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While many papers test the consumption CAPM based on realized consumption growth,

e.g., Lettau and Ludvigson (2001b), Parker and Julliard (2005) and Yogo (2006), the impact

of consumption growth volatility on asset prices has received less attention in the empirical

literature.1 This is surprising since it is well known that the volatility of macroeconomic

quantities, such as consumption and output, varies over time.2 The goal of this paper is

to analyze the pricing implications of consumption growth volatility in the cross-section and

time-series of stock returns.

This research question poses several challenges. First, a natural candidate to model con-

sumption volatility is the ARCH model proposed by Engle (1982) and its various general-

izations. Asset pricing theory, however, states that only innovations are priced and in a

GARCH model the volatility has no separate innovations relative to the process for con-

sumption growth. In particular, Restoy and Weil (2004) show that a GARCH consumption

model does not give rise to a volatility risk factor in an equilibrium model with Epstein and

Zin (1989) utility. Second, while consumption growth rates are observable, the conditional

volatility is latent and has to be estimated from the data. Last, aggregate consumption is

measured with error thereby making statistical inference more difficult (Breeden, Gibbons,

and Litzenberger (1989) and Wilcox (1992)).

Our model follows the work of Bansal and Yaron (2004) and Kandel and Stambaugh

(1991) and uses the same building blocks as Lettau, Ludvigson, and Wachter (2008). The

representative agent has recursive Epstein and Zin (1989) preferences and the conditional first

and second moments of consumption growth follow independent two-state Markov chains. An

important implication of recursive preferences is that the agent cares not only about shocks

to current consumption growth but also about changes to the conditional distribution of

future consumption growth. In our model, these changes are driven by persistent states of the
1A notable exception is Bansal, Kiku, and Yaron (2007). Following their model, they estimate the con-

ditional first and second moments of consumption growth as affine functions of financial data. Tedongap
(2007) uses a GARCH process for consumption volatility. Other recent contributions testing the C-CAPM
using realized consumption growth include Campbell (1996), Aı̈t-Sahalia, Parker, and Yogo (2004), Camp-
bell and Vuolteenaho (2004), Bansal, Dittmar, and Lundblad (2005), Lustig and Nieuwerburgh (2005), and
Jagannathan and Wang (2007).

2For instance, see Cecchetti and Mark (1990), Kandel and Stambaugh (1990), Bonomo and Garcia (1994),
Kim and Nelson (1999), or Whitelaw (2000).
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Markov chains for the first and second moments of consumption growth. We further assume

that the state of the economy is unobservable and the agent uses Bayesian updating to form

beliefs about the state, similar to David (1997) and Veronesi (1999). As a result, the agent’s

estimates of the conditional first and second moments of consumption growth are priced.

The model has the following implication for the cross-section of returns. When the elastic-

ity of intertemporal substitution (EIS) is greater than the inverse of the coefficient of relative

risk aversion (RRA), the agent prefers intertemporal risk due to unobservable Markov states

to be resolved sooner rather than later. Intuitively, consider an asset that comoves negatively

with future consumption growth. Its payoff is high (low) when investors learn that future

consumption growth is low (high). Investors will demand a low return from this asset as it

is a welcome insurance against future bad times. Similarly, consider an asset that comoves

highly with future consumption volatility. This asset has high (low) payoffs when investors

learn that future consumption is (not) very volatile. This asset serves as insurance against

uncertain times and thus has a lower required return. Consequently, the agent demands a

positive market price of risk for shocks to expected consumption growth and a negative one for

shocks to the conditional volatility of consumption growth. To provide convincing empirical

evidence, we test these implications in two ways. First, we study the relation between risk

loadings and future returns at the firm level.3 Second, we estimate the market price of risk

directly using portfolios.

Following Hamilton (1989), we estimate a Markov chain for the first and second moments

of consumption growth. Bayesian updating provides beliefs about the states for mean and

volatility. To obtain time-varying risk loadings with respect to innovations in the perceived

conditional first and second moments of consumption growth, we run rolling quarterly time-

series regressions of individual stock returns on consumption growth as well as innovations in

beliefs for mean and volatility. Sorting stocks into portfolios based on these risk loadings, we

find that loadings on innovations in the perceived expected consumption growth do not help

to explain future returns. Loadings on consumption growth volatility, however, significantly
3Ang, Liu, and Schwarz (2008) emphasize the use of firm level data to estimate market prices of risk because

firm level data display more dispersion in betas. As a result, the estimation is more efficient.
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negatively forecast cross-sectional differences in returns. A consumption volatility risk factor

(CVR), which is the return of holding a long position in the value-weighted quintile of stocks

with high volatility risk and a short position in low volatility risk, has an average return of

−5% per year. Importantly, consumption volatility risk quintiles do not display variation in

average book-to-market ratios.

The negative relation between consumption volatility risk loadings and future returns at

the firm level suggests a negative price of consumption volatility risk. In order to provide di-

rect evidence, we perform two stage regressions of excess returns on log consumption growth,

changes in the perceived mean and volatility of consumption and the CVR factor. Impor-

tantly, the coefficients on the innovation in the perceived consumption volatility and CVR are

negative implying that the representative agent has an EIS greater than the inverse of RRA.

A crucial assumption in the long-run risk framework of Bansal and Yaron (2004) is that the

agent prefers intertemporal risk to resolve sooner than later. Our findings strongly support

this assumption.

We also augment the market CAPM and Fama-French 3-factor model with the CVR factor.

In particular, CVR shows up strongly and significant in addition to the market and the three

Fama and French (1993) factors. When the CVR factor is added to specifications that already

contain the value factor HML, average absolute pricing errors decline only marginally. At the

same time, replacing HML with CVR does not result in larger average pricing errors. We thus

conclude that HML and CVR have similar pricing implications. But in contrast to HML, the

volatility risk factor has a clear economic interpretation.

Another implication of our model is the predictability of the aggregate equity premium in

the time-series. In states with low conditional mean or high conditional volatility of consump-

tion growth, the model predicts a high equity premium when the representative agent has an

EIS greater than unity. We show in a predictive regression that innovations to consumption

volatility are a significant and robust predictor of one-quarter ahead equity returns. A one

standard deviation increase of the perceived consumption volatility results in a 1.4% rise of

the quarterly equity premium, similar to the predictive power of the wealth-consumption ratio
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cay of Lettau and Ludvigson (2001a), the best known macroeconomic predictor of the short

horizon equity premium. In our model, changes in consumption volatility enter the pricing

kernel only because they affect the wealth-consumption ratio. Thus, one might expect that

direct measures of the wealth-consumption ratio, such as cay, comprise all relevant informa-

tion about the volatility state. Empirically, this is not the case. Both variables are virtually

uncorrelated and both remain strong and robust predictors in multivariate settings.

This finding contributes to a long standing debate in the literature on the magnitude of the

EIS. Early evidence suggests that the EIS is smaller than one, e.g., Hall (1988) and Campbell

and Mankiw (1989). More recently, Attanasio and Weber (1993), Vissing-Jorgensen (2002)

and Vissing-Jorgensen and Attanasio (2003) find the opposite. The positive relation between

consumption volatility and the equity premium provides evidence for an EIS greater than one.

In the literature, it is common to measure consumption risk by using non-durable plus

service consumption. This assumption is usually justified with a felicity function which is

separable across goods. With Epstein-Zin utility, however, felicity can be separable across

goods, but due to the time-nonseparability of the time-aggregator, other goods still matter

for asset pricing because they enter the pricing kernel via the wealth-consumption ratio. The

wealth-consumption ratio can be a function, for instance, of human capital (e.g. Jagannathan

and Wang (1996), Lettau and Ludvigson (2001b), and Santos and Veronesi (2006)), durable

goods (e.g. Yogo (2006)) or housing consumption (e.g. Piazzesi, Schneider, and Tuzel (2007)).

If the wealth-consumption were observable, it would subsume all these variables.4 The con-

tribution of this paper is to show that the conditional volatility of consumption growth is a

significant determinant of the wealth-consumption ratio by documenting that it is priced in

the cross-section and time-series after controlling for other factors.

Related Literature

Pindyck (1984) and Poterba and Summers (1986) are among the first to show that a decrease

in prices is generally associated with an increase in future volatility, the so-called leverage or
4One of the first papers which tries to estimate the wealth-consumption ratio is Lettau and Ludvigson

(2001a). A more recent contribution is Lustig, Van Nieuwerburgh, and Verdelhan (2008).
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volatility feedback effect. Similarly, French, Schwert, and Stambaugh (1987), Campbell and

Hentschel (1992) and Glosten, Jagannathan, and Runkle (1993) look at the relation between

market returns and market volatility in the time-series. More recently, Ang, Hodrick, Xing,

and Zhang (2006) use a nonparametric measure of market volatility, namely the option implied

volatility index (VIX), to show that innovations in aggregate market volatility carry a negative

price of risk in the cross-section. Adrian and Rosenberg (2008) use a GARCH inspired model

to decompose market volatility into a short- and long-run component and show how each of

the two components affects the cross-section of asset prices.

All of the above papers use some measure of stock market volatility. Motivated by the

long-run risk model of Bansal and Yaron (2004), several important papers study the relation

between consumption volatility and prices. Notably, Bansal, Khatchatrian, and Yaron (2005)

find that the conditional consumption volatility predicts aggregate valuation ratios. Bansal,

Kiku, and Yaron (2007) estimate the long-run risk model using the cross-section of returns.

Following their theory, they estimate consumption volatility as an affine function of the ob-

servable aggregate price-dividend ratio and short-term interest rate. Their Table IV indicates

that consumption volatility plays a minor role in explaining the size and value spread rela-

tive to shocks to expected consumption growth. In contrast, we filter consumption volatility

directly from consumption data without the use of financial data. We find that consumption

volatility is a dominant contributor to risk premia in the cross-section.5

Lettau, Ludvigson, and Wachter (2008) estimate a Markov model with learning to show

that the decline in consumption volatility–also referred to as the “Great Moderation”–can

explain the high observed stock market returns in the 1990s and the following decline in equity

risk premia. We extend their work by studying the cross-section and time-series of returns.

Closely related is also Calvet and Fisher (2007) who study the asset pricing implications of

multi-fractal Markov switching in a recursive preference model at the aggregate level.

Parker and Julliard (2005) empirically measure a version of long-run risk as the covariance

between one-period asset returns and long-horizon movements in the pricing kernel. Their
5Jacobs and Wang (2004) and Balduzzi and Yao (2007) use survey data to estimate the variability of

idiosyncratic consumption across households. They find that exposure to idiosyncratic consumption risk bears
a negative risk premium for the 25 Fama-French portfolios.
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ultimate consumption risk measure performs favorably in explaining the return differences of

the 25 Fama-French portfolios. Similarly, Tedongap (2007) estimates conditional consumption

volatility as a GARCH process and finds that value stocks covary more negatively with changes

in consumption volatility over long horizons. In contrast to Tedongap (2007), we extract

innovations to beliefs about consumption volatility, whereas a GARCH model does not allow

that. Tedongap (2007) obtains significant results only at long horizons since GARCH models

account for innovations to volatility only through realized data.

