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Abstract

It is well known from anecdotal, survey and econometric evidence that the relation-

ship between the exchange rate and macro fundamentals is highly unstable. This

could be explained when structural parameters are known and very volatile, nei-

ther of which seems plausible. Instead we argue that large and frequent variations

in the relationship between the exchange rate and macro fundamentals naturally

develop when structural parameters in the economy are unknown and change very

slowly. We show that the reduced form relationship between exchange rates and

fundamentals is driven not by the structural parameters themselves, but rather by

expectations of these parameters. These expectations can be highly unstable as a

result of perfectly rational \scapegoat" e�ects. This happens when parameters can

potentially change much more in the long run than the short run. This generates

substantial uncertainty about the level of parameters, even though monthly or an-

nual changes are small. This mechanism can also be relevant in other contexts of

forward looking variables and could explain the widespread evidence of parameter

instability found in macroeconomic and �nancial data.



1 Introduction

\The dollar's resilience in the wake of recent dire US economic data has raised the

prospect that the currency market may be experiencing one of its periodic changes

in focus" (Financial Times, February 11, 2008)

\The dollar's latest stumble ... came despite optimistic economic data from the

US. But analysts said the movement of the US currency was no longer driven by

growth fundamentals. All the focus is on the de�cit now..." (Financial Times, Feb-

ruary 11, 2003)

As reected in these quotes, foreign exchange traders regularly change the

weight they attach to di�erent macro indicators. Cheung and Chinn (2001) have

documented these changes through a survey of U.S. foreign exchange traders. Fre-

quent changes in focus lead to an unstable relationship between exchange rates

and macro fundamentals. Such parameter instability is con�rmed in formal econo-

metric evidence. Rossi (2005) conducts a battery of parameter instability tests

and �nds \overwhelming evidence of parameter instability". Sarno and Valente

(2009) �nd that \(exchange rate) models that optimally use the information in the

fundamentals change often and this implies frequent shifts in the parameters".

One way to explain the highly unstable relationship between exchange rates and

macro fundamentals is to assume large and frequent changes in structural parame-

ters that are known to all agents. This does not appear very plausible though as

these parameters are not directly observed and hard to estimate. Moreover, many

structural changes in the economy, such as those associated with technological and

�nancial innovation and institutional reform, are gradual.

The main goal of this paper is to show that large and frequent variations in

the relationship between the exchange rate and macro fundamentals can occur

quite naturally even when structural parameters in the economy are unknown and

change very slowly. We show that the relationship between a forward looking

variable like the exchange rate and macro fundamentals is determined not by the

structural parameters themselves, but rather by the expectations of these struc-

tural parameters. We show that these expectations can vary signi�cantly over

time, giving rise to a highly unstable reduced form relationship between exchange
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rates and fundamentals. This happens even though agents are perfectly rational

Bayesian learners and changes in structural parameters are small and gradual.

While the focus of this paper is on exchange rates, our explanation for the

unstable reduced-form relationship could apply similarly to other forward looking

�nancial or macroeconomic variables. As �rst shown by Stock and Watson (1996),

and since then by many others, the phenomenon of parameter instability in macro-

economic data is widespread.1 The same is the case for �nancial data. In a survey,

Pastor and Veronesi (2009) point out that \parameter uncertainty is ubiquitous in

�nance"and \many facts that appear ba�ing at �rst sight seem less puzzling once

we recognize that parameters are uncertain and subject to learning".2

The estimation mistakes that agents make when continuously updating their

views on structural parameters are to a large extent a result of what we refer to as

\scapegoat" e�ects. Some information about the nature of structural parameters

can be derived by analyzing macroeconomic data and exchange rates. But these

data are also driven by shocks to unobserved fundamentals. Such unobserved fun-

damentals can generate considerable confusion in the short to medium run. When

the exchange rate uctuates as a result of an unobserved macroeconomic shock, it

can be optimal for agents to blame this on an observed macro fundamental by giv-

ing it more weight and therefore making it a \scapegoat".3 For example, when the

dollar depreciates it is natural to attribute it to a large current account de�cit. This

1Recent contributions include Boivin (2006), Canova (2005), Clarida, Gali and Gertler (2000),

Cogley and Sargent (2005), Del Negro and Otrok (2007), Inoue and Rossi (2007), Primiceri

(2005), Sims and Zha (2006) and Fernandez-Villaverde and Rubio-Ramirez (2007). There has

also been great interest in the impact of parameter or model uncertainty on optimal monetary

policy. See for example contributions by Hansen and Sargent (2008), Onatski and Williams

(2003) or Levin et al. (2006).
2For example, Cogley (2005) and Piazzesi and Schneider (2007) introduce uncertainty about

time-varying parameters to explain the term spread.
3In a previous short paper, Bacchetta and van Wincoop (2004), we developed the idea of such

a scapegoat e�ect in the context of a simple static noisy rational expectations model in which

some parameters are unknown. We showed that excessive weight could be given to a variable

depending on the correlation between the noise shock and the fundamental shock. However, since

that model is static it could not be used to address the unstable dynamic relationship between

exchange rates and fundamentals and its implications. Apart from the dynamic setup, the model

in this paper also di�ers in that there is no private information as in Bacchetta and van Wincoop

(2004). Scapegoat e�ects naturally develop as long as there is incomplete information about

parameters; the information does not need to be private.
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happens even when the depreciation is unrelated to the current account de�cit.

There is signi�cant potential for such scapegoat e�ects when the uncertainty

about structural parameters is large. Two factors contribute to this. First,

parameters can potentially change much more in the long-run than the short-

run. This generates substantial uncertainty about the level of parameters, even

though monthly or annual changes are small. Second, agents cannot observe these

structural parameters and obtain only very indirect information about their level

through inference from the data.

In illustrating the importance of such scapegoat e�ects and their role in the

unstable reduced form relationship between exchange rates and fundamentals, we

slightly generalize the \canonical" exchange rate model. This is actually a broad

class of exchange rate models that can be reduced to a single stochastic di�erence

equation, which is derived from two equations: an interest rate parity equation

and an equation that relates the interest di�erential to observed fundamentals.

The latter can be obtained either from monetary policy speci�cations or money

market equilibrium in a standard monetary model (see Engel and West, 2005, for

examples). We generalize this by introducing time variation in the interest rate

di�erential equation. While we illustrate the source of this time variation in the

context of the standard monetary model, in general it can have many possible

sources. Examples are changes in monetary policy parameters, changes in money

demand parameters, or changes in the relationship between policy targets and

observed fundamentals.

We calibrate the model to data for 5 industrialized countries, matching mo-

ments related to interest rates and exchange rates and the explanatory power of

observed fundamentals. We consider a particular process for time-varying struc-

tural parameters that satis�es two features. First, changes in these parameters

are small over short horizons of a month or a year. Second, changes in structural

parameters gradually build over time, so that they can change substantially over

long periods. These features are plausible when we think of long-term technolog-

ical, institutional or cultural changes. Such a process generates large scapegoat

e�ects as there is substantial uncertainty about the level of parameters even when

month-to-month changes are small.

We do not estimate the process of structural parameters. That would be nearly

impossible to do. First, the data can tell us very little about the exact nature of
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the process of time-varying parameters, even if there is clear evidence of parameter

instability (e.g., see Elliott and Timmermann, 2008, for a discussion). Second,

even when a particular process is assumed, its parameters are notoriously hard to

estimate with any precision. While we focus on a speci�c process in the benchmark

analysis, we examine the robustness of our results to a wide range of alternative

processes.

The next section presents the model. It also discusses the signal extraction

method used to solve the model and the implications for the relationship between

exchange rates and fundamentals. Section 3 calibrates the model based on data

on interest rates and exchange rates and presents numerical results for the rela-

tionship between exchange rates and fundamentals based on simulations. Section

4 concludes.

2 A Model with Unknown Parameters

We �rst describe the model when parameters are constant and known. Then we

introduce unknown and time-varying coe�cients and examine how the impact of

fundamentals on the exchange rate is a�ected. For that purpose, we need to derive

how expectations about parameters are formed. We show that this process leads

to an unstable relationship between fundamentals and exchange rates. The �nal

subsection provides intuition on the mechanism leading to this instability.

