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Abstract

This paper takes the position that an individual’s concern for relative status is expressed in
her preferences. We embed this hypothesis in an otherwise conventional model of economic
growth, and examine its consequences. The model generates two kinds of equilibrium. In
the first, all individuals always follow a deterministic consumption and investment strategy.
Such a strategy must be linear in output, is independent of payoffs and technology, and
only depends on the discount factor. This sort of equilibrium exists when the individual
cares only about status and the individual production function is convex in investment.
In contrast, the other kind of equilibrium involves convergence to a steady state in which
there is persistent and endogenously generated gambling. This kind of equilibrium exists
in more plausible circumstances. The individual has a utility function that may depend
on consumption per se as well as implied status and individual production functions are
concave. We characterize the unique steady state in such a situation, and prove that any
dynamic equilibrium path must converge to it. Risk-taking arises not from the presumption
of a utility function with strictly convex segments (as in Friedman-Savage), but naturally
from a view of utility as depending on relative status. Our steady state is broadly consistent
with the stylized facts that individuals both insure downside risk and to gamble over upside
risk, and generates similar patterns of risk-taking and avoidance across environments with
quite different overall wealth levels. Finally, in contrast to Friedman (1953), endogenous
risk-taking here is generally Pareto-inefficient.
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1. Introduction

The idea that utility or happiness depends, at least in part, on comparing one’s own
consumption to that of others can be traced back to Veblen (1899) and Duesenberry (1949),
and has found expression in the work of a number of prominent scholars.1 Nevertheless,
much of modern economic theory has somewhat stubbornly maintained the presumption
that an agent’s utility depends solely on her absolute level of consumption. Robert Frank,
writing as recently as 2005 in The New York Times observed that

“Despite Mr. Duesenberry’s apparent success, many economists felt uncom-
fortable with his relative-income hypothesis, which to them seemed more like
sociology or psychology than economics . . . In light of abundant evidence that
context matters, it seems fair to say that Mr. Duesenberry’s theory rests on a
more realistic model of human nature than Mr. Friedman’s. It has also been
more successful in tracking actual spending. And yet, as noted, it is no longer
even mentioned in leading textbooks.”

This obdurate stance has been harder to maintain in the face of a large body of empirical
evidence of an individual’s tendency to compare her consumption to that of others (for
example, Frank (1985), Clark and Oswald (1996), and Dynan and Ravina (2007)). It is
therefore not surprising to see a relatively young but growing literature that includes relative
concern as an argument in the utility function in addition to the absolute consumption level.2

In line with this literature, we embed relative payoff concerns into an otherwise conventional
model of economic growth, and study the intertemporal equilibrium of such a model. The
theory we develop provides an abstract account of endogenous risk-taking (even when there
is no intrinsic uncertainty), and links such risk-taking to economic inequality.

In the model, there are many agents, each choosing consumption and investment policies
in the setting of a growth model. There is no uncertainty, but the agent has unlimited
access to (fair) risk-taking opportunities and can exercise them in order to affect her output
and consumption. Each agent has a one-period utility function, defined on her rank in
the economy-wide cumulative distribution function of consumption, as well as possibly on
consumption itself. She maximizes a discounted sum of these one-period utilities.

Unlike the usual growth model, in which every man is an island, or the competitive variant
of it, in which each agent interacts with society via market prices for labor and capital,
our model exhibits a fundamental interaction across agents via the aggregate distribution of
consumption at any date. This distribution determines each individual’s optimizing choices,
while (in equilibrium) these choices also generate the overall distribution.

The main idea we want to explore is simple. If the production function exhibits increasing
returns, and so allows economic inequality to persist across agents, then an equilibrium takes

1See, e.g., Frank (1985, 1997), Easterlin (2002), Scitovsky (1976), Sen (1973), Schor (1992) among many others.
2See, for example, Robson (1992), Cooper, Garcı́a-Peñalosa and Funk (1998), Corneo and Jeanne (1998), Kockesen,
Ok and Sethi (2000), Becker, Murphy and Werning (2005), Hopkins and Kornienko (2004, 2006) and Ray (2006).
The bibliographical notes in Section 5 discusses some of this literature.



2

on a particularly simple, deterministic form. If, however, there is a tendency towards society-
wide convergence (as in the canonical Solow or Ramsey models) then that simple equilibrium
can no longer exist. Because individuals are partly affected by relative status, the urge to
create an environment of risk-taking becomes irresistibly strong when individual wealths
bunch together. In this case, our equilibrium involves the periodic creation of consumption
inequality via endogenous risk-taking. This observation — that the attainment of economic
equality may be hampered by the endogenous taking of risk — is the central theme of the
paper.

In the remainder of the Introduction, we describe our results and elaborate further on this
general theme. Section 2 sets up the general model we use. Section 3 studies the case of a
convex production function, and specializes to a “pure status” model, in which individual
utility depends on relative status alone. Proposition 1 identifies an equilibrium in this model
with no gambling at any date. The equilibrium is remarkably simple: independently of the
form of the utility and production functions, it exhibits a common consumption strategy at
every date which is linear in output and only depends on the discount factor. A potentially
complex model is thereby reduced to one in which each individual behaves as if she is
maximizing a logarithmic utility function, and faces a linear technology of accumulation.

This equilibrium always exists when the agent is concerned with status alone, and the
individual production function is weakly convex in investment. Under mild initial
conditions, the equilibrium precipitates a strictly concave optimization problem for each
individual, no matter how convex the production function is. It is also the only deterministic
equilibrium in a broad class of deterministic strategies, in which consumption functions are
allowed to vary over time and across individuals but must be differentiable and a strict best
response (Proposition 2).

This result sets the stage for the main part of the paper (Section 4), in which we assume that
production functions are strictly concave. By Proposition 2, a deterministic equilibrium must
induce convergence across individual wealths. That convergence dramatically raises the
payoff to investment in terms of status, and invariably creates room for profitable deviations
from the putative equilibrium. In short, no deterministic equilibrium can exist in this case
(Proposition 3). This motivates our study of endogenous risk-taking. Our main argument
is that concerns regarding status-seeking must endogenously generate risky behavior, even
in a society with no exogenous risk.

To develop this argument, we presume that all fair gambles are freely available: there is
a competitive fringe of firms, each equipped with a randomization technology, that stand
ready to supply such demands for a zero profit. (A particularly topical interpretation
is uninformed trading on the stock market.) Translating our intuition about gambling
to a formal analysis is not straightforward, not least because the accumulation policies
followed by every individual are themselves endogenous, as are the gambles actually taken.
Nevertheless, we prove that when individual production functions are strictly concave, there
exists a unique steady state (Propositions 4 and 5) that involves endogenous gambling. In
this steady state, all individuals save the same amount, and hence start each period with
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identical wealth levels. However, individuals then all take the fair bets over consumption
that induce a nontrivial distribution of consumption.3

A full intertemporal equilibrium from an arbitrary initial wealth distribution can be complex.
However, we also show that any such equilibrium path from positive initial wealths must
converge to this unique steady state (Proposition 7). In this sense, we can describe fully
what our equilibrium must look like, at least in the long run.

A remarkable feature of our equilibrium is that it generates (both in steady state and along
the transition) an individual desire to insure against downside risk and an urge to gamble
over upside risk. These are precisely the facts that drove Friedman and Savage (1948) to
introduce their well-known utility function, with appropriately located concave and convex
segments. But our model does not presume a utility function with different local curvatures;
rather, it derives similar outcomes from a view of utility as arising from relative status.4

Indeed, our results are fully consistent with a strictly concave utility function defined on
consumption and relative status. With the production function concave as well, our setup
is quite conventional, with the sole exception of the inclusion of relative status.

Two other distinctive features of risk-taking in our model are worth highlighting. A
particular Friedman-Savage utility function might account for for the pattern of risk-taking
and risk-avoidance at a particular time, but it will generally fail to work at some later
date, after substantial growth in wealth. In a fully dynamic setting, the Friedman-Savage
specification (with its exogenously posited curvature of utility) might generate an initial burst
of gambling, with none thereafter. Our model, on the other hand, relies on endogenously
generated curvature, and will exhibit risk-taking and risk-avoidance over the entire range
of wealths, or across environments with different wealth levels.

Second, a central implication of our approach is that equilibrium behavior must coexist with
a certain degree of consumption inequality. When that inequality is generated “naturally”, as
it is with an increasing-returns technology, equilibrium behavior is simple and deterministic.
On the other hand, when inequality tends to go away, equilibrium behavior steps in
to recreate it by endogenously generating periodic sprees of risk-taking. Paraphrasing
Voltaire’s famous observation about God, we might say that if inequality did not exist, it
would be necessary to invent it.

At the same time, the word “necessary” is not to be confused with “desirable”. It is indeed
the case that risk-taking in our model is a deliberate act, in the tradition of Friedman (1953),
and, more recently, Becker, Murphy and Werning (2005). When bets are taken, we think
not only of individuals buying lottery tickets and investing in risky stocks, but also of
individuals making risky career decisions. Friedman’s view was that such risk-taking is
efficient. If an individual endowed with a strictly convex utility function of own wealth

3In contrast, when individual production functions are convex, ongoing accumulation creates no tendency for
cross-sectional convergence across individuals, and therefore no bunching of consumption. No endogenous
risk-taking arises.
4In this context, it is of interest that Friedman and Savage also provide an informal status-based motivation
for their concave-convex-concave utility function. We discuss this in more detail in the concluding section of
our paper. Our model can be viewed as one possible formalization and elaboration of this interpretation of
Friedman and Savage.
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alone wants to gamble, that gamble must be ex-ante efficient. Friedman therefore argued
that some observed inequality could be the efficient product of free choices.