Drechsler and Yaron (2008) extend the long-run risk model to include jumps in consump-

tion growth and volatility. Their model generates a variance premium and return predictabil-

ity which are consistent with the data. Bansal and Shaliastovich (2008) find evidence that

measures of investors’ uncertainty about their estimate of future growth contain information

about large moves in returns at frequencies of about 18 months. They explain this regularity

with a recursive-utility based model in which investors learn about latent expected consump-

tion growth from signals with time-varying precision. Bollerslev, Tauchen, and Zhou (2008)

study the asset pricing implication when the variance of stochastic volatility is stochastic.6

The remainder of the paper is organized as follows: In Section I, we derive the asset

pricing implication of a recursive preference model where the agent does not observe the state

of the economy. This section motivates our empirical analysis of Sections II-IV. In Section

II, we test whether loadings on consumption growth and its conditional moments forecast

returns in the cross-section. We form portfolios and run Fama-MacBeth regressions based on

consumption volatility loadings. In Section III, we test whether consumption growth and its

conditional moments as well as the CVR factor are priced risk factors. Section IV contains

time-series predictability tests and Section V concludes. The appendix contains derivations

and additional results.
6Other papers building on the long-run risk framework of Bansal and Yaron (2004) include Bhamra, Kuehn,

and Strebulaev (2007), Hansen, Heaton, and Li (2008) and Bansal, Dittmar, and Kiku (2009).
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I. Model

In this section, we derive the asset pricing implications of a model where the representa-

tive agent has recursive preferences and the state of the economy is unobservable. In our

model, future consumption growth is influenced by time-variation in its conditional mean and

volatility and the agent’s beliefs about the aggregate state enter the pricing kernel through

the wealth-consumption ratio.

A. Consumption

We assume that the conditional first and second moments of consumption growth follow a

Markov chain. Specifically, log consumption growth, ∆ct+1, follows

∆ct+1 = µt + σtεt+1 εt+1 ∼ N (0, 1) (1)

where µt denotes its conditional expectation and σt its conditional standard deviation. For

tractability in the empirical estimation, we assume two states for the mean and two for the

volatility which are denoted by µt ∈ {µl, µh} and σt ∈ {σl, σh}. The conditional first and

second moments of consumption growth follow Markov chains with transition matrices Pµ

and P σ, respectively, given by

Pµ =

 pµll 1− pµll
1− pµhh pµhh

 P σ =

 pσll 1− pσll
1− pσhh pσhh

 (2)

To keep the model parsimonious, we impose that mean and volatility states switch indepen-

dently. Thus, the joint transition matrix is the product of the marginal transition probabilities

for mean and volatility states and the 16-element matrix can be fully characterized by 4 pa-

rameters. Importantly, the assumption of independent switching probabilities does not imply

that the beliefs about mean and volatility states are independent. Since we assume two drift

and two volatility states, there are four states in total, {(µl, σl), (µl, σh), (µh, σl), (µh, σh)},

denoted by st ∈ {1, ..., 4}. Our specification follows Kandel and Stambaugh (1991), Kim and

Nelson (1999), and Lettau, Ludvigson, and Wachter (2008).

In contrast to Bansal and Yaron (2004) and Kandel and Stambaugh (1991), we assume

that the representative agent does not observe the state of the economy. Instead, she must
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infer it from observable consumption data as in Lettau, Ludvigson, and Wachter (2008). This

assumption ensures that the empirical exercise is in line with the model. The inference at

date t about the underlying state is captured by the posterior probability of being in each

state based on the available data Yt. We denote by ξt+1|t the date-t prior belief vector about

tomorrow’s states

ξt+1|t = P ′
ξt|t−1 � ηt

1′(ξt|t−1 � ηt)
(3)

where

ηt =



f(∆ct|µt−1 = µl, σt−1 = σl, Yt−1)

f(∆ct|µt−1 = µl, σt−1 = σh, Yt−1)

f(∆ct|µt−1 = µh, σt−1 = σl, Yt−1)

f(∆ct|µt−1 = µh, σt−1 = σh, Yt−1)


is a vector of Gaussian likelihood functions and P = Pµ ⊗ P σ denotes the joint transition

matrix.

B. Recursive Utility

The representative agent maximizes recursive utility over consumption following Kreps and

Porteus (1978), Epstein and Zin (1989), and Weil (1989)

Ut =
{

(1− β)Cρt + β
(
Et[U1−γ

t+1 ]
)ρ/(1−γ)}1/ρ

(4)

where Ct denotes consumption, β ∈ (0, 1) the rate of time preference, ρ = 1− 1/ψ and ψ the

elasticity of intertemporal substitution (EIS), and γ relative risk aversion (RRA). Implicit in

the utility function (4) is a constant elasticity of substitution time and risk aggregator.

Epstein-Zin preferences provide a separation between the EIS and RRA. These two con-

cepts are inversely related when the agent has power utility. Intuitively, the EIS measures the

agent’s willingness to postpone consumption over time, a notion well-defined under certainty.

Relative risk aversion measures the agent’s aversion to atemporal risk across states.

We know from Epstein and Zin (1989) that the Euler equation for an arbitrary return

Ri,t+1 can be stated as

Et

[
βθ
(
Ct+1

Ct

)−γ (PCt+1 + 1
PCt

)−(1−θ)
Ri,t+1

]
= 1 (5)
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where θ = 1−γ
1−1/ψ and PCt = Pt/Ct denotes the wealth-consumption ratio. For the empirical

exercise, it is useful to study the log-linearized pricing kernel. Intuitively, the first (stochastic)

term in the pricing kernel is consumption growth, Ct+1/Ct, and the second one the growth

rate of the wealth-consumption ratio, PCt+1/PCt. Hence, a log-linear approximation of the

pricing kernel implicit in (5) is given by

mt+1 ≈ k − γ∆ct+1 − (1− θ)∆pct+1 (6)

where small letters are logs of capital letters and ∆ denotes first differences.7 The log pricing

kernel (6) implies that excess returns are determined as covariance between returns and log

consumption growth as well as the covariance between returns and changes of the log wealth-

consumption ratio

Et[Rei,t+1] ≈ γCovt(Ri,t+1,∆ct+1) + (1− θ)Covt(Ri,t+1,∆pct+1) (7)

In an endowment model which is solely driven by i.i.d. shocks, the wealth-consumption

ratio is constant. In our model, however, the first and second moments of consumption growth

follow a Markov chain. The unobservability of the Markov state implies that the agent’s prior

probabilities characterize the state of the economy. Consequently, the wealth-consumption

ratio is a function of the agent’s beliefs, i.e., PCt = PC(ξt+1|t). In order to study how the

wealth-consumption ratio changes with beliefs about the state, we further define the prior

belief that the mean state is high tomorrow by

bµ,t = P (µt+1 = µh|Ft) = ξt+1|t(3) + ξt+1|t(4) (8)

and the prior belief that the volatility state is high tomorrow by

bσ,t = P (σt+1 = σh|Ft) = ξt+1|t(2) + ξt+1|t(4) (9)

7More precisely, a log-linear approximation is given by

mt+1 ≈ (θ lnβ − (1− θ)k0)− γ∆ct+1 − (1− θ)(pct+1 − k1pct)

where pct = ln(Pt/Ct) denotes the log wealth-consumption ratio and k0, k1 are constants. The value of k1 is
given by k1 = PC/(PC−1) > 1, where PC is the mean wealth-consumption ratio. Lustig, Van Nieuwerburgh,
and Verdelhan (2008) estimate the unconditional quarterly wealth-consumption ratio to be close to 351 implying
that k1 = 1.003. Consequently, the log pricing kernel can be closely approximated by the log growth rate of
the wealth-consumption ratio.
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conditional on the current information set Ft. The univariate effects of changing beliefs about

the volatility (mean) state while holding the smean (volatility) state constant can locally be

approximated. We show in the appendix that, given a constant volatility, changes of the log

wealth-consumption ratio are

∆pct+1 ≈ ∆bµ,t+1

(
1
θ

PCθµ=µh,σ − PC
θ
µ=µl,σ

bµ,tPCθµ=µh,σ + (1− bµ,t)PCθµ=µl,σ

)
(10)

where PCµ,σ denotes the wealth-consumption ratio when expected consumption growth is µ

and the consumption volatility is σ. Analogously, given a constant mean, changes of the log

wealth-consumption ratio are

∆pct+1 ≈ ∆bσ,t+1

(
1
θ

PCθµ,σ=σh
− PCθµ,σ=σl

bσ,tPCθµ,σ=σh
+ (1− bσ,t)PCθµ,σ=σl

)
(11)

Equations (10) and (11) illustrate that changes in the log wealth-consumption ratio are locally

proportional to changes in beliefs. From an empirical asset pricing perspective, this finding

implies that changes in beliefs are priced in the time-series and cross-section since they affect

the wealth-consumption ratio, according to Equation (7).

C. Estimation

To estimate the model, we obtain data on quarterly per capita real consumption expenditures

from the Bureau of Economic Analysis as the sum of nondurables and services. The data

is seasonally adjusted using the X-12-ARIMA filter. Ferson and Harvey (1992) analyze the

impact of using filtered consumption data on asset pricing tests. In the appendix, we provide

evidence that Markov states in the raw data survive the filter and can be identified from

seasonally adjusted data.8 In accordance with the observation that consumption behavior in

the United States in the years following World War II is systematically different from later

years, we restrict our time-series from the first quarter of 1955 until the fourth quarter of

2008. The choice of 1955 provides sufficient consumption observations before the beginning

of the portfolio analysis in 1964.

The resulting parameter estimates of the Markov chain are reported in Table I, Panels

A and B. Expected consumption growth is always positive and about twice as large in the
8The BEA stopped providing seasonally unadjusted quarterly data in 2005.
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high state relative to the low state (µl = 0.37%, µh = 0.78% quarterly). State conditional

consumption volatilities are σl = 0.21% and σh = 0.48%. The probability of remaining in a

given regime for the mean is 0.93 in the low state and 0.89 in the high state. The volatility

regimes are somewhat more persistent, with probabilities of 0.95 and 0.96, respectively. Our

estimates differ from the ones presented by Lettau, Ludvigson, and Wachter (2008), who

estimate volatility in both states to be more persistent (0.991 and 0.994). While there are

small differences in the consumption measure, including the year 2008 in our analysis greatly

reduces the persistence of the volatility regimes.

We assume independent switching in mean and volatility states. This assumption greatly

reduces the number of parameters to be estimated and thus improves estimation precision.

This constraint, however, is not a significant restriction of consumption data. We also estimate

a model that allows the Markov chains for mean and volatility of consumption growth to be

dependent. This unrestricted model has 8 additional parameters in the joint transition matrix.

Yet the likelihood improves only marginally relative to the restricted model with independent

Markov chains. A likelihood ratio test cannot be rejected at any significance level.9

Figure 1 shows the filtered beliefs for the regimes. Panel A depicts the belief dynamics

for mean consumption growth bµ,t and Panel B for the standard deviation bσ,t. These graphs

visually confirm that the mean regimes are less persistent than the volatility states. In par-

ticular, the parameter estimates for the Markov chain imply that mean states last for 3.1

years whereas volatility states last for 5.7 years on average. Further, a decline in consump-

tion volatility from the 1990s onwards, as pointed out by Kim and Nelson (1999), is easily

observable. The 2008 recession demonstrates that this shift was not permanent.

D. Implications

Based on the parameter estimates for consumption data in Table I, we solve the model nu-

merically to study its properties.10 In the following, we are interested in how the perception
9The likelihood ratio test statistic is 2.15 which is χ2-distributed with 8 degrees of freedom. The corre-

sponding critical value at 10% is 13.36.
10More details on the solution procedure are contained in the appendix. There we also report model implied

moments for stock returns and risk-free rate.
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about the conditional moments of consumption growth affect the wealth-consumption ratio.