2.1 Basic Framework with Constant Parameters

We consider the class of fundamental-based exchange rate models that can be

reduced to a single stochastic di�erence equation. The equilibrium value of the

exchange rate in these models depends on the present value of expected future

fundamentals. We start with the usual case of constant and known parameters.

We follow Engel and West (2005) and slightly rewrite their equation (1):

st = (1� �)

24Ft + bt +
1X
j=1

�jEt (Ft+j + bt+j)

35� �

24�t + 1X
j=1

�jEt�t+j

35 (1)

where st is the log nominal exchange rate (domestic per foreign currency), Et is the

expectation of the representative investor, �t is the risk premium and 0 < � < 1.
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We denote by Ft a linear combination of observed macro fundamentals: Ft = f
0
t�

where ft = (f1t; f2t; :::; fNt)
0 is the vector of N observed macroeconomic fundamen-

tals and � = (�1; �2; :::; �N)
0 is the vector of associated parameters. Finally, bt

represents unobserved macro fundamentals.

Engel and West (2005) present several models that lead to this equation.4 For

illustrative purposes we focus on the familiar exible-price monetary model. A

two-country model can be described by the standard four equations:

Etst+1 � st = it � i�t + �t (2)

st = pt � p�t (3)

�mt = pt � �it + 
0zt + �t (4)

�m�
t = p�t � �i�t + 

0z�t + ��t (5)

As usual, it and i�t represent the domestic and foreign nominal one-period

interest rates, pt and p
�
t are the domestic and foreign log prices, and mt and m

�
t

are the log nominal money supplies. We denote by zt and z
�
t the vectors of other

observed fundamentals a�ecting money demand. Unobserved velocity shocks are

denoted �t and �
�
t . The parameter � is usually set at 1, but does not need to be 1

when the vector zt includes nominal variables as well.
5

By combining equations (3), (4), and (5), we �nd:

it � i�t =
1

�
st �

1

�
[�(mt �m�

t )�  0(zt � z�t )] +
1

�
(�t � ��t ) (6)

This equation can be rewritten in a more compact form as:

it � i�t =
1

�
st �

1

�
(Ft + bt) (7)

where bt = �(�t���t ) is an unobserved fundamental and Ft = f 0t� = �(mt�m�
t )�

 0(zt�z�t ) is a linear combination of observed fundamentals. Combining equations
(2) and (7), integrating forward and assuming no bubble gives equation (1), where

� = �=(1 + �).

4See also Nason and Rogers (2008) who derive this equation from a DSGE model.
5Examples of nominal variables in zt include lagged money demand, lagged prices or nominal

�nancial wealth. Introducing � gives us a parameter multiplying the money supply fundamental,

just like  is a vector of parameters multiplying the other observed fundamentals zt. But it is

not critical to the analysis in any substantial way.

5



Since st and fundamentals are typically non-stationary in the data, it is usual

to consider �rst di�erences. As an illustration, consider the special case without a

risk premium and where bt and �ft are iid. More precisely, assume that: i) �t = 0,

8t; ii) bt = "bt with "
b
t � N(0; �2b ); iii) �fnt = "fnt with "

f
nt � N(0; �2f ). In this case,

we have:

�st = �f
0
t� + (1� �)�bt (8)

The impact of a change in fundamental fnt on the exchange rate is simply given

by �n: @�st=@�fnt = �n.

2.2 Time-varying and Unknown Parameters

We now depart from the standard model by assuming that parameters can vary

over time. We introduce parameter instability to the �rst di�erence of the money

demand equation (4).6 Adding a time subscript to the parameters � and  after

taking the �rst di�erence of (4), we get

�t�mt = �pt � ��it + 
0
t�zt +��t (9)

In level terms we can write this speci�cation as

~mt = pt � �it + Zt + �t (10)

Zt = Zt�1 + 
0
t�zt (11)

~mt = ~mt�1 + �t�mt (12)

Together with an analogous speci�cation for money demand in the other coun-

try, and de�ning Ft = ( ~mt� ~m�
t )�(Zt�Z�t ), the solution for the interest di�erential

remains the same as in (7). This again yields the present value equation (1) when

combined with (2). All we have really done is to replace �Ft = �f
0
t� with

�Ft = �f
0
t�t (13)

6It is easy to show that introducing time-varying parameters in the levels equation is incon-

sistent with the stationarity of �mt, �pt and �it in the data. When introducing parameter

instability to the levels equation, and then taking �rst di�erences, there are terms that involve

the product of fundamentals and the change in parameters. Such terms are non stationary to

the extent that there are non-stationary fundamentals.
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where

ft =

0@ mt

zt

1A ; �t =

0@ �t

t

1A (14)

With a total of N fundamentals we will also write �t = (�1t; �2t; :::; �Nt)
0.

We therefore replace the speci�cation �Ft = �f 0t� for constant parameters

with the speci�cation �Ft = �f
0
t�t for time-varying parameters. While for illus-

trative purposes we have motivated this in the context of the familiar exible price

monetary model, it can also be obtained from other models that lead to the present

value equation (1). One example is to replace the money market equilibrium by

an interest rate rule that depends on a number of observed fundamentals. Time-

varying parameters are then associated with time variation in the monetary policy

parameters. Another possibility is that these monetary policy parameters are con-

stant but the (possibly unknown) policy targets have a time-varying relationship

to the observed fundamentals. The exact source of the time-varying parameters is

not critical to the qualitative �ndings of the paper.

The major di�erence with the standard framework is that Ft is not directly

observable. Investors need to estimate current and future �t. They have two

sources of information regarding �t. First, they know the process of �t, which we

will specify below. Second, by observing the exchange rate and the interest rate

di�erential, they know Ft+ bt from (7). We describe below how investors combine

optimally these two sources of information to form expectations about �t.

The signal Ft + bt provides information about the parameters, but is also a

source of estimation errors. Consider for example the expectation of parameter

�nt for fundamental n. While �nt a�ects Ft+ bt, the latter is also a�ected by bt, all

current and past fundamentals and all current and past parameters. Therefore, to

the extent that Ft+ bt is used as a source of information about �nt, its expectation

can change without any change in �nt itself. We will see that it is this rational

confusion that is the key driver behind the unstable relationship between exchange

rates and observed fundamentals.

2.3 Exchange Rates and Fundamentals

For convenience, in the remainder of this section we consider the special case

without a risk premium and where bt and �ft are iid, as described above. A
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more general speci�cation will be considered in the numerical analysis in the next

section. We maintain the assumption throughout the paper that shocks to fnt, bt

and parameters are uncorrelated with each other.

Under these assumptions, (1 � �)
P1
j=1 �

jEtFt+i = �EtFt because EtFt+i =

EtFt. The �rst di�erence of the present value equation (1) then becomes:

�st = (1� �)�Ft + (1� �)�bt + �(EtFt � Et�1Ft�1) (15)

If the parameters �t were known, then Ft is known as well at time t and (15)

becomes

�st = �f
0
t�t + (1� �)�bt (16)

This generalizes (8) by replacing the constant vector of parameters � that mul-

tiplies the fundamentals �f 0t by the vector of time-varying parameters �t. When

the parameters �nt are not only known, but also very volatile, it could explain the

unstable relationship between exchange rates and fundamentals.

However, in reality the time-varying parameters are unknown. In that case

the last term EtFt � Et�1Ft�1 in (15) is a complex expression that depends on

expectations of parameters. In order to avoid the technical problem of computing

expectations of parameter innovations going back to the in�nite past, we assume

that parameters are known after T periods. Therefore the total number of unknown

parameter innovations is NT , which is �nite. In practice we will set T very large.