In the relative status world, with consumption externalities, this is no longer true. In this
model, steady states with gambling are generally Pareto-inefficient (Proposition 6).

2. Model

2.1. Feasible Set. There is a continuum of agents of measure one. Agent i has initial wealth
w(i). The cumulative distribution of initial wealth is denoted by G.

Agents consume and produce every period. Wealth at date t for agent i, wt(i), is divided
between a consumption ct(i) and capital kt(i):

(1) wt(i) = ct(i) + kt(i).

Capital creates fresh wealth via a production function f .

(2) wt+1(i) = f (kt(i)).

The same production function is available to every agent. We impose

Assumption 1 [fgen]. f is strictly increasing and differentiable, with f (0) = 0.

(Throughout, we place labels on assumptions as an easy mnemonic aid.)

To accommodate the possibility of endogenous risk-taking, we presume throughout that
everyone has access to a “randomization technology”. The technology can convert any
fixed contribution into any risky gamble over outcomes, with the same expected value
as the original contribution. The outcomes may be consumed or invested, or both. This
technology might be a lottery as the term is commonly understood, or it could be a gamble in
a more general sense, such as a risky occupation that requires upfront investment. Abstractly,
one might think of competitive, risk-neutral “risk providers” standing by to deliver any fair
randomization on demand.

2.2. Status and Utility. Let Ft be the cumulative distribution of consumption in society at
date t. This will be determined “in equilibrium” but a single agent regards it as given.
Define, for any c ≥ 0,

(3) F̄t(c) =

{
Ft(c) if Ft is continuous at c
µF−t (c) + (1 − µ)Ft(c) if Ft has an atom at c

where µ is some fixed number strictly between 0 and 1 (think of µ = 1/2 for concreteness),
and F−t (c) is the left hand limit of Ft at c. We interpret F̄t(c) as the status enjoyed by an
individual at date t when she consumes c. It is a purely relative object, free of any absolute
consumption considerations.

A general specification of individual utility is one in which both absolute consumption and
relative status matter. Write u = u(c, s), where s ∈ [0, 1] stands for status.
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Assumption 2 [ugen]. u(c, s) is continuously differentiable, with u(0, 0) = 0. It is increasing
in s, with us(c, s) > 0 for all (c, s). It is nondecreasing and concave in c. If uc(c, s) is strictly
positive, then uc(c, s) declines in c. Finally, u(c, 1)/c→ 0 as c→∞.

Note that we do not impose any curvature restriction on utility as a function of status.
However, we do require that u be concave in c, strictly so if u is sensitive to c.

A special case covered by the assumption is what we shall call the pure status model, in which
u does not depend on c at all. In this case, with slight abuse of notation, we shall simply write
utility as u(s), where u is some strictly increasing and continuously differentiable function,
with u(0) normalized to 0.

2.3. Optimization. Given initial wealth w, and a sequence of consumption distributions Ft,
an agent’s objective is to choose a sequence of (possibly degenerate) fair randomizations of
wealth, and an allocation of realized wealth to consumption and investment at every date,
to maximize the present discounted value of expected payoffs over time:

(4)
∞∑

t=0

δtEu
(
ct, F̄t(ct)

)
where δ ∈ (0, 1) is the discount factor. The expectations are taken with respect to realizations
of the endogenous randomizations at each date; there is no exogenous uncertainty. We
reiterate that each agent is free to follow a fully deterministic sequence, if she so chooses. In
either case, the constraints (1) and (2) must be respected at every date.

2.4. Equilibrium. Fix some initial distribution of wealth G. An equilibrium is a sequence
of distribution functions F ≡ {Ft} for consumption and G ≡ {Gt} for wealth, as well as
a consumption and randomization policy for every individual (possibly varying across
individuals and time) such that (i) G0 = G, (ii) each individual policy maximizes expected
utility given F, and (iii) at each date, given Gt, the aggregate over individual policies yields
Ft and Gt+1.

A steady state is an equilibrium in which the distributions of consumption and wealth are
time-stationary: there are distributions F∗ and G∗ such that Ft = F∗ and Gt = G∗ for all t.

3. Deterministic Equilibrium with Convex Production Functions

In this section, we develop the idea that nondecreasing returns to scale in investment, by
preventing convergence, permits a remarkably simple equilibrium to exist. In such an
equilibrium, individual savings policies depend only on the discount factor, and economic
inequality is indefinitely perpetuated.

Consider the following two restrictions:

Assumption 3 [upure]. u has the pure status property: u depends on s alone, u(s) is
continuously differentiable, with u(0) = 0 and u′(s) > 0 for all s > 0.

Assumption 4 [fconv]. f is convex.
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Observe that the convexity of the production function appears to create an individual
optimization problem that is not concave. This point is apparently reinforced by the fact
that we have made no assumption about the curvature of u in s. Yet, the equilibrium that
we uncover will be seen to precipitate a strictly concave maximization problem for each
individual.

In what follows, we also assume

Assumption 5 [init]. The initial distribution G has supportR+, and u(G(w)) is continuously
differentiable and strictly concave in w.

3.1. A Simple Deterministic Equilibrium. A deterministic equilibrium with particularly
simple properties always exists, provided that the production function is convex. More
precisely, we have

Proposition 1. Make Assumptions 1 [fgen], 3 [upure], 4 [fconv] and 5 [init]. Then there exists
an equilibrium in which every individual strictly prefers a deterministic policy, and in which the
equilibrium status for any individual is constant over time. In this equilibrium, every individual at
every date t uses the policy function

(5) ct = (1 − δ)wt,

which does not depend on the utility function u nor on the initial distribution of wealth.

Two things are striking about this proposition. First, despite the presumption that f can
exhibit increasing returns (to an arbitrary degree), and despite the lack of any restriction on
the curvature of utility with respect to status, the equilibrium we obtain induces a strictly
concave optimization problem for each individual. This is why — as the proposition observes
— in equilibrium, determinism is strictly preferred by each individual to randomization.
The convexity of f ensures that the wealth and consumption distributions stay suitably
dispersed at every date: the marginal gain from status never becomes high enough to
induce risk-taking. The reader will need to study the proof to absorb the details of the
argument.

The discussion above does depend on the assumption of a pure status model. If utility were
also to depend on absolute consumption, there would be an extra push towards convergence
induced by the concavity of the utility function in absolute consumption. However, we
conjecture that this effect would be nullified by some threshold degree of convexity in f ; in
the pure status model, that threshold is simply linearity.

Second, the equilibrium has an extremely simple structure. Equilibrium policy depends
neither on the initial distribution of wealth, nor does it depend on the exact form of
the utility function or the production function. (The equilibrium distributions do.) In
fact, the equilibrium policy that we isolate would have been the one followed by an
optimizing planner with logarithmic utility defined on absolute consumption and using
a linear production technology. What accounts for this structure is the delicate balance
achieved across time periods: status matters today, which increases the need for current
consumption, but it matters tomorrow as well, which attenuates that need. In equilibrium
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— with a convex production function — the two effects nicely cancel in a way that induces
a particularly simple equilibrium structure.5

3.2. Uniqueness of the Simple Equilibrium. It may be argued that Proposition 1 only
identifies a particular equilibrium. However, under some mild restrictions, it is the only
deterministic equilibrium. To describe the restrictions, say that a deterministic equilibrium
is regular if at each date, some individual strictly prefers her best consumption response at
all but possibly a countable number of wealths. It is smooth if every individual employs a
sequence of differentiable consumption policies {ci

t}, with εi
≤ ci

t
′(w) < 1 at all wealths w and

dates t, for some εi > 0.

Proposition 2. Make Assumptions 1 [fgen], 3 [upure] and 5 [init]. Suppose that a deterministic
equilibrium, described by a sequence {ci

t} of consumption functions, is regular and smooth. Then
ci

t(w) = (1 − δ)w for all i, all t and all w.

The proposition states that our simple equilibrium is the only deterministic equilibrium
in a broad class of policies. It is worth noticing that this proposition is independent of
the curvature of f ; only Assumption 1 is imposed on the production technology. This
observation acts as an entry point into the concave case that we shall discuss in the next
section. To see how, consider the following restriction:

Assumption 6 [fbound]. There exists 0 < k̂ < ∞ with δ f (k) > k for all k ∈ (0, k̂), while
δ f (k) < k for all k > k̂.

Proposition 3. Make Assumptions 1 [fgen], 3 [upure], 5 [init] and 6 [fbound]. Then no policy
sequence of the form described in Proposition 2 can ever be an equilibrium.

The proof of this proposition is simple. If such a policy sequence were to be an equilibrium,
convergence would occur, generating large payoff gains in status from very small deviations
in the proposed policy. While this proposition does not fully prove that there must be
randomization in equilibrium, it comes close. For it tells us that no deterministic equilibrium
exists that exhibits the mild regularity conditions imposed in Proposition 2.