To this end, we define the perceived first and second moments of consumption growth as belief

weighted averages

µ̂t = bµ,tµh + (1− bµ,t)µl σ̂t = bσ,tσh + (1− bσ,t)σl (12)

and the corresponding changes in the perceived moments as

∆µ̂t = µ̂t − µ̂t−1 ∆σ̂t = σ̂t − σ̂t−1 (13)

In Figures 2 and 3, we plot the wealth-consumption ratio as a function of the perceived

conditional first µ̂t (left graph) and second σ̂t (right graph) moments of consumption growth

when the agent has a high EIS of 1.5 (Figure 2) and a low EIS of 0.5 (Figure 3). We

further calibrate the model to a quarterly rate of time preference, β, of 0.995 and relative risk

aversion, γ, of 30. Risk aversion of 30 seems unrealistically high. This section, however, is

meant to yield qualitative guidance and not quantitative results. Figure 2 illustrates that the

wealth-consumption ratio is increasing in the perceived mean and decreasing in the perceived

volatility of consumption growth when the EIS equals 1.5. The opposite is true when the EIS

equals 0.5 as in Figure 3.

To gain a better understanding of the economics, it is convenient to recall the Gordon

growth model. Under the assumption that discount and growth rates are constant, the Gordon

growth model states that the wealth-consumption ratio is negatively related to the risk-free

rate rf and risk premium rE and positively to the growth rate g, i.e., PC = 1/(rf+rE−g). The

sign change in the slope of the wealth-consumption ratio with respect to expected consumption

growth is driven by two opposing effects. On the one hand, a higher perception about the

growth rate increases the wealth-consumption ratio as in the Gordon growth model. On

the other hand, in equilibrium, an increase in expected consumption growth also raises the

risk-free rate since the riskless asset becomes less attractive relative to the risky asset. This

second effect lowers the wealth-consumption ratio. When the EIS is greater than unity, the

first effect (intertemporal substitution effect) dominates the second effect (wealth effect). As

a result, the demand for the risky asset and thus the wealth-consumption ratio rises with the
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perceived expected growth rate of consumption.

Similarly, the sign change in the slope of the wealth-consumption ratio with respect to

expected consumption growth volatility (Figure 2 versus 3) is also driven by two opposing

effects. On the one hand, a higher perceived conditional consumption volatility increases the

risk premium which lowers the wealth-consumption ratio as in the Gordon growth model. On

the other hand, in equilibrium, an increase in expected consumption growth volatility also

reduces the risk-free rate since the riskless asset becomes more attractive relative to the risky

asset. This effect increases the wealth-consumption ratio. If γ > 1, the first effect dominates

the second one when the EIS is greater than one.

In order to test the model in the cross-section of returns, it is convenient to restate the

fundamental asset pricing equation (7) in terms of betas11

Et[Rei,t+1] ≈ βic,tλc,t + βiµ,tλµ,t + βiσ,tλσ,t (14)

where βic,t, β
i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect to consumption

growth, and changes in the conditional first and second moments of consumption growth and

λc,t, λµ,t, λσ,t are the respective market prices of risk given by

λc,t = γVart(∆ct+1) λµ,t = A(1− θ)Vart(∆µ̂t+1) λσ,t = B(1− θ)Vart(∆σ̂t+1) (15)

where A and B are the sensitivities of the wealth-consumption ratio with respect to changes

in the conditional first and second moments of consumption growth. The main cross-sectional

implications of the model are the following. Assuming that the EIS is greater than the

inverse of relative risk aversion (ψ > 1/γ), the agent requires lower expected excess returns

for stocks which load less (low betas) on expected consumption growth and more (high betas)

on consumption growth volatility.

Even though the sign switch of the sensitivity coefficients A and B occurs at unity, as

explained above, the market prices of the conditional growth rate and volatility of consumption
11To derive Equation (14), we have to assume that the log wealth-consumption is approximately affine in

the perceived first and second moments of consumption growth implying that ∆pct ≈ A∆µ̂t + B∆σ̂t. In the
appendix we show that this approximation works well. In particular, we run time-series regressions of the
log wealth-consumption ratio on the perceived conditional mean and volatility of consumption growth using
simulated data. Even with risk aversion as high as 30, the regression R2 exceeds 99%.
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growth switch sign when the EIS equals the inverse of the coefficient of relative risk aversion

(ψ = 1/γ). When the EIS is greater than the inverse of relative risk aversion (ψ > 1/γ), the

agent prefers intertemporal risk due to the unobservable Markov states to be resolved sooner

rather than later. Consequently, she dislikes negative shocks to expected consumption growth

and requires a positive market price of risk. At the same time, she likes negative shocks to

the conditional volatility of consumption growth and requires a negative market price of risk.

Intuitively, assets, which comove negatively with future consumption growth, have high

payoffs when investors learn that future consumption growth is low. These assets thus provide

insurance against future bad times. Similarly, assets, which comove highly with future con-

sumption volatility, have high payoffs when investors learn that future consumption is very

volatile. These assets serve as insurance against uncertain times. Consequently, investors

require higher compensation for holding stocks which load strongly (high beta) on expected

consumption growth and less compensation for stocks which load strongly (high beta) on

consumption growth volatility.

These implications do not necessarily follow from an equilibrium model where the condi-

tional consumption volatility follows a GARCH process. In a GARCH model, the conditional

volatility is a function of lagged volatility and lagged squared residuals of the consumption

process. Thus, a GARCH process is not driven by separate innovations relative to the con-

sumption process. Consequently, Restoy (1991) and Restoy and Weil (2004) have shown that

a GARCH consumption model does not give rise to a priced risk factor in a log-linearized ap-

proximation to an equilibrium model.12 Specifically, Equation (4.5) in Restoy and Weil (2004)

states that the covariance of any stock with the wealth-consumption ratio is proportional to

its covariance with consumption growth. Volatility, which affects the wealth-consumption

ratio, therefore can have pricing implications as it determines the loading on the consump-

tion growth factor, but it does not give rise to a second priced risk factor. Restoy and Weil

continue to say on p. 44: “This is an important result because it embodies the fundamental

insight that, for our AR(1)-GARCH(1,1) process, returns are only able to predict future con-
12In empirical tests of equilibrium models, GARCH-inspired processes have been used by Adrian and Rosen-

berg (2008) and Tedongap (2007) to motivate additional factors in the cross-section.
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ditional means of consumption growth but carry no information about the future conditional

variances.”

To find evidence regarding the magnitude of the representative agent’s EIS, we perform

three empirical exercises. First, we estimate time-varying risk loadings on the conditional

first and second moments of consumption growth at the firm level and form portfolios based

on these loadings. If the agent is not indifferent to intertemporal risk, we expect to find

systematic return differences across portfolios. Second, we estimate the market prices directly

using portfolios. Both exercises are closely related and we expect findings to be consistent.

Third, we run time-series regressions of future excess returns on the perceived first and second

moments of consumption growth. The last exercise provides a test whether the EIS is smaller

or greater than unity because this relation depends only on the sensitivity of the wealth-

consumption ratio with respect to consumption growth moments.

II. Cross-Sectional Return Predictability

The goal of this section is to demonstrate that loadings on the estimated conditional con-

sumption volatility forecast returns. To this end, we first run quarterly time-series regressions

to obtain loadings on risk factors. Next, we test using both Fama-MacBeth regressions and

portfolio sorts whether these risk loadings forecast returns. Our main finding is that future

returns are strongly and robustly predicted by exposure to innovations in consumption volatil-

ity, while exposure to consumption growth and changes in expected consumption growth do

not help to predict the cross-section of asset prices.

A. Data

Our sample consists of all common stocks (shrcd = 10 or 11) on CRSP that are traded on the

NYSE or AMEX (exchcd = 1 or 2). While the results are generally robust to the inclusion of

NASDAQ stocks, this restriction mitigates concerns that only a small fraction of total market

capitalization has a large impact on the portfolio analysis. To obtain valid risk measurements

for a given quarter, the asset is required to have at least 60 months of prior data and at

least 16 out of 20 valid quarterly returns. Since we use size and book-to-market ratio as
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characteristics, we require market capitalization to be available in December that occurs 7

to 18 months prior to the test month as well as book value of equity from Compustat in

the corresponding year. The choice of the long delay is motivated by the portfolio formation

strategies in Fama and French (1992), who want to ensure that the variables are publicly

available when they are used in the study. Due to limited availability of book values in earlier

years, we begin the empirical exercise in January 1964. The first time-series regression to

estimate risk loadings thus covers the time span from 1959 to 1963. We end our analysis in

December 2008.

B. Risk Loadings

Our first set of empirical results is based on time-series regressions of individual securities onto

log consumption growth and the perceived conditional mean and volatility of consumption

growth. In particular, for each security, we estimate factor loadings in each quarter t∗ using

the previous 20 quarterly observations from

Rit −R
f
t = αit∗ + βic,t∗∆ct + βiµ,t∗∆µ̂t + βiσ,t∗∆σ̂t + εit (16)

where Rft denotes the risk-free rate and ∆ct consumption growth for t ∈ {t∗−19, t∗}. Further,

∆µ̂t and ∆σ̂t are changes in the perceived conditional moments of consumption growth as

defined in Equation (13).

The estimated parameters from Equation (16) allow us to evaluate the cross-sectional

predictive power of these loadings in two different ways. First, we form portfolios based on

the estimated risk exposures and analyze their properties in the time-series. Second, we use

cross-sectional regressions as in Fama and MacBeth (1973) to investigate whether the factor

loadings help to predict cross-sectional variation in returns.

C. Portfolio Sorts

We now investigate the predictive power of the estimated loadings from model (16) by forming

portfolios. This approach has an important advantage relative to Fama-McBeth regressions

where a potential error-in-variable problem leads to underestimated standard errors. In con-

trast, statistical inference based on portfolios is conservative. When variables are measured
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with noise, the portfolio assignment will be less accurate as some stocks are sorted into the

wrong group. Under the assumption of cross-sectional predictive power, this leads to smaller

return differences across portfolios. Since the statistical inference is based solely on portfolio

returns, the measurement error ultimately leads to a decrease in statistical significance.

At the end of each quarter, we sort all stocks in our sample into portfolios based on their

estimated risk loadings from the time-series regression (16). Table II reports the average

returns of equally-weighted (EW) and value-weighted (VW) quintiles as well as a long-short

strategy that each month invests $1 into quintile 5 (high risk) and sells $1 of quintile 1 (low

risk).

In Panel A, portfolios are formed based on loadings with respect to consumption growth,

βic,t. Consistent with prior research (e.g., Mankiw and Shapiro (1986) and Lettau and Ludvig-

son (2001b)), an asset’s contemporaneous short horizon loading on consumption growth does

not help to generate a return differential across portfolio for either weighting scheme. A similar

result follows by forming portfolios based on changes in beliefs about expected consumption

growth, βiµ,t (Panel B). In contrast, exposure to consumption volatility risk, βiσ,t, predicts

future returns strongly and negatively (Panel C). Stocks that comove highly with changes in

consumption volatility underperform their peers in the future. An equally-weighted strategy

results in a return of the long-short portfolio of −0.19% monthly. The value weighted return

is even larger (in absolute value) with −0.43% per month or in excess of −5% annually. In

Panel D, we repeat the analysis but we control for market returns in the time-series estima-

tion of risk loadings. By comparing Panels C and D, we observe that all point estimates are

nearly identical but the t-statistics on the zero cost portfolio are now larger. By including the

market return, consumption volatility risk loadings have a purely cross-sectional interpreta-

tion since the market controls for time-series variation not captured by consumption growth.

Consequently, standard errors are smaller. We focus on this specification in the remaining

cross-sectional analysis.