In that case, we can write (15) as:

�st = �f
0
t ((1� �)�t + �Et�t)+(1��)�bt+�

TX
i=1

�f 0t�i(Et�t�i�Et�1�t�i) (17)

As can be seen from the �rst term in (17), �ft is now multiplied by a weighted

average of actual and expected parameter values. Since the discount rate � tends

to be close to 1 (see Engel and West, 2005), almost all of the weight is on the

expected value of parameters rather than the actual level of parameters. The

reason is that the exchange rate is forward looking and depends on expectations

of future fundamentals. In this particular example, where fundamentals follow

a random walk, expected future levels of F are equal to the expected level of F

today, which depends on the expectation of the current set of parameters �t. More

generally, if changes in fundamentals are not iid, �st also depends on expectations
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about future values of the parameters. The general setup is discussed in Appendix

A.

In the last term of (17) we see that �st also depends on the change in ex-

pectations Et�t�i � Et�1�t�i of past parameters, interacted with changes in past

fundamentals. Intuitively, since Ft =
P1
i=0�f

0
t�i�t�i, changes in the expectation

of past parameters lead to a change in the expectation of Ft and therefore the

exchange rate. We will show that changes in current fundamentals lead to changes

in the expectation of both current and past parameters. This is therefore an addi-

tional channel through which changes in current fundamentals a�ect the exchange

rate.

To examine the impact of fundamentals on the exchange rate, we simply con-

sider the derivative of the exchange rate with respect to current fundamentals:

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@Et�t�i
@�fnt

(18)

The rest of this section analyzes in more detail the last two elements on the right-

hand side of (18).

2.4 Expectation of Parameters

In order to determine the impact of fundamentals on the exchange rate, we need

to determine the expectation of current and past parameters. We do this by �rst

assuming a process for structural parameters and then solving a signal extraction

problem.

We consider the case where a structural parameter �nt depends on a �nite

number T of past innovations:

�nt = �n +
TX
i=1

�ni"n;t�i+1 (19)

where "nt � N(0; �2�). In this section we consider a rather general process charac-

terized by the parameters �ni. In the next section we will pick a particular process

for the numerical analysis that satis�es the criteria discussed in the Introduction.

As discussed in section 2.3, we assume that parameter innovations at dates t�T
and earlier are known at date t in order avoid an in�nite number of unknown pa-

rameter innovations about which expectations need to be formed. In addition (19)
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assumes that parameter innovations at t�T and earlier do not a�ect parameters at
time t. This is a di�erent assumption, which we make to assure stationarity of the

structural parameters. In practice the impact of these assumptions is minimized

by setting T very high in the numerical analysis. In addition we will consider an

alternative process in section 3.3 where parameters depend on an in�nite number

of lagged innovations.

In vector notation (19) can be written as

�t = � +��t (20)

where � =(�1; �2; :::; �N)
0 is a N-vector of constants; �t is a NT vector that stacks

all the vectors �nt = (�nt; :::; �n;t�T+1)
0; and � is a N �NT matrix with �[n; T (n�

1) + 1 : Tn] = �0n = (�n1; �n2; :::; �nT ) and zeros otherwise.

In order to form expectations about current and past values of �t we need

to compute expectations about the vector �t of current and past parameter in-

novations. Since the problem is linear and all the shocks are normal, we can use

standard signal extraction techniques. Leaving some of the details to Appendix B,

we sketch how this is done. We start from the knowledge that the unconditional

distribution of �t is normal with mean zero and variance �
2
�INT , where INT is an

identity matrix of size NT . We combine this with knowledge of dt = Ft + bt over

the past T periods. De�ning Yt =
�
d�t ; ::; d

�
t�T+1

�0
, where d�t subtracts the known

components from dt, we have

Yt = H
0
t!t (21)

where !0t = (�
0
t; "

b
t ; "

b
t�1; :::; "

b
t�T+1) and Ht is a matrix that depends on current and

lagged changes in observed fundamentals: �ft�i for 0 � i � T . The precise form

of Ht can be found in Appendix B.

The unconditional distribution of !t is normal with mean zero and variance

~P =

0@ �2�INT 0

0 �2b IT

1A (22)

Combining this with (21), standard signal extraction7 implies that the conditional

distribution of !t is normal with mean

Et!t =MtYt (23)

Mt=~PHt

h
H0
t
~PHt

i�1
7See for example Townsend(1983, p.556).
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and variance

Pt = ~P�MtH
0
t
~P

Therefore

Et!t = Ct!t (24)

where Ct =MtH
0
t. Together with knowledge of parameter innovations of at least

T periods ago, (24) gives expressions for Et�t�i, for i = 0; 1; :::; T � 1. We use this
to compute Et�t�i from (20).

We then have

Et�t�i = �̂t�i +
ti!t (25)

Here �̂t�i is equal to � plus (for i > 0) a vector that depends on parameter

innovations of at least T periods ago that are known at time t. The matrix 
ti

is equal to �eIiCt, where eIi is a matrix of zeros and ones that maps !t into the
unknown elements of �t�i.

There are two important features to notice from (25). First, Et�t�i is deter-

mined by a combination of shocks contained in !t. Thus, the expectation of a

speci�c parameter �nt�i depends on its own innovations, but also on current and

past innovations to the noise vector bt and to all other parameters. Second, 
ti

depends on current and past �ft so that shocks to fundamentals a�ect parameter

expectations.8

As we will see, the expectation of �nt can change signi�cantly over a relatively

short period even when the actual structural parameters change very slowly. What

matters is not the monthly (or even annual) uctuations in structural parameters

but rather their potential to uctuate over a very long period of time (decades

or longer). The unconditional standard deviation of the parameters then becomes

large even though changes from period to period are small. A large unconditional

standard deviation of structural parameters, together with the di�culty in learning

about their level, may imply large and frequent changes in expectations about these

parameters. This allows expectations to become signi�cantly disconnected from

the true value of the parameters.

8Current and past �ft enter Ht, which a�ects Mt, Ct, and therefore 
ti.
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2.5 Derivative of Exchange Rate with respect to Funda-

mentals: Intuition

After substituting the solution for the expected parameters into (18), we have an

expression for the derivative of the exchange rate with respect to fundamentals as

a function of all the underlying shocks in the model: shocks to fundamentals, "fnt,

shocks to parameters, "nt, and shocks to unobservables, "
b
t . We can solve the model

numerically to show how the derivative evolves over time. However, it is hard to

get much intuition out of the algebraic expression. It is highly non-linear in the

shocks, which enter through large matrices and their inverse. To provide some

intuition, especially regarding the scapegoat e�ect, in this section we decompose

the derivative into components of di�erent orders.9 We also consider a simple

example that in many ways captures the essence of the more general case. We

summarize the �ndings of this order decomposition analysis in the form of �ve

intuitive Results that connect to the outcome of the numerical analysis in the next

section.

For convenience we repeat expression (18) for the derivative of the exchange

rate with respect to fundamentals:

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@Et�t�i
@�fnt

(26)

A Technical Appendix that is available on request computes the various order

components of this expression. But before we turn to that it is useful to �rst

consider a simple example.

Assume that T = N = 1. In this case, only the most recent parameter innova-

tion "t is unknown. Apart from knowing the unconditional distribution of "t, we

have one other signal: Ft+ bt, for which the only unknown component in this case

9Any variable can be written as the sum of its components of all orders. For example, for

a variable xt we have xt = x(0) + xt(1) + xt(2) + ::. The zero-order component of a variable,

x(0), is its value when the standard deviation of shocks in the model approaches zero. The

�rst-order component, xt(1), is proportional to the shocks. The second-order component, xt(2),

is proportional to the product of two shocks (or the same shock squared). Notice that we only

compute these order components for the purpose of intuition. The simulations reported below

are based on the exact expressions.
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is simply "t�ft + "bt . The expectation of the parameter innovation is then

Et"t =
�2�

(�ft)2�2� + �2b

�
(�ft)

2"t +�ft"
b
t

�
(27)

It depends both on the parameter innovation itself and on the innovation "bt in the

unobserved fundamental. Two points stand out, which can be summarized in the

following two Results:

Result 1 The expectation of structural parameters is a�ected by unobserved fun-

damental shocks that are entirely unrelated to the structural parameters. This leads

to the 'scapegoat e�ect'.