4. Endogenous Risk-Taking

Proposition 3 motivates the central goal of this exercise, which is to formalize the following
intuition. When the production function is concave, an equilibrium generally induces
convergence across individuals. As long as relative status has some value for individuals,
such convergence must be “prevented” by the endogenous creation of risky opportunities.
The equilibrium must involve risk-taking, even if there is no intrinsic uncertainty to begin
with.

A society that “gambles” — or more generally, engages in various risky forms of generating
income — will have the property that wealth distribution remains spread out, so that high

5This observation may be viewed as a counterpart for rank-dependent status of the result established by Arrow
and Dasgupta (2009) where status derives from the average consumption level.
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status gains from relatively small deviations are eliminated. It turns out that our model not
only captures this intuition, but does so in a particularly stark way. We first establish the
existence of a “steady state” — a situation in which the same distribution of wealth recurs
period after period — and then establish the uniqueness of that steady state. We do this in
the context of an ambient model with perfect certainty. This is a deliberate choice, because
we show that the randomness of incomes is generated endogenously.

We then prove that all equilibria must converge to this unique steady state.

We introduce the following concavity assumption on f :

Assumption 7 [fconc]. f is continuously differentiable, increasing and strictly concave on
R+, with δ f ′(0) > 1, and f (k) < k for all k large enough.

Under this assumption, consider the randomization policy that an individual might follow
in equilibrium. Observe that there is no longer any room for investment (k) to be a random
variable. Because f is strictly concave, any such randomization can be “dominated” by
investing the expected value of the random investment, and then following up by taking a
fair bet using the produced output. This domination is entirely independent of the curvature
of the utility function. Without loss of any generality, then, we can work with the following
equation:

f (kt(i)) = bt+1(i) + kt+1(i),

where for each person i and date t, bt(i) is a “consumption budget”. This budget can be used
by the individual to buy any fair bet she likes at date t, entirely consuming the outcomes —
call these ct(i) — which we can think of as “realized consumption”. The distribution of ct(i),
integrated over all individuals, then forms the society-wide distribution Ft of consumption
at date t. In the remainder of the section — and, given Assumption 7, without any loss of
generality — we adopt this specification.

4.1. Steady State. We begin with two central observations (all omitted proofs are in the
Appendix).

Lemma 1. In any equilibrium, the function µt(c) ≡ u(c,Ft(c)) must be concave for all t.

This lemma has a simple intuition. No individual must want to deviate from her optimal
choice by generating another fair gamble which she prefers to the one she originally chose.
If the reduced-form utility function were locally strictly convex over some region, then there
must exist individuals for whom any fair bet could be dominated by some other fair bet,
constructed by compounding the original fair bet with additional gambling in the strictly
convex segment of u(c,F(c)).

Lemma 2. Make Assumption 2 [ugen]. For each b > 0, there is a unique cdf F with the following
properties:

(i) The mean of F equals b:

(6)
∫

[1 − F(c)] dc = b.
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Figure 1. All Illustration of Lemma 2.

(ii) The support of F is an interval [αb, βb], and there exists γb > 0 such that

(7) µ(c) = u(c,F(c)) = u(αb, 0) + γb(c − αb) for all c ∈ [αb, βb].

(iii) If αb > 0, γb = uc(αb, 0), while if αb = 0, γb ≥ uc(0, 0).

Moreover, the slope of the affine segment γb is a nonincreasing function of b.

The lemma is central, and we discuss it in some detail; refer to Figure 1 in the discussion
that follows. Suppose that everyone has a common positive consumption budget of b, and
suppose that it is fully consumed without randomization. With this provisional scenario
in mind, look at the induced utility function for any one individual. It follows the curve
u(c, 0) until c increases to b, and thereafter it jumps up to follow the curve u(c, 1). For this
individual, the taking of a fair bet with b (and fully consuming the proceeds) is strictly
profitable. It follows that the no-gambling scenario that we’ve assumed is invalid.

The lemma therefore describes how that common consumption budget must be spread out
over a range of gambles. First, all such gambles must be fair, which explains the adding-up
constraint (6). Second, the gambles are all willingly taken, which explains why the reduced-
form utility function u(c,F(c)) needs to be weakly convex — and therefore, by Lemma 1,
affine — over the overall domain of the gambles. This yields (7).

There is also the differentiable pasting carried out in part (iii), which plays an important
role in pinning down F. Loosely, it is required that the slope of the reduced-form utility
must equal the slope of the pure consumption utility at the point α at which the gambling
realizations start. If the latter slope is higher, we cannot have concavity of the overall utility
function and profitable deviations must exist. On the other hand, the latter slope cannot
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be lower, because the reduced-form utility must lie above the pure consumption utility
everywhere.

Figure 1 depicts the final outcome, by showing the support of the gambles as well as the
slope γb, for any budget b. (The underlying distribution F may have complicated shape,
whatever it takes to linearize the reduced-form utility µ.) The figure also indicates — in the
case in which γb = uc(α, 0) —- why γb decreases as b goes up. The support of the gambles
moves over to the right, and α rises. The strict concavity of u in c assures us that γb must
therefore come down.6

In what follows, if a cdf F is derived from the budget b in the unique way described in
Lemma 2, we will call F the cdf associated with b.

Proposition 4. Make Assumptions 2 [ugen] and 7 [fconc]. Then there exists a steady state with
the following properties:

(A) Every individual (in a set of full measure) makes an identical investment k∗, given by the unique
solution to δ f ′(k∗) = 1, and has equal starting wealth w∗ = f (k∗) at every date.

(B) The distribution of realized consumption is given by the unique cdf F∗ associated with the budget
b∗ ≡ f (k∗) − k∗, as in Lemma 2.

Before turning to a discussion of the steady state, we establish a converse. Observe that
the steady state as described cannot be unique: for instance, the configuration in which all
individuals have zero wealth, investment and consumption is (trivially) a steady state. It
turns out, however, that the possibility of zero wealth is the only impediment to uniqueness:

Proposition 5. Under Assumptions 2 [ugen] and 7 [fconc], the steady state identified in Proposition
4 is unique in the class of all steady states in which almost every individual has strictly positive wealth.

Figure 2 provides a diagrammatic representation of the steady state. The first panel draws
the cdf F∗ (with compact support) that must be a feature of the steady state. This panel is
deliberately drawn to suggest that F∗ has no particular shape, only that it must “cancel” out
all curvature in the utility function to create the linear segment (between α∗ and β∗) displayed
in the second panel. In addition, because consumption is generally valued for its own sake,
a zone of the form [0, α∗] will typically be present,7 over which no bets are taken and the
utility function is strictly concave.

The two regions taken together generate the very phenomenon that Friedman and Savage
(1948) sought to explain by their postulate of an (exogenous) utility function which is
alternately concave and convex. In steady state, there is aversion to downside risk; no
individual would ever take bets that would lead them into the consumption region [0, α∗].
Indeed, if there were exogenous uncertainty added on to this model, they would actively
seek to insure themselves against that possibility. Yet there must be risk-taking to the right
of α∗ for the reasons emphasized throughout the paper.

6To be sure, we obtain the same outcome when γb > uc(α, 0).
7If u has unbounded steepness in consumption near the origin, this additional zone must be present.
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Figure 2. The Friedman-Savage property

In the stark specification we study, the zone [0, α∗] is actually not inhabited in steady state,
though such a zone will typically be inhabited in the transition dynamics that we study
below. This outcome is artificial and the consequence of our assumption that there is
no exogenous uncertainty in the model. That is simply a pedagogical device designed
to highlight endogenous risk-taking, and it is not difficult to extend the model to include
exogenous uncertainty as well. In that case both the zones will generally be actively inhabited
in steady state.

It is of some interest is that this phenomenon — risk-aversion at the lowest end of the
distribution coupled with risk-taking elsewhere — arises “naturally” in an environment
where utility depends on status. There is no need to depend on an ad hoc description of
preferences with varying curvature for an “explanation”.8

Two other features of this steady state merit some emphasis, and distinguish our approach
still further from Friedman and Savage. First, the use of relative status guarantees that the
model is, to a large extent, scale-neutral.9 Two insulated societies with, say, two different
production technologies, will generally settle into two different steady states. Both the steady
states will generally exhibit the Friedman-Savage property, even though they will be located
at different ranges in the wealth distribution. Unless the Friedman-Savage utility function is
exogenously moved around to accommodate different wealths in exactly the right ad hoc way,
it is not possible in their approach to generate the same phenomenon at diverse aggregate
wealth levels. This is another strength of the current approach.

8One might object that (unlike Friedman and Savage) our individuals do not strictly prefer to bear risk. While
that is true, they must nevertheless bear risk for the outcome to be a bonafide steady state. Observationally, that
is enough.
9However, the strictly concave dependence of utility on absolute consumption means that the model is not fully
scale-neutral, except in the pure-status case.
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Our final point, and in our opinion the most important of the three, is that gambling in
the Friedman-Savage world is ex-ante efficient: there is an assumed convexity in the utility
function, and this convexity is well-served by risk-taking. In the model we study, there is a
pervasive externality. Equilibrium risk-taking will generally be Pareto-inefficient.

