.55
Simulated Annealing 2 Stochastic search 108.128    19.03 7.22 -1.06

Demand Estimation Merger Simulation Starting Values

Note: Change in average price, weighted by pre-merger market share, in cents per serving.

Table 3: Average change in prices in the cereal industry

Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 215.08         27                   27              27              
Quasi-Newton 2 Derivative based 207.49         27                   27              27              
Conjugate Gradient Derivative based 215.09         27                   27              27              
SOLVOPT Derivative based 178.06         29                   29              29              
KNITRO 1 Derivative based 277.58         35                   35              35              
KNITRO 2 Derivative based 277.63         35                   35              35              
KNITRO 3 Derivative based 277.73         35                   35              35              
Simplex Direct search 215.09         27                   27              27              
Mesh Adaptive Direct Search Direct search 215.07         27                   27              27              
Generalized Pattern Search Direct search 196.70         27                   27              27              
Simulated Annealing 1 Stochastic search 193.25         23                   23              23              
Genetic Algorithm Stochastic search 215.60         180                  187             NA
Simulated Annealing 2 Stochastic search 180.06         5                     5                5                

Demand Estimation Merger Simulation Starting Values

Note: Post-merger annual industry profits in billions of dollars.

Table 4: Post-merger annual industry profits in the automobile industry
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Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 215.08         711                  711             711             
Quasi-Newton 2 Derivative based 207.49         1,235               1,235          1,193          
Conjugate Gradient Derivative based 215.09         712                  712             712             
SOLVOPT Derivative based 178.06         1,550               1,550          1,550          
KNITRO 1 Derivative based 277.58         1,141               1,141          1,141          
KNITRO 2 Derivative based 277.63         1,134               1,134          1,134          
KNITRO 3 Derivative based 277.73         1,151               1,151          1,151          
Simplex Direct search 215.09         716                  716             716             
Mesh Adaptive Direct Search Direct search 215.07         728                  728             728             
Generalized Pattern Search Direct search 196.70         1,394               1,394          1,394          
Simulated Annealing 1 Stochastic search 193.25         1,197               1,197          1,197          
Genetic Algorithm Stochastic search 215.60         1,610               382             NA
Simulated Annealing 2 Stochastic search 180.06         219                  219             219             

Demand Estimation Merger Simulation Starting Values

Note: Reduction in annual consumer welfare in millions of dollars.

Table 5: Change in annual consumer welfare in the automobile industry

Algorithm
Description

Algorithm
Class

GMM 
Value

App. Post-
Merger Prices

Pre-Merger
Prices

Marginal 
Costs

Quasi-Newton 1 Derivative based 215.08         87                   87              87              
Quasi-Newton 2 Derivative based 207.49         151                  151             149             
Conjugate Gradient Derivative based 215.09         87                   87              87              
SOLVOPT Derivative based 178.06         187                  187             187             
KNITRO 1 Derivative based 277.58         140                  140             140             
KNITRO 2 Derivative based 277.63         139                  139             139             
KNITRO 3 Derivative based 277.73         142                  142             142             
Simplex Direct search 215.09         87                   87              87              
Mesh Adaptive Direct Search Direct search 215.07         89                   89              89              
Generalized Pattern Search Direct search 196.70         172                  172             172             
Simulated Annealing 1 Stochastic search 193.25         146                  146             146             
Genetic Algorithm Stochastic search 215.60         200                  45              NA
Simulated Annealing 2 Stochastic search 180.06         28                   28              28              
Note: Change in average prices in dollars.

Demand Estimation Merger Simulation Starting Values

Table 6: Average change in prices in the automobile industry
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Figure 1: Percentage change in market shares resulting from merger, in the cereal industry
using approximated post-merger prices as starting values for the FOC search
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Figure 2: Percentage change in market shares resulting from merger, in the cereal industry
using pre-merger prices as starting values for the FOC search
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Figure 3: Percentage change in market shares resulting from merger, in the cereal industry
using MC as starting values for the FOC search
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Figure 4: Percentage change in market shares resulting from merger, in the cereal industry
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Figure 5: Percentage change in market shares resulting from merger, in the cereal industry
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Figure 6: Percentage change in market shares resulting from merger, in the automobile industry
using approximated post-merger prices as starting values for the FOC search
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Figure 7: Percentage change in market shares resulting from merger, in the automobile industry
using pre-merger prices as starting values for the FOC search
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Figure 8: Percentage change in market shares resulting from merger, in the automobile industry
using MC as starting values for the FOC search
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