Result 2 Parameter innovations themselves have an impact on the expectations

of parameters that are of third order and generally small.

In order to understand Result 1 and the scapegoat e�ect, consider again the

signal "t�ft+"
b
t . Assume that �ft and "

b
t are both positive, but there is no actual

parameter innovation: "t = 0. Agents do not know "t, while they can see the signal

and �ft. From the signal they know that "t�ft + "bt is positive. Since �ft > 0,

agents naturally increase their expectation of "t. We refer to this as a scapegoat

e�ect as the fundamental ft becomes the scapegoat for the positive signal even if

in reality the positive signal is due to the noise shock "bt . Notice that there is a

signi�cant scapegoat e�ect only if both �ft and "
b
t are large: from (27) we see that

the expectation depends on the product of �ft and "
b
t .

Result 2 says that parameter innovations themselves have only a small e�ect

on the expectation of parameters. This can be seen from (27), which shows that

the expectation of "t depends on the product of "t and (�ft)
2. The term (�ft)

2

is very small since �ft is small.
10 In more technical terms, only the third-order

component of Et"t, (�
2
�=�

2
b )(�ft)

2"t, depends on "t. The impact of parameter

innovations is also an order of magnitude smaller than the impact of the noise "bt ,

which multiplies �ft rather than (�ft)
2 in the expectation of "t. The small e�ect

of parameter changes on the expectations of parameters is caused by the fact that

it is hard to learn about them through the signal as parameter innovations are

multiplied by fundamental innovations that are on average zero.

10Since ft is in logs, �ft is the percentage change in money supply, output or the interest rate.
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To gain further insight, we need to consider the order decomposition. Setting

�1 = 1, so that �t = "t, the sum of the zero, �rst and second-order component of

the derivative of the exchange rate with respect to fundamentals is equal to

@�st
@�fnt

= � + (1� �)(�t � �) + 2�(�2�=�
2
b )�ft"

b
t (28)

This needs to be compared to the case where time-varying parameters are known

and the derivative is equal to �t. Three factors contribute to a divergence between

the derivative of exchange rate with respect to fundamentals and the structural

parameter �t. First, as emphasized by Engel and West (2005), the discount factor

� is close to 1. This implies that the expectation of the parameter �t gets much

more weight than the actual parameter in the �rst two terms of the derivative

in (26): (1 � �)�t + �Et�t. Second, as captured in Result 1, the expectation of

parameters is a�ected by unobserved fundamental shocks. Third, as captured in

Result 2, structural parameters themselves have only a third-order e�ect on the

expectation of parameters. We can summarize this as follows:

Result 3 The derivative of the exchange rate with respect to fundamentals depends

mainly on the expectation of structural parameters as opposed to their actual value.

Together with Results 1 and 2 this implies substantial volatility in the derivative

of the exchange rate with respect to fundamentals that is unrelated to structural

parameter changes themselves.

In the remainder of this section we consider the more general process for para-

meters described in (19). We will assume that all N parameters are drawn from

the same process, so that �n = � and �ni = �i for all n. The sum of the zero and

�rst-order components of the derivative is � + (1� �)(�nt � �). This is again not

much a�ected by the impact of the actual parameter innovations as only a small

weight 1 � � in the derivative is on the actual structural parameters rather than

their expectation. In the remainder we focus on the second-order component of

the derivative (26), which is

@�st
@�fnt

(2) =
�2�
�2b
�
T�1X
i=0

�t;i"
b
t�i +

�2�
�2b
�#t"

b
t (29)

where:

�t;i =
T�1X
k=i

T�kX
j=1

�j�j+k�ik�fn;t�k
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#t =
TX
i=0

0@T�iX
j=1

�j�j+i

1A�fn;t�i
and where �ik is 1 for k = i and 1 � �b for k > i. The two terms on the right

hand side correspond to the second-order components of respectively the second

and third terms of the derivative (26).

These terms again involve the product of innovations in the unobserved funda-

mentals and observed fundamentals, reecting scapegoat e�ects. The �rst conclu-

sion that can be drawn from this expression is summarized as follows:

Result 4 Scapegoat e�ects have a bigger impact on the derivative of the exchange

rate with respect to fundamentals when parameter innovations have long-lasting

e�ects.

This can be seen by noting that �t;i and #t depend on the products �j�j+k of

coe�cients of the process of structural parameters. When parameter innovations

have a long-lasting e�ect on the level �nt of structural parameters, coe�cients �j

for j > 1 are positive. Clearly, the more persistent the e�ect, the larger �t;i and #t

and therefore the bigger the scapegoat e�ects. This reects the fact that when pa-

rameter innovations have long-lasting e�ects, there is signi�cant uncertainty about

the level of the structural parameters that enter the change in the observed signal:PN
n=1 �nt�fnt + �bt. This leaves plenty of room for the scapegoat mechanism to

operate. This is especially the case when �j rises with j, which implies a gradual

change in parameters in response to an innovation, so that parameters can change

much more in the long run than the short run.

A second conclusion that can be drawn from (29) is:

Result 5 The impact of scapegoat e�ects on the derivative of the exchange rate

with respect to fundamentals has both a persistent and transitory component.

The two components are readily seen on the right hand side of (29). The �rst

term on the right hand side depends on innovations in the unobserved fundamental

over the past T periods and therefore has signi�cant persistence. These past T

noise innovations all a�ect the expectation of �nt as agents learn about �nt from

all T past signals Ft�i + bt�i (i = 0; ::; T � 1).
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The second term on the right hand side of (29) is entirely transitory as it is

only the current noise innovation "bt that enters. This component leads to very

high frequency uctuations in the derivative. It is associated with the last term in

the derivative (26). The impact of a fundamental innovation �fnt on the exchange

rate depends not only on the expectation of �nt that multiplies the fundamental

innovation. It also depends on how the change in the fundamental leads to changes

in the expectation of current and past parameters, as seen in the last term of

(26). A change in the current fundamental a�ects current and past parameter

expectations only to the extent that it becomes a scapegoat in the face of a current

noise shock �bt .
11

Finally, while we do not report the third-order component, it is worth pointing

out that it captures another type of rational confusion. Instead of confusing un-

observed parameter shocks with unobserved fundamental shocks, agents may also

confuse the unobserved innovations in one parameter with unobserved innovations

in another parameter. This is reected in the third-order component, which is a

complicated expression that multiplies current and past parameter innovations (in-

cluding those associated with other parameters) with the product of fundamental

innovations (current and past).

In order to illustrate these �ndings and show the magnitude of the scapegoat

e�ect, we now turn to a calibration of the model that is grounded in monthly data

of exchange rates and interest rates.

3 Numerical Analysis

3.1 Calibration

We calibrate the model to data for exchange rates, interest rates and observed

fundamentals. A description of the data can be found in Appendix C. In the

previous section, we considered a special case with no risk-premium shocks and

where both bt and �fnt are iid. For calibration purposes we now turn to a somewhat

more general form of the model.

11To see this point, one can alternatively write the signals Ft�i + bt�i for i = 0; ::; T � 1 as
(1 � �bL)(Ft�i + bt�i) = Ft�i � �bFt�i�1 + "bt . The current fundamental innovation �fnt only
enters in the most recent signal (i = 0), in which only the most recent noise innovation enters.
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First, we assume that bt and �fnt follow AR(1) processes:

�fnt = �f�fn;t�1 + "ft

bt = �bbt�1 + "bt

Second, in order to match observed exchange rate volatility we allow for a time-

varying risk premium. Let vt be the present discounted value of the risk premium:

vt =
1X
k=0

�kEt�t+k

To match the observed volatility and autocorrelation of �st, we assume that vt

follows the process

vt+1 � vt =  1(vt � vt�1)�  2vt + "vt+1 (30)

where "vt+1 � N(0; �2v).
12

The process for the structural parameters is determined by the values of the

parameters �in in equation (19). We assume that the parameters associated with

all observed fundamentals are the same, so that �n = � and �in = �i for all n. As

discussed in the introduction, we consider structural parameters that exhibit two

features that would appear plausible in terms of gradual changes in the structure

of the economy, for example associated with technological and �nancial innovation,

or cultural and institutional changes. First, structural parameter changes are small

over short horizons of a month or a year. Second, changes in structural parameters

gradually build over time and can be signi�cant over long horizons of many years

or decades. Parameters therefore can change much more in the long run than the

short run, generating substantial uncertainty about the level of parameters, even

though monthly or annual changes are small.