Assign a status rank of 1/2 to every individual that lives in a society of perfect equality. We
may then state

Proposition 6. Under Assumptions 2 [ugen] and 7 [fconc], and the additional restriction that u
is strictly concave in (c, s), the steady state identified in Proposition 4 must be Pareto-inefficient.

Proof. Starting from the steady state equal wealth distribution at w∗, consider an alternative
arrangement in which all gambling is banned, and all individuals continue to invest k∗ at
every date. Their lifetime utility (suitably discount-normalized) is then given by u(b∗, 1/2).
In contrast, in the steady state, lifetime expected utility is given by∫

u(c,F∗(c))dF∗(c) < u
(∫

cdF∗(c),
∫

F∗(c)dF∗(c)
)

= u(b∗, 1/2),

where we use the strict concavity of u. �

4.2. Nonstationary Equilibrium and Convergence to Steady State. In the previous section,
we have identified a steady state which has properties of some intrinsic interest. It
involves zones over which an individual is risk averse, and other zones over which there is
endogenously generated gambling. We have discussed the connections between this steady
state and the set of facts that the Friedman-Savage theory purports to explain. We have also
shown that our steady state is the only possible stationary outcome when all agents produce
positive output.

This leaves open the question of whether any nonstationary equilibrium must converge to
the steady state that we have uniquely identified. In this section, we answer that question
largely in the affirmative:

Proposition 7. Make Assumptions 2 [ugen] and 7 [fconc]. Fix any initial wealth distribution
with bounded support and with infimum wealth positive. Under any intertemporal equilibrium,
the sequence of consumption distributions must converge over time to the steady state distribution
identified in Proposition 4.

It is will be useful to provide a rough outline of the (somewhat long) argument that leads to
Proposition 7. Begin with any intertemporal equilibrium. Recall Lemma 1; we know then
that the “reduced-form” utility functions µt(c) = u(c,Ft(c)) are strictly concave at every t.
This precipitates an optimal growth problem with time-varying one-period utilities. There
is a “turnpike theorem” for such a problem; see Mitra and Zilcha (1981).10 That theorem
states that starting from any two (positive) initial wealths, the resulting path of capital
stocks must converge to each other over time. Applying that theorem, we must conclude
that all capital stock sequences bunch up very closely. When they do, the preservation of

10In the formal proof, we use an extension of the Mitra-Zilcha theorem due to Mitra (2009).
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concavity in µt requires that consumption be suitably spread out using endogenous risk-
taking. All consumption budgets ultimately fall into the support of these gambles, but
because gambles linearize utility over their support, we must conclude that the marginal
utility of consumption of all agents is fully equalized after some date. The Euler-Ramsey
equation then guarantees that not only are their capital stocks are close together in all
succeeding periods (as in Mitra-Zilcha), they coincide. The remainder of the argument
consists in showing that this (common) capital stock sequence must converge. For details,
consult the formal proof in Section 7.

5. Bibliographical Notes

5.1. Status and Risk. Criticism of the Friedman-Savage model began shortly after its
publication with Markowitz (1952), who first made some of the points that motivate the
present work. For example, he argues that the implied risk-taking behavior in a middle
range of wealth is implausible. He suggests a modified utility of wealth with three inflection
points, which is still not explicitly tied to relative wealth. Coelho and McClure (1998) sketch
how defining status as wealth relative to the mean could provide an explicit tie. Although
our model here is not directly inspired by Markowitz, a more important distinction is that it
applies the rank order notion of status as in Robson (1992).

The present work might be seen indeed as a dynamic extension of the static model of
Robson (1992), where this extension accounts for the stylized facts in a more robust and
satisfactory fashion. In Robson (1992), gambling might or might not arise, apparently in a
one-time fashion, depending on the exact shape of utility and the distribution of wealth.
In the present model, on the other hand, persistent gambling must eventually arise, for
rather general specifications of utility and the distribution of wealth. Further, Robson (1992)
focussed on stable distributions of wealth in which individuals would reject all fair bets. It
was shown that such distributions might be Pareto-inefficient, since fair bets might permit
a Pareto improvement.

Becker, Murphy and Werning (2005) allow for equilibrium gambling in a static model
with rank-dependent status. They use a rather similar construction to that here, where
the gambles are such that individuals are indifferent between participating or not and so
are assumed to participate. Such a result might apparently only imply a one-shot burst
of fair gambles at the start in a dynamic extension of the model. As in the other static
models, acceptance of fair gambles in Becker, Murphy and Werning is crucially contingent
on particular properties of utility and the distribution of wealth. In the current dynamic
model, however, it is shown that there must exist a unique steady state with persistent
gambling and that any equilibrium trajectory must attain this steady state in finite time.
Becker, Murphy and Werning show that their model could be reinterpreted as involving a
market for a status good. They also stress how Pareto efficiency might then result, rather
than considering the inefficiency arising here.

5.2. Status and Saving. Although it is not the intended focus, the present paper incorporates
ancilliary results concerning how a concern with status influences savings. The most striking
of these is the result for pure status utility, with a convex investment function. The savings
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policy function is then identical to that arising from logarithmic utility of consumption and
a linear investment function. However, the more plausible case involves utility being a
function of consumption per se as well as status, along with a concave investment function.

Consider, for example, the special case in which utility is additively separable. It is easily
seen that a Pareto-efficient allocation would arise from each individual solving the growth
problem based purely on the pure consumption component of utility. This would imply
convergence of wealth and consumption levels to values that are the same for all individuals.
Although these common values coincide with the long run equilibrium values obtained here,
such a Pareto-efficient allocation would not be robust to allowing access to fair bets. That is,
the Pareto-efficient allocation differs from the equilibrium savings allocation derived here.
In particular, the equilibrium trajectories for all individuals rich or poor coalesce in finite
time.

Consider then the literature that investigates how a concern with status bears on savings
behavior. Perhaps the most closely related paper is Xia (2009) who also considers status
from consumption to be the rank attained in the distribution of consumption. She considers
a simple two period model where utility is additively separable in consumption and status,
with a linear investment technology. Consistent with the results established here, the effect
of the pure status term is to distort savings towards that expected with logarithmic utility
of consumption per se. If the real rate of interest exceeds the pure rate of time preference, a
concern with status may then then increase savings.

Hopkins and Kornienko (2006) also define status to be the rank in the distribution of
consumption in a two period model. However, they assume it is only first-period
consumption that is affected in this way. The effect of status is then to induce too much
first period consumption and too little savings. Corneo and Jeanne (2001) consider status to
be the ranking in the wealth distribution rather than the consumption distribution. They find
that a more equal distribution of wealth leads to a higher growth rate of the economy. Both
these contributions entail additively separable utility with logarithmic terms in consumption
and status.

Finally, Arrow and Dasgupta (2009) consider an intertemporal model in which average
consumption captures a concern with status. They show there may be either too much or
too little savings in such a setting, and emphasize the razor’s edge case in which there is no
effect of status.

5.3. Endogenous Inequality. Our results are also related to a literature on symmetry-
breaking which argues that markets must endogenously create inequality, even when we
start from situations with perfect equality (Freeman (1996), Mookherjee and Ray (2003)).
While the ideas are related, the mechanisms are different. In this literature, individuals must
choose different occupations even when they start from identical wealth, because a variety
of occupations may be needed in production. When different occupations have varying
startup costs and there are credit-market imperfections, persistent economic inequality will
endogenously emerge. Risk-taking plays an analogous role here, though driven by a different
set of factors.
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6. Conclusion

In this paper, an individual’s concern for relative status is expressed in her preferences.
We embed this hypothesis in an otherwise conventional model of economic growth,
and examine its consequences. In our main result, obtained under entirely traditional
concavity restrictions on the utility and production functions, there must be persistent and
endogenously generated risk-taking in equilibrium.

We characterize the unique steady state in such a situation, and prove that any dynamic
equilibrium path must converge to it.

Friedman and Savage (1948) studied the phenomenon of widespread risk-taking, often
by the very same individuals who appear to be averse to downside shocks. This twin
proclivity to both take on upside risk and shield against downswings led Friedman and
Savage (1948) — and a large literature after them — to introduce a utility function with
varying curvature. They were, of course, very aware that the shape of such a function
appeared contrived, involving both concave and convex segments suitably positioned to
“explain” the observations. But it is clear that they wished to take on those detractors who
felt that risk-taking was better explained as systematic mistakes. In particular, Friedman
(1953) makes the agenda very clear: risk-taking is deliberate and therefore (so goes the
subtext) efficient.

Thus Friedman and Savage go to some pains to justify their choice of utility function:11

“A possible interpretation of the utility function . . . is to regard the two
[concave] segments as corresponding to qualitatively different socioeconomic
levels, and the [convex] segment to the transition between the two levels. On
this interpretation, increases in income that raise the relative position of the
consumer unit in its own class but do not shift the unit out of its class yield
diminishing marginal utility, while increases that shift it into a new class, that
give it a new social and economic status, yield increasing marginal utility.”