What do these findings mean? The novel implications of our model are that beliefs about

mean and volatility states of consumption growth are priced sources of risk. As a result,
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exposure to these sources should be associated with a spread in future returns. The sign of

the risk premium associated with each of these two factors depends on preference parameters.

In the case where the EIS is greater than the inverse of RRA, the model predicts that returns

are positively related to βµ,t and negatively to βσ,t. We do not find convincing evidence that

exposure to fluctuations in expected consumption growth predicts returns but exposure to

fluctuations in consumption volatility does so negatively. This finding is consistent with the

model only if the agent dislikes intertemporal risk and the EIS is greater than the inverse of

RRA.

D. Robustness

Cross-sectional differences in returns might not be surprising if consumption volatility betas

covary with other variables known to predict returns. Crucially, Table III shows that this

is not the case for the firm characteristics size and book-to-market. In Panel A, we again

report average returns for each consumption volatility exposure quintile and its average beta.

Panel B reports firm characteristics for each portfolio. Since market capitalization is non-

stationary, and the value characteristic varies dramatically over time, we compute size- and

value deciles for each stock at each month and take the average over these deciles within each

portfolio. The table reports time-series means of portfolio characteristics. For market equity,

we observe that the two extreme quintiles are composed of somewhat smaller than average

stocks. This effect often shows up when ranking stocks by a covariance measure. Returns of

small stocks are on average more volatile and risk estimates are therefore more likely to be

very large or very small. However, there is no difference in size rank between quintiles 1 and

5. Most importantly, there is no variation in the book-to-market ratio across portfolios. Thus,

consumption risk portfolios do not load on firm characteristics which are known to predict

future returns.

A number of so-called anomalies are confined to small subsets of stocks, often just to small

companies or illiquid stocks (e.g. Fama and French (2008), Avramov, Chordia, Jostova, and

Philipov (2007)). In Table IV, stocks are independently sorted into three portfolios based on

βiσ,t, and into two portfolios based on market capitalization (Panel A) or book-to-market ratio
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(Panel B). The number of portfolios for each variable follows Fama and French (1993) and

trades off the desire to obtain sufficient dispersion along each dimension while keeping the

number of stocks in each portfolio large enough to minimize idiosyncratic risk. The bivariate

sort in Panel A shows that consumption volatility risk is consistently present and strong

for both equal and value-weighted strategies with return differences ranging from −0.09%

to −0.23% monthly. The effect is stronger for big than for small companies since returns

of smaller stocks have a larger idiosyncratic component and, thus, the risk estimates from

the first stage regression are less precise. With these findings, there is no reason to believe

that the predictive power of consumption volatility risk is associated with possible mispricing

or slow information diffusion in small stocks. Similarly, Panel B confirms that consumption

volatility risk is also present within book-to-market groups.

As an alternative to portfolio sorts, we also perform Fama-MacBeth regressions by cross-

sectionally regressing monthly returns of each asset onto its latest available risk loadings as

well as size and value characteristics. The explanatory variables are normalized each quarter

so they are centered around zero with unit variance. Each set of three monthly regressions in

one quarter will share the same predictor variables. For example, the returns in each of the

months April, May, and June are regressed onto the risk loadings estimated from the window

ending in the first quarter of the same year. We are interested whether the factor loadings

have any predictive power for the cross-sectional variation of returns.

The results of the Fama-MacBeth regressions are presented in Table V. Model speci-

fications I-III present univariate effects of each risk loading. Confirming previous findings,

the average coefficients on consumption growth betas, βic,t, as well as expected consumption

growth betas, βiµ,t, are small and insignificant. Exposure to consumption volatility risk, how-

ever, as measured by βiσ,t, shows up strongly negative and significant. Specification IV is the

full model. Now, both the loading on consumption growth and consumption volatility risk

are significant. In regression V, we add two characteristics known to predict stock returns,

namely, the market capitalization (MEit) and the ratio of book value of equity to market

value (BM i
t ), to confirm that the predictive power of consumption volatility is not already

19



captured by these predictors. The absolute value of the point estimate is slightly reduced by

the addition of the two characteristics, but it remains significant.

III. Consumption Volatility Risk Pricing

Building on the findings of the previous section, we now investigate the pricing implications of

beliefs about consumption moments cross-sectionally. We find that changes in beliefs about

consumption volatility carry a negative price of risk, while changes in beliefs about the mean

state do not contribute to explaining the cross-section of returns. Alternatively, we also form

a long-short portfolio based on consumption volatility risk (CVR) and demonstrate that it

shows up strongly and significantly as a priced factor in cross-sectional regressions. While

the CVR portfolio only modestly correlates with the value factor HML, both factors are

substitutes in the pricing relation. This evidence provides an economic interpretation for the

risk associated with the HML factor.

A. Factor Pricing with Consumption Data

Equation (14) states that, in a log-linear approximation, expected excess returns depend on

consumption growth and changes of the perceived conditional first and second moments of

consumption growth. We evaluate the performance of our model in two stages. First, for each

test asset, we obtain risk loadings from the time-series regression

Rit −R
f
t = αi + βic∆ct + βiµ∆µ̂t + βiσ∆σ̂t + εit (17)

In the second stage, we estimate the prices of risk by a cross-sectional regression of returns

onto the loadings from the first stage.

Results from the second stage regression are summarized in Table VI. For each factor,

the table reports point estimates for the prices of risk and associated t-statistics, which are

adjusted for estimation error in the first stage as proposed by Shanken (1992) and are robust

to heteroscedasticity and autocorrelation as in Newey and West (1987) with 4 quarterly lags.

In addition, the following regression statistics are shown: The second stage R2, mean abso-

lute pricing error (MAPE) and the model J-test (χ2 statistic) with its associated p-value (in
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percent). Return observations are at a quarterly frequency and the factors used are log con-

sumption growth (∆ct), changes in beliefs about the conditional mean of consumption growth

(∆µ̂t), as well as changes in beliefs about consumption growth volatility (∆σ̂t). A fourth

factor, which is the return of a long-short portfolio that buys assets with high consumption

volatility risk and sells assets with low consumption volatility risk, is also considered and

denoted by CVR.

As test assets, we use the 25 Fama-French portfolios in Panel A which have been shown

to challenge the single factor CAPM. Lewellen, Nagel, and Shanken (2008) criticize the use of

only those 25 portfolios as test assets since they exhibit a strong factor structure. Following

their suggestions, we also expand the set of assets. In Panel B, we add the 5 value-weighted

consumption volatility risk portfolios (Table II, Panel D) as test assets. To broaden the scope

beyond equity pricing, we also consider the 6 CRSP bond return portfolios with maturities of

1, 2, 3, 4, 5, and 10 years in addition to the 5 volatility risk portfolios in Panel C.

Regression I in each panel shows results for the standard consumption CAPM. Confirming

prior research, the market price of consumption risk in Panels A and B is insignificant and

low R2s indicate that the C-CAPM performs poorly in pricing the set of test assets. When

bond returns are included as test assets (Panel C), the C-CAPM performs better because

there is a large spread in returns and betas between asset classes. Regression II in each panel

reports the full three factor model (17). Similar to our previous findings, the market price of

expected consumption growth, ∆µ̂t, is insignificant. In contrast, consumption volatility risk,

∆σ̂t, is a priced factor in the cross-section independent of the test assets. Importantly, the

price of volatility risk is negative which is consistent with our portfolio sort results.

Alternatively, we form a consumption volatility risk (CVR) portfolio as a proxy for ∆σ̂t to

reduce measurement error in consumption volatility.13 The CVR factor is a zero investment

strategy that is long in the value-weighted quintile with the highest exposure and short in the

value-weighted quintile with the lowest exposure to innovations in beliefs about consumption

volatility as measured by βiσ,t in Table II, Panel D. We do not form a factor based on loadings
13While researchers often treat ∆ct as observable, the consumption time-series actually is measured with

significant noise (Breeden, Gibbons, and Litzenberger (1989) and Wilcox (1992)). Moreover, both ∆µ̂t and
∆σ̂t are estimates and themselves depend on the imposed model for consumption growth dynamics.
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on expected consumption growth, ∆µ̂t, since the spread between the high and low quintile is

on average close to zero. Consequently, theory predicts that its market price of risk should

be zero too.

Regression III in each panel of Table VI shows a significantly negative price of risk for

the CVR factor, while beliefs about the mean consumption growth continue to be insignifi-

cant. Replacing the estimated consumption volatility with a traded portfolio results in drastic

improvements in second stage R2.

The predictions of our theory in Section I depend on the preference parameters of the

representative agent. While prior research often finds a negative price of risk for market

volatility (Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008)), only a

general equilibrium consumption-based model allows us to draw conclusions about preference

parameters. The estimated prices of risk for both ∆σ̂t and its mimicking CVR portfolio

are significantly negative, thus suggesting an EIS greater than the inverse of RRA for the

representative agent.

Figure 4 displays average second stage pricing errors of quarterly excess returns of the 25

Fama-French portfolios (black dots) and 5 volatility risk portfolios (red stars), as in Table

VI, Panel B. Each graph plots average quarterly excess returns against the model predicted

excess returns for a given set of explanatory variables. If the model correctly prices assets

and there are no errors induced from estimation or small sample size, all asset returns should

line up exactly on the diagonal line.

The first graph depicts the consumption CAPM (Regression I). Visually, this graph con-

firms that the consumption CAPM does not perform well in pricing the 30 test portfolios.

While the portfolios vary drastically in their average realized returns, the model predicted re-

turns are all very close together, resulting in a narrow cloud. In the second graph, we present

the full model (Regression II) and in the third graph, we substitute ∆σ̂t by its mimicking

factor CVR. Both graphs confirm that in the full specifications pricing errors are small and

loadings on risk factors successfully explain average excess returns.
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B. Factor Pricing with Portfolio Returns

To relate the pricing implications of consumption volatility risk to the existing literature,

we now study market based rather than consumption based models. Even though CVR is

independent of the book-to-market characteristic and comoves only modestly with HML, we

find that substituting HML with CVR in the Fama-French three factor model results in similar

pricing and leaves pricing errors unaffected.

Summary statistics for the CVR portfolio are given in Table VII. The CVR portfolio has a

mean return of −0.44% and a standard deviation of 3.40% per month. Its standard deviation

is lower than the market volatility, but comparable to the ones of the Fama-French factors.

The monthly Sharpe ratio (in absolute value) of 0.13 is larger in magnitude than the Sharpe

ratio of size factor SMB (0.08) and close to the Sharpe ratio of value factor HML (0.15). The

correlation matrix of the pricing factors (Panel B) shows that the CVR portfolio returns are

uncorrelated with the market. The correlations with the SMB and HML factors are moderate

at 17% and −26%, respectively, even though the CVR portfolio is neutral with respect to size

and book-to-market characteristics (see Panel B of Table III). To put these correlations in

perspective, we note that all the pairwise correlations between the Fama-French factors are

larger. Parameter estimates from a time-series regression of the CVR factor onto the other

factors are reported in Panel C. The CAPM (regression II) does not explain the returns of the

CVR portfolio. In regression III, the Fama-French factors attenuate the estimated intercept

α̂ towards zero, but it remains large and significant. This reduction is solely driven by HML

and both the market and SMB have insignificant coefficients. The three factors only explain

about 8% of the variation in the CVR factor.

Table VIII reports factor loadings from regressions of excess returns on the market excess

return (REM,t) and the CVR factor

Rit −R
f
t = αi + βiMR

E
M,t + βiCV RCV Rt + εit. (18)

Panel A reports estimated coefficients for the five value-weighted book-to-market portfolios,

and Panel B for our five volatility risk sorted portfolios. We observe that the loadings of the

value portfolios on the volatility risk factor decrease from growth to value portfolios. A low
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risk exposure is consistent with high expected returns for value stocks since the price of CVR

risk is negative. Loadings on the CVR factor therefore suggest a risk based explanation of

the value anomaly.