In order to get these features, we set �1 = 1 and then choose the other parame-

ters �i (i = 2; ::; T ) such that we maximize the ratio of the unconditional standard

deviation of �t relative to the standard deviation of monthly changes in �nt. In

other words we maximize
��nt
���nt

:

12These risk-premia shocks are assumed to be uncorrelated with the observed fundamentals

�fnt, which exogenously generates a disconnect between �st and the observed fundamentals.

For a more endogenous explanation of the disconnect between exchange rates and observed

fundamentals, related to private information, see Bacchetta and van Wincoop (2006).
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The resulting process implies that an innovation impacts the parameter �nt slowly

over time in the form of a hump shape. It builds up to a maximum impact after T=2

periods and then gradually declines. We will examine other processes in section

3.3.

Table 1 reports the parameters adopted for the benchmark parameterization.

The �rst four parameters relate to the processes for �nt. We set T = 1000. Since

we assume that one period is one month, this implies that the current level of

structural parameters is determined by parameters innovations over the last 1000

months or 83 years. We set N = 5, so that the total number of structural parame-

ters (and fundamentals) is 5. Therefore the total number of unknown structural

parameter innovations that agents need to learn about is 5000. We normalize by

setting the mean value of the parameters at � = 1. We set �� = 0:000165. As

reported in the last row of Table 2, this implies a monthly standard deviation of

the change in �nt of 0.3% of the mean value of parameters, which is small. But

there is considerable uncertainty about the level of parameters as their uncondi-

tional standard deviation is 1.2, or 120% of their steady state level. This is because

parameter changes build gradually over time.

The next �ve parameters are associated with the process for bt and vt. These

are set to closely match four moments related to exchange rates and interest rates:

the standard deviation of �st, the standard deviation of it�i�t , the �rst-order auto-
correlation of �st and the �rst-order autocorrelation of it� i�t . In doing so, we use
monthly data from 1975(9) to 2008(9) for exchange rates and interest di�erentials

of 5 countries relative to the United States. The countries are Canada, Germany,

Japan, Switzerland, and United Kingdom. These moments are reported in the

�rst column of Table 2 (�rst 4 rows). We match these moments in the model for

the case of constant parameters (�� = 0). The moments for constant parameters

are reported in the second column of Table 2. But the moments are virtually iden-

tical under the benchmark assumption about time-varying parameters, as shown

in column 3.13

As a by-product the model also generates a signi�cant negative correlation

13Both under constant and time-varying parameters the moments are computed based on a

simulation over 1300 months (108 years). So they can reasonably be considered population

moments. Prior to the 1300 months over which we compute the moments we �rst simulate the

model for T = 1000 months (83 years) in order to obtain a history.
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between the change in the exchange rate and lagged interest di�erential. The

Fama regression coe�cient, reported in the �fth row of Table 2, is even slightly

more negative than in the data. We emphasize that this is not intended as an

explanation for the forward discount puzzle as it is due to entirely exogenous

risk-premium shocks (see Bacchetta and van Wincoop, 2010, for a more plausible

explanation for the forward discount puzzle). It does imply though that the model

is well grounded in the data as it conforms to the basic statistical properties of

exchange rates and interest rates.

The next two parameters relate to the process of the observed fundamentals.

We set the number of fundamentals at N = 5. We do not take a strong stand on

exactly which observed fundamentals a�ect exchange rates. This is not necessary

as the �nding that observed fundamentals have limited explanatory power for

exchange rates is well known and applies broadly across fundamentals. But for

concreteness in terms of the calibration, we use some representative results from

Bacchetta, van Wincoop and Beutler (2010). For the same 5 currencies and sample

period used to calibrate exchange rate and interest rate moments, they regress

�st on changes in 5 fundamentals (�fnt in our model): changes in money supply,

industrial production, unemployment rate, and oil price and the level of lagged

interest rates. They obtain an average R2 of 0.023.

We set the standard deviation �f of fundamental innovations in the model

equal to 0.125% in order to match the average R2 in the data when computed

over a sample of 397 months (33 years) that corresponds to the sample in the

data. As shown in Table 2, we match this for both constant parameters and the

benchmark assumption of time-varying parameters. We set the persistence �f of

the process for fundamentals equal to 0 under the benchmark parameterization.

This is also closely consistent with the speci�c fundamentals listed above.14 We

will also consider positive persistence in sensitivity analysis.

Finally, we set � = 100=3, implying a discount rate � in the present value

equation for the exchange rate of 0.97. This is consistent with evidence by Engel

and West (2005) that the discount rate is close to 1.

14The change in money supply, industrial production, unemployment rate, and the oil price all

have low persistence, with �rst-order autocorrelations averaging to 0.02. Only the lagged interest

rate di�erential has a high persistence of 0.94.
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3.2 Results

We simulate the model over 2300 months. All moments reported drop the �rst 1000

months in order to generate a prior history of shocks. Unless otherwise indicated,

the results reported are based on the subsequent 1300 months.

Derivative of Exchange Rate with Respect to Fundamentals

Figures 1 and 2 show @�st=@�fnt for each of the �ve fundamentals. From now

on we simply refer to this as the derivative of the exchange rate with respect to

fundamentals. Figure 1 does so for a 10-year period (observations 1540-1659 in the

simulation), while Figure 2 does so for a 100-year period (observations 1001-2200

in the simulation).15 Both Figures also show �nt, which would be the derivative of

the exchange rate with respect to fundamentals if parameters were known.

It is evident from Figure 1 that the derivative of the exchange rate with respect

to fundamentals is far more volatile than the underlying structural parameters.

As reported in Table 2, the average standard deviation of monthly changes in the

derivative is 25.9% of the mean value of the derivative. By contrast, the standard

deviation of monthly changes in the underlying structural parameters is only 0.3%.

We will call the ratio between these two standard deviations the \scapegoat ratio"

as scapegoat e�ects are responsible for the increased instability in the relationship

between the exchange rate and fundamentals. In the benchmark case, this ratio is

equal to 85.1.

This disconnect between structural parameters and the derivative of the ex-

change rate with respect to fundamentals illustrates Result 3 in section 2.5. We

have seen that several factors are behind this. First, the derivative is mostly driven

by expectations of structural parameters rather than structural parameters them-

selves. Second, structural parameters have very little impact on the expectation

of structural parameters (Result 2). Third, scapegoat e�ects lead to an impact

of noise innovations "bt on the expectation of parameters (Result 1). In addition

we saw that scapegoat e�ects are bigger the more persistent the process for para-

meters (Result 4). We found that this is especially the case when coe�cients �i

increase with i as is the case for our assumed process (for i < 0:5T ).

While Figure 1 would suggest that the derivative of exchange rates with respect

15Figure 1 corresponds to the middle observations of Figure 2.
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to fundamentals is entirely disconnected from the true underlying structural pa-

rameters, Figure 2 shows that this is not the case when we take a longer 100-year

view. There are large changes in parameters over long cycles of several decades,

while the derivative of the exchange rate with respect to the fundamentals broadly

catches up with these long term swings. This implies that when there are persis-

tent changes in parameters, agents do eventually learn about them when they are

consistently reected in the data Ft + bt for several decades.

But, as illustrated in both Figures 1 and 2, short to medium-term uctuations

around such long-term cycles can be large and even dominate the trend itself. It

is precisely the possibility that parameters can change a lot in the long run that

creates signi�cant uncertainty about their level and gives rise to scapegoat e�ects

that lead to large changes in the derivatives over the short to medium run.