Our model can be viewed as a formalization and elaboration of this interpretation of
Friedman and Savage. It substantially strengthens the purely positive implications of their
theory. Yet it leads to very different welfare conclusions. Friedman (1953) forcefully made the
point that if an individual wants to gamble, because that’s what his attitude to risk tells him
to do, that gamble must be ex-ante efficient. Some observed ex post inequality could be the
efficient product of free choices. In the relative status world, with consumption externalities,
this is no longer true. In stark contrast, risk-taking is generally Pareto-inefficient in the theory
that we propose. Of course, this is not a surprise as models with externalities do typically
display inefficient outcomes. The point is that we adopt the very model informally described
by Friedman and Savage themselves.

11Modern defenders of the revealed preference approach, as well as Friedman himself in some of his writings,
would see no urgent reason for a justification. Our suspicion is that Friedman makes some effort in this case
because he does not want to abandon the welfare economics of the entire project, something that a hard-core
revealed preference theorist must effectively have to do, especially in an equilibrium context where it is unclear
how to equate choices with social preference.
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Moving away from the Friedman-Savage results, our theory clarifies other aspects that arise
in a fully dynamic setting. A key theme is that equilibrium behavior when relative status
matters must coexist with a certain degree of consumption inequality. When that inequality
is generated “naturally”, as it is with a constant- or increasing-returns technology, behavior is
simple and deterministic. On the other hand, when inequality tends to go away, equilibrium
behavior steps in to recreate it by endogenously generating periodic sprees of risk-taking.

This outcome is perhaps best interpreted within our model when a “single period” is viewed
as an individual lifetime, and the capital stock as an intergenerational bequest, as in the Loury
(1981) reformulation of the optimal growth model. There are two implications of such an
interpretation. First, as in Becker and Tomes (1981) and Loury (1981), the “production
function” will include human capital accumulation, and — with imperfect capital markets
for education — it will have household-specific curvature rather than being fully linear as in
the case of competitive, complete markets. Second, “consumption” may be viewed as lifetime
consumption, so that within-period risk-taking can be interpreted in a longer-term way: one
might include occupational choice or entrepreneurial ventures in addition to short-term
risk (such as financial market participation or property speculation). From this perspective,
our model predicts the emergence of ex post lifetime inequality even when there is perfect
equality from an intergenerational perspective.

7. Proofs

Proof of Proposition 1. Suppose that all individuals in a set of unit measure use the policy
function (5). Let G = {Gt} be the resulting sequence of wealth distributions. It is obvious
that for every date t and for every w in the support of Gt,

Gt+1
(

f (δw)
)

= Gt(w),

so that for every w in the support of Gt+1,

(8) Gt+1(w) = Gt
(

f−1(w)/δ)
)
.

Lemma 3. Under Assumptions 3 [upure], 4 [fconv] and 5 [init], u(Gt(w)) is strictly concave for all
dates t.

Proof. Because f is increasing and convex, and f (0) = 0, f−1(w) is increasing and concave in
w. Using (8), we therefore see that u(Gt+1(w)) = u(Gt( f−1(w))) is strictly concave provided
that u◦Gt is strictly concave. Now proceed recursively from date 0, using Assumption 5. �

Fix some date t. Suppose that a particular individual employs the policy (5) for all dates
s ≥ t + 1, and that every other individual employs the policy (5) at all dates. Define Vt+1(w′)
to be the discounted value to our individual under these conditions, starting from wealth w′
and date t + 1. Then status at every s ≥ t + 1 is simply

F̄s(cs) = Gt+1(w′),

so that

(9) Vt+1(w′) = (1 − δ)−1u (Gt+1(w′)) .



17

Now suppose that at date t, our individual has starting wealth w, does not randomize, and
chooses k ∈ [0,w]. Then her lifetime payoff at that date is given by

u (Ft(w − k)) + δVt+1
(

f (k)
)

= u (Ft(w − k)) + δ(1 − δ)−1u
(
Gt+1

(
f (k)

))
= u (Gt ([w − k]/(1 − δ))) + δ(1 − δ)−1u

(
Gt+1

(
f (k)

))
= u (Gt ([w − k]/(1 − δ))) + δ(1 − δ)−1u (Gt (k/δ)) ,

where the first equality uses (9), the second uses the fact that Ft(c) = Gt (c/(1 − δ)) for every
c ≥ 0, and the last uses (8).

By Lemma 3, this expression is strictly concave in both w and k so if our individual maximizes
her payoff at date t, she will not randomize either in w or in k. Moreover, a solution to the
first-order condition

(10) −u′(rt)G′t ([w − k]/(1 − δ)) (1 − δ)−1 + δ(1 − δ)−1u′(rt+1)G′t (k/δ) δ−1 = 0

(where rs is the resulting status in date s, for s = t, t + 1) must be the unique optimum. It is
easy to see that k = δw is indeed the solution to (10), so that optimal consumption at date t
is uniquely given by (5) as well.

Because t and w are arbitrary, our proposition follows from Blackwell’s unimprovability
theorem.12 �

Proof of Proposition 2. Notice that each individual is atomless and therefore has the same
intertemporal utility criterion as any other. Because the equilibrium is regular, we see that at
any date, the solution to the optimization problem is unique except at countably many wealth
levels. But it is easy to see that such a solution cannot admit more than one differentiable
selection. Therefore all individuals must use the same policy, which we denote by {ct}.

Let G and F be the equilibrium sequences of wealth and consumption. It is clear from our
assumptions that for every t, Gt and Ft have well-defined densities on the interior of their
supports, that these supports are each [0,∞), and that

Gt(w) = Ft(ct(w)),

for w > 0. Consequently, for such w,

(11) G′t(w) = F′t(ct(w))c′t(w).

We also know that for every w > 0,

Gt(w) = Gt+1
(

f (w − ct(w))
)
,

so that

(12) G′t(w) = G′t+1(w′) f ′(k)[1 − c′t(w)],

where k ≡ w − ct(w), and w′ ≡ f (k).

12The restriction that G has full support will be used to ensure that Gt also has full support, so that every initial
w lies in the support of Gt. We can drop this restriction easily: the resulting equilibrium policy will then be flat
for initial wealths that lie above the support.
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Now consider any date t and any initial stock wt > 0. Then, by our assumptions on
equilibrium policy, equilibrium consumption cs is strictly positive for all s ≥ t. Write down
the (necessary) Euler equation for payoff-maximization at all such dates s:

(13) u′(rs)F′s(cs) = δu′(rs+1)F′s+1(cs+1) f ′(ks),

where rs and ks are optimally chosen ranks and capital stocks for s ≥ t, all starting from initial
wealth wt. Because cs(w) is an equilibrium policy function with the properties mentioned in
the statement of the proposition, we must have cs = cs(ws) and rs = rs+1 for all s ≥ t. We may
use this information in (13), along with (11) and (12), to conclude that

G′s(ws)
c′s(ws)

= δF′s+1(cs+1) f ′(ks)

=
δ f ′(ks)G′s+1(ws+1)

c′s+1(ws+1)

=
δ f ′(ks)G′s(ws)

f ′(ks)[1 − c′s(ws)]c′s+1(ws+1)

=
δG′s(ws)

[1 − c′s(ws)]c′s+1(ws+1)
(14)

for all s ≥ t. Defining as ≡ 1/c′s(ws) for all such s, we may conclude from (14) that

(15) δ(as+1 − as) = (1 − δ)as − 1

for all s ≥ t.

It is easy to see from (15) that if at < (1 − δ)−1, then as must become negative at some finite
date s, which contradiction the premise that c′s(w) > 0 for all s and w.

At the same time, if at > (1 − δ)−1, it is easy to see that as → ∞ as s → ∞, which means that
c′s(ws)→ 0. This contradicts our premise that the derivative of all consumption functions is
uniformly bounded below by some ε > 0.

So at = (1 − δ)−1. Because t and w were chosen arbitrarily, the proof of the proposition is
complete. �

Proof of Proposition 3. Proposition 2 tells us that if such a policy sequence exists, it must be
time stationary, with

ct = (1 − δ)wt

at every date t and for all wt > 0. It follows that for any initial value w0, investment {kt}

follows the difference equation
kt+1 = δ f (kt),

which means that all such sequences from any initial positive wealth must converge to k̂,
where k̂ (strictly positive) is defined in Assumption 6, and is the unique solution to

k = δ f (k)

This means that the distribution of wealth Gt converges weakly to the degenerate distribution
with unit mass at f (k̂), and the corresponding distribution of consumption converges weakly
to unit mass on f (k̂) − k̂. It is now easy to see that some individual with status close enough
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to zero under the ongoing equilibrium can deviate from the proposed policy, by taking a
suitable fair bet. �

Proof of Lemma 1. Suppose µt fails to be concave for some t. Then there exists a set I of
consumptions and ε in (0, 1) with the following properties:

(i) There is a strictly positive measure (under Ft) of consumption realizations in I, and
inf I > ε.

(ii) For every c ∈ I,

(16) (1 − ε)µt(c + ε2) + εµt (c − ε[1 − ε]) > µt(c).