For the volatility risk portfolios, the loading on the CVR factor increases monotonically

from −0.56 to 0.44. This finding can be interpreted as evidence that volatility exposure is a

systematic source of risk because the portfolios move together. Cochrane (2001) points out

that comovement would not be expected if the return differentials are explained by charac-

teristics.

To relate the pricing implications of CVR to existing factors, Table IX shows estimated

prices of risks for the market excess return (MKT), size (SMB), value (HML), and consumption

volatility (CVR) risk factors, and associated t-statistics, which are adjusted for estimation

error in the first stage as proposed by Shanken (1992) and are robust to heteroscedasticity

and autocorrelation as in Newey and West (1987) with 12 monthly lags. We also report second

stage R2, mean absolute pricing error (MAPE) and the model J-test (χ2 statistic) with its

associated p-value (in percent). The test assets considered are the 25 Fama-French portfolios

augmented with our five consumption volatility risk portfolios.

Regressions I and III show the results for the benchmark models, the market CAPM

(I) and the Fama-French model (III). The CAPM does a very poor job in explaining the

cross-section of returns. The point estimate for the market risk premium is negative and the

regression R2 is less than 7%. The three factor model reduces the pricing errors significantly

and yields an R2 of 76%. The estimated market risk premium remains negative and the model

is still rejected as indicated by the high χ2 statistic.

The remaining regressions show various combinations of the benchmark factors with CVR.

In all specifications, the estimates for the price of a unit CVR risk are significant and negative,

ranging from −0.45% to −0.56% monthly. These estimates are remarkably close to the mean

return of the CVR factor of −0.44%. In regression III, the factors are the market portfolio and

CVR. This specification yields improvements over the one factor market model. Interestingly,

although CVR is based on consumption data, a three factor model based on the market,
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SMB and CVR (regression IV) generates an identical mean absolute pricing error to the

Fama-French model. Augmenting the Fama-French three-factor model with CVR as a fourth

factor (regression V) leads to a marginal improvement in the model’s ability to price the cross-

section. In summary, replacing HML with CVR does not deteriorate the model’s performance,

while including both CVR and HML as factors improve the model fit only slightly. Hence,

HML and CVR are substitutes in cross-sectional pricing for our test assets. In contrast to

HML, however, the consumption volatility risk portfolio has a clear economic interpretation.

Adrian and Rosenberg (2008) perform a similar analysis. They decompose stock market

volatility into two components, which differ in persistence, and estimate them with a GARCH

inspired model. In contrast, our CVR portfolio is based on a Markov model for low-frequency

consumption data. Interestingly, their short-run volatility component has similar pricing im-

plications to CVR, whereas their long-run component performs worse than CVR. However,

the persistence of their short-run volatility component is 0.327 for daily data while our con-

sumption volatility regimes last on average for several years. The CVR factor thus has a much

different and macroeconomically more meaningful interpretation.

Figure 5 replicates Figure 4 for market based pricing models. The 25 size-value portfolios

are represented by black dots, and the five volatility risk portfolios by red stars. The top left

graph depicts the CAPM (regression I in Table IX). The remaining graphs show the CAPM

augmented with the volatility risk factor (top right graph, regression II), the Fama-French

three factor model (bottom left graph, regression III), and a three factor model that uses

CVR instead of HML (bottom right graph, regression IV). Visually, these graphs confirm

that simply adding CVR to the market factor improves the model fit. At first sight, both

the Fama-French model and the three factor CVR model seem to price the 30 portfolios well.

Upon closer inspection, however, the Fama-French model does not succeed in generating a

spread in predicted excess returns of the five volatility risk portfolios as indicated by the

narrow cloud of red stars. In contrast, the three-factor CVR model works well for both

size-value portfolios and consumption volatility risk portfolios.
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IV. Time Series Predictability

In the previous sections, we have shown that loadings on consumption growth volatility pre-

dict returns cross-sectionally and that consumption growth volatility is a priced risk factor.

The model also predicts that the first and second moments of consumption growth forecast

aggregate returns in the time-series. As explained in Section I, the model implies a negative

relation between expected returns and expected consumption growth and a positive relation

between expected returns and consumption growth volatility when the EIS is greater than

unity. Noting that the wealth-consumption ratio is inversely related to expected returns, this

effect can be seen in Figure 2. The opposite holds when the EIS is smaller than unity (see

Figure 3).

Table X reports forecasting regressions of quarterly excess market returns onto lagged vari-

ables. The data ranges from 1955 through 2008. Predictors are the dividend yield (DY), pay-

out ratio (DE), the term spread (TS), aggregate book-to-market ratio (BM), the consumption-

wealth ratio of Lettau and Ludvigson (2001a) (cay), and changes in beliefs about the first

(∆µ̂t) and second moments (∆σ̂t) of consumption growth.14 All of those have been shown to

predict stock returns at various horizons.15 Lettau and Ludvigson (2001a) use the household

budget constraint to motivate the variable cay and show that it works exceptionally well at

short horizon forecasts.

Regressions I-III show the benchmark results of multivariate predictive regressions. The

four standard predictor variables jointly result in an R2 of about 5%. In regressions IV and V,

we study the predictive power of our two consumption state variables. Similar to the cross-

sectional results in the previous sections, we find that beliefs about expected consumption

growth do not predict stock returns, while changes in beliefs about the volatility state show

up economically and statistically significant and yield a regression R2 of 2.6% in a univariate

regression. The R2 of cay in the univariate regression II is somewhat larger at 4%. The

economic impact of consumption volatility risk is large. A one standard deviation increase in
14We thank Amit Goyal and Martin Lettau for making their data available.
15See, for example, Fama and Schwert (1977), Rozeff (1984), Keim and Stambaugh (1986), Campbell (1987),

Campbell and Shiller (1988), Lamont (1998), Campbell and Thompson (2008), and Goyal and Welch (2008).

26



∆σ̂t results in an increase in the expected risk premium of 1.4% quarterly.16 The economic

impact is similar to cay (1.6% quarterly).

Regressions VI to VIII demonstrate that the marginal impact of ∆σ̂t remains strong and

significant even after controlling for all other predictors, including cay. Moreover, the coeffi-

cients on consumption volatility are virtually unaffected by the inclusion of other predictors,

indicating that its forecasting ability is orthogonal to existing variables. The predictive R2

exceeds 9% in the multivariate setting with all predictor variables.

The observation that consumption volatility and cay are orthogonal is surprising. In our

model, changes in consumption volatility enter the pricing kernel only because they affect

the wealth-consumption ratio. Thus, one might expect that direct measures of the wealth-

consumption ratio, such as cay, comprise all relevant information about the volatility state.

Our findings therefore suggest that cay is an imperfect measure of the wealth-consumption

ratio.

It is well known that parameter estimates and t-statistics are potentially biased in predic-

tive regressions, for instance, when the predictor variable is persistent and its innovations are

correlated with future returns, as discussed in Stambaugh (1999), Lewellen (2004), Boudoukh,

Richardson, and Whitelaw (2006) and Ang and Bekaert (2007). Especially when price ratios

are used as predictors, this bias shows up strongly. For the variable ∆σ̂t, this bias is less of a

concern since it is not a price scaled variable. The appendix shows this bias is immaterial in

our setup.

We acknowledge that the predictive results presented have limitations. First, they are in

sample results. Second, there is a look-ahead bias in ∆σ̂t. In estimating the Markov chain

for consumption growth, beliefs are updated according to Bayes’ rule and therefore are not

forward looking. The parameter estimates, however, are obtained by maximum likelihood

employing the full sample. This is similar to the critique by Brennan and Xia (2005), who

point out that estimating cay over the entire sample induces a look ahead bias and a simple

linear time trend would work as well as cay. Their criticism does not apply to our results

since we use changes in beliefs as predictor which do not have a trend. Third, aggregate
16Note that ∆σt has a standard deviation of around 0.00035.
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consumption data is not publicly available at the end of a quarter. Instead, initial estimates

are published within the following month and they are subject to revisions for up to three

years. Hence, we cannot conclude that it is possible to implement our predictability results

in practice. Yet we succeed in identifying a new source of aggregate risk.

V. Conclusion

When consumption growth is not i.i.d. over time and the representative household has recur-

sive preferences, the wealth-consumption ratio is time-varying and enters the pricing kernel

as a second factor (Epstein and Zin (1989), Weil (1989)). We follow Lettau, Ludvigson, and

Wachter (2008), who generalize Bansal and Yaron (2004) to account for the latent nature of

the conditional first and second moments of consumption growth. In the model, we identify

innovations in beliefs about the conditional mean and volatility of consumption growth as two

state variables that affect the wealth-consumption ratio and thus asset prices.

To test these predictions, we estimate a Markov model with two states for the conditional

mean and two states for the conditional volatility of consumption growth, as in Kandel and

Stambaugh (1991) and Lettau, Ludvigson, and Wachter (2008). Using the estimated beliefs

from the Markov model, we empirically test the pricing implications for the cross-section

and time-series of stock returns. In the cross-section, we first show that firm level loadings on

changes in beliefs about consumption volatility significantly forecast returns, while loadings on

changes in beliefs about expected consumption growth do not. A negative relation between

betas and future returns indicates a negative price of consumption volatility risk. This is

confirmed in cross-sectional pricing tests, where both consumption volatility and its mimicking

portfolios are negatively priced sources of risk. In the context of our model, these findings

suggest an EIS greater than the inverse of the RRA for the representative agent.

In time-series tests, we find that shocks to beliefs about the volatility state forecast the

equity premium. In a univariate regression, changes about perceived consumption volatility

achieve an R2 of 2.6%. A one standard deviation increase in perceived volatility is followed by

an increase of the equity returns of 1.4% quarterly. The economic impact is comparable to the
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one generated by cay of Lettau and Ludvigson (2001a). Surprisingly, cay, a direct measure of

the wealth-consumption ratio, does not subsume the predictive power of consumption volatil-

ity. The positive coefficient of consumption volatility in the predictive regressions indicates

that the representative agent has elasticity of intertemporal substitution greater than unity.
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Figure 1. Bayesian Beliefs about the Mean and Volatility State
This figure displays the estimated Bayesian belief processes for being in the high expected
growth rate state (top figure) and high volatility state (bottom figure). The estimation pro-
cedure follows Hamilton (1994). We use quarterly per capita real consumption expenditure
for non-durable goods and services for the years 1955.Q1-2008.Q4.
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Figure 2. Wealth-Consumption Ratio for a High EIS Agent
This figure shows the wealth-consumption ratio as a function of the perceived conditional first
µ̂t (left graph) and second σ̂t (right graph) moments of consumption growth. The dynamics
of the underlying consumption process are summarized in Table I. The representative agent
has an EIS of 1.5, RRA of 30 and quarterly rate of time preference of 0.995.
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Figure 3. Wealth-Consumption Ratio for a Low EIS Agent
This figure shows the wealth-consumption ratio as a function of the perceived conditional first
µ̂t (left graph) and second σ̂t (right graph) moments of consumption growth. The dynamics
of the underlying consumption process are summarized in Table I. The representative agent
has an EIS of 0.5, RRA of 30 and quarterly rate of time preference of 0.995.
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Figure 4. Pricing Errors of the Consumption-Based Model
This figure depicts average quarterly excess returns of the 25 Fama-French portfolios (black
dots) and 5 volatility risk portfolios (red stars) against model predicted excess returns. The
first graph represents the standard consumption CAPM and the second graph the full model
with consumption growth (∆ct) as well as changes in the perceived first (∆µ̂t) and second
(∆σ̂t) moments of consumption growth as explanatory factors. In the third graph, we replace
beliefs about the volatility state with the CVR factor in the full model.
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Figure 5. Pricing Errors of the Market-Based Model
This figure depicts average monthly excess returns of the 25 Fama-French portfolios (black
dots) and 5 volatility risk portfolios (red stars) against model predicted excess returns. The
top-left graph represents the standard CAPM and the bottom-left graph the Fama-French
three factor model. In the top-right graph, we add the CVR factor to the CAPM and, in the
bottom-right graph, we replace the HML factor with the CVR in the Fama-French model.
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Table I
Markov Model of Consumption Growth

This table reports parameter estimates of the Markov model for log consumption growth

∆ct+1 = µt + σtεt+1 εt+1 ∼ N (0, 1)

where µt ∈ {µl, µh} and σt ∈ {σl, σh} follow independent Markov processes with transition
matrices Pµ and P σ, respectively,

Pµ =
[

pµll 1− pµll
1− pµhh pµhh

]
P σ =

[
pσll 1− pσll

1− pσhh pσhh

]
The estimation procedure follows Hamilton (1994). We use quarterly per capita real consump-
tion expenditure for non-durable goods and services for the years 1955.Q1-2008.Q4. Standard
errors are reported in parentheses.