Expectation of Parameters

It is useful to recall equation (18) of the derivative of the exchange rate with

respect to fundamentals, which is displayed here again for convenience:

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@Et�t�i
@�fnt

(31)

Since � is close to 1, the derivative of the exchange rate with respect to funda-

mentals is primarily driven by the last two terms. We have seen that the impact

of scapegoat e�ects on the derivative of the exchange rate with respect to fun-

damentals has both a persistent and transitory component (Result 5). These are

associated with respectively the second and third term in (31).

The persistent scapegoat e�ects enter through the expectation Et�nt of struc-

tural parameter n. The persistence results from the fact that all unobserved fun-

damental innovations over the past T = 1000 months generate scapegoat e�ects.

Focusing on variable 1, Figure 3 compares the evolution of �1t with Et�1t over the

samples of 10 and 100 years used in Figures 1 and 2. The top panels illustrate

that Et�1t is more volatile than the underlying parameter �1t and that uctuations

have signi�cant persistence at various frequencies.

But a comparison with Figures 1 and 2 also shows that the overall derivative

@�st= @�fnt has even much larger uctuations at high frequencies. This is the

result of the transitory scapegoat e�ects that are associated with the last term

in (31). As explained in section 2.5, the last term in (31) has a second-order
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component that is proportional to "bt (zero and �rst-order components are zero).

Therefore, this term has no persistence and gives rise to very high frequency uc-

tuations. It is illustrated in the bottom panels of Figure 3, which show �1t, Et�1t

as well as @�st=@�f1t.

To summarize, very gradual changes in structural parameters can lead to a

highly unstable relationship between exchange rates and observed fundamentals.

This is the result of both persistent and transitory scapegoat e�ects. We have seen

in section 2.5 that these scapegoat e�ects (both persistent and transitory compo-

nents) are largest when the process of structural parameters is highly persistent,

leading to large long-run uncertainty about the level of structural parameters. To

illustrate this point, we now turn to a discussion of sensitivity analysis with respect

to the nature of the process for structural parameters.

3.3 Sensitivity to Process of Structural Parameters

Perhaps most relevant when conducting sensitivity analysis with respect to our

�ndings is to consider how the results depend on the process of parameters. This

is the only aspect of the model that we could not calibrate to the data. There

are good reasons for this. It is impossible to know what exactly the process of

structural parameters is. As emphasized in the Introduction, econometric analysis

cannot distinguish between lots of di�erent processes. Nonetheless it is important

to consider alternative processes. We will do so in order to make a general point,

which is key to our results. There is signi�cant reduced-form parameter insta-

bility relative to structural parameter instability when structural parameters can

potentially change much more in the long-run than the short-run. This implies

signi�cant uncertainty about the level of parameters relative to monthly changes

in parameters. Or in more technical terms, for any process where ��nt=���nt is

high, there will be a high scapegoat ratio.

In order to illustrate this point, we consider four alternative processes. These

are all special cases of the process

�n;t+1 � �nt = �1(�nt � �n;t�1)� �2(�nt � �) + �nt (32)

with di�erent values for �1 and �2. In terms of an MA process, (32) can be written

22



as

�nt = �n +
1X
i=1

�i"n;t�i+1: (33)

with �1 = 1, �2 = 1 + �1 � �2 and

�i+1 � �i = �1(�i � �i�1)� �2�i (34)

for i � 2.
The benchmark process is a special case of this process as well, with �1 = 1

and �2 = 0:00000985. The benchmark process truncates the MA process to an

MA(T ) by setting �i = 0 for i > T . The alternative Process 1 is di�erent in that

we do not truncate. As is the case for the benchmark process, the parameters

�i are chosen to maximize the standard deviation of ~�nt relative to ��nt, where
~�nt =

PT
i=1 �i�n;t�i+1 captures the component of �nt that is unknown at time t

(most recent T innovations). But the coe�cients �i are not restricted to be zero

for i > T . In the alternative Processes 2 through 4 we truncate �i = 0 for i > T

as for the benchmark process.

For all 4 alternative processes, Figure 4 shows the impulse response functions of

the structural parameters after a one standard deviation parameter innovation. For

comparison each chart also shows the impulse response function for the benchmark

parameterization. The top of each chart shows the parameters �1 and �2 for each

of the alternative processes. In each case the standard deviation of ~�nt is kept the

same as under the benchmark parameterization.

In Process 1 the structural parameter rises gradually in response to an inno-

vation, until it peaks at a new level where it will remain. From a theoretical

standpoint this process has the unattractive feature that the structural parame-

ters are non-stationary and therefore unbounded. But in practice we only simulate

the model over a �nite 2300 months (192 years) and the uncertainty of �nt due to

parameter innovations over the past T = 1000 months (83 years) is kept identical

across all parameterizations. This process captures the idea that certain structural

changes, such as technological and �nancial innovation, are indeed permanent. It

also connects well to a lot of the econometrics literature that tests for structural

breaks in parameters. This amounts to testing for permanent changes in parame-

ters. In a way Process 1 captures even better than the benchmark parameterization

what we have in mind with gradual and long-lasting changes in parameters. We
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only chose to truncate the benchmark process after T innovations in order to assure

stationarity for theoretical reasons.16

Process 2 is a truncated AR(1) process with AR coe�cient of 0.99. Process 3 is

a truncated random walk process. In Process 4 the structural parameter gradually

rises over time in response to an innovation and peaks a bit earlier than under the

benchmark. In these three cases the response is truncated to zero after T periods.

Table 3 shows the scapegoat ratio for each of the processes, as well as �~�nt=���nt .

Since �~�nt is kept the same across all processes, a higher ratio means a smaller stan-

dard deviation ���nt of monthly changes in structural parameters. Table 3 clearly

shows that the higher the long-run uncertainty about the level of the structural

parameters relative to monthly changes in structural parameters, the bigger the

scapegoat ratio. For Process 1, where �~�nt=���nt is about double that under the

benchmark process, the scapegoat ratio is now an amazing 267.7. This is more

than three times that under the benchmark. Figure 5 illustrates the scapegoat ef-

fect in this case. A major di�erence is that structural parameters are more stable,

even at very low frequency. Both the expectation of �nt and the reduced form pa-

rameters @�st=@�fnt remain highly unstable and are now even more disconnected

from the smooth structural parameters.

By construction �~�nt=���nt is less for the other processes than under the bench-

mark parameterization and therefore the scapegoat ratio is lower as well.17 Beyond

that, two points are worth making. First, even when �~�nt=���nt is much lower than

under the benchmark parameterization, there can still be a substantial scapegoat

ratio. For example, for Process 4, where �~�nt=���nt is less than one sixth that un-

der the benchmark, the reduced form monthly parameter instability is still more

than 10 times the structural parameter instability. Second, even when the scape-

goat ratio is close to 1, as it is for Process 2, this does not mean that that reduced

form parameters are similar to structural parameters. Indeed, even for Process

2, the correlation between monthly changes in structural parameters and reduced

form parameters is only 0.33 (it is 0.02 in the benchmark case).

16Of course one could truncate process 1 after �T innovations, with �T much larger than T . The

results will then be very similar to what we report for Process 1 even though technically the

process will then be stationary.
17Recall that the benchmark process is chosen to maximize �~�nt=���nt for processes that are

truncated after T periods.
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We should �nally point out that we have restricted ourselves to processes with

normally distributed innovations. It is possible that some parameter changes are

big and infrequent. One can imagine a process where there is a big change in

parameters with some very small probability p > 0. In that case parameters are

perfectly constant almost all of the time. But even when structural parameters do

not change at all, reduced-form parameters will be very volatile as the infrequent

large parameter changes contribute to signi�cant uncertainty about the level of

parameters.18

3.4 Other Sensitivity Analysis

We now return to the benchmark process and examine the extent to which the

results are sensitive to changes in various parameters. We consider four types

of parameters: the standard deviation of structural parameter innovations; the

variability and persistence of fundamentals; the horizon T after which parameters

are known; and the volatility of the unobserved fundamentals.