For details, see this footnote.13 Moreover, there must be some individual (indeed, a positive
measure of them) who takes fair bets with positive-probability consumption realizations in
I.14 (This includes degenerate fair bets in which the consumption budget itself lies in I.) Pick
any such individual, and consider the compound lottery given by her original fair bet F and
another bet tagged on to each of realization c of that bet that lies in I: one that pays c + ε2

with probability (1 − ε) and c − ε(1 − ε) with probability ε, where ε is given by (ii). Reduce
this compound lottery to a single stage bet F′. Using the first part of (ii), it is trivial to check
that F′ is also fair. But the expected gain in the individual’s payoff by moving to F′ from F is
given by ∫

I

[
(1 − ε)µt

(
c + ε2

)
+ εµt (c − ε[1 − ε]) − µt(c)

]
dF(c)

which is strictly positive, by (ii). This contradicts the optimality of that individual’s choice.
Therefore µt must indeed be concave. �

Proof of Lemma 2. For every α > 0, define a cdf Fα by

(17) Fα(c) = 0 for c ∈ [0, α],

while for c ≥ α, Fα(c) is the largest number in [0, 1] that satisfies

(18) u(c,Fα(c)) ≤ u(α, 0) + uc(α, 0)(c − α).

Because u is concave in c, we know that u(c, 0) ≤ u(α, 0) + uc(α, 0)(c − α), so that Fα(c) is
well-defined.

We claim that Fα is a bonafide cdf with Fα(c) = 1 at some finite c. Observe first that Fα(c) is
nondecreasing in c. Suppose, on the contrary, that Fα(c) < Fα(c′) for some c > c′ ≥ α. Then
(18) holds with equality at c, so that

u(c,Fα(c′)) > u(α, 0) + uc(α, 0)(c − α).

13If µt is locally strictly convex on some interval J, take I to be some compact subinterval of J and choose
ε small so that c > ε for all c ∈ I. Otherwise, Ft must possess a mass point at some consumption value
c > 0. Take I to be the singleton set {c} and choose ε ∈ (0, 1) smaller than c with the additional property that
(1 − ε)u(c,Ft(c)) > u(c, F̄t(c)) (by (3), this is always possible). In either case, consider a fair consumption bet
which pays c + ε2 with probability 1 − ε and c − ε(1 − ε) with probability ε. In the former case, (16) follows right
away from the strict convexity of µt on I. In the latter case, the expected payoff of the individual is given by
(1−ε)u(c+ε2, F̄t(c+ε2))+εu(c−ε[1−ε], F̄t(c−ε[1−ε])) ≥ (1−ε)u(c,Ft(c))+εu(c−ε[1−ε], F̄t(c−ε[1−ε])) > u(c, F̄t(c)),
which yields (16) again.
14The overall probability of realizations in I is strictly positive, and the overall probability is a convex combination
of all bets — degenerate bets included — taken by all individuals.
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At the same time, because Fα(c′) > 0, we know that

u(α,Fα(c′)) > u(α, 0).

Pick λ ∈ [0, 1] such that c′ = λc + (1 − λ)α. Then combining the above inequalities, we must
conclude that

λu(c,Fα(c′)) + (1 − λ)u(α,Fα(c′)) > u(α, 0) + uc(α, 0)(c′ − α) ≥ u(c,Fα(c′)),

where the last inequality uses (18) at c′. But this contradicts the concavity of u(.,Fα(c′)).

Now we show that Fα(c) = 1 for some c < ∞. Suppose this is false; then by (18),

u(α, 0) + uc(α, 0)(c − α) < u(c, 1) =
u(c, 1)

c
c

for all c, but this contradicts Assumption 2.

Denote by F this family of all such distributions Fα.

If uc(0, 0) < ∞, define a second family of distributions F0. Members of this family will be
indexed by γ ≥ uc(0, 0). For each such γ, consider the unique distribution Fγ such that for
each c ≥ 0, Fγ(c) is the largest number in [0, 1] satisfying

(19) u(c,Fγ(c)) ≤ γc.

An argument similar to that following (18) also shows that each Fγ is a bonafide cdf, and
that Fγ(c) = 1 at some finite value of c.

Define F ∗ ≡ F if uc(0, 0) = ∞, and F ∗ ≡ F ∪ F0 otherwise. Note that any cdf in F ∗ satisfies
properties (ii) and (iii) in the statement of the lemma, and no other cdf on c does. We claim
that there is a unique F ∈ F ∗ such that (i) of the lemma is satisfied.

To prove this claim, suppose that α > α′ > 0. Use the concavity of u in c, together with (18), to
see that Fα(c) ≤ Fα′(c) for every c, with strict inequality over the interior of the support [α, β]
of Fα. We must conclude that Fα strictly dominates Fα′ in the sense of first-order stochastic
dominance. It follows that the mean of Fα — call it m(α) — is strictly increasing in α, and it
is trivial to see that m(α) → ∞ as α → ∞. We also note, using (18) and Assumption 2, that
m(α) is continuous.

Now, whenever uc(0, 0) = ∞, m(α) → 0 as α → 0. Otherwise, when uc(0, 0) < ∞, there is a
continuum of distributions in F0, indexed by γ ≥ uc(0, 0). Let m̂(γ) denote the mean of Fγ.
An inspection of (19) immediately reveals that m̂(γ) is continuous and strictly decreasing in
γ, with m̂(γ)→ 0 as γ→∞. Finally, observe that m̂(uc(0, 0)) = limα→0 m(α).

These observations show that for any positive value of mean consumption b, there exists a
unique distribution F ∈ F ∗ such that

(20)
∫

[1 − F(c)]dc = b.

Let βb for the first value of c at which F(c) = 1. If F ∈ F , let αb stand for the corresponding
value of α, and γb = uc(αb, 0). If F ∈ F 0, then let γb ≥ uc(0, 0) be the unique index associated
with F, and set αb = 0.
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To establish the very last part, suppose that b is increased. Then, by (20), the new fixed
point F must have a higher mean. Recall that within the family F , m(α) is increasing in α,
while within F 0 (if uc(0, 0) < ∞) m̂(γ) is decreasing in γ. By the strict concavity of u, γb
decreases. �

Proof of Proposition 4. Define F∗ as in part (B), to be interpreted as the distribution of realized
consumption. Define µ∗(c) = u(c,F∗(c)). If α∗ > 0, µ∗ is increasing and strictly concave up to
α∗, following which it is has a linear segment with slope γ∗ = uc(α∗, 0) up to β∗, the upper
bound on consumption under F∗. After β∗, µ∗(c) = u(c, 1). On the other hand, if α∗ = 0,
µ∗ is linear with slope γ∗ ≥ uc(0, 0) up to β∗, and µ∗(c) = u(c, 1) thereafter. Observe that
β∗ > f (k∗) − k∗.

We now describe a consumption, investment and randomization strategy for each individual.
To do so, consider the following problem:

max
∞∑

t=0

δtµ∗(bt(i))

subject to
wt(i) = bt(i) + kt(i)

for all t, and
wt+1(i) = f (kt(i))

for all t, with w0(i) given. Because µ∗ is concave and f is strictly concave, this problem has a
unique optimal investment strategy associated with it, assigning an investment k for every
starting wealth w. We also describe consumption strategy: if the consumption budget b at
any date equals b∗ ≡ f (k∗) − k∗, take a fair bet with cdf F∗, consuming the proceeds entirely.
Otherwise consume the entire consumption budget directly. This is the candidate individual
policy for the steady state.

Because µ∗ is the utility function in the presumed steady state, the investment component of
this policy must be optimal. So is the consumption component, because individual utilities
are linear in realized consumption over the support of F∗.

To complete the verification that F∗ is a steady state, we show that F∗ is indeed replicated,
period after period, by this policy, provided that all individuals start with the common
wealth w∗ = f (k∗). All we need to show is that k∗ is indeed the optimal investment at w∗.

To do this, simply choose k∗ at w∗, period after period, and deploy the consumption budget
as described above.15 Then∫

µ∗′(ct)dF∗(ct) = µ∗′(b∗) = δ f ′(k∗)µ∗′(b∗) =

∫
µ∗′(ct+1)dF∗(ct+1)

so that the Euler equation is satisfied at k = k∗ in every period.16 �

15It does not matter whether the investment decisions are made before or after the realization of the consumption
gamble.
16Because the program is stationary at the “modified golden rule” corresponding to f , the transversality
condition is satisfied.
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The remaining propositions have some lemmas in common, and we now turn to these. In
what follows, we consider full intertemporal equilibria, not necessarily steady states.

Lemma 4. If F is a fair bet taken at some date t, then µt must be affine on [inf F, sup F].

Proof. Consider any fair bet F taken by an individual with budget b. Then∫
cdF(c) = b.

By Lemma 1, µt is concave. It follows that∫
µt(c)dF(c) ≤ µt(b),

and strict inequality must hold unless µt is affine. However, strict inequality must contradict
the fact that the agent willingly takes the bet. Therefore, µt must indeed be affine on
[inf F, sup F].17 �

Lemma 5. If at any date, all agents have an identical consumption budget b > 0, then Ft must be the
unique cdf associated with b, as in Lemma 2.

Proof. Because µt is concave, while all individuals have the same consumption budget,
nondegenerate fair bets must be taken at date t by a positive measure of individuals. Let Ft
be the distribution of realized consumption thus induced. We must verify that parts (i)–(iii)
of Lemma 2 hold for Ft.

Part (i), given by (6), is immediate from the assumption that only fair bets are available.