Panel A: Parameter Estimates (%)

µl µh σl σh
0.3668 0.7800 0.2112 0.4772

(0.0376) (0.0600) (0.0279) (0.0532)

Panel B: Marginal Transition Probabilities

pllµ phhµ pllσ phhσ
0.9304 0.8929 0.9452 0.9617

(0.0353) (0.0597) (0.0400) (0.0458)
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Table II
Portfolios Formed on Risk Exposure

This table reports average equally-weighted (EW) and value-weighted (VW) monthly returns
(%) of portfolios based on time-varying loadings from rolling time-series regressions (16).
Specifically, we regress individual returns on log consumption growth (βic,t) and changes in
the perceived first (βiµ,t) and second moments (βiσ,t) of consumption growth using 20 quarterly
observations. In Panel D, we also control for fluctuations in the market return when estimating
risk loadings. The t-statistics reported in parentheses are based on Newey-West adjusted
standard errors using 12 lags. The sample period is from January 1964 to December 2008.

Panel A: Univariate Sorts Based on βic,t
Low Med High High - Low

EW 1.09 1.16 1.15 1.17 1.25 0.16
(4.01) (5.19) (5.09) (4.68) (4.16) (1.16)

VW 0.84 0.89 0.84 0.88 0.91 0.07
(3.62) (4.50) (4.25) (4.53) (3.69) (0.37)

Panel B: Univariate Sorts Based on βiµ,t
Low Med High High - Low

EW 1.22 1.17 1.14 1.14 1.15 -0.06
(4.42) (5.13) (5.03) (4.82) (3.86) (-0.57)

VW 0.95 0.90 0.81 0.86 0.91 -0.03
(4.32) (4.72) (4.08) (4.17) (3.38) (-0.22)

Panel C: Univariate Sorts Based on βiσ,t
Low Med High High - Low

EW 1.28 1.16 1.15 1.16 1.07 -0.19
(4.26) (4.77) (5.02) (5.14) (4.00) (-1.68)

VW 1.08 0.90 0.85 0.89 0.65 -0.43
(4.26) (4.42) (4.30) (4.62) (2.73) (-2.61)

Panel D: Univariate Sorts Based on βiσ,t - Controlling for RM
Low Med High High - Low

EW 1.30 1.19 1.17 1.08 1.08 -0.21
(4.46) (5.16) (5.17) (4.71) (3.79) (-2.09)

VW 1.08 0.93 0.82 0.89 0.64 -0.44
(4.42) (4.93) (4.21) (4.52) (2.71) (-3.10)
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Table III
Characteristics of Consumption Volatility Risk Portfolios

This table reports characteristics and risk measures for quintile portfolios based on consump-
tion volatility loadings (as in Table II, Panel D). Panel A shows average returns and average
consumption volatility betas (βσ). Panel B reports the average value and mean decile rank
for size (ME) and book-to-market (BM) characteristics of each portfolio.

Panel A: Univariate Sorts Based on βiσ,t
Low Med High High - Low

Return 1.08 0.93 0.82 0.89 0.64 -0.44
βσ/100 -2.69 -0.87 -0.03 0.84 2.93 5.62

Panel B: Characteristics of Sorts Based on βiσ,t
Low Med High High - Low

ME 1428.21 2418.57 2388.74 1742.64 892.62 -535.59
ME Rank 4.25 5.43 5.64 5.28 4.13 -0.12

BM 0.91 0.92 0.91 0.91 0.90 -0.01
BM Rank 4.87 5.02 5.04 4.99 4.83 -0.04
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Table IV
Portfolios Formed on Consumption Volatility Risk and Characteristics

This table reports average equally-weighted and value-weighted monthly returns (%) of inde-
pendent double sorts based on consumption volatility loadings (βiσ,t) and market capitaliza-
tions in Panel A and based on consumption volatility loadings and book-to-market ratios in
Panel B. The t-statistics reported in parentheses are based on Newey-West adjusted standard
errors using 12 lags.

Panel A: Portfolios Formed on Consumption Volatility Risk and Market Capitalization

Equally-Weighted Returns Value-Weighted Returns
Low Med High H - L Low Med High H - L

Small 1.36 1.36 1.26 -0.09 1.26 1.28 1.10 -0.15
(4.43) (4.84) (4.13) (-1.25) (4.60) (5.06) (3.93) (-1.79)

Big 1.05 1.04 0.90 -0.15 0.96 0.85 0.73 -0.23
(4.61) (5.15) (3.96) (-1.72) (4.68) (4.54) (3.40) (-2.03)

S - B -0.30 -0.31 -0.35 -0.29 -0.42 -0.36
(-2.02) (-2.27) (-2.34) (-1.70) (-2.56) (-1.97)

Panel B: Portfolios Formed on Consumption Volatility Risk and Book-to-Market Ratio

Equally-Weighted Returns Value-Weighted Returns
Low Med High H - L Low Med High H - L

Low BM 1.06 1.01 0.89 -0.17 0.90 0.84 0.65 -0.25
(3.90) (4.45) (3.39) (-1.84) (4.16) (4.31) (2.89) (-2.08)

High BM 1.44 1.31 1.30 -0.14 1.17 1.00 1.10 -0.06
(5.42) (5.60) (4.77) (-1.79) (5.46) (5.32) (5.12) (-0.53)

H - L 0.38 0.30 0.41 0.26 0.16 0.46
(3.99) (3.50) (3.89) (2.10) (1.37) (3.30)
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Table V
Fama-MacBeth Regressions

This table reports cross-sectional regressions of monthly returns on lagged estimated risk
loadings and characteristics. Time-varying risk loadings are obtained from 5-year rolling
time-series regressions of individual excess returns on the market excess return, log consump-
tion growth, and changes in the perceived conditional mean and volatility of consumption
growth using quarterly data. In the cross-section, we regress monthly future returns onto
the loadings of log consumption growth (βic,t), changes in the perceived conditional mean
(βiµ,t) and volatility (βiσ,t) of consumption growth as well as market capitalization (MEit) and
book-to-market ratio (BM i

t ). Both characteristics are measured in December which is 7 to
18 months prior to the test month. All explanatory variables are normalized so they are
centered around zero with unit variance. We report time-series averages of the second stage
coefficients. The t-statistics in parentheses are based on Newey-West adjusted standard errors
using 12 lags.

βic,t βiµ,t βiσ,t MEit BM i
t

I 0.05
(0.97)

II -0.02
(-0.54)

III -0.08
(-2.22)

IV 0.16 0.02 -0.09
(2.03) (0.39) (-1.62)

V -0.06 -0.07 0.18
(-1.79) (-1.43) (3.98)
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Table VI
Volatility Risk Pricing

This table reports market prices of risk from two stage regressions where ∆ct denotes log
consumption growth, ∆µ̂t and ∆σ̂t are changes in filtered beliefs about the first and second
moments of consumption growth. The CVR factor is the return of holding a long position in
the value-weighted quintile of stocks with high volatility risk (βiσ,t) and a short position in low
volatility risk, as reported in Panel D of Table II. In Panel A, the test assets are the value-
weighted 25 Fama-French value and size portfolios, in Panel B, we add the 5 value-weighted
consumption volatility risk portfolios as in Panel D of Table II, and in Panel C, we add 6
bond portfolios from CRSP. The data covers January 1964 to December 2008. The t-statistics
are corrected for estimation error in the first stage as proposed by Shanken (1992) and are
Newey-West adjusted using 4 lags. For each specification, we report the R2, mean absolute
pricing error (MAPE) in parentheses, regression J-statistic (χ2) with the associated p-value
(in %).

Const. ∆c ∆µ̂ ∆σ̂ CVR R2 χ2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (MAPE) (p-val)
Panel A: 25 Value-Size Portfolios

I 1.54 0.10 2.54 92.44
(2.01) (0.52) (0.62) (0.00)

II 1.33 0.25 -0.02 -0.03 9.91 46.18
(1.31) (1.29) (-0.57) (-2.26) (0.60) (0.19)

III 0.79 0.01 0.03 -6.49 75.47 28.13
(0.64) (0.03) (0.94) (-2.46) (0.31) (17.13)

Panel B: 25 Value-Size Portfolios & 5 CVR Portfolios

I 1.13 0.16 6.11 122.33
(1.46) (0.83) (0.60) (0.00)

II 0.94 0.30 -0.02 -0.04 13.83 46.62
(0.79) (1.35) (-0.49) (-2.24) (0.58) (1.09)

III 1.06 0.06 0.02 -2.84 42.35 75.00
(1.25) (0.42) (0.80) (-3.99) (0.46) (0.00)

Panel C: 25 Value-Size Portfolios & 5 CVR Portfolios & 6 Bond Portfolios

I 0.69 0.25 42.56 146.40
(2.84) (1.87) (0.52) (0.00)

II 0.87 0.29 -0.01 -0.04 47.05 67.11
(1.77) (1.86) (-0.38) (-2.30) (0.52) (0.04)

III 0.43 0.24 0.02 -2.90 63.12 98.87
(1.18) (1.91) (1.01) (-4.07) (0.41) (0.00)
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Table VII
Volatility Risk Factor

This table provides descriptive statistics of the volatility risk (CVR) portfolio. The CVR
portfolio is the return of holding a long position in the value-weighted quintile of stocks with
high volatility risk (βiσ,t) and a short position in low volatility risk, as reported in Panel D
of Table II. Panel A shows the mean, standard deviation and the Sharpe Ratio of the CVR
portfolio as well as the three Fama-French factors. Panel B presents the correlation matrix
of the factor returns. Panel C reports parameter estimates from time-series regressions of the
CVR portfolio on the market and the three Fama-French factors with Newey-West adjusted
standard errors using 12 lags.