3.4.1 Sensitivity Moments to Parameter Instability

When considering alternative processes for the parameters in the previous sub-

section, we held constant the overall parameter instability as measured by the

standard deviation of ~�t. We now consider the impact of a change in the standard

deviation �� of parameter innovations for the benchmark process.

Table 2 reports moments for three values of ��. In addition to the constant

parameter and the benchmark time-varying parameter cases, the fourth column

shows the case where the standard deviation of parameter innovations is twice

that under the benchmark (�� = 0:00033). In the latter case the standard devi-

ation of monthly changes in the derivative of the exchange rate with respect to

fundamentals is 45%, while the same moment is only 0.6% for the structural pa-

rameters. This implies a scapegoat ratio of 73.8. While this remains very high, it

is slightly lower than under the benchmark parameterization. The reason for this

18For example, when the structural parameter follows a Markov process with two states 1 + a

and 1�a and the probability of changing from one state to another is a small p, then �~�nt=���nt
is equal to 1=(4p). This can get very large for small p. Our results from Table 3 suggest that

this will again generate a very large scapegoat ratio.
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is that when structural parameters become su�ciently volatile, it becomes easier

to learn about them through data on Ft + bt. This reduces the rational confusion

and associated scapegoat e�ects, although numerically the di�erence is small.

Even though we have seen that gradual changes in structural parameters lead to

a highly unstable relationship between exchange rates and fundamentals, some ba-

sic moments involving exchange rates and interest rates are remarkably insensitive

to the degree of parameter instability. Exchange rate volatility rises only slightly.

The standard deviation of exchange rate changes rises from 2.90% to 3.04%, from

the case of constant parameters to the extreme case where parameter volatility

is twice that under the benchmark. The standard deviation of the interest rate

di�erential, as well as the autocorrelation of monthly exchange rate change and

the interest di�erential, are all virtually una�ected by parameter volatility. The

same is the case for the monthly Fama regression coe�cient of �st+1 on it � i�t .

The reason for these results is that most exchange rate volatility is unrelated to

changes in fundamentals. For the benchmark parameterization the R2 is 0.023, as

in the data.

3.4.2 Sensitivity to Process Fundamentals

We �rst examine the impact of the fundamentals process on the link between

exchange rates and these fundamentals. We consider a higher standard deviation

of the innovations of the fundamentals and positive persistence of changes in the

fundamentals. We �nd that the volatility of @�st
@�fnt

decreases with �f . When we set

the standard deviation of innovations four times as large as under the benchmark

(�f = 0:005), the scapegoat ratio declines from 85.1 to 53.7.

The explanation for these results is that when �f is larger, the signal Ft + bt

becomes more informative about structural parameters as they are multiplied by

fundamentals that uctuate more. Consequently, there is less confusion. Scape-

goat e�ects are smaller and therefore the derivative @�st
@�fnt

is somewhat less volatile.

We should not overstate this though as monthly changes in this derivative remain

54 times more volatile than monthly change in the structural parameter �nt. More-

over, a standard deviation of �f = 0:005 is implausibly high as it leads to an R
2 of

0.15. This is well above representative results for a sample of at least 3 decades.

We also consider raising the persistence �f of �fnt from 0 to 0.2. As shown in
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Appendix A, the derivative of exchange rates with respect to fundamentals is then

also a�ected by expectations of future levels of the structural parameters. But the

overall impact on the unstable relationship between exchange rates and observed

fundamentals is small. The scapegoat ratio increases slightly from 85.1 to 96.7.

3.4.3 Sensitivity to the horizon T

A smaller T implies that there are fewer parameter innovations to learn about. This

reduces rational confusion and scapegoat e�ects. This is illustrated by comparing

the case of T = 1000 to the case of T = 300. For T = 300 we �nd a scapegoat

ratio of 9.3. While this still reects signi�cant scapegoat e�ects, it is much smaller

than scapegoat ratio of 85.1 found in the benchmark of T = 1000. Conversely,

the scapegoat ratio would rise as we make T even bigger than 1000. However, this

would take an excessive amount of computer time. With T = 1000, 5 fundamentals

and a simulation over 2300 months we already need to solve 2300 signal extraction

problems that each involve 5000 unknown parameter innovations.19

3.4.4 Sensitivity to �b (volatility of unobserved fundamentals)

Shocks to unobserved fundamentals play a crucial role in generating scapegoat

e�ects. However, there is a non-linear relationship between the volatility of un-

observed fundamentals and the magnitude of the scapegoat e�ect as measured by

the scapegoat ratio. This is illustrated in Figure 6, which plots the scapegoat ratio

as a function of �b. As the standard deviation �b of the unobserved fundamentals

rises, the scapegoat ratio �rst increases and then eventually starts to fall. This

non-linear relationship can be explained by the inference process. At low values,

an increase in �b generates more rational confusion as F +b becomes more volatile.

But when b becomes too volatile, F + b is a less valuable source of information for

investors. They will then attach less weight to it when forming expectations about

parameters, which reduces scapegoat e�ects.

19With our current technology, this takes about 40 hours of computer time.
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4 Conclusion

Anecdotal, survey and econometric evidence all suggest that the relationship be-

tween the exchange rate and macro fundamentals is highly unstable. One possible

way to explain this is by assuming large and frequent known changes in the struc-

tural parameters. But this does not seem very plausible as structural parameters

are hard to observe and estimate and many changes in the structure of the economy

are gradual as a result of technological and �nancial innovation and institutional

changes. We have therefore developed a model where structural parameters are

not observed and changes in these structural parameters are very gradual. We have

shown that the relationship between a forward looking variable like the exchange

rate and macro fundamentals is determined not by the structural parameters them-

selves, but rather by the expectations of these structural parameters.

We have also shown that expectations of these parameters can change signi�-

cantly and frequently, even when changes in structural parameters are small and

gradual. This is a result of scapegoat e�ects, where changes in the exchange rate,

or other macro data, are attributed to certain observed fundamentals even when

they are driven by unobserved fundamental shocks. Such scapegoat e�ects occur

in an environment where agents are rational Bayesian learners that incorporate all

available information to revise their view on the parameters. When structural pa-

rameters can potentially change signi�cantly over long horizons of several decades,

there is substantial room for scapegoat e�ects as agents are trying to learn about

the level of the parameters.

While our focus has been on the exchange rate, an analogous explanation could

also account for the extensive evidence of parameter instability seen in other for-

ward looking macroeconomic and �nancial data. Two key ingredients, which are

not limited in any way to exchange rate models, drive our unstable reduced form

results. First, there must be unobserved fundamental shocks. This applies surely

to other asset prices as well and more generally to other macroeconomic data

as factors driving business cycles and long term growth rates are not perfectly

understood. Second, structural parameters must have the potential to change sig-

ni�cantly over long horizons. This would be hard to dispute as well, especially

in the context of major technological, �nancial and institutional changes over the

past two centuries.
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Appendix

A Solving the General Model

In this Appendix we describe the model's solution in the more general case, where

the processes for �fnt, bt, and vt are as speci�ed in Section 3. A Technical Appen-

dix provides further details towards the implementation of the simulations with

Gauss. We start from the present value equation (1) of the exchange rate. We

need to express it in way we can easily substitute the expectation terms. This

equation can be rewritten as:

st = (1� �)Ft + (1� �)bt � �vt + (1� �)
1X
k=1

�kEt (Ft+k + bt+k) (35)

First, consider the term involving the present discounted value of F . Use that

Ft+k = Ft +
NX
n=1

kX
i=1

�n;t+i (fn;t+i � fn;t+i�1) (36)

Therefore

1X
k=1

�kFt+k =
�

1� �
Ft +

1

1� �

NX
n=1

1X
i=1

�i�n;t+i (fn;t+i � fn;t+i�1) (37)

The present value of b can be written as ~bEtbt, where

~b = (1� �)
�b�

1� �b�
(38)

Using this, (35) becomes

st = (1� �)Ft + �EtFt + (1� �)bt � ��t
NX
n=1

1X
i=1

(��)iEt�n;t+i (fn;t � fn;t�1) + ~bEtbt (39)