To verify (ii), note from Lemma 4 that µt(c) is affine over [inf F, sup F] for each nondegenerate
fair bet F. Define α to be the infimum value of inf F over all such bets, and similarly β to be
the supremum value of sup F. Because inf F < b < sup F for all nondegenerate fair bets, we
must conclude that µt has a common slope over the range of all these bets, and so µt is affine
on [α, β].

We still need to show that the support of Ft is the interval [α, β], and that µt(α) = u(α, 0). The
former follows from Assumption 2: to keep µt affine, Ft must be strictly increasing on [α, β].
The latter follows right away if α > 0, for then the concavity of µt assures continuity at all
interior points. If α = 0, then (7) follows from the assumption that all individuals have a
strictly positive consumption budget.18 This verifies part (ii).

Let γ be the slope of the affine segment of µ over the domain [α, β]. We claim that γ ≥ uc(α, 0).
Suppose not; then uc(α, 0) > γ. Because u is continuously differentiable, we can find c > α
such that uc(c, 0) > γ. Using the concavity of u in c, we must conclude that

u(c,Ft(c)) ≥ u(c, 0) ≥ u(α, 0) + uc(c, 0)(c − α) > u(α, 0) + γ(c − α),

but this violates (7), a contradiction.

17Note that we do not need the support of F to be connected to make this argument.
18Ft then cannot have an atom at 0, since individuals would strictly prefer fair gambles in which 0 is not an
outcome.
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Finally, we claim that γ = uc(α, 0) if α > 0. Suppose not, then (given that γ ≥ uc(α, 0), as
just proved) γ > uc(α, 0). Using (7), it is now easy to see that µ cannot be concave, which
contradicts Lemma 1. This establishes (iii). �

Proof of Proposition 5. Let F be a steady state distribution of consumption and define µ(b) ≡
u(b,F(b)) for all b ≥ 0. By Lemma 4, no individual strictly wishes to take a fair bet. Therefore,
an individual with consumption budget b at any date gets precisely this one-period payoff.
Therefore, recalling that the investment and consumption budgets of each individual are
deterministic, each i must solve the optimization problem:

max
∞∑

t=0

δtµ(bt(i))

subject to
wt(i) = bt(i) + kt(i)

for all t, and
wt+1(i) = f (kt(i))

for all t, with w0(i) given. One can check (see, e.g., Mitra and Ray (1984)) that for each
individual, kt must converge to k∗, where δ f ′(k∗) = 1. In particular, in steady state, each
individual must invest precisely k∗. This verifies Part A of Proposition 4.

Note that every individual has the same consumption budget f (k∗)− k∗. Invoke Lemma 5 to
verify Part B. This completes the proof of uniqueness. �

We are left with the proof of Proposition 7. In what follows, we assume throughout that
Assumptions 2 and 7 hold, and that the initial wealth distribution has bounded support
with infimum wealth positive (as assumed in the statement of Proposition 7).

We quickly review the main argument to follow, as there are several details. The first critical
step is Lemma 6, which is based on the Mitra-Zilcha turnpike theorem (see Mitra and Zilcha
(1981) and the version we use, which is Mitra (2009)). It states that in any equilibrium,
the paths followed by all agents converge to one another. Lemmas 7, 9 and 10 ensure that
convergence occurs to some common sequence which has a strictly positive limit point
(over time). The second critical step is Lemma 12, which states that when all stocks cluster
sufficiently close to this common limit point, a bout of endogenous risk-taking must force
all consumption budgets to lie in the same affine segment of the “reduced-form” utility
function µ at that date. Lemma 13 states that all individual capital stocks must fully coincide
thereafter. The remainder of the proof shows that this common path must, in turn, converge
over time to k∗, with consumption distributions converging to F∗, the unique cdf associated
(as in Lemma 2) with b∗ = f (k∗) − k∗.

Lemma 6. In any intertemporal equilibrium, supi, j |kt(i) − kt( j)| → 0 and supi, j |bt(i) − bt( j)| → 0
as t→∞.

Proof. Pick numbers w > 0 and w̄ > 0 such that w ≤ w ≤ w̄ for every initial wealth w. Denote
by {kt} the optimal path followed by a hypothetical individual with initial wealth w, and
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by {k̄t} the optimal path followed by a hypothetical individual with initial wealth w̄. By a
non-crossing argument (see Mitra (2009), Proposition 1),

(21) kt ≤ ki(t) ≤ k̄t

for all individuals i and dates t. Moreover, Lemma 1 together with our assumptions on f
guarantee that all the assumptions of Theorem 2 in Mitra (2009) are satisfied, so that

(22) k̄t − kt → 0 as t→∞.

Combining (21) and (22), we must conclude that for any two optimal paths for individuals i
and j from the given set of initial wealths,

(23) sup
i, j
|kt(i) − kt( j)| → 0 as t→∞.

which proves the first part of the assertion. Using the fact that for every i, bt(i) = f (kt(i)) −
kt+1(i), the second part follows directly from (23). �

Lemma 7. In any equilibrium kt(i) > 0 and bt(i) > 0 for all t, for all i in a set M of full measure.

Proof. Because f (0) = 0, it will suffice to prove that bt(i) > 0 for all t, for all i in some set M of
full measure. Suppose not. Then there exists a first date t such that for all i in some set M′
of positive measure σ, bt(i) = 0. It follows from (3) that µt(bt(i)) ≤ u(0, σ)− d for all such i, for
some d > 0.

Suppose that t ≥ 1. Then, given how t has been chosen, bt−1(i) > 0 for all i in a subset
M′′ of M′ of (relatively) full measure. Pick any such i. Note that µt−1 is concave and so is
continuous at bt−1(i) > 0. Therefore a small reduction in bt−1 will lead to a vanishingly small
loss of utility at t − 1, but if the extra investment is fully consumed at date t it will lead to a
utility jump of at least d, which contradicts the optimality of i’s choices.

Otherwise t = 0. Because i’s initial wealth is strictly positive, and µτ is strictly increasing at
0 for all τ, there is a first date s > 0 such that bs(i) > 0. Once again, using the concavity of µs,
and therefore its continuity at all positive consumptions, a small reduction in bs(i) will lead
to a vanishingly small loss of utility at s. Carry out this reduction and consume the freed
investment at date 0; once again we have a contradiction. �

Now we can update Lemma 1 a bit.

Lemma 8. In any equilibrium, µt is continuous and concave for all t.

Proof. Lemma 1 already establishes concavity and therefore continuity everywhere except
(possibly) at zero, while Lemma 7 removes mass points at zero and therefore establishes
continuity everywhere. �

Lemma 9. Denote by bt the average consumption among the set of individuals in the full-measure
set M. Then lim supt bt > 0.

Proof. Suppose, on the contrary, that bt → 0 as t→∞. Then, by Lemma 6, the consumption
budgets of all agents converge to 0 as t → ∞. We can therefore also claim that kt(i) → 0 as
t → ∞ for every i. For if this were false for some individual j, then lim sup kt( j) > 0 while
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bt( j) → 0. This creates an immediate contradiction provided that u is strictly increasing in
absolute consumption c. Otherwise, we are in the pure status scenario and the details of the
argument are relegated to this footnote.19

Define k to be any stock such that δ f ′(k) ≡ ρ > 1. For every ε > 0, there is a date T such that
for all dates t ≥ T, kt(i) < k for all individuals i in some set M(ε) ⊆M of measure at least 1− ε.
Fix some such (small) ε > 0.

Choose thresholds θ1 and θ2 such that ε < θ1 < θ2 < 1. For each date t, pick c1
t and c2

t by
Ft(ci

t) ≡ θi, for i = 1, 2.20 Let µ+
t stand for the right-hand derivative of µt. Then by concavity

of µt,
µ+

t (c1
t )[c2

t − c1
t ] ≥ µt(c2

t ) − µt(c1
t ) = u(c2

t , θ2) − u(c1
t , θ1)

for every t. Therefore

(24) µ+
t (c1

t ) ≥
u(c2

t , θ2) − u(c1
t , θ1)

c2
t − c1

t

→∞ as t→∞

where we use the fact that c2
t − c1

t → 0 as t → ∞,21 and the assumption that u(c, s) is strictly
increasing in s everywhere.

Now we study the consumption budget paths of individuals in the set M(ε). For every
i ∈ M(ε) and each t ≥ T, bt(i) > 0 for all t and i, by Lemma 7. The Euler equation therefore
assures us that

(25) βt(bt(i)) = δ f ′(kt(i))βt+1(bt+1(i)) ≥ ρβt+1(bt+1(i)),

where are βt and βt+1 are appropriately chosen supports to the functions µt and µt+1
respectively. Because ρ > 1, it follows from (25) that the right-hand derivatives of µt
evaluated at bt(i) — µ+

t (bt(i)) — are bounded in t (in fact, these derivatives converge to 0).
Therefore, by (24),

(26) µ+
t (c1

t ) > µ+
t (bt(i))

for all t large enough, which implies in particular that c1
t < bt(i) (for all t large enough). More

can be said from this: it must be the case that for all realized consumptions ct(i),

(27) c1
t < ct(i) a.s.

for all t large enough. For once (26) holds, i will never take a fair bet that yields outcomes
below c1(t) with positive probability.22

19In the pure status case, proceed as follows. If our claim is false, then it must be false for every i, by Lemma
6. For each ε > 0, we can therefore find a strictly positive consumption level d and some date T such that
Ft(d) ≥ 1 − ε for all t ≥ T, while every agent can maintain a stationary consumption of at least d starting from T.
(The former is true because bt(i) → 0 for all i, and the latter is true because kt(i) is bounded away from 0 for all
i along a common subsequence of dates and δ f ′(0) > 1.) But then every individual, by an appropriate deviation
starting from T, could enjoy a status of at least 1 − ε for every period thereafter. Such payoffs cannot happen in
equilibrium for everyone, so some agents must indeed want to deviate, a contradiction.
20Because µt is concave, Ft is continuous in the interior of its support and so c1

t and c2
t can indeed be chosen as

required.
21Because average consumption ct equals the average consumption budget bt, and because bt converges to 0, it
follows that ct → 0. The convergence of c1

t and c2
t to 0 is an immediate consequence.