Panel A: Summary Statistics
CVR MKT SMB HML

Mean (%) -0.44 0.37 0.26 0.43
Std. Dev. (%) 3.40 4.47 3.20 2.90
Sharpe Ratio -0.13 0.08 0.08 0.15

Panel B: Correlations
CVR MKT SMB HML

MKT 0.09 1
SMB 0.17 0.30 1
HML -0.26 -0.38 -0.26 1

Panel C: Time-Series Regressions
α (%) βMKT βSMB βHML R2 (%)

I -0.44
(-3.10)

II -0.47 0.07 0.86
(-3.21) (1.27)

III -0.34 -0.03 0.12 -0.29 7.92
(-2.35) (-0.49) (0.87) (-2.51)
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Table VIII
Factor Exposures to the CVR Factor

This table reports factor loadings of the 5 value portfolios (Panel A) and 5 volatility risk
portfolios (Panel B) with the market return (MKT) and consumption volatility risk factor
(CVR). The CVR portfolio is the return of holding a long position in the value-weighted
quintile of stocks with high volatility risk (β̂iσ,t) and a short position in low volatility risk, as
reported in Panel D of Table II. The data starts in January 1964 and ends in December 2008.
The t-statistics reported in parentheses are based on Newey-West adjusted standard errors
using 12 lags.

Low Med High
Panel A: Value Portfolios

α (%) -0.09 0.02 0.10 0.22 0.33
(-1.28) (0.30) (1.17) (2.22) (2.86)

βMKT 1.06 0.99 0.91 0.86 0.95
(67.89) (38.02) (31.86) (24.64) (20.85)

βCV R -0.01 -0.09 -0.06 -0.14 -0.16
(-0.41) (-2.02) (-1.31) (-2.66) (-2.67)

Panel B: Volatility Risk Portfolios

α (%) -0.02 0.03 -0.02 0.09 -0.02
(-0.38) (0.36) (-0.28) (1.27) (-0.38)

βMKT 1.08 0.89 0.88 0.96 1.08
(40.13) (30.30) (37.25) (48.71) (40.13)

βCV R -0.56 -0.26 -0.11 0.04 0.44
(-16.84) (-4.94) (-2.21) (0.52) (13.21)
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Table IX
Volatility Risk Pricing Factor

This table reports market prices of risk from two stage regressions where MKT denotes the
market excess return, and SMB and HML are the Fama-French size and value factors. The
CVR factor is the return of holding a long position in the value-weighted quintile of stocks
with high volatility risk (βiσ,t) and a short position in low volatility risk, as reported in Panel
D of Table II. Test assets are the value-weighted 25 Fama-French size and book-to-market
portfolios as well as the 5 value-weighted consumption volatility risk portfolios as in Panel D
of Table II. The t-statistics are corrected for estimation error in the first stage as proposed by
Shanken (1992) and are Newey-West adjusted with 12 lags to account for heteroskedasticity
and autocorrelation. For each specification, we report the R2, mean absolute pricing error
(MAPE) in parentheses, regression J-statistic (χ2) with the associated p-value (in %). The
data covers January 1964 to December 2008.

Const. MKT SMB HML CVR R2 χ2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (MAPE) (p-val)

I 1.00 -0.39 6.73 112.31
(2.47) (-0.85) (0.20) (0.00)

II 0.60 -0.03 -0.52 15.09 99.02
(1.60) (-0.07) (-3.30) (0.20) (0.00)

III 1.01 -0.62 0.21 0.48 76.05 82.75
(3.21) (-1.68) (1.40) (3.13) (0.09) (0.00)

IV 1.75 -1.32 0.20 -0.56 74.26 68.59
(3.94) (-2.84) (1.30) (-3.51) (0.09) (0.00)

V 1.00 -0.62 0.22 0.46 -0.45 80.06 69.69
(3.16) (-1.67) (1.42) (2.98) (-3.07) (0.08) (0.00)
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Table X
Market Predictability in the Time-Series

This table reports time-series regressions of the market excess return on lagged predictor
variables. The market return is the value-weighted CRSP index less the 90 day T-Bill rate.
Predictor variables are the dividend yield (DY), payout ratio (DE), the term spread (TS),
aggregate book-to-market ratio (BM), the consumption-wealth ratio of Lettau and Ludvigson
(2001a) (cay), and changes in beliefs about the first (∆µ̂t) and second moments (∆σ̂t) of
consumption growth. The sample period includes the first quarter of 1955 until the fourth
quarter of 2008. t-statistics are reported in parentheses and based on Newey-West adjusted
standard errors using 4 lags.

Const. DY DE TS BM cay ∆µ̂ ∆σ̂ R2(%)
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

I -0.01 3.83 -0.09 0.80 -0.12 5.10
(-0.43) (2.84) (-1.56) (2.08) (-2.06)

II 0.01 1.13 4.05
(2.42) (3.23)

III 0.02 1.51 -0.11 0.60 -0.02 1.05 6.88
(0.57) (0.83) (-1.88) (1.39) (-0.27) (2.01)

IV 0.01 2.79 37.48 2.64
(2.29) (0.29) (2.32)

V 0.01 37.88 2.60
(2.27) (2.40)

VI -0.02 3.67 -0.08 0.86 -0.12 38.33 7.74
(-0.52) (2.86) (-1.42) (2.24) (-2.00) (2.53)

VII 0.01 1.15 38.84 6.78
(2.34) (3.29) (2.58)

VIII 0.02 1.27 -0.10 0.66 -0.01 1.08 39.11 9.63
(0.50) (0.74) (-1.75) (1.50) (-0.14) (2.07) (2.69)
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Appendix to Consumption Volatility Risk

A. Wealth-Consumption Ratio Approximation

For the pricing of the return on the consumption claim, Euler equation (5) simplifies to

PCθt = Et

[
βθ
(
Ct+1

Ct

)1−γ
(PCt+1 + 1)θ

]
(19)

Based on the law of iterated expectations, equation (19) can be written as

PCθt =
4∑
i=1

ξt+1|t(i)PC
θ
t,i (20)

where ξt+1|t(i) is i-the element of ξt+1|t and

PCθt,i = E

[
βθ
(
Ct+1

Ct

)1−γ
(PCt+1 + 1)θ

∣∣∣∣∣ st+1 = i, ξt+1|t

]
(21)

Equation (20) says that the agent forms a belief-weighted average of the state- and belief-

conditioned wealth-consumption ratios (21).

Given Equation (20), the local univariate approximations (10) and (11) of the wealth-

consumption ratio are derived as follows:

∆pct+1 =
1
θ

ln

(
bt+1PC

θ
t+1,1 + (1− bt+1)PCθt+1,2

btPCθt,1 + (1− bt)PCθt,2

)

=
1
θ

ln

(
(bt + ∆bt+1)PCθt+1,1 + (1− (bt + ∆bt+1))PCθt+1,2

btPCθt,1 + (1− bt)PCθt,2

)

=
1
θ

ln

(
btPC

θ
t+1,1 + (1− bt)PCθt+1,2 + ∆bt+1(PCθt+1,1 − PCθt+1,2)

btPCθt,1 + (1− bt)PCθt,2

)

=
1
θ

ln

(
1 +

∆bt+1(PCθt+1,1 − PCθt+1,2)

btPCθt,1 + (1− bt)PCθt,2

)

≈ 1
θ

∆bt+1
PCθ1 − PCθ2

btPCθ1 + (1− bt)PCθ2

B. Seasonal Adjustment

The consumption data used in this paper are quarterly, per capita, real consumption of

nondurable goods and services, seasonally adjusted at annual rates. Ferson and Harvey (1992)
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investigate the asset pricing implications of consumption growth rates obtained from data that

are seasonally adjusted with the X-12-ARIMA filter.17 Ex-ante, the impact of the filter on

latent volatility regimes is not obvious.

To measure the impact of the X-12-ARIMA filter, we simulate 300 time series of 200

quarterly log consumption growth rates generated by the Markov model estimated in Table I.

We then perturb every fourth quarter data point by +5% and every first quarter data point

by -5%, which approximately generates the seasonality observed in the discontinued series for

seasonally unadjusted quarterly consumption data. We transform the seasonally perturbed

series into consumption levels and apply the X-12-ARIMA filter to get seasonally adjusted

consumption data. We lastly estimate the four-state Markov model of Section I on both the

original and the seasonally adjusted data.

Table XI shows summary statistics of the estimated Markov chain parameters. We ob-

serve that the seasonal adjustment has negligible influence on the estimated states and state-

transitions. Moreover, the median correlation between beliefs over states estimated from the

original and the filtered data is very high (0.98 for the mean, 0.90 for the standard deviation

state). We conclude that the Markov model is robust to the X-12-ARIMA filter.

C. Numerical Solution

Using Equation (20), the wealth-consumption ratio, PCt = PC(ξt+1|t), solves the following

functional equation

PC(ξt+1|t) =

(
4∑
i=1

ξt+1|t(i)E
[
βθ(PC(ξt+2|t+1) + 1)θ

(
eµi+σiεt+1

)1−γ∣∣∣ st+1 = i
])1/θ

where ξt+1|t(i) is i-the element of ξt+1|t. We solve this equation as a fixed-point in the wealth-

consumption ratio. The grid for the belief state-vector has increments of size 0.025 and the ex-

pectation is approximated using Gaus-Hermite quadrature with 10 nodes. Three-dimensional

linear interpolation is used between grid points.
17X-12-ARIMA is a seasonal adjustment program developed at the U.S. Census Bureau. The program is

based on the Bureau’s earlier X-11 program and the X-11-ARIMA program developed at Statistics Canada.
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D. Cross-Sectional Asset Pricing Implications

For our empirical exercise, we assume that the log wealth-consumption ratio is approximately

affine in in the perceived first and second moments of consumption growth

pct ≈ k +Aµ̂t +Bσ̂t

This step provides a more meaningful economic interpretation for mean and volatility states.

In Table XII, we confirm the quality of this approximation based on simulations of the model.

We simulate 300 economies for 100 years at quarterly frequency. In all three panels, the

representative agent has an EIS of 1.5 and a rate of time preference of 0.995. The coefficient

of relative risk aversion (RRA) increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C).

In the first regression of each panel, we regress the log wealth-consumption ratio, pct, on the

prior probabilities of being in a given state, ξt+1,t(i), i = 1, 2, 3. In the second regression, we

regress the log wealth-consumption ratio, pct, on the perceived first, µ̂t, and second moment,

σ̂t, of consumption growth. We report the (across simulation) average regression coefficient

and regression R2.

Equation (20) states that variations in the wealth-consumption ratio depend on the beliefs

about four states, three of which are linearly independent. In an exact implementation of the

model, the wealth-consumption ratio is thus a nonlinear function of three variables. The

first regression of each panel confirms that the log wealth-consumption ratio is approximately

affine in the prior probabilities about the state with regression R2 exceeding 99%.

The second regression of each panel confirms that the log wealth-consumption ratio is

approximately affine in in the perceived first and second moments of consumption growth.

This approximation captures most variation of changes in the wealth-consumption ratio with

regression R2 exceeding 99%. Intuitively, the third prior probability captures the perceived

comovement between the Markov chains for mean and volatility. However, since these two

Markov chains are independent by assumption, the third prior probability is redundant.

In order to test the model in the cross-section of returns, it is convenient to restate the
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fundamental asset pricing equation (5) in terms of betas

Et[Rei,t+1] ≈ −Covt(Ri,t+1,mt+1)

= γCovt(Ri,t+1,∆ct+1) + (1− θ)Covt(Ri,t+1,∆pct+1)

= γCovt(Ri,t+1,∆ct+1) + (1− θ)ACovt(Ri,t+1,∆µ̂t+1) + (1− θ)BCovt(Ri,t+1,∆σ̂t+1)

= βic,tλc,t + βiµ,tλµ,t + βiσ,tλσ,t

with

βc,t =
Covt(Ri,t+1,∆ct+1)

Vart(∆ct+1)
βµ,t =

Covt(Ri,t+1,∆µ̂t+1)
Vart(∆µ̂t+1)

βσ,t =
Covt(Ri,t+1,∆σ̂t+1)

Vart(∆σ̂t+1)

and

λc,t = γVart(∆ct+1) λµ,t = A(1− θ)Vart(∆µ̂t+1) λσ,t = B(1− θ)Vart(∆σ̂t+1)

where βic,t, β
i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect to consumption

growth and the conditional first and second moments of consumption growth, λc,t, λµ,t, λσ,t

are the respective market prices of risk.