Therefore

st � st�1 = (1� �)
NX
n=1

�nt (fnt � fn;t�1) + � [EtFt � Et�1Ft�1] +

NX
n=1

Et ~�nt (fn;t � fn;t�1)�
NX
n=1

Et�1 ~�n;t�1 (fn;t�1 � fn;t�2) + (40)

(1� �)(bt � bt�1) + ~b (Etbt � Et�1bt�1)� � (vt � vt�1)
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where

~�nt =
1X
i=1

(��)i �n;t+i (41)

Finally, we can write

EtFt � Et�1Ft�1 = Et(Ft � Ft�1) + [EtFt�1 � Et�1Ft�1] = (42)
NX
n=1

Et�nt (fnt � fn;t�1) +
NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i]

Using (42) and collecting terms multiplying fnt � fn;t�1, (40) becomes

st � st�1 =
NX
n=1

�
(1� �)�nt + �Et�nt + Et ~�nt

�
(fnt � fn;t�1) +

�
NX
n=1

Et�1 ~�n;t�1 (fn;t�1 � fn;t�2) + (43)

�
NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i] +

(1� �)(bt � bt�1) + ~b (Etbt � Et�1bt�1)� � (vt � vt�1)

Given the processes of �t and bt, the terms including expectations can be

written as:

Et�nt � � = !̂Et�nt

Et ~�nt �
��

1� ��
� = �̂Et�nt

Etbt = b̂Etbt + �Tb bt�T
TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i] =

TX
i=1

(fn;t�i � fn;t�i�1) �T�i+1�n;t�T + ĥntEt�nt � f̂n;t�1Et�1�n;t�1

where ��, �̂, b̂, ĥ and �h are 1 by T vectors with

!̂(j) = �j (44)

�̂(j) =
T�jX
i=1

�j+i (��)
i (45)

b̂(j) = �j�1b (46)
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ĥnt(j) =
j�1X
i=1

(fn;t�i � fn;t�i�1)�j�i (47)

f̂n;t�1(j) =
jX
i=1

(fn;t�i � fn;t�i�1)�j�i+1 (48)

and ĥnt(1) = 0.

Substituting these results into (43) gives

st � st�1 =
NX
n=1

 
�

1� ��
+ (1� �)(�nt � �) +

h
�!̂ + �̂

i
Et�nt

!
(fnt � fn;t�1) +

�
NX
n=1

 
���

1� ��
+ �̂Et�1�n;t�1

!
(fn;t�1 � fn;t�2) + (49)

�
NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) �T�i+1�n;t�T + �
NX
n=1

�
ĥntEt�nt � f̂n;t�1Et�1�n;t�1

�
+

(1� �)(bt � bt�1)� � (vt � vt�1) + ~b
�
b̂(Etbt � Et�1bt�1) + �Tb (bt�T � bt�T�1)

�
The expectation terms can be derived from the signal extraction problem, where

Et!t = Ct!t. This gives:

st � st�1 =
NX
n=1

 
�

1� ��
+ (1� �)(�nt � �) +

h
��!n + ��n

i
Ct!t

!
(fnt � fn;t�1) +

�
NX
n=1

 
���

1� ��
+ ��nCt�1!t�1

!
(fn;t�1 � fn;t�2) + (50)

�
NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) �T�i+1�n;t�T + �
NX
n=1

�
�hntCt!t � �fnt�1Ct�1!t�1

�
+

(1� �)(bt � bt�1)� � (vt � vt�1) + ~b
�
�b(Ct!t �Ct�1!t�1) + �Tb (bt�T � bt�T�1)

�
Here ��n is a 1 by (N +1)T vector with �̂ in elements T (n� 1)+1 through Tn and
zeros otherwise. The vectors �!n, �hnt and

�fnt�1 are de�ned analogously.
�b is a 1 by

(N + 1)T vector with b̂ in elements NT + 1 through NT + T and zeros otherwise.

Collecting terms in Ct!t and Ct�1!t�1, we can rewrite this as

st � st�1 =
NX
n=1

 
�

1� ��
+ (1� �)(�nt � �)

!
(fnt � fn;t�1) + 

NX
n=1

h
��!n + ��n

i
(fnt � fn;t�1) + �

NX
n=1

�hnt +
~b�b

!
Ct!t � (51)
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NX
n=1

��n (fn;t�1 � fn;t�2) + �
NX
n=1

�fnt�1 +
~b�b

!
Ct�1!t�1 +

�
NX
n=1

���

1� ��
(fn;t�1 � fn;t�2) + �

NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) �T�i+1�n;t�T +

(1� �)(bt � bt�1) + ~b�
T
b (bt�T � bt�T�1)� � (vt � vt�1)

The derivative with respect to the current fundamental is:

@�st=@�fnt =

 
�

1� ��
+ (1� �)(�nt � �)

!
+ (52)

@
�PN

n=1

h
��!n + ��n

i
(fnt � fn;t�1) + �

PN
n=1

�hnt +
~b�b
�
Ct!t

@�fnt

B Signal Extraction

The signal extraction problem is described in Section 2.3. The matrixHt is de�ned

as:

H0
t = [A1t; :::;ANt;B] (53)

with

Ant =

2666664
f̂nt(1) f̂nt(2) ::: f̂nt(T )

0 f̂n;t�1(1) ::: f̂n;t�1(T � 1)
::: ::: :::

0 0 ::: f̂n;t�T+1(1)

3777775
and

B =

2666664
1 �b ::: �T�1b

0 1 ::: �T�2b

::: ::: :::

0 0 ::: 1

3777775
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            Table 1   Benchmark Parameter Assumptions* 

 
  

T 1000 

N 5 

β  1 

βσ  
0.0165 

bσ  2.2 

bρ  0.96 

υσ  2.7 

1φ  0.06 

2φ  0.1 

fσ  0.125 

fρ  0 

α  33.3 
 
 
 
 
* Standard deviations are given in %. 
 
 
 
 
 
 
 
 
 
 
 



                   Table 2    Moments: Data and Model* 

 
 

 
Data σβ=0  

Benchmark 
 σβ=0.0165 

σβ=0.033 

tsDeviation  Standard Δ  2.91 2.90 2.99 3.04 

)s,sCorr( 1-tt ΔΔ  0.04 0.04 0.04 0.04 
*
tt -iiDeviation  Standard  0.22 0.23 0.23 0.23 

)-ii,-iCorr(i *
1-t1-t

*
tt  0.92 0.92 0.93 0.93 

)-iivar(/)-ii,scov( *
1-t1-t

*
1-t1-ttΔ  -1.25 -1.82 -1.86 -1.83 

monthly  R2
 0.023 0.022 0.022 0.031 

ntt f/s ChangeMonthly  s.d. Δ∂Δ∂ - 0 25.9 45.0 

ntChangeMonthly  s.d. βΔ  - 0 0.30 0.61 
 
 
 
* Standard deviations are given in %. 
 
 
 
 

  
 
 
 
 
 
 
 
 
 



                       Table 3    Scapegoat Ratio* 
 
 

 ).(.
)~.(.

nt

nt

ds
ds

β
β
Δ  

Scapegoat 
ratio 

Benchmark Process 319 85.1 

Process 1 637 267.7 

Process 2 7 1.6 

Process 3 22 4.4 

Process 4 49 10.1 
 
 
 
 
* The scapegoat ratio is the standard deviation of monthly changes in the reduced 
form derivative ∂∆s t/∂∆fnt of the exchange rate with respect to fundamentals relative 
to the standard deviation of monthly changes in structural parameters.  
 
 
 

  
 
 
 
 
 



Figure 1  Derivative Δst

 

with respect to Δfnt
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Figure 2  Derivative Δst

 

with respect to Δfnt
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Figure 3    Expectations βnt
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Figure 4  Impulse Response Functions for Alternative 
Processes for Structural Parameters*
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Figure 5  Derivative Δst

 

with respect to Δfnt
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Figure 6   Unobservable Shocks and Scapegoat Ratio*
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