22The utility over all fair bets must be affine in the bets, which cannot happen when (26) holds.
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So we see that (27) holds for every individual in the set M(ε) which is of measure 1 − ε at
least. It follows that

1 − Ft(c1
t ) ≥ 1 − ε > 1 − θ1,

because θ1 > ε. But this contradicts the fact that Ft(c1
t ) = θ1 for all t. �

Lemmas 6 and 9 allow us to establish

Lemma 10. There exists σ > 0 so that for every ε > 0, there is a date T

(28) bT(i) ∈ [σ − ε, σ + ε]

for all i.

Proof. Let σ ≡ lim supt bt. Then σ > 0, by Lemma 9. By Lemma 6, bt(i) must converge —
uniformly in i, and along a common subsequence independent of i — to σ for all i. But this
means that for every ε > 0, there exists a date T such that bT(i) ∈ [σ − ε, σ + ε] for all i. �

Lemma 11. Pick any number σ > 0. Then there exists ψ > 0 such that for all ε < σ/2,

(29) Ft(σ + ε) − Ft(σ − ε) ≤ ψε

independently of t.

Proof. Denote by m the smallest value of us(c, s) for c ∈ [σ/2, σ] and s ∈ [0, 1]. By Assumption
2, m > 0. Let ψ ≡ 2µ+

t (σ/2)/m. Then it is easy to see, using concavity, that for all ε < σ/2,

ψεm = 2εµ+
t (σ/2) ≥ 2εµ+

t (σ − ε) ≥ µt(σ + ε) − µt(σ − ε)
= u(σ + ε,Ft(σ + ε)) − u(σ − ε,Ft(σ − ε))
≥ u(σ − ε,Ft(σ + ε)) − u(σ − ε,Ft(σ − ε))
≥ m[Ft(σ + ε)) − Ft(σ − ε)],

which is what needed to be proved. �

We now combine Lemmas 10 and 11 to prove

Lemma 12. There exists a date T such that for every i, bT(i) belongs to the interior of the same affine
segment of µT; in particular, µ′T(bT(i)) is a constant independent of i.

Proof. Fix σ as given in Lemma 10, and then ψ from Lemma 11. Pick ε′ ∈ (0, σ/2) so that
ψε′ < 1/2. By Lemma 11,

(30) Ft(σ − ε′) + [1 − Ft(σ + ε′)] > 1/2.

Choose ε < ε′/7. By Lemma 10, there is a date T so that (28) is satisfied. We claim that at
that date, some individual must take a fair bet F with inf F < σ − ε ≤ σ + ε < sup F.

Suppose the claim is false. Observe from (30) that either Ft(σ−ε′) or 1−Ft(σ+ε′) exceeds 1/4.
Suppose the former. Then there is some individual with consumption budget in [σ− ε, σ+ ε]
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who accepts a bet F with F(σ − ε′) > 1/4, so that inf F < σ − ε. The expected utility of this
individual is ∫

µT(c)dF(c) ≤ (1/4)µT(σ − ε′) + (3/4)µT(σ + ε)

≤ µT

(
σ +

3ε − ε′

4

)
< µT(σ − ε)(31)

where the first inequality follows from inf F < σ − ε and our supposition that the claim is
false, so that σ+ε ≥ sup F, the second inequality follows from the concavity of µT (Lemma 8),
and the last inequality from our choice of ε. But (31) contradicts the supposed willingness
of the individual to accept such a bet.

Now suppose, on the other hand, we have 1− Ft(σ+ ε′) > 1/4 Then there is some individual
with consumption budget b in [σ − ε, σ + ε] who accepts a fair bet F with 1 − F(σ + ε′) > 1/4,
so that σ + ε < sup F. If the claim is false, then inf F ≥ σ − ε and∫

cdF(c) ≥ (1/4)(σ + ε′) + (3/4)(σ − ε) > σ + ε ≥ b,

which contradicts the fairness of the bet.

This proves the claim: at date T, some individual must take a fair bet F with inf F < σ − ε ≤
σ + ε < sup F. By Lemma 4, µT must be affine on [inf F, sup F]. �

Lemma 13. For every date t ≥ T + 1, where T is given by Lemma 12, the wealths, investments and
consumption budgets of all agents must fully coincide.

Proof. By Lemma 12, we see that µ′T(bT(i)) = γT for all i, where γT > 0 is independent of i.
Let VT+1(w) be the value function at date T + 1; it is concave because µt is concave for all t.
Therefore VT+1( f (k)) is strictly concave.

Note that bT(i) > 0 for all i, and that by Lemmas 6 and 7, kT(i) > 0 for all i as well. So using
the Bellman equation between dates T and T + 1, and writing the first order condition, we
see that

γT = δβi(kT(i))
for every agent i, where βi(k) denotes some supporting hyperplane to VT+1 ◦ f at k. Therefore
βi(kT(i)) = β j(kT( j)) for all agents i and j. Because VT+1 ◦ f is strictly concave, this must imply
that kT(i) = kT( j). So the wealths of all agents fully coincide at date T + 1. It is easy to see that
optimal programs are unique starting from any initial wealth at any date,23 so all wealths,
investments, and consumption budgets must fully coincide from date T + 1 on. �

In what follows, we consider only dates t > T. By Lemma 13, then, we may regard the
equilibrium program as having common actions at all dates thereafter: (wt, kt, bt), where all
these values are strictly positive. By Lemma 5, the distribution Ft is also fully pinned down
at all these dates. Denote by γt the corresponding slopes of the affine segments of µt, given
by (7); these too are all strictly positive.

23The optimization problem facing each individual is strictly concave.
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Lemma 14. Suppose that for some t ≥ T + 1, we have kt ≤ kt+1 and γt ≤ γt+1. Then ks ≤ ks+1 for all
s ≥ t.

Proof. Suppose that for some t, we have kt ≤ kt+1 and γt ≤ γt+1. The Euler equation for utility
maximization by each agent holds with equality, and this, combined with the concavity of
f , tells us that

γt

γt+1
= δ f ′(kt) ≥ δ f ′(kt+1) =

γt+1

γt+2
,

which permits us to conclude that γt+1 ≤ γt+2. Using the very last part of Lemma 2, and
remembering from Lemma 5 that Fs is the unique cdf associated with b for all s ≥ T + 1, we
must also conclude that bt+1 ≥ bt+2. Therefore

kt+1 = f (kt) − bt+1 ≤ f (kt+1) − bt+2 = kt+2.

We have therefore shown that γt+1 ≤ γt+2 and kt+1 ≤ kt+2. We can continue the recursive
argument indefinitely to show that ks ≤ ks+1 for all s ≥ t. �

Lemma 15. The common sequence of investments {kt}, defined for t ≥ T + 1, must converge to k∗,
which solves δ f ′(k∗) = 1.

Proof. First we establish convergence. Suppose that for every date t ≥ T + 1 with kt ≥ kt+1,
we also have kt+1 ≥ kt+2. Then {kt} must converge. Otherwise, there is some date t ≥ T + 1
with kt ≥ kt+1 < kt+2. Then

bt+1 = f (kt) − kt+1 > f (kt+1) − kt+2 = bt+2,

which implies (by Lemma 2) that γt+1 ≤ γt+2. But now all the conditions of Lemma 14 are
satisfied, so that in this case {kt} must eventually be nondecreasing. By Assumption 7, kt is
bounded and so must converge. It follows that bt and therefore γt also converge. Passing to
the limit using the Euler equations, we must conclude that lim kt = k∗. �

Proof of Proposition 7. Lemma 12 assures us that there exists a date T at which consumption
budgets bT(i) belong to the same affine segment of µT for every i. Lemma 13 states that for
every date t ≥ T + 1, the wealths, investments and consumption budgets of all agents must
fully coincide. Lemma 15 states that the common sequence of investments {kt}, defined for
t ≥ T + 1, must converge to k∗, which solves δ f ′(k∗) = 1.

At the same time, Lemma 5 asserts that for all t ≥ T + 1, the equilibrium distribution of
consumptions must be the unique cdf associated with the common consumption budget
bt, where “association” is defined (and uniqueness established) in Lemma 2. Therefore the
sequence of consumption distributions must converge to the unique cdf associated with
b∗ = f (k∗) − k∗. This is the unique steady state described in Proposition 4, and the proof is
complete. �
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