E. Equity Premium

To quantify the equity premium generated by our model, we first have to specify a process

for dividend growth. A common approach is to postulate a levered consumption process for

dividends such as D = Cλ. The Markov switching model allows a more general approach

by fitting a Markov model for the conditional first and second moments of dividend growth.

Specifically, we assume that log dividend growth follows

∆dt+1 = µdt + σdt εt+1 εt+1 ∼ N (0, 1)

where µdt ∈ {µdl , µdh} and σdt ∈ {σdl , σdh} follow the same Markov process as consumption.

Consequently, we do not re-estimate the transition matrix of the Markov process but use

the estimates reported in Table I. We compute quarterly dividends for the period 1955-2008

using the value-weighted CRSP index with and without distributions. Parameter estimates

are summarized in Table XIII.
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In Table XIV, we report statistics about the risky and risk-free asset. We simulate 300

economies for 100 years at quarterly frequency. In all three panels, the representative agent

has an EIS of 1.5 and rate of time preference of 0.995. The coefficient of relative risk aversion

increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C). We report the average excess

return, E[Re], the standard deviation of stock returns, σ[R], the average risk-free rate, E[Rf ],

and the standard deviation of the risk-free rate, σ[Rf ]. In the last row of each panel, we also

report moments of the the Markov switching model without learning where the agent knows

the state of the economy.

In the specification with RRA of 10, the model generates an annual risk premium of 1%,

stock return volatility of 6%, an average risk-free rate of 3% and risk-free rate volatility of

0.3%. This poor performance is not surprising since the Markov chain is not very persistent

compared to the specification of Bansal and Yaron (2004). For RRA of 30, the model generates

a risk premium of 3.6%.

F. Learning Premium

The Euler equation for the return on wealth is given by

1 = βθEt

[(
PCt+1 + 1

PCt

)θ (Ct+1

Ct

)1−γ
]

Without learning, it follows that

βθEt

[(
PCt+1 + 1

PCt

)θ (Ct+1

Ct

)1−γ
]

= βθEt

[(
PCt+1 + 1

PCt

)θ]
Et

[(
Ct+1

Ct

)1−γ
]

since the Markov switches are independent from the normal shocks to consumption growth. In

a model with learning, however, the wealth-consumption ratio is correlated with consumption

growth, i.e.,

Covt

(
PCt+1 + 1

PCt
,
Ct+1

Ct

)
6= 0

since the agent cannot differentiate whether the change in consumption growth comes from

the Markov chain or the normal innovation. We call this covariance the learning premium.
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To quantify the learning premium, it is convenient to log linearize returns and the pricing

kernel. In a log-linear world, the expected excess return on wealth has to satisfy

Et[Rew,t+1] ≈ −Covt(rw,t+1,mt+1)

where the log return on wealth can be approximated by

rw,t+1 ≈ ∆pct+1 + ∆ct+1

and the log pricing kernel by

mt+1 ≈ (θ lnβ − (1− θ)(k0 − k1zt))− γ∆ct+1 − (1− θ)∆pct+1

By substituting these two approximation into the expression for the expected excess return

on wealth, one obtains

Et[Rew,t+1] ≈ −Covt(rw,t+1,mt+1)

≈ −Covt(∆pct+1 + ∆ct+1,−γ∆ct+1 − (1− θ)∆pct+1)

= γVart(∆ct+1)︸ ︷︷ ︸
short−run

+ (1− θ)Vart(∆pct+1)︸ ︷︷ ︸
long−run

+ (1− θ + γ)Covt(∆ct+1,∆pct+1)︸ ︷︷ ︸
learning

Hence, the risk premium in the full model has three components: a short-run, a long-run and

a learning premium. The short-run component arises in a model with i.i.d. consumption and

power utility. For the long-run component to be non-zero, the model has to contain persistent

shocks and the agent has to care about the temporal resolution of risk, i.e., θ 6= 1. The

learning premium arises because shocks to consumption growth also lead the agent to update

her beliefs about states.

Table XIV can be used to quantify the importance of the learning premium. In the last row

of each panel, we also report moments of the the Markov switching model without learning

where the agent knows the state of the economy. The difference between the mean excess

return generated by the full model and the model without learning is the learning premium.

Holding the EIS fixed at 1.5, for RRA of 10 (Panel A), the learning premium is only 7 basis

points; for RRA of 20 (Panel B), the learning premium increases to 44 basis points; and for

RRA of 30 (Panel C), the learning premium reaches 88 basis points. So the fraction of the

total excess return coming from learning increases from 7% to 19% to 24%.
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G. Predictive Regression Bias

It is well known that parameter estimates and t-statistics are potentially biased in predic-

tive regressions. Hodrick (1992) shows that using overlapping observations leads to biased

inference. More importantly, when the predictor variable is persistent and its innovations are

correlated with future returns, Stambaugh (1999), Lewellen (2004), Boudoukh, Richardson,

and Whitelaw (2006) and Ang and Bekaert (2007) show that standard econometric techniques

can be misleading. When price ratios are used as predictors, this bias shows up strongly and

conventional tests will reject the null hypothesis too frequently. To gain a better understand-

ing, consider the following setup

rt = α+ βxt−1 + εrt

xt = φ+ ρxt−1 + εxt

where rt denotes returns and xt a predictor variable. Lewellen (2004) shows that β estimates

are biased by γ(ρ̂ − ρ) where γ = Cov(εrt , ε
x
t )/Var(εxt ) when εrt is correlated with xt. When

the dividend yield is used as predictor, for instance, an increase in price leads to a positive

realized return as well as a decrease in the dividend yield. Consequently, εrt is correlated with

xt. Lewellen (2004) reports an auto-correlation of 0.997 and Corr(εrt , ε
x
t ) = −0.96 for the

dividend yield as predictor, invaliding standard estimates and tests. For the variable ∆σ̂t,

this bias is less of a concern since it is not a price scaled variable. For our one period forecasts,

we estimate Corr(∆σ̂t,∆σ̂t−1) = 0.006 and Corr(∆σ̂t, εt) = 0.032, which is too small to bias

statistical inference.
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Table XI
Effect of X-12-ARIMA Filter

We simulate 300 time-series of 200 quarterly log consumption growth rates generated from
the Markov model estimated in Table I. We then perturb every fourth quarter data point by
+5% and every first quarter data point by -5%, which approximately generates the seasonality
observed in the discontinued series for seasonally unadjusted quarterly consumption data. We
transform the seasonally perturbed series into consumption levels and apply the X-12-ARIMA
filter to get seasonally adjusted consumption data. We lastly estimate the four-state Markov
model of Section I on both the original and the seasonally adjusted data.

Panel A: Summary Statistics for estimates of undisturbed and X-12 data
µl µh σl σh pllµ phhµ pllσ phhσ

Mean 0.36 0.79 0.20 0.49 92.26 93.83 92.39 93.77
Mean X-12 0.37 0.80 0.19 0.47 91.94 93.52 90.36 89.96

Median 0.36 0.79 0.20 0.49 94.11 95.67 94.76 95.95
Median X-12 0.36 0.79 0.18 0.46 93.38 94.90 93.64 93.47

SD 0.08 0.06 0.04 0.06 8.18 7.98 9.07 6.91
SD X-12 0.08 0.05 0.04 0.10 6.38 5.09 12.40 11.70

5th Percent 0.28 0.71 0.15 0.41 77.67 85.49 78.57 79.93
5th Percent X-12 0.27 0.72 0.13 0.38 79.36 84.83 66.38 67.92

95th Percent 0.47 0.87 0.27 0.57 98.30 98.91 98.75 99.19
95th Percent X-12 0.48 0.88 0.24 0.57 97.89 98.66 98.60 99.01

Panel B: Median Correlations of beliefs from undisturbed and X-12 data

ρµ 0.98 ρσ 0.90
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Table XII
Wealth-Consumption Ratio

We simulate 300 economies for 100 years at quarterly frequency. In all three panels, the
representative agent has an EIS of 1.5 and rate of time preference of 0.995. The coefficient of
relative risk aversion (RRA) increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C).
In the first regression of each panel, we regress the log wealth-consumption ratio, pct, on the
prior probabilities of being in a given state, ξt+1,t(i), i = 1, 2, 3. In the second regression, we
regress the log wealth-consumption ratio, pct, on the perceived first, µ̂t, and second moment,
σ̂t, of consumption growth. We report the average regression coefficient and average R2.

Const. ξ(1) ξ(2) ξ(3) µ̂ σ̂ R2

Panel A: RRA=10, EIS=1.5

5.7172 -0.0056 -0.0074 0.0009 0.9973
5.7115 0.0069 -0.0015 0.9948

Panel B: RRA=20, EIS=1.5

5.6922 -0.0050 -0.0071 0.0012 0.9957
5.6870 0.0067 -0.0018 0.9933

Panel C: RRA=30, EIS=1.5

5.6696 -0.0044 -0.0068 0.0016 0.9937
5.6650 0.0064 -0.0021 0.9914
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Table XIII
Markov Model of Dividend Growth

This table reports parameter estimates of the Markov model for log dividend growth

∆dt+1 = µdt + σdt εt+1 εt ∼ N (0, 1)

where µdt ∈ {µdl , µdh} and σdt ∈ {σdl , σdh} follow independent Markov processes with transi-
tion matrices Pµ and P σ, respectively. The consumption and dividend process follow the
same Markov switching process as reported in Table I. We compute quarterly dividends for
the period 1955-2008 using the value-weighted CRSP index with and without distributions.
Standard errors are reported in parentheses.

Parameter Estimate (%)

µdl -0.4549
(0.1654)

µdh 1.4378
(0.2091)

σdl 1.1747
(0.0838)

σdh 3.4576
(0.4980)
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Table XIV
Model Implications

We simulate 300 economies for 100 years at quarterly frequency. In all three panels, the
representative agent has an EIS of 1.5 and rate of time preference of 0.995. The coefficient
of relative risk aversion (RRA) increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel
C). We report the average excess return, E[Re], the standard deviation of stock returns, σ[R],
the average risk-free rate, E[Rf ], and the standard deviation of the risk-free rate, σ[Rf ]. In
the last row of each panel, we also report moments of the Markov switching model without
learning where the agent knows the state of the economy.

E[Re] σ[Re] E[Rf ] σ[Rf ]
Panel A: RRA=10, EIS=1.5

Mean 0.0105 0.0599 0.0315 0.0032
25% 0.0058 0.0563 0.0307 0.0030
75% 0.0150 0.0634 0.0323 0.0034

No Learning 0.0098 0.0719 0.0336 0.0027

Panel B: RRA=20, EIS=1.5

Mean 0.0235 0.0560 0.0274 0.0053
25% 0.0182 0.0523 0.0264 0.0049
75% 0.0285 0.0594 0.0286 0.0058

No Learning 0.0191 0.0700 0.0329 0.0026

Panel C: RRA=30, EIS=1.5

Mean 0.0361 0.0530 0.0241 0.0071
25% 0.0309 0.0492 0.0225 0.0064
75% 0.0413 0.0566 0.0255 0.0079

No Learning 0.0273 0.0685 0.0322 0.0026
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